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Chapter 3 
 

Control engineering 
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Heikki Hyötyniemi 
Helsinki University of Technology, Control Engineering Laboratory 
 
 
Control engineering makes the idea of feedback concrete. The system behavior is meas-
ured, and if there is difference between the real and intended behaviors, appropriate con-
trol actions are applied. However, it is not always clear what kind of control happens to 
be appropriate – understanding these issues leads to deep theoretical questions. 
 
 
 
3.1  Control as Common Sense 
 
For a layman, self-regulating systems are something “intelligent”. Controlling one’s be-
havior in a reasonable way is one of the intuitive definitions of intelligence.  

The goal of control engineering is to make systems – any system, really – behave 
somehow better than it would naturally do. The basic tool to accomplish this is feedback. 
Being an engineering discipline, control engineering exploits this feedback idea to the 
extreme – this chapter is a tour de force, trying to visualize the power of the basic ideas, 
and illustrating the ever-increasing challenges that are faced when more and more com-
plicated systems are being controlled. More detailed discussion can be found in [3.2]. 

Control engineering makes the idea of feedback very concrete: How to learn from the 
system behavior and how to use this information for reaching better behavior. In a way, 
control engineering is “formalized common sense”, a logical way of learning of experi-
ences. To reach the intelligent-looking behavior of the controlled system, somebody 
needs to implement his/her knowledge in the controller. That is why, control engineering 
work is very knowledge-intensive: One has to understand the natural behavior of the sys-
tem, and, after that, one has to be able to implement the appropriate control actions.  
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3.1.1  Abstractions 
When speaking of feedback, it is some kind of information that is received and utilized. 
And speaking of information processing refers to something that is not so concrete; things 
have to be studied on a higher level of abstraction. This is the case also in control engi-
neering – meaning that, rather than studying the physical structure, the functional or logi-
cal structure of the system is concentrated on. One of the most fundamental functional 
features of a system is its causal dependency structure. 

To illustrate this structuring problem, study an example of determining the causalities 
– what are the inputs and what are outputs of a system (see Fig. 3.1). There is a tank 
whose level can be controlled by affecting the amount of outflowing liquid from the sys-
tem using a valve in the outlet; incoming flow is assumed to be a disturbance. At first, it 
would be tempting to claim that the incoming flow Qin(t) would be the process input and 
the outgoing flow Qout(t) would be output. Of course, this is true on the physical level. 
But in control systems, we forget about the physical flows and concentrate on information 
flows: How the information can be extracted from the system and how this information 
can be used to change its behavior. In this sense, it is the tank level h that is being meas-
ured that serves as the source of information concerning the system state. And it is the 
output flow that can be controlled, thus changing the state of the tank system (in instru-
mentation diagrams, “FC” stands for flow control and “LI” for level indication).  
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Figure 3.1. What are the inputs and outputs of the tank system? 
 
 
The first step in control engineering work is to abstract away details that are not relevant. 
In its most simplified form, the model of the system is presented as a “black box”, where 
only the input and output signals are explicitly shown (see Fig. 3.2). It needs to be noted 
that this kind of models are not unique: Concentrating on different things, different mod-
els can be derived. 
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Figure 3.2. Process 
seen as a “black 
box” between in-
put and output 
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3.1.2  Control strategies 
Now, using the input/output process model, we can proceed towards controlling the plant. 
The idea of negative feedback means that if the measurement tells that the quantity to be 
controlled is too high, less input is fed into the system, and vice versa. To express this 
more explicitly, we now define the outlook of the feedback control system (see Fig. 3.3). 

This structure is quite general, and it is applied whenever feedback control is utilized. 
The control signal u(t) is supplied by the controller; the output of the process, the signal 
y(t), is measured, and this real behavior is compared against the intended behavior, the 
reference signal r(t). The difference between these two values, the error signal e(t) is cal-
culated as 
 
 ( ) ( ) ( )e t r t y t= − . (3.1) 
 
This error signal is used for determining the appropriate new control action u(t). The con-
trol signal can generally be any function of e(t). How this function should be selected – 
this is a delicate question, and it is this selection where the control engineer’s expertise is 
tested. In what follows, different cases are studied. 
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Figure 3.3. The general structure of the feedback control 
 
 
First, assume that the tank system of Fig. 3.1 is to be controlled, so that we want the sys-
tem output, or the tank level to follow our reference, when the control signal to be ma-
nipulated is the outgoing flow (that is, y(t) = h(t) and u(t) = Qout(t)). The first control 
strategy that immediately comes to mind is to increase the total incoming flow if the dif-
ference between the reference value and actual tank level is positive; written in symbol 
form, we have the proportional control law (or P control for short): 
 

 P( ) ( )u t K e t= ⋅ , (3.2) 
 
where KP is a constant. Whatever value this calculation gives out, the outgoing flow is 
manipulated correspondingly. It turns out that this P control strategy works just as we 
imagined (see Fig. 3.4): The nearer the tank level is to the reference, the more cautious 
the control becomes, resulting in nice, smooth behavior. The response becomes faster and 
faster when the parameter KP is increased. 
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As compared to the above tank level control problem, a very similar-sounding process is 
radiator control: If the room temperature is too low, add heating power, and vice versa. 
However, it turns out that the above P control strategy no more works in this case (see 
Fig. 3.5): There will remain a steady-state error between the reference value and the ac-
tual temperature, no matter what is the value of the parameter KP. To understand this phe-
nomenon, one needs to study the basic difference between these processes – whereas the 
tank behaves as an integrator, the radiator does not.  
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Figure 3.4. Tank 
level control  

Figure 3.5.  
Simple radiator 
control fails!  
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From the control point of view, the role of the integrator is to “remember” past behaviors; 
if it turns out that the control action cannot reach the reference value, the control signal 
cumulates; finally, the cumulated control necessarily overcomes all sluggishness. On the 
other hand, if there is no integration in the process to begin with, one can compensate for 
this problem by adding integration explicitly in the control loop. And, really, it turns out 
that this integrative control law (or I control for short) accomplishes the control task, the 
integral of the error signal being used for control (now, the tuning parameter is KI): 
 

 I( ) ( )u t K e dτ τ= ⋅ ∫ . (3.3) 
 
Next, assume that a frictionless mass point is to be controlled. Surprisingly, if controlled 
using the P controller, harmonic oscillation results (Fig. 3.6) – the controller behaves like 
a string, pulling the mass point always towards the reference location, but never being 
able to freeze the movement. Increasing KP only results in faster oscillations! On the other 
hand, I control (or any combination of P and I) is this time no solution: The system be-
havior becomes unstable (see Fig. 3.7). The reason for this is that the mass point is a dou-
ble integrator, and all control actions cumulate in the system – yet another integrator can 
only make things worse. Intuitively, one is tempted to try an opposite strategy: Eliminate 
the excessive integration introducing derivative action in the controller. Indeed, the de-
rivative control law (or D control) becomes 
 

 D( ) ( )du t K e t
dt

= ⋅ . (3.4) 
 
Finally, as shown in Fig. 3.8, stabilizing control is reached. Note that D control alone can-
not drive the system to the reference value, so that a combination of P and D is needed.  
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Figure 3.6. 
Mass point 
control fails! 
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Generally, all three control strategies can be combined, and the PID controller can be 
written in the form 
 

 P I D( ) ( ) ( ) ( )du t K e t K e d K e t
dt

τ τ= ⋅ + ⋅ + ⋅∫ , (3.5) 
 
where the first term (P) pushes the system towards the reference value, the second term 
(I) eliminates steady-state errors, and the third term (D) tries to make the controller fast, 
reacting to sudden changes. This PID strategy is the basic solution to industrial problems. 

Figure 3.7. 
Failure again!

Figure 3.8.  
PD control is 
appropriate for 
the mass point 
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3.1.3  Limits of intuition 
Human expertise is needed in selecting the controller structures and in tuning the parame-
ters – this expertise is then utilized during run-time, making the controller itself intelli-
gent looking. However, heuristic trial-and-error approaches do not always work, specially 
when the processes to be controlled are large-scale ones. For example, take the inverted 
pendulum (see Fig. 3.9): No PID controller alone can stabilize it, no matter how well the 
parameters are tuned. 
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Dynamic systems offer a plenty of surprises. As there are new phenomena to be compen-
sated, the dynamic behavior of the controller itself becomes more and more complicated, 
and sooner or later the overall complexity becomes overwhelming. Humans are notori-
ously bad at mastering time-dependent, slow phenomena. It is our luck that natural proc-
esses are usually inherently stable, and lousy controls cannot make too much harm – JAS 
Gripen aircraft and Chernobyl power plant being famous exceptions!  

Because of these difficulties, the traditional approach to controlling of large-scale sys-
tems has been to divide them into separate subsystems, and construct controllers for each 
of these subsystems separately. But, of course, this subsystems-oriented approach results 
in suboptimal behaviors. When the industrial production processes should be optimized, 
the intuitive approaches are no more sufficient, and analytic tools are needed to tackle 
with the complexity. 
 
 
3.2  Control as Common Framework 
 
Control theory has a long history – from the heuristic experiments (Watt’s governor, etc.) 
through the classical era of compensators and single-input single-output approaches to the 
modern times. In the 60’s, the foundations of the modern control theory were derived. 
The modern control systems analysis and design is based on the very solid and elegant 
theory of state-space systems. The idea is to assume a more structured view of the process 
– not only the inputs and outputs, but also its states are of interest. The system state (to-
gether with the future inputs) uniquely determines the behavior of the system in the fu-
ture. 

Figure 3.9. Inverted pendulum. 
The unstable stick should be kept in up-
right position applying external force F.
The classical control approaches cannot 
solve this stabilization problem 
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3.2.1  State-space models 
The linear continuous-time state-space model can be expressed in the form  
 

 ( ) ( ) ( )dx t A x t B u t
dt

= ⋅ + ⋅ , (3.6) 
 
where x(t) is the system state and u(t) is its input; the state-space model also determines 
how the system state will change in the given circumstances. This system representation 
is more powerful than it first looks like – truly, the structural complexity of a system is 
now changed into a form of high dimensionality: Note that x and u are both vectors, con-
taining possibly various individual variables, and A and B are matrices (matrix calculus is 
not repeated here; for example, see [3.1]). 

Let us study some examples – first take the mass point. For a frictionless mass point 
the Newton’s second law holds: The acceleration (the second derivative of the mass point 
location s) is proportional to the driving force F; the heavier the mass point is (mass m 
being bigger), the lower is the change in velocity. This holds for all time instants t: 
 

 
2

2

1( ) ( )d s t F t
dt m

= ⋅ . (3.7) 
 
This is not in the standard form of equation (3.6) – but note that the second derivative can 
be divided in two parts, letting v(t) stand for the velocity of the mass point: 
 

 

1( ) ( )

( ) ( )

dv t F t
dt m
ds t v t
dt

 = ⋅

 =


 (3.8) 

 
Now, defining the system state and input vectors, respectively, as 
 

 ( )( )
( ) and ( ) ( )

( )
v t

x t u t F t
s t

 
= = 
 

, (3.9) 

 
it is evident that this model can be written in the form (3.6) when one chooses 
 

 
0 0 1/

and
0 1 0

m
A B   

= =   
   

. (3.10) 

 
Next, study the inverted pendulum. It turns out that the (linearized) differential equations 
governing its behavior are  
 

 
( )

2
2

2
1 1

2
1 2

2
1 1

1( ) ( ) ( )

1( ) ( ) ( ).

d s m gt t F t
dt m m

m m gd t t F t
dt Lm Lm

α

α α


= ⋅ + ⋅


 + = ⋅ + ⋅


 (3.11) 
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For explanations of the symbols, see Fig. 3.9 (the constant g = 9.81 m/s2 is the accelera-
tion of gravity). It is assumed that the system again is frictionless, and the stick angle is 
rather small to justify the linearized model. This time, we have to introduce two addi-
tional state variables, the trolley speed and the angular velocity of the stick, respectively: 
 

 
( ) ( )

( ) ( ),

dsv t t
dt
dt t
dt
αω

 =

 =


 (3.12) 

 
so that the augmented differential equation model (only containing first derivatives) now 
reads 
 

 ( )

2

1 1

1 2

1 1

1( ) ( ) ( )

( ) ( )

1( ) ( ) ( )

( ) ( ).

dv m gt t F t
dt m m
ds t v t
dt

m m gd t t F t
dt Lm Lm
d t t
dt

α

ω α

α ω

 = ⋅ + ⋅

 =
 + = ⋅ + ⋅


 =


 (3.13) 

 
 
Defining the four-dimensional state vector and the one-dimensional input, 
 

 ( )

( )
( )

( ) and ( ) ( )
( )
( )

v t
s t

x t u t F t
t
t

ω
α

 
 
 = =
 
  
 

, (3.14) 

 
the model can be written in the form (3.6) if the system matrices are defined as 
 

 

2

1 1

1 2

1 1

10 0 0

1 0 0 0 0
   and   .

( ) 10 0 0

0 0 1 0 0

m g
m m

A B
m m g

Lm Lm

   
   
   
   
   
   = =
   +
   
   
   
      
   

 (3.15) 
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3.2.2  Analysis tools 
The reason to see the above trouble is that for models that are written in the standard form 
(3.6), efficient analysis and control design methods are readily available. All analysis 
methods visualize the time-dependence of the system variables in different ways, making 
the otherwise complex phenomena comprehensible. The analysis methods constitute a 
beautiful construction where mathematics (mathematical analysis, function theory, linear 
algebra, etc.) go in parallel with physical, real-life phenomena – time-dependent transient 
behaviors, oscillations, and stability issues. One of the important questions to be analyzed 
– and a question that has a very compact solution in the state space systems framework – 
is whether a system can be controlled at all (see Fig. 3.10). 
 

     

F t( ) F t( )

 
 
 
See the construction in Fig. 3.10 on the right – how possibly can such a system be con-
trolled? To see a glimpse of the complete answer, let us study the stabilization of the 
“simple” case, stabilization of the inverted pendulum in Fig. 3.9 using the modern tools. 
 

3.2.3  Example: Optimal control of the inverted pendulum 
One of the most powerful conceptual and practical tools derived in the field of modern 
state-space theory is optimal control (for example, see [3.3]). There is a mechanical pro-
cedure for constructing a state-feedback controller that achieves optimal system behavior. 
The basic state feedback law looks like 
 
 ( ) ( )u t K x t= − ⋅ , (3.16) 
 
that is, the control signal is a linear weighted combination of the system states; here we 
assume that the state is directly measurable. To make expressions simpler, it is here as-
sumed that the reference is in the state-space origin; all state variables should be driven to 
zero.  

So, it is claimed that such a matrix K can be found that the system behavior is opti-
mal. What does this optimality actually mean? Here we only study the simplified infinite 
end-time problem, the system starting from some state x(0); in this case the cost criterion 
can be written as 
 

Figure 3.10. Controllability surprises.  
The trolley with two sticks is controlla-
ble only if the sticks are not identical.  
On the other hand, there can be any 
number of sticks on top of each other, 
and the system can still be controlled! 
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 ( )
0

( ) ( ) ( ) ( ) ( )T TJ u x t Q x t u t R u t dt
∞

= ⋅ ⋅ + ⋅ ⋅∫ . (3.17) 

 
This cost criterion consists of an integral of two quadratic forms: Essentially, within the 
integral, there is a scalar sum of weighted state and control variable squares. Here Q and 
R are some weighting matrices, so that different state components and control signals can 
be arbitrarily weighted (that is, deviations from the goal in some of the variable are re-
garded as more critical than in other variables). It is intuitively clear that if one manages 
to minimize the criterion (3.17), some kind of “nice” transient behavior should result. 

And, indeed, under rather loose restrictions (system controllability, etc.) the criterion 
(3.17) really can be minimized. Without going into details, it turns out that the solution is 
based on the matrix S fulfilling the so called Riccati equation: 
 

 1 0T TA S SA SBR B S Q−+ − + = . (3.18) 
 
After this has been solved for S, the optimal state feedback for the system can be calcu-
lated – quite automatically – as 
 

 1 TK R B S−= . (3.19) 
 
Now, assume that in the model (3.15) the parameters have the following values: 
 

• the length of the stick is L = 1 (m), 
• the mass of the trolley is m1 = 1 (kg), and 
• the mass at the end of the stick is m2 = 1 (kg). 

 
Before the state feedback law can be solved, the matrices Q and R must be determined. 
Often one selects (for simplicity) diagonal weighting matrices, and, if all state variables 
and the control signal are weighted equally, one can write 
 

 ( )

1 0 0 0
0 1 0 0

and 1
0 0 1 0
0 0 0 1

Q R

 
 
 = =
 
  
 

. (3.20) 

 
When (3.18) is solved, one can apply (3.19), and the optimal state feedback is given as 
 

 ( )2.7 1.0 12.8 51.1K = − − , (3.21) 
 
meaning that each state variable (velocity, location, angular velocity, and angle, respec-
tively) has its own contribution in the control action: If there is deviation in the trolley 
location (state variable number two), for example, the numeric amount of deviation is 
weighted by –1.0 when the control signal is calculated, so that the trolley will be pushed. 
Reflecting the unstable nature of the system, the variables having something to do with 
the stick behavior (the last two ones) seem to be rather heavily weighted, trolley position 
not being regarded as important. In Fig. 3.11, the system behavior is shown when the trol-
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ley starts one meter from the optimum (that is, x2(0) = 1), all other state variables having 
zero initial values. The system stabilizes quite smoothly. In Fig. 3.12, on the other hand, it 
is shown how the results are changed if one selects 
 

 ( )10R = , (3.22) 
 
that is, the control signal is weighted relatively more. It is understandable that when less 
effort is now used, the responses become slower – but the result is again optimal. 
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Figure 3.11.  
Optimal control 
of the inverted 
pendulum 

Figure 3.12.  
Control signal 
being weighted 
excessively 
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3.2.4  Further developments 
The behavior of the optimal controller truly looks intelligent: For example, study the con-
troller actions at time t = 0. The trolley starts seemingly in the wrong direction, away 
from the goal – but this is necessary to make the stick lean back. All this intelligence is 
achieved by the “trivial” linear feedback law. The Riccati equation seems to have some 
mystical powers – just as the celebrated Einstein’s formula! 

However, this is not yet the end of the story. Optimal results are found only if the 
model is linear and exactly known – and this assumption seldom holds when complicated 
plants are being controlled. This is where the mainstream research work in the field of 
control theory has been concentrating on after optimal control theory was completed. 
There are new paradigms for tackling the problems in different ways: For example, robust 
control searches for controllers that would not be too sensitive to model uncertainties; 
adaptive control tries to change the controller behavior according to observed nonopti-
malities in the behavior, thus defining yet another level of feedback in the controller 
structure (see Fig. 3.13). However, only parameter values are changed in standard adap-
tive control – intelligent behavior assumedly is capable of changing structures, too. Inter-
esting developments also in this direction are taking place today [3.5]. 
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However, the feedback phenomena are visible in all levels of control engineering work – 
there is dynamics and inertia also in the control community itself. Control engineering 
started from intuitive, heuristic experiments and proceeded logically towards more theo-
retically oriented analyses – but this is only the academic view. In practice, on the factory 
floor level, there is the burden of old practices. New sophisticated approaches are not yet, 
after thirty years, generally adopted – it is PID that still rules. It seems that after the mod-
ern era there is now the period of “postmodern” methods, again emphasizing intuition and 
heuristic approaches instead of sophisticated theories. It is claimed that control structures 
that are based on neural networks or fuzzy systems are more practical than the other 
methods because no explicit process model is needed when using them. It is directly the 
operator’s knowledge that is implemented as linguistic rules in the fuzzy controller – but 
analysis of such “intelligent controllers” is just as difficult as understanding intelligent 
behavior in general! Heated discussion is going on about the merits and dismerits of dif-
ferent approaches. 

Figure 3.13.  
Yet another level 
of feedback:  
Adaptive control 
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3.3  Summary: Effects of Feedback 
 
As a conclusion, let us study what are the effects of feedback in the dynamic system. 
First, take the advantages: 
 

• When using feedback, no exact model is needed; as long as the causalities are 
qualitatively correct, negative feedback tends to eliminate the errors. Feedback 
control is the only strategy to stabilize an originally unstable system. 

• Using feedback, non-idealities can be virtually eliminated. For example, feedback 
is capable of compensating system nonlinearities (as seen from outside). Further, 
“ideal elements” like big capacitors can be constructed in electric circuits using 
operational amplifiers in a feedback loop (see [3.4]). 

 
But, in addition to the above benefits, feedback causes also problems – or let us call them 
challenges: 
 

• Feedback opens the Pandora’s box: The latent dynamics of the system are let free. 
For example, study a sequence of tanks. This system is always stable, no matter 
how many tanks are connected in series; but if a feedback loop is added, a system 
of three or more tanks may start oscillating and become unstable. And minor de-
sign errors (like implementing positive instead of negative feedback) in the feed-
back loop may ruin the system behavior altogether. 

• Feedback loops make analysis difficult. They weaken the information content in 
closed loops, possibly hiding parameters. What is more, the causalities are 
blurred: The system output signal becomes the input through the feedback. 

• Feedback changes static systems into dynamic, finite responses to infinite ones, 
thus making the system behavior more difficult to grasp. 

 
Despite the risks, there are today no alternatives to sophisticated control systems – this 
“F-word” is here to stay. It is either feedback or it is drawback! 
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