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This paper presents some results that have been found when a new view of human expertise is 
employed: it is assumed that the “chunks” of expert knowledge are based on “independent 
components” in the high-dimensional observation space. These components are exploited by 
the optimised expert model because of their power of representing the data; and because of 
their relevance they can also be detected and extracted using automatic statistical tools. As an 
application example, modelling of the visual outlook of the so called flotation process are 
presented: it seems that the extracted froth prototypes match the sub-symbolic categorization 
of the human process operator. 
 

1.  INTRODUCTION 

The traditional view of human expertise assumes that human knowledge is based on symbolic 
constructs: the inference relies on rules, and representation on conceptual categories or chunks 
[10,11]. Even though this view has lately been challenged (for that new views see [3]), the 
basic paradoxes still remain: for example, how can the shift from novice to expert be 
explained? If expertise were characterized by larger and larger sets of rules or other constructs 
being gathered, how could the reasoning become faster and more automated along learning? 

It turns out that when the expertise is seen as an optimised model of the domain field (in 
the systems theoretical sense), the traditional problems can be efficiently attacked. For 
example, in [5], this modelling view is applied to the chunking in chess: it turns out that the 
“numerical chunks” can essentially relieve the expert memory requirements. The model 
structure is assumed to be based on clusters of data, and the fine structure within the clusters 
consists of independent components (see [4] and [6]). In this paper, this approach is applied to 
a rather practical field of expert knowledge: analysis of process state in an industrial 
concentrator plant. 

 

2.  INDEPENDENT COMPONENTS 

It has been recognized that independent components offer a promising way of finding the 
underlying structure behind observations (see [2]). Independent components are latent 
variables that span the space of measurements in a physically “meaningful” way; they are 
subspace axes that make it possible to compress the observation data in a plausible way. 
Independent component analysis (ICA) is a rather new field of research – the traditional 
methods like principal component analysis (PCA) are mathematically more efficient, but 
physically less plausible: they are usually based on orthogonality of the latent structure. 



There exist specialized algorithms for carrying out independent component analysis; 
traditionally, the non-Gaussianity of the data distribution is used as the criterion. However, in 
practical applications, this approach suffers from the non-ideal measurement conditions in the 
process: the “outliers” that are typical to process measurements may ruin the data analysis. 
What is more, this approach does not support complex data, because it cannot easily be 
combined with clustering: non-Gaussianity assumption suggests distorted clusters, whereas, 
on the other hand, clustering creates new boundaries within the data that may twist the 
extracted independent components. In this experiment a special algorithm called GGHA [7] is 
used, where the search of independent components is based on the explicit assumption of 
sparsity of the fine structure, and redundancy between the clusters in the data [14]. 

It has been shown that the visual cortex applies independent component analysis to visual 
images, first extracting features like border lines, etc., from the images [15]; in the auditory 
cortex, analogous results have been detected. As is shown in this paper, the same principles 
might apply on the higher levels of mental processing.  
 

3.  EXAMPLE: FLOTATION PROCESS 

As a practical application environment, modelling of an industrial flotation process [12] is 
carried out. In flotation, minerals are purified by letting air bubbles penetrate through the ore 
pulp: the mineral grains stick to the bubbles, and they are collected on the froth layer on the 
surface where the concentrate can be collected. The complexity of the flotation process is 
partly caused by the lack of appropriate measurement devices, and it is still the human 
operator that is needed to analyse the process state using visual inspection.  

The process data was collected at Outokumpu Oy zinc concentrator plant in Pyhäsalmi, 
Finland. The process has been monitored over several months, resulting in large amounts of 
measurement data consisting of process variables as well as variables characterizing the visual 
outlook of the froth layer. The froth features include the intensity distributions in the reflected 
light, morphological features (bubble size and shape distributions), and measures for the 
dynamic properties of the froth (bubble collapse rate, froth speed, etc.). The 12-dimensional 
data vectors are now constructed as follows: 

 
1: maximum peak of the cross-correlation matrix between an image pair 
2: speed of the froth 
3: mean size of bubbles 
4: mean eccentricity (how elliptic the bubbles are) 
5: standard deviation of bubble size 
6: standard deviation of eccentricity 
7: mean red value 
8: standard deviation of red value 
9: skewness of red value (third cumulant of the distribution) 
10: kurtosis of red value (fourth cumulant of the distribution) 
11: mean hue value 
12: standard deviation of hue value 

 
Various research reports exist where machine vision has been used in the analysis and 
classification of flotation froths (for example, see [1] and [13]). However, in these 
experiments the froth classes are often rather trivial (the classes being something like “big 
bubbles”/“small bubbles” – see Figs. 1 and 2), and they do not necessarily match the experts’ 
views of what are the relevant phenomena. Now, on the other hand, the bubble size and shape 
information is not used directly for determining the froth classes; these measures are highly 
redundant, and the underlying “latent” relationships searched instead. It must be recognized 
that process properties vary from plant to plant – there does not exist any “universally 
applicable” classification: only the experienced operators know what is relevant in each case.  



 

   Figure 1. “Big bubbles” 
 

   Figure 2. “Small bubbles” 
 
 
At the Pyhäsalmi plant, an operator enquiry was carried out [9]. Even though it is a well-
known problem that expert knowledge cannot be easily extracted, now it was found out that 
the operators felt that three different froth appearances were particularly important: these main 
classes were “stiff”, “dry”, and  “wet” froth (see Figs. 3, 4, and 5). According to the operator 
interviews, a special analyser was constructed for automatically extracting the level of 
“stiffness”, etc., for different images. For example, there is high probability for stiff froth if 
the froth speed is low and bubble size is small. Although wet and dry sound like being 
opposite concepts, they are not; there is correlation (that is, they are not orthogonal) but still 
they have been detected as being independent. 

A large set of images were modeled using statistical tools – GGHA analysis, and for 
reference, also PCA. First, the number of three clusters were chosen, and the fine structure 
analysis was thereafter carried out. The extracted models were tested using another set of 
images, and the results are shown in Figs. 6, 7, and 8, and the results are analyzed in Table 1. 
 



  Figure 3. “Stiff” froth  
 

   Figure 4. “Dry” froth 
 

   Figure 5. “Wet” froth 
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Fig 6. “Hand-made” features  
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 Fig 7. GGHA features  
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 Fig 8. PCA “features”  

 
 

 PC 1 PC 2 PC 3 GGHA 1 GGHA 2 GGHA 3 “Stiff” “Wet” “Dry” 
PC 1 1 -0.0399 0.2887 -0.7749 0.6964 -0.7164 -0.7803 0.8185 -0.6336 
PC 2 ---000...333999999   1 0.0641 -0.3226 -0.4511 -0.5353 -0.1329 -0.1594 0.1922 
PC 3 000...222888888777   000...000666444111   1 -0.2242 0.6707 0.0304 -0.0266 0.1686 0.0656 
GGHA 1 ---000...777777444999   ---000...333222222666   ---000...222222444222   1 -0.2488 0.7038 0.8522 -0.4611 0.3367 
GGHA 2 000...666999666444   ---000...444555111111   000...666777000777   ---000...222444888888   1 -0.1312 -0.2735 0.6446 -0.4213 
GGHA 3 ---000...777111666444   ---000...555333555333   000...000333000444   000...777000333888   ---000...111333111222   1 0.578 -0.5616 0.504 
“Stiff” ---000...777888000333   ---000...111333222999   ---000...000222666666   000...888555222222   ---000...222777333555   000...555777888   1 -0.5305 0.4122 
“Wet” 000...888111888555   ---000...111555999444   000...111666888666   ---000...444666111111   000...666444444666   ---000...555666111666   ---000...555333000555   1 -0.7618 
“Dry” ---000...666333333666   000...111999222222   000...000666555666   000...333333666777   ---000...444222111333   000...555000444   000...444111222222   ---000...777666111888   1 

 

Table 1. Correlations between the “classifications” of the test data. As is expected, 
“wet” and “dry” froth have high negative correlation; additionally, “stiff” and “dry” 
are positively correlated (lower right corner). It turns out that stiffness has strong 
positive correlation with GGHA feature #1, wetness correlates with feature #2, and 
dryness with feature #3 – these facts can be seen also in Figs. 1 and 2. Stiffness and 
wetness can be also categorized rather reliably by using the automatically extracted 
GGHA features, dryness detection using GGHA features is less trustworthy (looking at 
the numerical values, it seems that the froth was never specially dry). Note that 
principal components give no hints about the “correct” classification whatsoever. It 
seems that PC #1 has high correlation with all of the “mental features” simultaneously, 
giving no clue of how to distinguish between them! 



4.  CONCLUSIONS 

There are many pragmatic problems when working with human experts. The experts cannot 
explain their judgements, but their pattern matching capability is immense … for example, it 
is typical that when some graph is shown to a domain-area expert, he (she) often can explain 
the curves in terms of underlying process phenomena – if the expert is co-operative, the 
results can be interpreted in a “positive” way even if there would not exist anything to be seen 
in reality. In this study this dilemma is avoided by consulting the experts before any 
experiments; the results are thereafter compared mathematically, in a “neutral” fashion. 

The results here should still be regarded as preliminary. However, in [8], the model 
construction was carried out for different sets of input variables. Also in that case, similar 
results were obtained: there seems to exist at least some level of robustness and repeatability 
behind the hypotheses.  

It needs to be noted that the categorization result is by no means unique: it reflects the 
relevant phenomena observed. The data set that was used for model construction in this case 
was collected during pre-planned experiments in the process: the inputs were varied in a wide 
range, so that the froth layer also reflected different kinds of operating conditions. Because of 
the special test circumstances, the data seemed to be rather free of “outliers”, too. When the 
GGHA models were later constructed using some lower quality data, not all of the three 
nominal categories were found; it seems that “stiffness” feature is almost always detected, but 
sometimes the other features are needed to explain wide, spurious variations in the data 
perhaps due to measurement errors. Because these outliers are typically random, there is no 
correlation between successive samples in this sense; this random nature of outlier feature 
loading makes these uninteresting features rather easy to spot. 

It turns out that the created feature model does not offer specially good latent variables for 
predicting the mineral concentrations in the froth. Now the only aim was to simulate the 
human perception – and humans are typically outperformed by statistical methods in this kind 
of numerical tasks.  

 
Even though the results cannot be directly generalized, it seems that the school of expertise 
research could benefit from the new ideas. If the automatically extracted domain-oriented 
features may be easily understood by the domain-area experts, if they match their intuitive 
categories, they can hopefully be labelled with mnemonic names. A “common language” can 
perhaps be found, so that humans can communicate with each other using objective 
terminology, making the task of knowledge acquisition and maintenance easier. 
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