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Systems theory offers tools for analysis and construction of models for different kinds of 
systems. It turns out that these tools may open new horizons also when studying mental 
phenomena. This paper illustrates the new possibilities, and proposes a new view of “mental 
imagery” that attacks some of the old paradoxes in the field. 
  

1.  INTRODUCTION 
Systems theory analyses systems. What, then, is a system? Perhaps the most revealing 
definition for this is that “a system is an entity that can be seen as a system”! This definition is 
based on intuitive notions; it embraces everything because all more specific definitions would 
be too restricting. For example, see Fig. 1 – there are two “black boxes”, the ideal mixer in 1a 
and the “idea mixer” in 1b; both of them can be seen as systems, having some internal 
dynamics and well-defined connections to outside world. Of course, the mystery lies in the 
very different basic nature of these two systems: Whereas the ideal mixer maximizes the 
entropy, the mental machinery minimizes it, creating order and structure. 
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     Figure 1. Two vessels 
 
No matter what is the application field, systems theory takes the observed facts and tries to 
construct a model that would explain the observations, optimising some more or less concrete 
criterion. In our field there is a plenty of conflicting evidence available. If the Kuhnian view of 
scientific progress is adopted, it can be said that now we have the antitheses, and some kind of 
synthesis is waited for. It can be claimed that systems theory is the “science of syntheses” … 
Let us see what can perhaps be reached. 

                                                      
1 This presentation was originally given during the Symposium on “Representation”, organized in Dec. 17, 1999, 
by the Finnish Artificial Intelligence Society and Finnish Philosophical Society, at the University of Helsinki. 
The paper is, however, original 
2 Currently working for Nokia Research Center 



2.  MAPPING THE ARENA 
Systems theory is more like philosophy than a compact toolbox of ready-to-use 
methodologies. Regardless of the application field, though, the objective is always to find 
models that would reach a good compromise between conflicting needs and boundary 
conditions. The model is just an approximation of the reality, absolutely correct models do not 
usually exist; the validity of a model can be evaluated using different criteria. In addition to 
matching the observations, there are various other aspects that should also be taken into 
account (see Fig. 2): For example, in what respects does the new approach outperforms the 
old ones, would it really be motivated to change the established practices? How about the 
practical issues – how can the model be analysed, and how easily it can be applied in different 
cases? These questions are concentrated on separately in what follows. 
 
 

         

Model

Evidence
Tools

Practices   Figure 2. Boundary conditions 
 

2.1  Available Evidence 
Usually when constructing models, the observations are rather compact and well-defined; it is 
not a surprise that now the observations are more difficult to quantify. Now it is all kinds of 
intellectual activities that tell us something about the principles of mental functions, and some 
of these branches are discussed below. Very much evidence has been ignored; only those facts 
that are explicitly attacked are mentioned: These are now our “starting hypotheses”, from the 
“micro-world” level towards the “macro-world” level.  
 
Neurophysiology. The brain functions are implemented using neurons; even though the gap 
between the lowest physical level and the level of cognitive processes is huge and conclusions 
should be drawn with extreme care, some experiences are still perhaps useful. The analysis of 
sensory signals, specially in the visual cortex, shows that a special kind of pattern 
reconstruction takes place: the visual image is presented in terms of elementary features. The 
cortical cells constitute a reservoir of feature prototypes – at any instant only a subset of all 
available features is utilized [12].  

As motivated in [1], there cannot exist separate faculties for different mental capabilities 
in the brain – the same principles are responsible for all different kinds of high-level activities.  
This uniformity principle can be extended further: It can be assumed that this kind of sparse 
coding of features is characteristic to all levels of mental behavior. 

 
Cognitive psychology. In cognitive science a wealth of concrete facts have been found that 
are in conflict with mainstream knowledge engineering methodologies; for example:  

•  The operational differences between the long-term memory (LTM) and the short-term 
(working) memory (STM) is not addressed. 

•  The observed fuzziness of categories [14] has not been embedded in the knowledge 
representations. 

•  The pecularities in the shift from novice to expert [3] have not been explained.   



In expertise research it has been noticed that the expert reasoning becomes faster and more 
automated as compared to the novice reasoning.  This is known as the speedup principle [2].  
The traditional way to enhance knowledge bases is through growing the number or 
sophistication of the rules – but how could the expert make the conclusions faster than the 
novice if the rules were more complex? 
 
Different cultures. It has been recognized that the cognitive categories are not uniquely 
determined: Even though the physiological machinery is the same and the observations of the 
world may be the same,  in different cultures different mental classes may be constructed; for 
example, the colors differ between cultures. This refers to the fact that even the simplest 
categories are not hard-wired or Platonian ideals, but the interaction with the environment 
may affect the resulting mental constructs. 

Another source of insight is the Eastern view of Knowledge and Understanding. The 
verbal level knowledge is only the first level; only after the words have been eliminated, real 
enlightment can take place. In Western cultures, this kind of non-thinking is allowed only in 
arts and poetry – but this is what makes as special as humans (see the Preface of this Volume). 
 

2.2  Current Practices 
“Good Old-Fashioned AI” was based on symbols and constructs often inherited directly from 
linguistics. The shortcomings of the linguistic representation (and, more notoriously, the 
“biases” caused by this starting point) are discussed in [4]. However, the language-based 
approaches offer a very sophisticated framework for representing structure among entities. 
This underlines the main shortcoming what comes to connectionistic approaches: It is their 
lack of structure – traditional neural networks training algorithms that concentrate on the 
input-output mapping do not facilitate emergence. Neural networks and fuzzy systems all 
share the problem of unscalability: Even though they may work in “toy worlds”, their 
performance may collapse in more complicated environments of higher dimensionality.  

The self-organizing maps are a step towards emergence; however, the structures that can 
emerge are rather simple. How to combine scalability, emergence, and flexible structure in the 
same framework? 
 

2.3  Modeling Tools 
There are various frameworks that are proposed for modeling of mental phenomena, most 
notably perhaps ACT-R [1] and SOAR [11]. The basic problem is that these models become 
increasingly complex, thus making them intuitively less appealing; they can be used to explain 
behavioral patterns, but they are not suited for predicting or gaining intuition. In a way, they 
are “too powerful” frameworks; the same criticism applies also to many neural networks 
formalisms: It has been proven that recurrent perceptron networks can implement any 
computable function. However, having no prior restrictions to the class of functions to be 
searched for, immense amounts of data are needed for training.  

“Make it as simple as possible (but not simpler)” – this is the famous Occam’s (or 
Einstein’s) razor. The simplest models are reached if the supported model structures comply 
with the problem to be modeled. What is then the appropriate model structure when mental 
phenomena are studied? What are the classes of emergent structure that one should look for? 
In [4], it is assumed that sparsely coded linear structures would do (see the next section). 

Usually some fancy nonlinear functions are introduced to implement complicated tasks. 
However, it has not been rigorously proven that nonlinearities (sigmoid functions or the like) 



would be essential in the construction of mental functions. Perhaps the sigmoid nonlinearity 
that is found in a neuron is only a nasty limitation of the biological components that are used 
for computation … compare this to transistors: The global characteristic curve is, of course, 
nonlinear (almost like sigmoid, by the way), but the electronic constructions containing 
transistors usually only utilize the local, linear part of the curve (in analog devices), or if the 
transistors are used as switches in digital devices, only the saturated extreme parts of the curve 
are utilized. What is interesting is that if these two operating modes of the transistor are used 
in the same device, its operation can again be expressed using a sparse linear model! 

The (piecewise) linearity makes it possible to utilize the “divide and conquer” idea for 
analysis, so that a simple substructure can be analyzed separately and later be included in the 
overall system. This results in reductionism; it is assumed that the illusion of intelligence 
emerges when large numbers of simple operations are combined. Sparsity makes the overall 
system nonlinear, though, so that the expressional power need not be compromised. 

Now we need a formalism for representing parallel, linear phenomena; natural language is 
not suitable for this purpose, but matrix calculus3 is. 
 

3.  MENTAL MODEL 
The idea of mental images is a useful concept. Originally, mental imagery was studied 
exclusively in the context of concrete visual scenes (see [10]).  However, the nature of the 
mental imagery is not agreed upon [13], and parallel “mental views” seem like a good 
approach to discuss expertise as well – the expert has internalized a sophisticated set of 
mental images governing the problem area. As presented below, the specialized imagery 
consisting of the domain-specific prior “observations” (original or modified; see later) 
constitutes a “filter” that preprocesses the observation data, creating a compact internal 
representation of the situation at hand.  

3.1  Ontology and Epistemology 
The fundamental role of the mental representations is to convey semantics, or the meaning of 
constructs: What is the link between the internal structures and the outside world? To evaluate 
the representational power of a mental model, and to compare different models reasonably, a 
concrete starting point is needed. 

In philosophy, empirism offers a fruitful framework for AI, as contrasted to the more 
metaphysical paradigms. Rather than assuming that there were predestinated a priori mental 
structures, one assumes that knowledge emerges from observations. This view results in the 
naturalistic semantics, where semantics of constructs is defined by their context: how a 
concept is related to other ones dictates its meaning. In connectionism, these questions are 
called computational or procedural semantics [9]; perhaps a better name would be contextual 
or associative semantics, to emphasize the need of parallel processing.  

When the contents of the semantic universe are learned empirically, the observed data 
directly dictates the contents of the mental representations. This leads to the epistemic 
problem setting: what is knowledge, and what is  truth in the first place? Things that have 
been observed together many times, become coupled together – it is relevance that is of 
primary importance rather than “truth”, determining what are the “beliefs” of the system. This 
way, the difficult philosophical problems can be avoided. 

 

                                                      
3 Incidentally, the essential role of “Matrix manipulations” in the future AI environments is recognized also by 
Keanu Reeves et al. during their adventures in the Matrix (Warner Bros., 1999)! 



3.2  Representation of Knowledge 
The observations are now assumed to span a high-dimensional space; each scalar piece of 
information (call it “feature”) has its own entry in the observation vector ϕ. The long-term 
memory (LTM) consists of this kind of observation vectors (or other compatible vectors; how 
these are constructed is explained later). 

A fixed point in the observation space represents one “state of affairs”: It reveals how the 
different features are related in that special case. Depending of the interpretation of the input 
features, this point can represent one single fact, or it can just as well be a rule: If some of the 
entries can be seen as conditions, the other features can be seen as results corresponding to the 
condition values. In what follows, the simple “static” facts and rules need not be discussed 
separately; it is how a observation vector is utilized that determines how it is being 
interpreted. It turns out that we need to define different “levels of knowledge”: 

1. “Incomplete” point in the observation space where only a subset of the entries in the 
high-dimensional observation vector are known; this could also be called “linguistic 
projection”, because verbal facts (or rules) seldom determine all of the feature values.  

2. “Complete” point in the observation space; the incomplete points can be (hopefully) 
somehow completed, resulting in “(extended) fuzzy” facts or rules. 

3. “Axis” spanning a line in the observation space; using other vocabulary, these axes can 
be called latent variables or independent components. The structure and outlook of the 
vectors is the same as above; they are just used in a different way (see below). 

4. “Subspace” in the observation space spanned by various latent variables corresponds 
to the highest level of domain-area expertise (see below). 

 

3.3  About Perception 
In principle, the modeling task is to find a set of vectors in LTM so that the new observations 
(hopefully having the same statistical properties as the training samples) could be represented 
as accurately as possible as a weighted sum of these. Simultaneously, there is the sparsity 
objective; of course, the two conflicting criteria (minimization of the reconstruction error 
ϕ̂ ϕ− , and minimization of the number of active elements) make the optimization task 
difficult, and no explicit formulae probably exist; iteration is needed. The algorithm below 
continuously tries to make the contents of LTM more appropriate (see Fig. 3): 

1. Input. If available, input new feature-vector-form observations (or pieces of knowledge, 
or hypotheses, or queries) as candidates in the long-term memory. 

2. Selection. Select next ϕ from the long-term memory according to some kind of novelty 
or “interestingness” criterion (for example, the newest one, just imported or modified). 

3. Attention control. Select the focus, or the features that are concentrated on (for example, 
the elements in ϕ that are assumed to be known). Accordingly, construct the diagonal 
binary matrix W so that there is 1 on the diagonal corresponding to these focus features, 
all other entries being zeros. 

4. Associative matching. Construct ˆ i iiϕ ϕ= Φ∑  so that ˆ ˆ( ) ( )T Wϕ ϕ ϕ ϕ− −  becomes small. 
Here the value of i varies among the long term memory vectors, all of them having a 
unique index. The total number of selected vectors cannot exceed the short-term memory 
capacity, though; this means that most of the weighting values iΦ  are zeros. The vector 
Φ stands for the sparse coded, “internal representation” of ϕ; this “perception” can be 
used further as an observation on a higher levels of mental imagery. The decomposition 
of ϕ into its components its discussed more, for example, in [6]. 



5. Inference. Define ˆ' ( )I Wϕ ϕ ϕ= + − ⋅  and store it in the long-term memory (here I is the 
identity matrix compatible with W). This means that in the new vector the focus features 
remain unchanged, whereas the other entries may be completed. 

6. Update. If the capacity of the long-term memory is reached, apply some criterion for 
elimination of “non-interesting” (or perhaps conflicting) constructs … yes, but how …? 

7. Return. Go back to Step 1 (indefinitely). 
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  Figure 3. “Mental imagery” 
 

3.4  Discussion 
The above algorithm has its shortcomings; for example, how to control the “control of 
attention”, and how to maintain the contents of the long-term memory? More fundamentally, 
how could sequences of incoming observations be captured? This would be the key to 
modeling causality and more complex somehow hierarchical observations. For example, in 
[5], the problem of modeling successive observations was neglected; the problem space was 
represented in a static, high-dimensional form. Only one level of chess expertice could be 
studied (see Fig. 4). 
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  Figure 4. Levels of chess expertise 
 
 
It is difficult to compare the expressive power of this kind of “data-based knowledge” model 
to traditional logic formalisms. For example, there are no AND or OR connectives explicitly 
available for constructing rules; NOT does not either exist. One has to think in terms of 
relevance – it is the correlation between vectors that counts, so that all non-zero elements in 
the vectors contribute in the final outcome. The same signs in the elements results in a 
positive effect (combined, fuzzy AND and OR together), whereas negative effect can be 
interpreted as fuzzy NOT. Zero elements implement a kind of “don’t care” option.  



From the point of view of expressive power, the linearity of the representations, being 
determined by sums of features, seems very restrictive. However, the sparse nature (only a 
subset of features is used simultaneously) makes the approach considerably more powerful; 
for example, the XOR problem is solved when the alternative options may be included in 
mutually exclusive features. This sparseness, and the changing sets of features in different 
environments, also makes nonmonotonic reasoning possible. 

It is not necessarily only observation variables that can be included in the “observation” 
vector; output (motoric) signals can also be included. This means that when the observation is 
reconstructed the appropriate responses can be associatively constructed by the model. Thus, 
it is not only knowledge that can be modeled, but also skill. 
 

4.  EXAMPLE APPLICATION 
Assume that we are told the following: “Tim, Tom, and John are children; one of them is 
three years old, one is six years, and one is nine. Additionally, it is known that Tim is three 
and Tom is not nine. How old is John?” Note that this is an (extremely) simplified version of 
the very common type of logic problems, where the pieces of information are presented in a 
very fragmented, incomplete form – the goal is to find a consistent set of points in the 
observation space. 

4.1  Representing Information 
Concentrate on the current level of abstraction; assume that categorizations like ”Tim” or 
“three” are already available. There are six independent capsules of information now – the 
concepts of “Tim”, “Tom”, “John”, “three”, “six”, and “nine”, so that there needs to exist an 
entry for all of them in the observation vector. So, the utterance “Tim is three” can be coded 
as (“++” symbols denoting a (large) positive value; actual numbers are now not important):  
 

 TimThree

"Tim"
0 "Tom"
0 "John"

"three"
0 "six"
0 "nine"

ϕ

+ + ← 
  ← 
  ←

=  + + ← 
  ←
   ← 

 

 
Using the defined knowledge hierarchy, the above vactor is on the level 1 only. There is some 
additional information (“frame knowledge”) that is not explicitly expressed in the above 
world model: for example, if somebody is “Tim”, he cannot be “Tom” or “John”; also, if 
somebody is three, he cannot be six or nine at the same time. This knowledge can be 
reptresented using “rules” like 
 

 TimOnly ThreeOnly

0
0
0

and .
0
0
0

ϕ ϕ

+ +   
   −   
   −

= =   + +   
   −
      −   

 



 
Using the above vectors we can already construct a “complete view” of Tim. This takes two 
inference steps: First, selecting focus on the entry “Tim” (in other words, interpreting this 
entry as being the condition part of a rule), the vectors Timϕ  and TimOnlyϕ  can be combined, and 
after that, the result can be combined with ThreeOnlyϕ  using “three” as focus; the result is then 
 

 TimOnly ThreeOnly
TimThree Tim

0
0 .

0 0
0 0

ϕ ϕϕ φ

+ +    + + + +
     − −     
   −  −

= →  → =     + ++ + + +     
     −
          −    

 

 
The focus entries used during the inference steps have been drawn in boxes, and the model 
vectors that are matched are shown above the arrows. This is now a completely determined 
point in the feature space, expressing a “frame-integrated” piece of knowledge; to emphasize 
its nature of “second level” information, the vector symbol here has been changed slightly. 
Further, starting from “Tom is not nine” vector TomNotNineϕ  the forward-chaining process results 
in 
 

 
1

TomOnly NineOnly TimThree2

0

0 .00
00

ϕ ϕ ϕ− − ⋅

−      − −
       + + + ++ + + +       
     −  −− →  → →       −+       
       ++
              − −− − − − − −       

 

 
The final result that can be denoted Tomφ  is the complete (unpolished) version of knowledge 
about Tom; it seems that he probably is six years old. The inference steps seem somewhat 
heuristic – but who would say that declarative knowledge is easy to use!  

Finally, starting from a query “What is known about John?”, the following sequence might 
be found: 
 

 
1

JohnOnly TomNotNine2

0
0

.
00 0
00 0

0 0

ϕ ϕ− ⋅

−    − 
     −−     
     + ++ + + + →  →     
     
     
          +    

 

 
Further steps could be taken to fill in the missing entries in the above vector, but the goal has 
already been reached: The question can be answered – John probably is nine years old. 



Applying the given pieces of knowledge, three completed points in feature space can 
(realistically) be determined in this case – one for Tim, one for Tom, and one for John. 
Updating the set of long-term memory contents is a challenging task: Invalid contents easily 
result in “computerized schizophrenia”! 

 

4.2  Knowledge Emerging  
Assuming that, for example, the GGHA algorithm [6] is used to search for the center 
(average) of the cluster of the feature data; the extracted new observation vector could look 
something like 
 

 Boyφ

+ 
 + 
 +

=  + 
 +
  + 

. 

 
This can be interpreted as the “boy” category prototype (the “latent vectors” can be defined 
explicitly – see [7] – or they can be found statistically – see [8]). Further, there is some 
relationship between the ages three, six, and nine; consider the following (fuzzy) knowledge 
structure (something like it can emerge when automatic feature extraction [6] is applied; or it 
can be given directly as input from outside): 
 

 Young Young

0
0 0
0

or, better, .

0 0

ϕ φ

+   
   
   
   −

= =   + + + +   
   
      − − − −   

 

 
Note that here the age of six is assumed to be “neutral”, not young but not “not-young” either. 
The entries “Tim”, etc., also become involved in the adaptation process, because of their 
correlations with the age feature entries. This vector can implement a third-level knowledge 
structure, or an “age-axis” around feature cluster centers. Assume that the same utterance as 
above (“Tim is three”) is given now – in a constructivist way, the internal representation may 
become very different this time: 
 

 1
TimThree Boy Young2

0 0
0 0 11 1 .

2
00

0 0

ϕ φ φ

   + + + + + +   
       + +       
       + −
   = ≅ ≈ ⋅ + ⋅ = ⋅ + ⋅   + + +   + + + +    
       ++              + − −      

 



 
The above should be interpreted so that the focus entries can be matched by adding the  
prototypes of “boy” and “young” together … a “rather young boy” is also perceived. This 
reconstruction is carried out in the Step 4 of the Algorithm. Note that in the previous phases 
the associative matching was trivial, when only one vector was matched at a time, but the 
number of inference steps became larger; now, on the other hand, there is just one step, but 
matching process is more complicated, more component vectors being involved. 
 

5.  CONCLUSION 
Above, a compact framework was constructed that seems to address some painstaking 
problems of current AI research and cognitive science from a new, seemingly fruitful 
standpoint. There are various shortcomings; but if the reader wants to absolutely disagree with 
the above discussion, here are some comments already available: 

1. “We cannot study the mental phenomena using the same mental machinery”. This 
complaint is not valid; mathematics is a neutral language free of Wittgensteinian 
biases: If an algorithm works, it works regardless of the interpretation of the data 
structures. 

2. “It is only a matter of computing power; the current approaches will work fine when 
we have faster hardware”. This is not true either; it has been approximated that the 
computing power of the current computers is at the level of a simple fly – but still the 
fly is qualitatively on a much higher level of intelligence. 

3. “We just cannot attack these questions using any form of analysis”. This may, of 
course, finally turn out to be true. However, hopefully the only motivation for this 
opinion is not the all too common mental laziness … you know, in the late 1800’s they 
thought that “there just is so much coal in the Sun”! 
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