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The practice of AI is far from theory. Industrial plants need to operate reliably and fast, and 
there is no room for unoptimized heuristics. This paper introduces the flotation process, a 
complex process where new approaches are needed to make the production go on smoothly; 
AI type methodologies are needed in measurement (analysis of camera images), in monitoring 
of the process state (categorization of the froth classes), and in control (rule-based operation 
of the controller). All these tasks are carried out in a “pragmatic AI way”, emphasizing 
speed, reliability, and simplicity. 
 

1.  INTRODUCTION 

Flotation is used in mineral processing industries for separation of grains of valuable minerals 
from those of side minerals [9]. In the continuous flow flotation cell (Fig. 1), air is pumped 
into a suspension of ore and water, and the desired mineral tends to adhere to air bubbles and 
rises to the froth layer where the concentrate floats over the edge of the cell; the main part of 
other minerals remains in the slurry. The separation of minerals requires that the desired 
mineral is water-repellent: in zinc flotation, this can be reached by conditioning chemicals like 
copper sulphate CuSO4; xanthate is needed to reach lower surface tension, etc.  
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Figure 1. An array of two flotation cells in series 
 



Flotation is one of the most difficult and challenging processes in mineral processing industry. 
This characteristic of the process mainly arises from the inherently chaotic nature of the 
underlying microscopic phenomena; there are no good models available that would capture 
the behaviour of the particles. Additional problems are caused by the fact that today’s 
measurement technology is not able to provide with a description of the current state of the 
process that would be accurate and reliable enough. It is the froth surface that dictates the 
quality of the outflowing concentrate; the properties of the froth are reflected in its texture, 
movement, and colour. No standard measurement devices, however, can capture the outlook 
of the froth. 

Thus, most of the chemical reagents that are used to increase the efficiency of flotation 
are controlled by the human operators. The operators usually determine the suitable levels of 
the reagents by analysing the visual appearance of the froth; the control strategies they apply 
are expert knowledge. 

The fast development of information technologies, however, has made it possible to 
acquire images of the froth in real-time and automatically extract features from the froth 
image that resemble the features used by the operators. Thus, the limited capacity of the 
operator to monitor cells continuously (the operator is usually responsible for various circuits 
consisting of several cells) can be increased by installing a video camera over critical cells and 
connecting the camera to a computer that is able to process grabbed images in real-time. The 
importance of this topic is illustrated by the fact that it has been studied extensively in the 
mineral engineering community, and a large number of different research papers has been 
published on the subject (for example, see [3], [10], [11], and [12]). 

This paper reports the results achieved during the ESPRIT LTR project ChaCo 
(Characterization of Flotation Froth Structure and Colour by Machine Vision); see [13]. 
Figure 2 illustrates the overall structure of the system developed during the project. 

 
 

 
 

Figure 2. The froth analysis system (courtesy of Mr. Jani Kaartinen) 
 



2.  “INTELLIGENT”  TECHNIQUES  FOR  FLOTATION 

To realize reliable and efficient operation of an on-line flotation plant, there are various tasks 
that need to be automated: First, the relevant process variables have to be estimated using 
machine vision; second, the state of the process has to be detected; and, third, appropriate 
control actions need to be chosen. All these tasks require “applied AI techniques”, and each of 
these tasks is discussed separately in what follows. 
 
2.1  “Soft sensors” based on image analysis 

The status of the flotation froth cannot be uniquely defined; there are just a few measurements 
that can be explicitly defined and determined (like the froth level and thickness), whereas 
most of the factors that characterize the froth properties are more or less conceptual having no 
explicit definition. However, as compared to many other image analysis tasks, now the pattern 
recognition task is rather simple; the structure of the images is known beforehand, and only 
statistical features need to be extracted. 

To construct “soft sensors” for the unmeasurable quantities, operator interviews were first 
carried out to find out what are the most relevant phenomena, and mathematical 
interpretations for them were derived [6]. It turned out that the static image alone is not 
enough; it is the dynamics of the froth layer that tells very much about the process state. 

Typical “dynamical” variables extracted from the collected froth images are (average) 
speed, speed variation, and bubble collapse rate. The speed of the froth is obtained by 
computing the cross-correlation matrix (by using the 2-dimensional Fourier transformation) 
between two images (captured using 0.2 sec time interval) and determining its maximum 
value; the speed of the froth is given by the location of the maximum peak. The value of the 
maximum peak, on the other hand, gives a simple measure for speed variation (homogenous 
movement of the froth results higher peak in the cross-correlation matrix). The number of 
pixels in which the difference between two consecutive aligned images is larger than some 
given threshold, is used as a measure for the bubble collapse rate (BCR). 

The colour of the froth is also of interest; colour variables are computed in two spaces: 
RGB (red, green, blue) and HSV (hue, saturation, value). The distributions of colour values 
are characterized by their mean, standard deviation, skewness and curtosis. Skewness 
represents the symmetricity of the distribution, and curtosis stands for its “peakedness”. 

Examples of extracted structural features are area, aspect ratio, perimeter, roundness and 
transparency of bubbles. Aspect ratio is the ratio between the major axis and the minor axis of 
the ellipse equivalent to the bubble; perimeter stands for the length of the outline of a bubble, 
and roundness of a bubble determined by the formula roundness = (perimeter)2 / (4π⋅area). 
Transparency is measured by calculating the points with specially high reflection – light 
reflected from bubbles that are covered with concentrate is rather scattered. To calculate these 
features the bubble images have to be segmented; for segmentation, the watershed technique 
was applied (see [2]). After segmentation the bubbles can be considered as separate objects 
and the features that are of interest and also their statistical distributions can be calculated. 

Further, the extracted features were applied for extraction of more advanced information 
like mineral concentrations. The parameters of the models were tuned by statistical 
multivariate methods [1]. For instance, principal component analysis (PCA) and partial least 
squares estimation (PLS) have been applied ([7] and [8]). It was recognized that red color 
intensity correlates strongly with the zinc concentration in the froth; the spatial variance of the 
froth speed also correlates positively with zinc content, whereas BCR correlates negatively. 

 



2.2  Categorization of froth layers 

When machine vision has been applied to analysis of froth surfaces, normally the froth classes 
are labelled using rather low-level features – for example, there may be froths with big or 
small bubbles, etc. [11]. Now, on the other hand, operator interviews revealed that the most 
interesting (fuzzy) froth categories in zinc flotation are wet, dry, and stiff. Loosely speaking 
these froth types can be characterized so that wet froth typically has “empty bubbles” (the 
concentrate load being low); dry froth has “hexagonal bubbles” (the bubble tessellation being 
rather evenly distributed); stiff froth is “porridge-like”. These categories are conceptual and 
there are no exact mathematical definitions for them; however, many of the extracted low-
level features (see previous section) correlate with these categories. For example, for wet froth 
the transparency value and bubble collapse rate are high, for dry froth the bubble size 
distribution is even, and for stiff froth the speed and speed variance are low; using the 
multivariate data analysis terminology, the froth prototype vectors can be seen as (non-
orthogonal) latent variables underlying the measured variables. 

For the classification of the froth three different methods were implemented in the 
analyzer prototype. The first was the so called simple froth classifier, which measures the 
similarity of a given froth image against the predefined froth prototypes. This has been also 
realized using fuzzy logic. The second method was a tree-classifier, and the third 
classification method used the so called GGHA method to analyse the statistical structure of 
the data [5].  

Whereas the froth classification is not used directly for control (see next section), its role 
is important in process monitoring and supervision. The optimal froth is rather dry; bubbles 
are loaded with concentrate, but the froth still floats out from the cell. The most critical case is 
the extremely stiff froth: This pathological situation may result in the collapse of the froth 
surface, so that no concentrate flows out; it takes typically 10 – 20 minutes before normal 
production can be recovered (see Figs. 3 and 4). It turned out that the implemented classifiers 
were capable of detecting the risk of collapse some 10 minutes before the surface finally 
collapsed, so that some corrective actions could still be applied (see [4]). 

 
 

 

Figures 3 and 4. On the left, a typical “living” froth surface, and on the right, a 
collapsed one 

 
 
 
 



2.3  “Expert control” of the flotation process 

The image analyser gives a number of variables which can used for control. Based on the 
literature study, operators’ knowledge, and on experimental work, the following five variables 
seemed to be the most important: bubble collapse rate, transparency of bubbles, bubble size, 
red color intensity, and froth speed. Fig. 5 shows how one of these these image variables 
(bubble collapse rate) affects one of the process variables, the zinc recovery rate. BCR may be 
a key variable because it seems to be possible to define an area where it should be maintained 
in order to guarantee good zinc recovery (minimum in the graph). The optimum area of BCR, 
however, moves with the zinc content of the flotation feed, as can be seen in Fig. 6.  

Figure 7 shows the relationship between BCR and the feed of copper sulphate; the figure 
clearly indicates that BCR can be controlled with copper sulphate. In reality this relationship 
is more complex because both variables depend more or less on the zinc grade of the feed; 
however, added copper sulphate should always decrease BCR. It seemed that bubble 
transparency is also a good indication of the flotation performance. Overdosage of copper 
sulphate is indicated by a very low value of bubble transparency (Fig. 8). On the other hand a 
high transparency value means lack of copper sulphate. Like BCR bubble transparency value 
also depends on the zinc grade of the feed; the optimum area is not quite constant. 

Based on these experiences, a rule-based control algorithm for the dosage of copper 
sulphate was constructed. The (simplified) rule set can be presented as shown in Table 1. The 
action part of the rules has very simple form: the flow of CuSO4 is either increased (“+”) or 
decreased (“–”) by a fixed amount (about 2% of the operating range at a time). As compared 
to normal expert systems, now the control flow is fixed: there is a ranking between the rules, 
so that if a rule with higher priority can be applied, it is always selected instead of the lower 
priority ones. 

The knowledge in the rule base combines the observed relationships within the process 
with the objectives of production. The controller is non-model-based (there is no dynamic 
description of the influence mechanisms), only the (assumed) causal dependencies are applied.  
The basic assumption is that increasing CuSO4 makes more zinc adhere to the bubbles, 
making them more heavily loaded. The most critical rules with highest ranking try to avoid 
the froth collapse; that is, if the bubbles are too loaded, the dosage of CuSO4 is made smaller. 
If rule #1 is active (the froth thickness is below some preset value) this is already too late, 
whereas rule #2 may help in avoiding the collapse. The next rules (#3 and #4) try to minimize 
the amount of zinc passing through the system and being lost. The next rule #5 prevents the 
excessive foam. Next, in the rule #6, if any of the image variables indicate too wet bubbles, 
more CuSO4 is pumped in. Finally, if everything works all right, so that none of the previous 
rules was active, the consumption of CuSO4 is minimized.  

 
Ranking Condition Action 

1. IF froth thickness < lower limit – 
2. IF BCR < lower limit OR bubble transparency < lower limit – 
3. IF zinc content in rougher tailing > upper limit + 
4. IF zinc content in scavenger tailing > upper limit + 
5. IF froth thickness > upper limit + 
6. IF BCR OR bubble transparency OR bubble size > upper limit + 
7. ELSE – 

Table 1. The CuSO4 control rule base that mimics the operator actions 

 



   

Figures 5 and 6. On the left, the Zn content in the rougher tailing (that is, the 
amount of zinc lost in the first phase of flotation) is shown as a function of bubble 
collapse rate – apparently, an optimum exists; however, as shown in the figure on 
the right, controlling the bubble collapse rate is not straightforward, as it depends 
on various uncontrollable factors, like the incoming Zn grade 

 

   

Figures 7 and 8. In these figures, the effect of copper sulphate is shown; as CuSO4  
increases the bubble collapse rate decreases (the bubbles become stiffer). This 
applies also the bubble transparency (the bubbles are more “heavily loaded”)  

   

 
Figure 9 shows one week period of the copper sulphate control. It can be noticed that the 
control stabilized the system and no collapse situations existed. 

Process tests with xanthate showed that red color and bubble size were reacting to the 
setpoint changes of xanthate. It also seemed that increasing xanthate consumption would 
replace part of more expensive copper sulphate while the flotation results remained the same 
or even improved. Therefore a control logic including red color and bubble size was built up. 
Figure 10 shows results of a test run. In this test the xanthate setpoint has been on the high 
alarm limit for the first half of the two day period because big bubble size suggested that there 
is lack of xanthate. During the other half of the period the control was working properly. The 
reason of the poor control seems to be a low zinc grade in the feed proposing that  the bubble 
size limit should be a function of the feed grade. 



   

Figures 9 and 10. Real-time control using the “expert controllers”. On the left, 
the feed of CuSO4  is shown (lowest curve) against the measured froth thickness 
and red colour channel intensity (center and top, respectively); on the right, 
xanthate feed is shown against bubble size and red colour intensity 

   

3.  CONCLUSIONS 

During the project, the machine vision set-up for permanent recordings at the flotation plant 
was designed and build. RGB camera, image grabber card, spectroradiometer, and the PC 
computer equipment were installed at the Pyhäsalmi flotation plant in the first rougher cell of 
the zinc circuit. The camera was installed inside a metal hood to protect it against dirt. The 
geometrical shape of the hood was selected so that homogenous illumination of the froth 
would be obtained for an easy processing of the images. The user interface was implemented 
in the LabVIEW© environment, and the on-line analysis system was connected to the 
PROSCON© process automation system.  

In July 1999, the froth analyzer was connected in the local network of Pyhäsalmi 
concentrator plant. The hardware and software have been operating rather reliably since then. 
In Spring 2000, the analysis system was integrated in the closed loop control system. Because 
of the natural variations in the incoming ore, unambiquous comparisons against the earlier 
control performance cannot be made; however, according to visual inspections the results 
seem promising. Simply being able to avoid the froth collapse situations in advance saves a 
lot of raw material, time, and money. Perhaps the added value of the new approach is best 
illustrated by the fact that another identical analysis system is being installed in a separate 
flotation circuit in Pyhäsalmi; similar system is being experimented also at the Boliden 
Garpenberg plant in Sweden (Boliden mining company was the other industrial partner in the 
ChaCo project). 

 
Even though the industrial application seems to be promising, something seems to be missing 
from the AI point of view: the somewhat obscure feel of “intelligence” vanishes when explicit 
algorithms can be written for implementing all specific tasks. Expert systems boil down to a 
set of if–then rules, pattern recognition to finding measurements characterizing the process 
state, and categorization to measuring distances between data clusters. However, after all, the 
cumulation of complexity in the overall system does the trick: seen from outside, the 
consistent operation of the controlled plant still looks rather intelligent. 
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