
EXPLORATIONS ON \NATURALISTIC FORMALISMS"

Heikki Hy�otyniemi

Helsinki University of Technology, Control Engineering Laboratory

Konemiehentie 2, FIN-02150 Espoo, Finland

It seems that knowledge representation formalisms are getting more and more sophisti-

cated. In this paper, however, the opposite extreme is studied: the foundations of the

formalisms are based directly on the data. It turns out that this kind of \naturalistic"

formalisms may give interesting insight and new possibilities to program analysis and val-

idation. Two formalisms are presented: the expressive power of the �rst one, having no

data structures, is based solely on computation, whereas the other one is based on repre-

sentation, introducing no procedural machinery whatsoever. By appropriately selecting the

basic constructs, nontrivial models can still be realized in both cases. The simplicity of the

naturalistic grounding is utilized for showing that the latter formalism can be implemented

using the former one; this means that the computational power of pure representations

need not be limited.

1. INTRODUCTION

The representation formalisms are getting more and more sophisticated. This means that

the compilers/interpreters become more and more complicated; there is more and more

data processing happening out of sight. In the AI �eld | even if the new tools are very

welcome | this development has some not so nice consequences: the gap between the

conceptual level and the data level is getting wider and wider.

There might be some advantage if the formalism were transparent so that the role

of the interpreter would become trivial. This paper presents two formalisms that can be

used for representing classi�cation problems; the role of these formalisms is to o�er means

for describing what the classes look like. Both of them have their founding very directly

on the data; it can be claimed that the semantics of the formalisms is bound to the data

in a \naturalistic" way. These formalisms are not supposed to be applied in real actual

programming or modeling applications, but it may be that there is some intuition and

understanding to be gained. The transparency of the formalisms, for example, makes it

possible to see some close connection between them | this relationship facilitates the

analysis of the di�erent approaches.

These two formalisms di�er very much from each other | actually, they are from the

opposite extremes of the continuum: the �rst one is based exclusively on computation,

there are no data structures whatsoever, whereas the other formalism is based exclusively

on representation, so that no computational primitives are de�ned. It turns out that

despite these shortcomings, the expressive power of both of these formalisms is rather

high. This results from the fact that when the data itself has the main role, system

theory and mathematics take control. In both cases, the formalisms can directly be

interpreted in terms of high-dimensional real-valued vectors having very simple topology.

2. FOCUS ON COMPUTATION

First it is assumed that everything that is interesting emerges from dynamic evolution

only.

It turns out that there are very fruitful connections between theoretical computer sci-

ence and dynamic systems analysis. To see this, some computability theory is needed (for

example, see [2]). According to the basic axiom of computability theory, all computable

functions can be implemented using a Turing machine. There are various ways to realize

a Turing machine; it can be shown that if a function is Turing computable, it can be

coded using the following simple language L that is here presented in the Backus-Naur

(BNF) form:

Program ::= Variables* Commands*

Variables ::= LineNumber VarName = Constant % Initial value

Commands ::= LineNumber CondBranch

::= LineNumber Operations

CondBranch ::= IF Condition*

THEN Operations

ELSE Operations

Condition ::= VarName > 0

Operations ::= Modifications* Jump

Modifications ::= VarName ADD Constant % Increment

::= VarName SUB Constant % Decrement

Jump ::= GOTO LineNumber

Above, Constant 2 N can be any positive integer; VarName is a character string. All

variables are assumed to have non-negative integer values; if an operation would make the

variable value negative, zero value is used instead. To make the \compiled", matrix-form

programs (see later) match the program formulation in one-to-one fashion, all lines in the

code must have a distinct LineNumber; line numbers must be successive integers starting

from 1, and one of the program lines has to be the entry point into the program. Note

that a conditional branch always exhausts three lines, so that the line number counter is

incremented by three (the reason for this peculiarity is due to the special coding of the

compiled program). The Kleene stars *" mean that there can be an arbitrary number

of corresponding constructs.

2.1 The \Turing system"

It can be shown that a special dynamic system structure is in one-to-one correspondence

with the above language L. This is an autonomous, discrete-time nonlinear system (see,

for example, [1]) of the form

s(k + 1) = f(As(k)): (1)

Here A is a real-valued square matrix compatible with s, and the \generalized cut" func-

tion f : Rdim(s) !Rdim(s) is now de�ned elementwise as

fi(s) =

(
si; if si > 0, and

0; otherwise,
(2)

for all i = 1; : : : ; dim(s). The state transition matrix A in (1) can be de�ned so that any

program in language L can be presented as a discrete-time process. The dimension of A

is dependent of the program complexity, so that there is a separate entry in the \snapshot

vector" s corresponding to all program lines. The original state vector s(0) consists of the

initial values of the variables. Additionally, if the entry point of the program is on line i,

then si(0) = 1. All other elements of s(0) are zeros.

In [3] it is shown that the internal state of the dynamic system can be identi�ed with

the program states, and the succession of the states corresponds to the program
ow.

Running a program now means that the process (1) is iterated until the state no more

changes, or until a �xed state is found | the �nal variable values, or the calculation

results, can be seen in the resulting state vector.

The language L is a rather straightforward extension (and simpli�cation1) of the for-

malism that is presented in [3], and the construction of the matrix A is now skipped.

However, an example is presented.

2.3 Program example

Assume that the parity function is to be realized, so that y(x) = 0 if x 2 N is even, and

y(x) = 1 if x is odd. Using language L this can be coded as

1 VAR X = x

2 VAR Y = 0

3 IF X > 0 % Entry point

THEN X SUB 1 Y ADD 1 GOTO 6

ELSE GOTO END

6 IF X > 0

THEN X SUB 1 Y SUB 1 GOTO 3

ELSE GOTO END

Above, the mnemonic \END" has been used to denote jump \outside" the program, that

is, the program counter vanishes altogether. In a matrix form this algorithm can be

implemented as shown below. Here the `+' signs stand for number 1, `�' signs stand

for �1, and all other elements are zeros. The initial snapshot, or the state s(0) before

iteration, is also shown. After the iteration (1) has converged to a �xed point s(1), the

�nal result y is obtained as the second element of the state vector (because Y is declared

on the second program line). It turns out that regardless of the value x 2 N , this system

remains always stable; the time it takes to converge to a �xed state is linearly dependent

of the value of x.

Aparity =

0
BBBBBBBBBBBBB@

+ � + � +

+ + � � +

+ �

+

� +

+ �

+

� +

1
CCCCCCCCCCCCCA

with s(0) =

0
BBBBBBBBBBBBB@

x

0

1

0

0

0

0

0

1
CCCCCCCCCCCCCA
:

For example, if x = 3, the following state sequence results (note that the second row

starts with the state that corresponds to the problem \What is y when x = 1?"; the more

1For example, the 19-dimensional \multiplier system" in [3] can now be implemented using only a

13-dimensional system

complex problem with x = 3 has also been reduced into a simpler form having the same

answer). The process seems to freeze in a state where y = s2 = 1, so that \3 is odd".0
BBBBBBBBBB@

3

0

1

0

0

0

0

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

3

0

0

1

0

0

0

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

2

1

0

0

0

1

0

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

2

1

0

0

0

0

1

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

1

0

1

0

0

0

0

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

1

0

0

1

0

0

0

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

0

1

0

0

0

1

0

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

0

1

0

0

0

0

1

1

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

0

1

0

0

0

0

0

0

1
CCCCCCCCCCA
!

0
BBBBBBBBBB@

0

1

0

0

0

0

0

0

1
CCCCCCCCCCA
! � � �

2.4 Analysis

As a \programming language", the matrix formulation is an interesting extension of the

language L | on the other hand, it is powerful (extensions towards parallel processing

are simple, etc.), but at the same time it is extremely simple: only one basic construct is

available, spanning a continuum between pure variables (\eigenvalues" in 1) to program

statements with relayed \program counter" (eigenvalues in 0). It can be argued that the

process formulation (1) is the simplest way to realize the Turing machine.

One nice feature about the presented language is that it is continuous in all param-

eters; normally languages, natural or formal, are based on symbols that are mutually

incommeasurable, while now all constructs are structureless and their mutual distances

can be calculated using some metric de�ned in the vector space. Whereas the operation

of normal programming languages is \crisp", that is, minor changes in the program code

may collapse the whole system, now any of the parameters can be modi�ed with no sudden

catastrophic e�ects. It is easy to show that if any of the state elements is disturbed by an

amount �, the variables of the next state vector will di�er at most by an amount of�� from

the nominal values. Analogous continuity holds for changes in the elements of A. Addi-

tionally, it is easy to prove that qualitatively the behavior of the system is not changed

if all variable values and program counters are scaled by the same (positive) factor: if

�(k) = ��s(k), there holds �(k+1) = f(A�(k)) = f(A��s(k)) = ��f(As(k)) = ��s(k+1)

(see Fig. 1).

3. FOCUS ON REPRESENTATION

Next we take the opposite view: assume that everything that is interesting is hidden in

the static data structure.

3.1 About formalisms

New representation formalisms try to capture the fundamental structure of the world

around us; the better the formalism matches the existing entities, the shorter codes are

Figure 1: \Generalized parity function": the output y (entry s2(1)) of s(k+1) =

f(Aparity �s(k)) has been plotted as the initial values s1(0) and s3(0), or the \input"

x and the \program counter", respectively, are continuousaly varied (lighter color

denoting higher value; black stands for zero level). Note that only in discrete points

(dotted points in the �gure) the parity value is de�ned in the traditional sense, the

value being either \1" or \0"

additionally needed. This way the evolution of the modern programming languages has

started from no structure whatsoever (Basic, etc.), gone through the era of procedural

programming (Pascal, C, etc.), reaching the current period of object-oriented program-

ming (C++, Java, etc.). The object-oriented formalisms nicely implement the Aristotelian

view of the categories: there are strict hierarchies between classes, and the class bound-

aries are strict.

However, as has been motivated by the fuzzy theorists, this \all or nothing" approach

is becoming obsolete. But what do they have to o�er to substitute the old tools? Despite

the enthusiasm, the fuzzy formalisms seem to become extremely involved in more complex

applications.

Next, a formalism is presented that implements a special ontological view. Even

though this view is rather simple, some rather complicated problems can be formulated in

this framework. It turns out that many nontrivial modeling problems can be implemented

with no additional code at all. The emphasis is on a specialized representations, but the

structural framework is again extremely simple, based on linear algebra.

3.2 Representation formalism

Assume that there are classes that are being de�ned in terms of other classes, constituting

a semantically more or less integral entity:

classi !
P

Na

j 6=i
aji � classj +

PN
b

j
bji � inputj

This means that if an entity belongs to classi, it also belongs to class classj, but

only with limited membership, the weight being de�ned by aji. The \inputs" are lower

level categories that de�ne the naturalistic grounding for the classes. The parameters Na

and Nb stand for the number of categories and inputs in the model, respectively. As an

example, study the following simple \world model":

animal ! 0:1�bird + 0:1�dog

bird ! 1�animal + 0:1�canary + 1�flying

canary ! 1�bird + 1�yellow

dog ! 1�animal + 0:8�brown � 1�flying

There are now four interconnected categories (animal, bird, canary, and dog) and three

independent inputs (flying, brown, and yellow) in this extremely simple world model.

The declarations say, for example, that the concept of \animal" contributes when a \dog"

is being de�ned; not so much, though | compare to the de�nition of \dog", where the

weight of \animal" equals 1, meaning that actually dogs are all animals (see Fig. 2).

For a closer analysis on consistency issues, etc., see [5]. The concepts de�ne each other

introducing some kind of contextual semantics. There are no separate subclasses or su-

perclasses; what is more, there does not exist any distinction between classes and objects

as their instantiations. An individual (normally de�ned as an object in object-oriented

formalisms) just is strictly inside its superclass and has minimal e�ect on it. What is

important is that categories and their attributes have identical representation: concepts

within a \small world" may add
avor to each other. The classes need not be nouns, and

attributes need not be adjectives.

dog

animal

bird

canary

Figure 2: Visualization of the set hierarchy in the world model. Dogs are members

of the animal class (membership 1.0), whereas animals belong to dogs with fuzzy

membership 0.1. Note that \negative memberships" can also be declared in case

of mutually exclusive categories

The above de�nitions can be written in a compact form as0
BBB@

xanimal

xbird

xcanary

xdog

1
CCCA =

0
BBB@
� 1 1

0:1 � 1

0:1 �

0:1 �

1
CCCA �

0
BBB@

xanimal

xbird

xcanary

xdog

1
CCCA+

0
BBB@ 1

1

�1 1

1
CCCA �

0
B@

uflying

ubrown

uyellow

1
CA :

This is an implicit declaration, and can be written as

x = A � x +B � u;

where, in this world model, one has

A =

0
BBB@

0 1 0 1

0:1 0 1 0

0 0:1 0 0

0:1 0 0 0

1
CCCA and B =

0
BBB@

0 0 0

1 0 0

0 0 1

�1 1 0

1
CCCA :

Given the inputs, the categories can be solved as

x = F � u = (INa
� A)

�1
B � u:

Vector x consists now of the a posteriori \probabilities" of the classes; however, note

that the elements of x do not necessarily remain between 0 and 1. Not all de�nitions

result in reasonable classi�cations; for example, the probability distribution between the

classes is highly dependent of the numerical values in the matrices. A simple method of

automatically compensating for the probabilities is to divide the obtained values xi by

the a priori probabilities vi that can be solved as an eigenproblem Av = �v (see [5]):

xi xi=vi:

In the above world model, the eigenvector becomes (without normalization)

v =
�
0:94 0:30 0:06 0:18

�
T

:

This means that without probability compensation the class \animal" would be almost

always the most prominent.

3.3 Ontological assumption

What can be modeled using the above syntax is of course rather limited; however, it can

be claimed that our recognition machinery is based on the same data structure, making

these formulations much more universal. As discussed in [4], the \natural" complex data

has often a rather peculiar distribution: the observations occur in chunks, data clusters,

and within these clusters the data is distributed in a subspace spanned by a set of non-

orthogonal basis vectors. This approach has been applied in many applications; see [4].

Whereas the categories in the applications have been automatically constructed, based

on the statistical correlations between data elements, the models can also be explicitly

de�ned, using the above formulations, and thereafter be compiled into numerical form;

this way the set of categories can be controlled manually. The formal approach can be

interpreted as de�ning \virtual data" by explicitly determining the (non-orthogonal) main

axes of the data distributions. Using philosophical terminology, it could be said that this

virtual data is only potential, not actual. The axis prototypes can be solved from the

matrix formulation by applying linear algebra.

To �nd the outlook of the virtual data distribution, the mapping F should be inverted

somehow. Assume that the actual model between u and x contains some error e, so that

actually there holds x = Fu+ e. Let us de�ne the criterion to be minimized:

e
T
We+ u

T
Uu;

that is, the errors in di�erent elements of x can be weighted by using the (diagonal, non-

negative) matrix W ; additionally, the size of the data vectors can be limited using the

matrix U . A straightforward minimization results in the estimate for u when x is given:

û =
�
U + F

T
WF

��1
F

T
W � x:

Using this expression, the category prototype vectors can be solved: for example, when

solving for �ubird, the matrices can be selected as

x =

0
BBB@

0

1

0

0

1
CCCA ; W =

0
BBB@

0

1

0

0

1
CCCA and U =

0
BBB@

1

1

1

1

1
CCCA ;

the non-diagonal entries in the matrices being zeros. When using this kind of weightings,

the prototype vectors become

�
�uanimal �ubird �ucanary �udog

�
=

0
B@

0:03 0:29 0:05 �0:30

0:27 0:04 0:01 0:35

0:31 0:33 0:49 0:04

1
CA :

This tells us that, for example, \bird" assumedly has high weight on the property of

\
ying", and | because the canary is the only exemplar of a bird | also on \yellow".

The above world model can be visualized schematically as shown in Fig. 3, where it

is shown how concepts, having numerical rather than symbolic content, can be used as

attributes for other concepts.

Figure 3: Visualization of the interchangeable roles of categories and attributes.

The class having the most emphasis is regarded as being the category center

4. FOCUS ON COMBINATION

The above totally linear starting point is good for analysis, but there are well-known

limitations plaguing linear approaches. The perhaps simplest way to eliminate the re-

strictions is to restrain to non-negative membership values, that is, there holds x � 0.

Unfortunately this nonlinearity ruins the above explicit formulations, and the �xed state

of x has to be iterated:

x(k + 1) = f (A � x(k) +B � u) ;

where the function f(�) cuts the non-positive vector elements; the iteration hopefully

converges to some �xed state x(1). In Fig. 4, the �nal results are shown as the iteration

is carried out for the above example system.

Comparing the above expression to (1), one can see the essential similarity: in both

cases the same kind of iteration is performed, and the nonlinearity has the same form.

There is one di�erence, though: now there is an exogenous input rather than non-zero

initial state that determines the faith of the iteration process. However, it can be shown

that the computational power of the new formulation is (at least) as high as it was in the

previous case; this comes with the expence of increased dimensionality.

When starting from a purely static model it may seem strange that any computation

can also be realized in that framework. The key is in the iterative implementation of

the mechanism. On the other hand, \hidden" categories are needed that have no role as

flying

brown

“bird”

“dog”

flying

brown

“animal-like”

“canary-like”

“bird-like”

“dog-like”

Figure 4: Categorization of the inputs: the two entries u1 and u2 (features \
ying"

and \brown", respectively) are varied between -1 and 1, and the resulting main

category is shown on the left; on the right, the corresponding main attributes, or

the next most signi�cant categories are shown

explicit categories but are necessary to implement the computation steps. The qualitative

enhancements in representational power are essentially based on the high dimension of the

state space: remember \Flatlands", where the two-dimensional creatures living in the two-

dimensional world experience wonderful phenomena when tree-dimensional objects hit

their world | similarly, the computational capacity of high-dimensional systems amazes

us who are slaves of our three-dimensional world.

The above construction shows that at least some formalisms based on no computa-

tion but representation only can have unlimited computational capacity if implemented

appropriately. Perhaps the quest for Turing computability has been exaggerated in the

cognitive science community | if it turns out that even the simplest (static) approaches

can ful�ll the computational requirements, why not concentrate on more relevant issues.

REFERENCES

1. �Astr�om, K.J. and Wittenmark, B.: Computer-Controlled Systems|Theory and De-

sign. Prentice Hall, Englewood Cli�s, New Jersey, 1997 (3rd edition).

2. Davis, M. and Weyuker, E.: Computability, Complexity, and Languages | Funda-

mentals of Theoretical Computer Science. Academic Press, New York, 1983.

3. Hy�otyniemi, H.: On Unsolvability of Nonlinear System Stability. In Proceedings

of the European Control Conference (ECC'97), Brussels, Belgium, July 1-5, 1997

(CD-ROM format).

4. Hy�otyniemi, H.: On Mental Images and `Computational Semantics'. In Proceedings

of the 8th Finnish Arti�cial Intelligence Conference STeP'98 (eds. Koikkalainen, P.

and Puuronen, S.), Finnish Arti�cial Intelligence Society, Helsinki, Finland, 1998,

pp. 199{208.

5. Hy�otyniemi, H.: From Knowledge to \Virtual Data". Arpakannus 1/1999, Finnish

Arti�cial Intelligence Society, pp. 31{34.

