LIFE-LIKE CONTROL

Heikki Hyotyniems
Helsinki University of Technology
Control Engineering Laboratory
P.O. Box 5400, FIN-02015 HUT, Finland

Typically when proposing cognitive architectures, one is exclusively interested in the anal-
ysis of (sensory) input signals, and the construction of the (motor) output signals is
tgnored. In this paper, a framework that was also designed for one-way operation is ex-
tended to carry out two-way signal processing. It turns out that systems theoretically
well motivated control structures for high-dimensional, nonlinear processes can readily be
implemented.

1 INTRODUCTION

In the fields of artificial intelligence and cognitive science, new architectures and fancy
ideas are introduced every now and then. It is difficult to compare different architectures
— selecting a different point of view, and defining “goodness” in a special way, almost
any idea can be deemed as the best. Could one find such criteria that could be agreed
upon also by the cognitive scientist often having a very non-technical background?

Introducing new degrees of freedom, practically any architecture can explain observa-
tions. From the technical modeling point of view, simplicity is a good validity criterion
(in the spirit of Ockham’s razor). However, as an only starting point, the simplicity goal
is not truly convincing: Who has ever said (Stephen Wolfram does not qualify!) that the
extremely complicated tasks carried out by the mental machinery ever should be solved
by simplistic approaches? It seems that humanists feel hurt when the human excellence
is underrated in such a shameless way.

Another heuristic criterion that could perhaps be exploited is intuitive appeal. How
easily an architecture that has been designed for a special cognitive task can be modified
to solve a totally different task?' For example, it is a tradition to propose architectures
for perception, for analysis of input signals — the question that can be asked is whether
these architectures can act as frameworks for control, for construction of output signals.
This is an opposite but equally relevant mental task. Specially, can the approaches to
life-like perception be extended to life-like control?

In this paper, approaches to “intelligent control” are first discussed, and then, the new
cognitively motivated controller structure is presented. This controller scheme is applied
to control of a simulated robot arm.

'In [6], a different approach to “intuitive plausibility” was studied: A cognitive model is “good” if
the errors it makes after its capacity has been exceeded are somehow “expert-like”

2 COGNITION AND CONTROL

2.1 Controlling of systems

To a layman, a well-tuned control system looks like an intelligent agent, appropriately
reacting to the system behavior and compensating for deviations from desired values.
Again, knowing how it is done, destroys all magic: The control signal is simply calculated
according to some fixed function. The actual intelligence is buried in the construction of
that function, and the understanding remains in the head of the control engineer.

On the higher (more intelligent?) level, different kinds of adaptive control strategies
have been proposed [1]; lately, new approaches like iterative learning control (ILC) [14]
have increasingly gained interest. What is common to all these adaptation schemes is
that they are typically based on the differentiability properties of a cost criterion; they
are often based on some kind of identification of system parameters, either applying
gradient algorithm or some more efficient method. From the cognitive point of view,
there are plausibility problems here. Traditional adaptive control schemes update the
control strategy gradually, whereas, when lifting some object, for example, it only takes
a fraction of a second for a human to adapt and apply appropriate forces, no matter what
is the weight of that object.

However, there are plenty of conceptual tools and other intuitions that are provided
to us by the modern control theory when thinking of “intelligent” control structures:

e One can be confident that cognitive, representation-based control, as opposed to
“behavioristic” control, is feasible: The theory says that it is possible to divide
the controller construction task into two parts — first the “input-oriented” state
estimation, and, second, the actual “output-oriented” control signal construction —
without jeopardizing something essential. This means that it need not necessarily be
a straightforward input—output structure that is necessary for control applications,
but an internal structure is equally (or even better?) motivated.

e These separate tasks of state estimation and control construction are dual phenom-
ena, where the essentially same principles and tools (solving of Riccati equations,
for example) can be applied to construct optimal estimation and optimal control
strategies alike. This duality principle can perhaps be extended to cognitive con-
trol: It might be possible that the extensively studied perception mechanisms could
also be applied in the opposite way.

2.2 Al approaches

There are different approaches to integrating intuitions acquired in the fields of artificial
intelligence and cognitive science to control of systems. In Fig. 1, an illustration of the
different prototypical intelligent control strategies is shown. Different approaches are pro-
jected onto two axes: Physical fidelity here means that the controller structure has some
neural plausibility, and there is some connection to the underlying quantitative building
blocks; functional fidelity, on the other hand, represents whether some cognitively rel-
evant functionalities can be implemented, and whether it is possible to construct some
qualitative structures in that framework. Evidently, traditional control (TC) has none of
these properties; (feedforward) neural network control (NC) implements the neural ideas
carefully, but no structures emerge from the mass of parameters; using expert system

Physical #

fidelity @ @
@ Figure 1: Schematic

illustration of the
properties of dif-
ferent “intelligent”
control strategies

Functional fidelity (see text)

based control (EC), cognitively non-trivial inference rules can be implemented, but these
reasoning structures are purely symbolic. Fuzzy control (FC) was explicitly defined to
solve these isolation problems of EC’s; perhaps it is natural that these fuzzy approaches
where nothing is binary fall somewhere in between straightforward characterizations —
there are rules, yes, but after all they are collapsed into simple black-box functions; and
even though they are numeric and there is a close connection to actual measurements,
they cannot be adapted in a natural way.

It is claimed here that the chunk control (CC) that will be elaborated on below is a nice
compromize what comes to these two cognitive plausibility criteria: The controller can
adapt according to observations in a rather plausible way even if the system is complex
and high-dimensional; further, these learned data structures constitute representations
that can be claimed to have also some fundamental cognitive plausibility.

2.3 New view

In [7] it was assumed that cognitive phenomena could be attacked — if the view of
naturalistic and contertual semantics is adopted — in a a framework of multivariate
statistics. There are dependency structures among the information atoms in the high-
dimensional data space, and one only needs to model these dependencies to have some
“intelligent-looking” behavior emerge. To make this modeling task feasible, there must
exist some natural structural principles what comes to the data distributions. It was
assumed that data is clustered, and within these clusters there is some internal structure;
this internal structure consists of local linear subspaces determining the cluster “shape”.
Statistically, one cluster represents a single unimodal (Gaussian) subdistribution in a
mixture model, meaning that, in the maximum likelihood sense, the local dependencies
between variables can be modeled using linear functions. Depending at what level one is
studying the cognitive phenomena, the clusters can be called either categories, concepts,
or patterns, and the subspace axes are either attributes, chunks, or features.

The “patterns” and “features” are applicable on the lowest level, where actual mea-
surement signals (or sensations) are being processed. On the other hand, when studying
control and manipulation of systems, one is again operating directly on very concrete
signals. However, even though one is operating on the same signals, it is the point of
view and the concepts that are employed that efficiently dictate what kind of things

Figure 2: Idea — categories stand
for operating points, attributes for de-
grees of freedom. Smooth nonlineari-
ties can be approximated using piece-
wise linear representations

one can think of (remember Wittgenstein!). The terms like “pattern” and “feature” are
conceptually too tightly coupled to one-way processing of input modalities and they are
semantically too loaded to help us having intuition in the cognitive control problem.

Indeed, modeling involves introducing new abstractions and concepts. However, here
it seems that we are lucky: Very few new concepts need to be introduced. It turns out
that in the field of system theory and control engineering ready-to-use concepts already
exist. It is only a question of renaming the cognitive concepts, and slightly extending the
traditional view of control engineering concepts (see Fig. 2):

e The cluster centers (categories, patterns) are now operating points, around which
the system can be locally linearized.

e The subspace axes (chunks, features) are now degrees of freedom, determining the
local linear dependencies between variables.

This means that there are various operating regimes around the space, located in regions
that are relevant to the system. As the system traverses in the state space it every now and
then moves from a regime to another, and the feedback control law changes accordingly.
In concrete terms, the behavior of the controller is piecewise linear. However, there are
various theoretical challenges facing us when implementing this control strategy.

3 CHALLENGES

3.1 Input—output structure

When studying the problem of extending the one-way perception approaches towards
two-way control, the first obstacle concerns the basic structure: The model needs to be
extended to include not only input signals but also output signals. A general framework
for such causal input—output mappings is regression. In concrete terms, it is now assumed
that the input vector is denoted y, and the regression model should produce u, the output
vector?.

In fact, regression problems have been extensively studied also in the neural networks
community, no doubt because they are so useful in different kinds of practical applications.
For example, the feedforward neural networks are regression structures between the input

2Note the inversion of causalities: Normally in control engineering, u is the input, and y is the output;
however, now one is studying the feedback loop, where one should construct an appropriate system input,
the control signal u as a function of the observed system output y

layer and the output layer. The actual problem here is that such “cognitive regression”
strategies easily become “behavioristic” black box models with the internal structure
having minor role.

There exists activity also for extending the exclusively input-oriented neural network
schemes: For example, self-organizing maps have been used as a framework for regression.
Whereas the direct SOM-based regression is discrete-valued, continuous output can be
reached by introducing additional operations (“parameterized SOM”), or if some local
regression models are explicitly implemented in the nodes. However, in these cases the
basic SOM structure has been extended considerably. In the same way, a straightforward
approach in our case would be to match the observation against the internal model,
receiving the “perception vector” z (see [10]), and explicitly construct a mapping from
x to u using, for example, least squares matching. From the point of view of cognitive
plausibility, there are some problems that would be faced:

e The first argument concerns added complexity: Yet another layer needs to be added
on top of the basic structure, and new parameter adaptation schemes need to be
introduced. Even though simplicity cannot be the only guiding principle when
struggling towards cognitive plausibility, it would be a nice bonus.

e The second argument is more acute: One should fix the input-output structure
already during the model construction phase. It is a well-known fact, however, that
causalities cannot be seen in the data (remember Hume) — this means that the
inputs and outputs should be explicitly preprogrammed by some external mind.

The approach that will now be concentrated on has no separate outputs, but inputs and
outputs are processed similarly. The roles of inputs and outputs become distinguished
only through their usage: If some signals are known at some time, they are regarded as
inputs at that time; if they are not known they are reconstructed based on the learned
internal dependency model between the signals, and these signals are regarded as outputs
at that time. This means that the actual augmented data vector is

f = (%) | 1)

It is assumed that the statistical properties of such vectors are modeled as presented, for
example, in [7], resulting in a set of feature vectors (chunks) collected in the matrix C,
containing some kind of correlation structures between the variables. As contrasted to
the assumptions made in [10], the model is now clusterwise linear, no “f.,.” function is
needed now. If the dimension of the input y is n, and the dimension of the output u is
m, the dimension of the combined data is n + m. The portions of C' standing for the
input block and the output block can formally be restored as

Cy=(I]0)-C and C,=(0]I,)-C (2)

Now, let us define associative regression as a structure where the known quantities in y
are first used to determine the internal image x, and only after that, the estimate for the
unknown variables is constructed based on this = (see Figs. 3 and 4). Using a diagonal
square weighting matrix W, that only emphasizes the variables in y, it is also possible to
express the associative matching directly as a weighted least-squares solution

v =(C"W,0) CTW, - f. (3)

Associative regression

1. Find the best possible match between the model and the known variables in y
applying the least-squares (pseudoinverse) formula, not taking into account the
unknown ones in u:

r=(crc,) -y (4)

2. After z is found, the reconstruction of the output variables u is implemented by
calculating how the stored model structure reconstructs those variables when x
is fixed:

i=C,-x=0,(CTC,) " -y (5)

Y

It needs to be recognized that whereas “association” is traditionally associated with
discrete-valued recall, that is, typical associative memories can only store a finite number
of distinct patterns, now the output u is a continuous function of y, so that there is an
infinite number of possible variable combinations. It is assumed that some compression
takes place during regression, so that x is lower-dimensional than y, hopefully containing
the non-redundant noise-filtered information of the measurement, and C’yT (), is invertible.

There are some nice characteristics about the proposed regression idea: One of them
is that it is naturally a MIMO structure (multi-input, multi-output). Note that the
coherence between input and output signals may also facilitate other applications in
addition to regression and control. For example, if it happens to be some of the input
signals that is not accurately known, one can use the model for reconstructing (filtering,
smoothing) of the uncertain signal values:

-1
j=Cy-x=0C,(CIC,) C) -y (6)

Whether or not this associative recall actually works as proposed, is very much dependent
of the construction of the C' matrix; this issue is elaborated on in the next section.

y — y —
€ <
X . eohE X
C,
u —= Ul =
I
Figure 3: “Associative regression” — learning the correspondences between the

signals, on the left, and applying the model, on the right

u(k) x(k) =7 Figure 4: Illustration of the opera-
= 11 tion of the associative regression in
2 © C one dimension, that is, n = 1 and
o © ’ m = 1. The value of y is first pro-
jected onto some kind of correlation
1 structure between y and u (typically
a set of principal or independent com-
s y ponents), and only after that the in-
N)‘ > ternal latent variable x is projected
1 2 3 onto u

3.2 Uncertainty

Many cognitive models remain on the purely symbolic level. Now, however, one is facing
the challenge of real-life data in two ways: First, the perceptions are to be extracted
from the available data, and, second, the results are to be transformed back to real life
signals. The architecture has to be robust against the real data problems like noise and
high dimensionality.

The role of the internal model is to capture the statistical relationships among the
data, and these correlation structures are represented as columns in the matrix C. In the
basic case, these structures are the principal components spanning the variance structure
in the data space. Assuming that the data distribution is unimodal and Gaussian, the
linear principal component structure optimally captures the observed correlations among
the data. Data reduction is achieved and (hopefully) only the relevant information is
captured when the data is projected onto the most significant principal components; the
high-dimensional noisy y is represented by the low-dimensional z.

Principal components are routinely used as a basis for structured regression approaches.
When the input data is first projected onto the subspace spanned by a subset of principal
components, and from there further to the output, one has the well-known statistical
regression method principal component regression (PCR). What is different in associative
regression is that these principal components are determined simultaneously for y and u;
in this sense, one could assume that the problem sometimes experienced with PCR —
only emphasizing input data — could now be avoided (see [8]).

3.3 Dynamic nature

Representing dynamics or modeling time-dependent phenomena are typically not worried
about in cognitive architectures. However, as revealed by systems theory, there are
three phenomena that make the control applications in the presented framework specially
attractive:

1. System dynamics can be captured in the (possibly high-dimensional) state vector.
2. Optimal (in a certain sense) control for a linear (affine) system is linear (affine).

3. Optimization can be carried out in a modular manner.

The theory says (for example, see [2]) that the dynamics of an N’th order linear differ-
ential equation can be captured in an N dimensional state vector, meaning that if the
state is known, all history can be forgotten. When looking at the proposed cognitive
structure, it is the vector x that now stands for the state; in fact, the vector y can also
be regarded as non-minimal state, whereas it is assumed that in z this information is
compressed (note that the state is not unique).

Assuming that the system behavior is smooth, the nonlinearities can locally be approx-
imated by affine models, meaning that in addition to the linear part, there is a constant
drift term in the model. The theory also says that if the system is affine, and if the cost
criterion is quadratic (see later), the control law optimizing the criterion also is affine.
And it is affine models that can exactly be implemented in the proposed framework. This
means that for linear systems, truly optimal control can be implemented using chunk con-
trol; if the system can only be piecewise linearized, the result is suboptimal. The more
there are local affine submodels being employed, the better the approximation should
become.

Yet another conceptual tool is needed to make the cognitive control structure truly
functional: This is based on the idea of dynamic programming and principle of optimality.
Assuming that the system is time-invariant (given the same inputs, the system behaves
the same way no matter what is the actual time point), one can divide an optimization
problem in parts. When one first determines the optimal control law in the vicinity of the
goal state, it is only needed to optimally transfer the system into the basin of this already
optimized submodel — and the control along the whole trajectory becomes optimal! This
principle is applicable also to nonlinear systems.

3.4 Adaptivity

When the system model has been learned, its parameters should not be changed carelessly
— otherwise the acquired information about the system behavior is soon lost. How could
we then reach naturally plausible, very fast and flexible adaptation of the closed-loop
system behavior?

Remember that it was assumed that the dimension of the observation y can be very
high, containing perhaps also some measurements that on the lowest level seemingly do
not belong to the dynamic model. When control based on associative regression is im-
plemented, as presented later, its robustness against redundancy makes it possible to
reach “life-like adaptive control”: For example, it is possible to include in y information
about the environment (say, sensation of the load weight), and if it turns out that this
quantity correlates with other variables, changing the system dynamics, its contribution
is automatically integrated in the model (assuming that this contribution is continu-
ous and locally linear). This facilitates extremely fast system adaptation according to
environmental disturbances.

What comes to traditional adaptive control approaches (see [1]), it can be noted that
the resulting control takes the next step beyond gain scheduling, and provides a new
framework for multi-model control: Different operating regimes are selected according to
the observed situation, resembling also switched control that is used specially in hybrid
systems. Indeed, now there are two levels of adaptation: The slow adaptation varies
the controller parameters, whereas the fast adaptation is gain scheduling, selecting the
appropriate submodel and constructing the control law accordingly (see [9]).

4 “CHUNK CONTROL”

4.1 Learning by being shown

The basic idea when implementing control based on the discussions above is that such
vectors f are stored in the model that correspond to intended controller behavior. That
is, the vector f is constructed by combining the observed measurement y and the control
signal u given by the controller to be emulated. During run-time, u is associatively ex-
tracted when y alone is given. There are many names that could be given to such cognitive
control strategy; functionally, it is associative control, and physically it is feature-based
control or chunk control.

A single local model is represented as a matrix C' of dimension (m +n) x (N + 1), so
that the first column Cj represents the center point, and the other N vectors Cf to C§;
stand for the assumed NN degrees of freedom within the operating region?:

C=(Col|-]Cn). (7)

In principle, a single model C suffices if the system is linear enough; however, typically
more of them are needed, one for each operating point. The model for operating point ¢
is denoted C°.

The iterative learning of the principal components feature model can be based on,
for example, Generalized Hebbian Algorithm (GHA) originally developed by Professor
Erkki Oja. The learning is carried out separately in each submodel, and the data can
be assumed to be unimodal — that is why the Generalized GHA [5] is not needed. As
compared to traditional principal component extraction procedures, one now needs to
recognize that the data is not zero-mean, and this mean vector (operating point center)
needs to be processed in a special way. During the learning, the following procedure is
repeated as long as needed:

1. Construct a new observation vector f:

— (L
= ())
2. Match f against all submodels to find that with the best fit:
¢ = argmin {[|f — Cg|l} - (9)

3. Apply the modified GHA algorithm for all submodels ¢, for all 7 from 0 to V:

F, = F1—2..-Ciq, F=f Input to layer ¢
z = FE'-C;, z=1 Correlation (unscaled) (10)
C; < Ci+rh-z-(F—z-C)) Chunk adaptation

3From now on, subindices refer to matrix columns or single vector elements, whichever is appropriate;
capital letters normally denote matrices and lowercase letters vectors and scalars

Simple
controller

¥L> System Y

|

Chunk Figure 5: First, a stabilizing control is seen,
control and after that, the same behavior can be re-
produced

In Step 2, the best matching submodel can also be selected using more sophisticated
criteria, emphasizing the actual outlook of the data clusters, and employing the covariance
matrices (see [10]):

¢ = argmin {[[(f = C§) = (G5 |-+ | C5) -allgys + lalls, } (1)

In Step 3, when implementing the GHA algorithm, F' denotes the matrix of “virtual”
inputs where contributions of the previous levels have been eliminated, and v is the
adaptation step size. A few modifications are here needed as compared to the traditional
GHA: First, 2° (the first-level unscaled correlation) is set to 1 to take into account the
special role of Cj as a non-scaled center vector; second, the neighborhood effect h = h; is
applied to implement self-organization among models (see [13]), and to keep all submodels
C* involved. Tt seems that the convergence of GHA is typically a rather time-consuming
process; however, the main thing is that the input and output variables in C’s are in
balance defining an appropriate subspace among the variables. It does not matter so
much if the axis directions have not yet converged to the final principal components.

When training is being carried out, various cycles of transient behaviors are run in
succession, starting from some initial state and ending in the goal state, applying some
available stabilizing controller (see Figs. 5, 6, and 7). The feature model adapts to the
appropriate signals so that after training more or less identical controls can be restored
using associative regression.

Variation of starting state is needed to introduce some fresh information in the training
data. Problems may emerge if there does not exist enough excitation in the system; if
the model structure is too complicated as compared to the experienced behaviors, not all
degrees of freedom are necessarily spanned by the observation data.

4.2 Optimization by trial-and-error

When thinking of model adaptation and optimization of behavior, it would be tempting
to introduce some higher-level “intelligent agent” that could carry out this task. However,
this kind of mysterious higher levels should be avoided to keep things simple — how to
reach plausible “life-like” operation also here?

The idea applied here is to run the existing learned control strategy various times, every
now and then slightly modifying the control from the nominal values as determined by
the chunk model. If the behavior is enhanced as compared to the original behavior, the

of control

u Extraction || .~

Model
matching

Model
matching

Select
the best

=/L
Y
=

Model
matching

-
-y

<>
<>

Figure 6: Competition for control among local linear submodels. Each of the
submodels tries to explain the observation y as accurately as possible; the best of
them is selected for control construction

A

= =>

A

@ Recon- Feature
e struction matching O_ y

(Cl|"'|CN) (C1""|CN)

Figure 7: Contents of a single model matching block. Special kind of feature
matching is needed because of the center point Cj

data f with the modified control is learned as presented before. One only needs to have
some outside critic saying whether the behavior is “good” or if it is “bad”.

This kind of random search is not so hopeless as it may sound: First, assuming that
the behavior is far from optimum, it is, in principle, half of the experiments that result in
better control (assuming that the variations are small enough). Second, it is the behavior
of the whole model that is being adapted, not only the behavior in the individual state;
this means that fewer optimization steps are needed*. Faster adaptation could be reached
if so called momentum term, for example, were included in the updating equation.

In this case, the resolutions of the “critic” are based on the infinite-time quadratic cost
criterion — behavior is “good” if this criterion goes down (as calculated over the whole

40f course, one could also store the approximated cost criterion value in the model, so that it could
be directly calculated as a function of the state, and based on that, the control could be optimized;
however, there are complications, and after all, the random search strategy sounds more “life-like”

Figure 8: Robot arm being controlled

trajectory):
=Sk —) QU (k) — o) + u” () Ru(k). (12)

Here, the matrices Q and R are positive (semi)definite weighting matrices that can be
changed to alter the resulting closed-loop dynamics. The nice thing about the above
criterion is that for affine systems optimizing it results in affine control laws. It is evident
that before this criterion can be utilized and before optimization can be started, some
kind of stabilizing control that is capable of bringing y to y,.. is necessary — otherwise
the cost values will be infinite. Additionally, the goal state has to be an equilibrium
point, otherwise the contribution of the control never vanishes (u does not go to zero).
There are different ways to fix this problem — for example, one can explicitly eliminate
the final value of the control:

J = Z ~ Ysou) QU(E) = Yoou) + (k) = Ugour) " R(u(E) — tgou)- (13)

The output y is used in the criterion because the actual system states & cannot be
measured (and one does not even know what they are). If some vector elements are not
to be weighted, one can put zeros in () in appropriate locations.

In Al reinforcement learning is an old control strategy that has very much in common
with the above critic-based optimization. However, in the AT applications one is typically
dealing with very complicated system structures. If the mathematical structure of the
model is loose, learning becomes slow and results cannot be quaranteed, and what has
already been learned cannot easily and reliably be extrapolated or interpolated beyond
the set of actual training samples. This means that in all states, appropriate behavior has
to be learned separately! The originally “intelligent-looking” control task has become a
problem of storing and managing a body of Chinese Room characters. Now, when looking
at the proposed chunk control, one can see that the underlying structure is extremely
simple, and powerful models are available. The theoretically sound internal model makes
it possible to implement some level of “automated understanding”, abstraction, and
generalization beyond the training samples can be carried out reliably because of the
underlying linear structures.

=@- Start state center ‘
1r e Start locations N
=@ +Goal state
0.8 .
0.6 - b
04] Figure 9: Original and in-
. tended final configurations of
0.2y 7 the robot arm. The ac-
tual starting points (loca-
or i tions of the joint and the end-
0.5 0 05 I effector) are shown as dots
‘ =@- System states
e =@ 1Goal state i
—&— Operating points
08 | 8
06 | | Figure 10: Behavior of the
arm when applying the orig-
041 1 inal control law. The “oper-
el | ating points” show the end-
effector locations as deter-
of 1 mined by the Cj vectors
along the three-dimensional
%5 0 05 1 SOM after training

5 APPLICATION EXAMPLE

A simple mechanical manipulator was simulated to test the above control scheme. The
structure of the robot arm to be controlled is shown in Fig. 8, together with the physical
variable symbols and their numeric values. To express the dynamics of the robot arm,
one needs a four-state model (for example, a state model could be constructed if the
angles 6; and 6, and their derivatives df; /dt and df,/dt were selected as state variables).
It is now assumed that all of these state variables can directly be measured (note that
this is not necessary, as far as the states are observable in the measurements; a set of
linearly independent state variables can be extracted by the employed principal compo-
nent scheme). The number of measurements was now the same as the degrees of freedom
in the system, that is, there was now no need of reducing the data space. The control
dimension is two: Both of the torques 7 and 7, can freely be manipulated. The dynamics
of the arm is highly nonlinear (see [3]); there also exist singularities in the joint space.
However, nonlinearities are smooth and locally linearizable.

When the robot arm dynamics were modeled using the feature model, it was assumed
that there was one single movement to be trained. There were two non-optimal SISO
PID controllers for controlling both of the torques separately to implement the original
stabilizing control (see Figs. 9 and 10; in Fig. 10, a “stroboscope visualization” of the arm
behavior is shown). Three linearization centers were employed, each submodel consisting
of the linearization center Cyy and four subspace axes (N = 4). One of the center vectors

L Cost criterion (optimized/original * 100%)

90 -
80

70 -

Figure 11: Behavior of the
cost criterion during opti-
mization. The process of op-
Time (thousends iterations) timizing the process was by

40 : ‘ ‘ >

5 10 15 20 25 no means optlmlzed'

60 -

50 -

=@- System states
=@= 1Goal state
—&— Operating points

0.8 -

0.6

04 r

02r

8 Figure 12: Behavior of the
arm when applying the opti-
s 0 0s I mized control law

was explicitly fixed to the goal state; this is the simplest way to assure that there never
remains steady-state error in the controlled system even though the controls were not
yet completely polished. The three submodels were connected by a one-dimensional self-
organizing map. In this application, the simple “nearest center” criterion was used, that
is, the center point vectors C§ were directly compared against y when searching for the
best matching model. It turned out that after the training the PID control operation
could be restored in an almost errorless manner by the associative control strategy.

When the control was being optimized, all weightings were equal, that is, variations
in both angles, their derivatives, and the two torques had the same impact in the opti-
mization criterion (@ and R being unit matrices). The optimization process was slow but
the results were convincing (see Figs. 11, 12, and 13). During the second optimization
experiment the two angles were weighted ten times more than the other quantities; the
control became considerably faster (see Fig. 14).

It needs to be noted that the transfer from a linear model to another may cause
discontinuities in the control signal. These transients could be filtered by some addi-
tional signal processing elements or applying some “bumpless transfer” schemes; however,
as a mechanical system the robot arm is rather robust against transients, being based
on a combination of double integrators, so that control signals become automatically
smoothened.

Even though the training in the experiment was carried out for the single nominal
trajectory, it turned out that the controller (being based on linear structures) can be

A Angle 1 (rad) A Angle 2 (rad)
2.0 0.5
1.5 Optimized 0
/ Unoptimized \
1.0 -0.5 ¢ Optimized
Unoptimized
0.5 _ -1.0
0 -1.5
Sample index Sample index
500 1000 500 1000

Figure 13: Behavior of the arm angles before and after optimization

A Angle 1 (rad) A Angle 2 (rad)
0.5
20|
. 0
L5 Optimized #1
' / Optimized #2 05| \
/ ' Optimized #1
1.0 imi
1.0 Optimized #2
0.5 1.5
Sample index Sample index
200 400 600 200 400 600

Figure 14: Behavior of the arm angles after “softer” and “harder” optimization

extrapolated and generalized to other trajectories, as long as the goal state remains the
same. Even though the control is less optimal, it still works in a rather robust way: It
is almost as far as the causalities work in the assumed direction, the control drives the
system towards the goal state — and when getting near to that goal state, the available
models become more and more appropriate, meaning that the behavior becomes more
and more optimal along the trajectory.

As presented in [11], more complicated sequences of movements (like walking) can (at
least in principle) be modeled and optimized in the same, cognitively motivated numeric
framework. It remains to be seen whether such strategies can be implemented in real
systems, not only in simulation environments.

ACKNOWLEDGEMENT

[am grateful to Mr. Olli Haavisto who implemented the “cognitive simulation environ-
ment” and carried out the actual simulations in Simulink during the Summer 2002.

REFERENCES

1]
2]

[10]

[11]

[12]
[13]
[14]

Astrom, K.J.: Adaptive Control. Addison—Wesley, 1989.

Astrom, K.J. and Wittenmark, B.: Computer-Controlled Systems — Theory and
Design. Prentice-Hall, Upper Saddle River, New Jersey, 1997 (3rd edition).

Craig, J.J.: Introduction to Robotics (Mechanics & Control). Addison-Wesley, 1986.

Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan College Pub-
lishing, New York, 1994.

Hyotyniemi, H.: Constructing Non-Orthogonal Feature bases. Proceedings of the In-
ternational Conference on Neural Networks (ICNN’96), June 3-6, 1996, Washington
DC, pp. 1759-1764.

Hyotyniemi, H. and Saariluoma, P.: Chess — Beyond the Rules. In Timo Honkela
(ed.): Games, Computers and People (Pelit, tietokone ja ihminen), Finnish Artificial
Intelligence Society, Helsinki, Finland, 1999, pp. 100-112.

Hyotyniemi, H.: On Mental Images and ‘Computational Semantics’. In Proceedings
of the 8th Finnish Artificial Intelligence Conference STeP’98 (eds. Koikkalainen, P.
and Puuronen, S.), Finnish Artificial Intelligence Society, Helsinki, Finland, 1998,
pp- 199-208.

Hyotyniemi, H.: Multivariate Regression — Techniques and Tools. Helsinki Univer-
sity of Technology, Control Engineering Laboratory, Report 125, 2001.

Hyo6tyniemi, H.: On Emergent Models and Optimization of Parameters. 43rd Con-
ference on Simulation and Modeling (SIMS), Oulu, Finland, September 26-27, 2002,
Oulu, Finland.

Hyotyniemi, H.: Studies on Emergence and Cognition — Parts 1 € 2. Finnish
Artificial Intelligence Conference (STeP’02), December 16-17, 2002, Oulu, Finland.

Hyo6tyniemi, H.: Towards Perception Hierarchies. Finnish Artificial Intelligence Con-
ference (STeP’02), December 16-17, 2002, Oulu, Finland.

Jacobs, O.L.R.: Introduction to Control Theory. Clarendon Press, Oxford, 1974.
Kohonen, T.: Self-Organizing Maps. Springer—Verlag, Heidelberg, 1995.

Longman, R.W.: Tterative learning control and repetitive control for engineering
practice. International Journal of Control, Vol. 73, No. 10, 2000, pp. 930-954.

