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This paper presents a generic methodology for combining quantitative and qualitative
data analysis approaches. The idea is based on the view of natural dependency structures
existing in the high-dimensional data space: There are clusters, and within them there are
fine-tuned local linear subspaces. For example, given a set of document “fingerprints”,
the developed algorithm is capable of constructing such a model based on the statistical
relationships between the terms (words) in the documents. A visual view of the “gener-
alized keywords” among the documents is found, extending the idea of WEBSOM. Wider
horizons are also open here; the model can be seen as an approximation of the cognitive
chunking process. This is demonstrated in the framework of handwritten digit analysis.

1 INTRODUCTION

As the amount of available information has exploded, tools for Data Mining, and specially
for Knowledge Mining, are becoming invaluable [2], [6], [18]. True knowledge can only ex-
ist in a brain, but in a limited sense, when “understanding” is restricted to mastering the
dependency structures among the data entities, this kind of contextual semantics offers
new possibilities. Assuming that one is able to construct data processing mechanisms
so that there is a correspondence between data structures and mental representations
(see [13]), the resulting data structures can (hopefully) be interpreted by humans — and
(hopefully) some feeling of “intelligence” emerges.

There are a plenty of ambitious terms here — like understanding and emergence —
and, indeed, in the field of knowledge mining one has to face different kinds of challenges.
The main objective in this paper is to propose how the following very different but equally
relevant points of view could be integrated:

1. Theory of complex systems offers intuitions and tools for defining and analysis of
processes that result in emergent phenomena.

2. Cognitive science gives us understanding of human information processing, intro-
ducing the ideas of long-term meory (LTM) and short-term memory (STM), and
the idea of chunks.

3. Pragmatism prevents us from becoming too whimsical — when dealing with real
world data, fast and robust processing is of utmost importance.

Indeed, in this paper an approach to manipulating real world data following the ideas
of cognitive science and using the tools from complex systems research is discussed. In
concrete terms, an algorithm for data (knowledge) mining is implemented.



2 HUTCH MODEL

There are many hypotheses concerning mental processes'. Among the most concrete ones
are the cognitivistic ideas, including the concepts like mental representations, and capacity
limitations. In this context, only some key features are concentrated on, forgetting about
details, and it must be recognized that the claims here only concern some kind of “artificial
cognition”. The chunks are assumed to be the “mental atoms”, the basic units of which
the higher-level perceptions are constructed; it is assumed that only a fixed number
(known as short-term memory capacity STM) of all available chunks (known as long-
term memory capacity LTM) are simultaneously used for representing the observation.
This kind of principle — only having a subset of all available data structures active at a
time — introduces new kinds of mathematical problems; such problem setting is known
as sparse coding.

There is a continuum between dense and sparse representations. Density is a measure
for how many of the available constructs are used for representing the data item: Dense
coding means that all of them are used, typically resulting in structureless but math-
ematically efficient implementations; sparse coding means that only a few of them are
active at any given time, resulting in a structured, physically perhaps better motivated
models and better representative sets of features. For example, Latent Semantic Indezxing
(LSI), being based on principal component analysis PCA (see [1]), only constructs one
global model for the whole data, always using all model constructs [4]; this would mean
that STM = LTM in the cognitivist terminology. In the other end of the continuum,
the self-organizing map (SOM) method [16], for example, being a clustering method,
constructs local models for different regions of the data space, thus employing only one
of the model prototypes at a time, so that STM = 1.

The GGHA approach (see [11]) implements a combination of these two extremes, al-
ways using a fixed number of available numeric chunks (see [12], [14]). GGHA is an
extension of the generalized Hebbian algorithm GHA originally developed by Prof. Erkki
Oja (see [7]): In GHA, the principal components are iteratively extracted, whereas in
GGHA, various different trains of components can be extracted, making it possible to
model also non-unimodal mixture models, and, in some cases, returning independent
components (assuming that the underlying components are shared by various patterns;
in this case one should perhaps speak of sparse components). GGHA explicitly searches
for sparsity, assuming that the underlying data is multimodal but the different subdis-
tributions share common elements in their underlying linear structure. Explicitly fixing
the number of employed candidate features means that the matching process inevitably
becomes a sequential step-by-step process in GGHA.

The HUTCH Model (brief for “HUT Chunking Model”, see Fig. 1) is an extension of
GGHA into the direction of complex systems (see [15]). An additional nonlinearity is
introduced in the system structure: This modification should facilitate searches for “ac-
tive” features more explicitly and efficiently, hopefully resulting in faster convergence.

... And there also exists a wealth of approaches towards “cognitively motivated” processing of com-
plex data. Let us briefly study one prominent representative of such approaches — the Kohonen SOM
that is based on self-organization [16]. The intuition that the human brain would do its wonders by
applying the same principles is perhaps too high-spirited, but there are other cognitively clever inno-
vations: SOM is capable of cleverly making the complex data conceptually understandable by utilizing
the human’s marvellous visual pattern recognition capability. This idea has been applied in “semantic
maps” (see [22], [24]), and for Web mining in WEBSOM (see [9], [8]).
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This nonlinearity also automatically causes sparsity to emerge without any outside in-
tervention. More sophisticated pattern matching becomes also possible, being based on
parallel rather than sequential processing; this is based on the following iteration:

z(k+1) = fa(Az(k) + a(f)). (1)

The generalized cut function is the key to sparsity and emerging structure; it is a vector-
valued function, being defined elementwise as

v ) @, iftr; >0, and
fei(z) = { 0, otherwise, )
for all i =1,...,dim(z). Assuming that the process (1) converges to some Z, this vector

can be interpreted as the “internal image” corresponding to the input data f. Above, A
is a compatible real-valued matrix, and a(f) is a vector; the construction of these data
structures, given the chunk matriz C' and the input data vector f, will be explained later.

In the algorithm in Fig. 2, the chunk vectors C;, where 1 < ¢ < LLTM, have the same
dimension as the input data vectors f. Before the algorithm is started, these vectors are
first initialized so that their elements have random positive values, and the vector lengths
are normalized to unity; the algorithm is iterated until convergence of the vectors C; is
reached. The algorithm is constructed so that C' always remains positive-valued. Note
that the Steps 4 (adaptation) and 5 (normalization) could be combined in the same way
as in GHA. Normalization of decomposed inputs F. can be included in the algorithm
to make it possible to emphasize the additive features as compared to the potentially
very dominating center point vector, thus compensating for the possibly pathological
eigenvalue distribution in the data covariance matrix. This means that before the Step
4 of the algorithm, apply the following for all ¢ € T' (the role of € is to help avoiding
problems if there exist pathological input vectors of zero length):

F, + F,/\/FTF. +e. (3)

In the algorithm, the function d returns the grid distance between two nodes. Parameter
o is the neighborhood radius (see [16]), and + is the gradient algorithm step size; these
parameters gradually decay towards zero. Typically, if there is scarcity of memory and
the features in the data are distinct, no self-organization can be seen in the final results;
the role of the underlying SOM is to keep all vectors C}; involved in the adaptation.



HUTCH model adaptation:
1. Take the next input vector sample and make it positive-valued:
[ feur(f)-
2. Match the data against the model (see below), determining the data structures:
I', and F,, forallcel.
3. Calculate the neighborhoods:

d*(c,1)
202

he,i = exp (— ) , foralleel, 1<i<LTM. (4)

4. Apply the self-organizing algorithm using all vectors F. as input:

Ci+ Ci+~hei  (F.—C;), forallecel, 1<i<LTM. (5)
5. Normalize the chunk vectors:

C; + Ci/\/CIC;, foralll<i<LTM. (6)
6. Update the parameters v and o:

YAy, g+ Ao (7)

7. If the model has not yet converged, go back to Step 1.

Figure 2: The not-so-short description of the HUTCH algorithm

The features characterizing a domain field, or chunks, are (in this case) high-dimensional
vectors; they are stored as columns in the matrix C'. The number of chunks is typically
much lower than the dimension of data vectors f, meaning that compression of data
takes place; hopefully only the irrelevant or noisy information is disregarded. Assuming
that a set of domain-oriented chunks has been found, the input can be approximately
reconstructed as a weighted sum of them. After the “internal image” Z of an observation
has been found, determining the latent coordinate values representing the data vector f,
the corresponding estimate for the data vector can be reconstructed as

f=fu(C-T). (8)

No matter whether the model is being learned or the ready-to-use model is being applied,
the essential task is that of finding the internal image Z representing the input data
vector f. There exist two essentially different ways to match the data against the model
represented by the vectors in C':

e The “PCA-oriented”, inflating sequential deconstruction approach is the general-
ization of GHA, resulting in a robust feature extraction, explicitly ripping off the
most, probable features from f.

e The “ICA-oriented”, deflating parallel deconstruction approach is more sophisti-
cated, carrying out explicit matrix inversion, resulting in mathematically best pos-
sible representation for f.



HUTCH model matching (inflating version):
1. Set the set of candidates empty:
r={1»
2. Calculate the correlations between f and the remaining chunk vectors:
¢=(C—Cr)"-f.
3. Select the chunk ¢ having the best correlation with the input vector:

c=argmax { ¢; }.

1<i<LT™
4. Update the set of candidates:
P=T+{c}, F.=f Z.=0¢.
5. Eliminate the contribution of the feature ¢ by setting
feFo—2.-Co,  f faulf)
6. If the iteration limit STM has not yet been reached, go back to Step 2.

Figure 3: Matching the HUTCH model against data — first alternative

HUTCH model matching (deflating version):
1. Select all of the available chunks in the set of candidates:
r={1,...,LTM }.
2. Starting from z(0) = Z, iterate the following until it converges to new Z:
2(k+1) = fou (1= p) - T = pCLCr) - (k) + uCL - f) -

3. If the intended number of chunks (STM) has been reached, terminate; calculate

Zc

Fo= 2
C ViTz

’ f_z.flcl , forallceT.
i€l
ite

4. Otherwise, drop out the least significant chunk ¢ from T':
r=r- { argr(:rlellgl{xc} } .

5. Go back to Step 2.

(16)

Figure 4: Matching the HUTCH model against data — second alternative




There exist a couple of notations in the algorithms that deserve a closer look. First,
I’ stands for the set of integers that contains those chunk indices that are assumedly
involved when explaining f. After model matching, there should be STM elements in
['. The matrix F' contains the “chunk-wise” input data vectors; that is, F,. contains the
contribution of f in the direction of C\.. It is assumed that the matrix Cr is a copy of
C where all other columns are zeroed except those whose indices are given in the set I’
this means that in C' — Ct only those columns are zeroed whose index is found in T'.

Indeed, these two approaches, as presented in Figs. 3 and 4, can be combined. For
example, to reach fast operation, still having mathematically well-founded extraction of
feature contributions, the appropriate set of chunk indices in I' can be selected using
inflation (version 1), even though the final determination of the chunk-wise input vectors
F; were carried out applying the more sophisticated matching scheme (version 2). No
matter which version is applied, the internal image vector has to be initialized, so that
Z = 0 before the model matching iterations are started.

In the model matching version 2, the iteration in Step 2 in principle carries out matrix
inversion, matching the vectors against the data; this inversion is implemented as an
iteration that is based on the steepest descent approach, where i is the step size. Be-
cause of the nonlinearity f.., in the model, inversion is not mathematically exact, always
trying to find a positive solution. Due to the bad convergence properties of gradient algo-
rithms, it is clever to start new iterations from the previous solution when dropping out
candidates during deflation. The Step 3 in the model matching version 2 also deserves
some explanation: Here the input is decomposed into chunk-wise components. Note that
[ ~ Y,er 7;C;; from this one can solve the estimated contribution of the vector f in
different chunk directions. Further, the relevance of the input is approximated by scaling
with z.. However, there are a few special cases that need to be taken care of: First, if the
input cannot at all be represented by the chunks, all z;’s are very low, making adaptation
slow; second, if the chunk vectors are not orthogonal, the sizes can be rather high making
the adaptation perhaps too fast?. It turns out that when one takes the overall vector
length of Z into account, the pahological cases can be avoided; that is why the result is
additionally multiplied by 1/vzTZ.

3 EXAMPLE: CHUNKS IN IMAGE DATA

To study the properties of the proposed approach, the chunking algorithm was first tested
in an environment where the contents of the chunks can easily be inspected: Visual
features were extracted from image data. It can be assumed that the same information-
theoretic principles apply no matter what is the level in the conceptual hierarchy; now
the lowest level is studied, so that the results can be compared to existing evidence. It
has been recognized that in the case of lowest-level visual perception, the nervous system
decomposes visual scenes into line segments, etc., and the representation of images is
sparsely coded (for example, see [5], [20], [10]).

As testing material, a database of hand-written digits was used [17]. There were
over 8000 training samples and over 8000 validation samples, containing equal number
of examples of all digits from 0 to 9, coded as monochrome images in a 32 x 32 grid —
meaning that the data dimension was 1024 (see Figs. 5 and 6).

2At least if the “cut function” f., is omitted, almost parallel chunks may start fighting against each
other, meaning that their weights may explode, the matrix to be inverted becoming close to singular
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Figure 7: One chunk extracted Figure 8: Two simultaneous chunks

The model matching version 2 (Fig. 4) was applied assuming that the long-term memory
capacity LTM was fixed to 16, whereas the short-term memory capacity STM was varied
from 1 to 6 (the results are shown in Figs. 7, 8, 9, 10, 11, and 12). Note that no matter
how many features are extracted, one of the prototypes is always allocated specially for
1!

Before adaptation, the feature prototypes C; were first initialized to random positive
values. The original adaptation factor was v(0) = 0.002, and the neighborhood radius
was 0(0) = 2; these were kept constant during one epoch, whereas between epochs the
forgetting factor was A = 0.5. About a dozen epochs through the training material were
executed.

Note that when STM = 1, the results are essentially the same as with Kohonen SOM.
However, now there were too few nodes available to reach any self-organization among
the nodes. Indeed, the balance between the data complexity, overall memory capacity
(LTM), and the number of simultaneously active chunks (STM) is a delicate matter.
Having different parameter combinations, the results typically become qualitatively very
different; even if the parameters are kept the same, the results may differ from each
other after adaptation. Interestingly enough, whatever is the faith of adaptation, the
results typically “look good”, or at least “interesting”. It seems that also the human
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Figure 9: Three simultaneous chunks Figure 10: Four simultaneous chunks
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Figure 11: Five simultaneous chunks Figure 12: Six simultaneous chunks

categorizations are typically not unique (see [23]). Nevertheless, it can be claimed that
the overall number of chunks (16) was too low in this case.

It seems that the results look what they should, line and curve segments emerging,
perhaps the intuitively most appropriate features being found when STM is 3 or 4. The
approach seems to give a nice view of the structure within the data.

How this model could be utilized in practice, if gaining insight is not enough? Below,
the features were utilized in classification. It needs to be noted that each class from
0 to 9 employs the same chunks that were extracted when all the digit material was
simultaneously used for training; the distributions between the chunk activations can be
used to reveal the appropriate class. The data f itself, and the corresponding chunk
scores in T deliver us evidence; to proceed, let us define the “extended data” vector,
containing the feature weights Z () corresponding to the input data f(¢):

(1) = (%) . (18)

Using the Bayesian approach one can derive a formula for conditional probability sepa-
rately for each class C:

p(C[¢) 0o



Assume that T denotes the number of training samples in class C. If T is the total
number of all training samples, the a priori probability for class C is

Ic

C)=—.

(€)==

The global and class-wise data distributions can be assumed to be Gaussian, so that for
densities there holds

(20)

PO = Tt e (3-8 9)
i 1 1 c \T'y—1 c (21)
p(ElC) = Tomimem P (—5(5— c) X¢ (f—fc))

Here, £ and & are the global and class-wise average vectors, respectively, and ¥ and ¥
are the corresponding covariances; these can be calculated for the global model as

- 1 & 1 &
f=z Y80 and  S=o- YO, (22
t=1 t=1
and, correspondingly, for the local (Class—wise) model as
d 2
§e = Tc fZ§ an Yo = Tc fZ§ (23)

Because the covariance matrices depend on the distribution of £, and because the optimal
7 therein depends on these covariance matrices, adaptation of the model parameters &
and Y. for all classes C becomes a complicated iterative process; the details of this
process are skipped here. The resulting “conflict matrix” when using the 6-chunk model
for classification of the validation data was as follows:

Correct class —
Classiﬁcation \l/ ((077 “177 ((277 “377 ((477 “577 ((677 “777 ((877 “977
“0” 1 96.0 0 1.0 0.5 0 1.1 1.3 0 0.1 2.4

“17 0 94.5 0 01 0.5 0 01 14 04 11
“2*™ 01 02 9.7 11 05 1.1 10 11 3.0 0.1
“3" 0 01 0.8 887 0 1.9 0 02 06 52

“4101 23 01 0.1 8.3 05 05 1.2 01 72
“”1 02 01 1.0 03 01 91.1 0.2 0 15 0.8
“67 1 24 02 1.2 0 03 07 9.9 01 08 0
“r 0 11 05 12 24 0 0 934 04 4.2
“1 06 03 25 1.1 33 12 06 04 9.3 1.0
“9”1 03 10 19 67 32 21 01 20 23 776

The overall hit rate was 90.8%; this is far from the best possible results (the level of almost
98% can be reached, see [17]). It can be commented that this kind of features are not
very well suited for classification — note that similarities among the digits were searched
for rather than differences, and, in this sense, it is understandable that such common
features are not optimally suited for distinguishing between patterns. Class-wise feature
extraction would be needed to find the common phenomena optimally characterizing the
different classes. Also, extraction of higher-level features (whole strokes, and structure
among the strokes) would also help in classification. However, such polishing is not
concentrated on in this paper; rather, it is shown how the extracted chunks themselvaes
can be valuable for gaining intuition about a complex domain field.



4 MODELING OF TEXTUAL DOCUMENTS

In the digit analysis example above, low-level statistical dependencies were utilized for
determining the features. On the higher levels, when searching for some kind of concepts,
the above approach that is based solely on statistical properties, feels like too weak.
However, it is worth trying.

Thinking pragmatically, an automatic tool for finding a structure among a collection
of textual documents, finding contextual relationships between texts could be invaluable
for preliminary analyses of large bodies of knowledge. For example, assume that you are
asked to get acquainted to some special field — first you go to a database and extract all
documents with your keywords, but after that you let the algorithm look at the material
and construct an overview. Instead of having hundreds of fragmentary documents, you
would have some kind of table of contents giving “handles” into the documents! Other
related applications could involve automatic modeling of news archives, and (collabora-
tive) filtering. This kind of a service could be accessible through WWW, so that this tool
could be seen as another route towards “Semantic Web”.

Data mining in textual knowledge bases can roughly be divided in two mainstream
approaches®: Either one tries to do “quantitative” analysis (for example, Latent Semantic
Indexing LSI [4]), or one does “qualitative” analysis (different kinds of cluster analysis
approaches). However, when studying the many-sided nature of complex data, it is
evident that both of these two extremes alone are insufficient if trying to capture the
essence of the data in an efficient way: What is needed is a framework for constructing
integrated models with the capability of simultaneously representing the coarse and the
fine structure buried in the information. Whereas the cluster centers are discrete and
qualitative, the features modifying the cluster prototypes are continuous and quantitative.
It turns out that one should have a tool for finding sparse coded linear latent structures
in the data (see [13]). This seems to motivate the use of HUTCH-like approaches — the
chunks can stand for cluster prototypes and fine-tuning subspace axes.

To test the above modeling approach in a realistic environment, raw textual material
from the Inspec database was used. This database contains information about scientific
publications. First, all abstracts with the keyword “knowledge mining” were downloaded.
To make the problem more challenging, and to test the method against natural textual
data with no semantic preanalysis, only the abstracts of the papers were utilized, not the
titles or the explicit keywords that would also have been available. The abstracts varied
in length from 37 to 280 words, the overall number of words was about 2000, and there
were almost 300 documents (K = 260).

The documents were presented using so called “fingerprints”: The fingerprints are
high-dimensional integer vectors containing the term counts. The data dimension be-
comes very high because each term has an entry of its own in the fingerprint vector,
no matter if that term is used in that document or not. What comes to the semantic
contents, this kind of representation of the documents is, of course, extremely crude, but
assuming that the terms in the document are more or less characteristic to the domain

30f course, there exist a wealth of different kinds of approaches. For example, Bayesian networks
(see [19], etc.) have been applied to extracting high-level structures from complex data; however, it can
be argued that this approach goes too far, constructing causal models between variables. Since Hume it
has been evident that this is not possible, given the data alone. One can reliably only deduce correlation
structures among data
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area, the interdependencies among the terms determine some kind of contextual seman-
tics in the set of fingerprints. Linguistic analysis is now cut to minimum; the words found
in the documents are used directly as entries when constructing the input term vector f,
only the plural s’s are eliminated in a very simplified morphological analysis phase.

Preprocessing of the material is a delicate matter; modeling of the high-dimensional
space becomes difficult if the data is not appropriately conditioned. There are no absolute
truths that would apply to preprocessing, but some heuristics exist. It has been claimed
that the so called TFIDF weighting (“Term Frequency — Inverse Document Frequency”)
often gives good results [21]; this modification of the fingerprints can be defined termwise
as

fi < [filog %
Here, K is the overall number of available documents, and K; is the number of such doc-
uments where the term number ¢ is found. This weighting means that if a term is found
in all documents, its weight will be zero; this can be motivated so that such unselective
“stop-words” (like the words “the”, “and”, etc.) have no value when distinguishing docu-
ments from each other. The overall number of documents should be large enough to give
some statistically plausible estimate of the term frequencies. After the TFIDF weight-
ing, the “virtual” frequencies, or the significances of the words in the modeling process
have been modified so that more specific words hopefully carrying some categorization
information are emphasized, whereas the too common words are automatically rejected
(see Fig. 13). Correspondingly, terms that are found only once in the corpus material are
now neglected — they have no value when searching for similarities between documents.
In the algorithm, all fingerprint vectors are normalized to unit length. This means
that all training documents are assumed to have the same weight when used in model
construction. This may not always be justified; notice that in longer documents the
distribution of terms is likely to be more accurate than in shorter ones.
When the algorithm was run having four chunks available, and always searching for two
features from each document (that is, LTM = 4 and STM = 2), the process converged
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Figure 14: “Generalized keywords” — the chunks extracted by the algorithm

to a state where the chunk contents were as shown in Fig. 14. Each document can
thereafter (more or less accurately) be represented as a weighted sum of these features
that spanned the degrees of freedom among the documents. Below, the extracted chunks
are characterized by showing the titles of the three best-matching document abstracts,
being the “most prototypical” for those chunks; the chunks have also been labeled (by
human inspection):

Chunk #1: Technical implementations
0.44  Parallel algorithms for discovery of association rules
0.38  WaveCluster: a wavelet-based clustering approach for spatial data in very large databases
0.37  High performance OLAP and data mining on parallel computers

Chunk #2 Knowledge discovery
0.38 Knowledge mining in databases: an integration of machine learning methodologies with
database technologies
0.36  Knowledge Explorer: a prototype for mining knowledge from databases
0.35  Mining first-order knowledge bases for association rules

Chunk #3 Models and methods
0.33  Scoring models in Clementine for business advantage
0.32  Mathematical programming in data mining
0.32  Scalable techniques for mining causal structures

Chunk #4 Web techniques?
0.90  Semi-structured data extraction and schema knowledge mining
0.89  Semi-structured data extraction and schema knowledge mining
0.89  Semi-structured data extraction and schema knowledge mining
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Figure 15: The chunks extracted when more prototypes are available (chunk labels
being determined afterwards manually)

Note that the fourth chunk has seemingly been allocated for representing a single “outlier”
document: It turns out that this document has been stored in the database various
times, and its effect has evidently become very dominant. Similarly, if the most frequent
words had not been compensated by TFIDF, most probably a separate chunk would have
been needed to capture the bias caused by the wealth of stop-words, characterizing the
“standard English language”.

A larger model was also constructed: Nine chunk prototypes (located in a 3 x 3
grid) were employed, and three chunks were extracted from each sample. It seems that
there really emerges some more sophisticated contents-related structure in the model (see
Fig. 15). Note that, again, one of the chunks (chunk #1 this time) has been allocated
for the same outlier as in the previous experiment. It seems that the “general relevance”
(as opposed to the “outlier-likeness”) of a chunk can be estimated from the sparseness
of the chunk vectors: If there are only a few words with non-zero weight, the number of
documents matching that chunk has been low.

The results reveal that there are problems in the model robustness: Some words are
heavily weighted in the final chunks that do not have special value in distinguishing



between different document contents. This means that spurious errors can be made in
document modeling if the frequency of such non-informative words is changed. This
problem is due to the statistical, unavoidable principles: If the data space is too high-
dimensional as compared to the number of training samples, as it now is, occasional
coincidences not obeying the true word frequency can have significant effect on the con-
structed model. To circumvent this problem, the dimension of the data space should
be reduced. Some kind of semantic terms carrying some semantic information should
be used instead of the bare words as input data. When attacking such linguistic and
semantic problems (for example, see [3]) the nice simple starting point utilized here —
everything being represented as real-valued vectors, and all operations being based on
linear algebra and matrix calculus — does no more apply.
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