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It has been demonstrated how iteration of functions with very simple structure can result
in every imaginable outcome. However, from the point of view of implementing some
cognitive functions having real relevance this result has only academic interest. This
paper discusses the challenges one is facing when trying to match the theory of complex
systems against the realm of cognitive systems. This first part concentrates on the basic
principles, and high-level functionalities are studied in [8].

1 INTRODUCTION

It should not be a surprise that the field of complex systems is itself a complex mixture of
ideas and intuitions. There are different views of what kind of characteristics distinguish
a complex system from “simple” ones. Now it is assumed that the key phenomenon taking
place in a complex system is emergence: When simple functions are iterated massively,
some kind of new order emerges. In this context, cognitive systems are concentrated on —
in this special field, the emergent phenomenon is intelligence (see Fig. 1). It seems to offer
new, fresh possibilities for attacking the mysteries of mind when intelligence (and other
cognitive functions, even the taboo of consciousness itself?) are seen as emergent holistic
phenomena — more concrete, more reductionist definitions can directly be implemented
(and, indeed, they have been implemented, resulting in different kinds of “shallow AI”
applications).

The approaches to studying complexity have traditionally been rather heuristic, being
based on simulations and intuitively appealing patterns. But how to control these pat-
terns, how to make something interesting emerge out from an iteration? Even though it
has been claimed that mathematics has no role in the study of complex systems, it seems
that mathematics is still the best available language for discussing emergence. This claim
will be concentrated on in this paper, and in the follow-up paper [8].

2 WOLFRAM’S WORLD

The algorithmic forms, complicated, unforeseen patterns generated by the iterated func-
tions can resemble natural forms. Is this a coincidence — or does Nature itself funda-
mentally function in this way? The history of artificial intelligence is full of fluctuations
between hope and despair, and so is the history of complex systems research. How about
combining these two paradigms? The turbulent vawes will form a rip-tide. A major splash
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Figure 1: Emergent behavior is characteristic to complex systems in general ...
and intelligent behavior is characteristic to cognitive systems in special

in the concoction is now produced by Stephen Wolfram and his book “A New Kind of Sci-
ence” [11]. The Wolframian idea is that all natural processes are best explained in terms
of cellular automata. He says that this scheme is appropriate in all kinds of systems,
and at all levels of systems. The problem here is that this approach is incompatible with
old theories — old mathematics, physics, biology, etc. (even ethics!) should be forgotten
altogether. This is, indeed, what Stephen Wolfram claims: Everything must be started
from the beginning! There are different reasons to criticize Wolfram’s claims.

e First, from the point of view of scientific work in general, it seems that Wofram has
entered the “fiddler’s paradise”: It is easy to put up new theories; the hard task is
to put the theories fit with what there already exists — how to integrate the new
ideas with old theories? After all, the evolution of theories has always been based
on cumulation of ideas, how could this special field be so fundamentally different?

e From the point of view of complex systems research in special, there are also some
issues that may turn out to become problems. It is as with the “Turing test” in ar-
tificial intelligence: This criterion states that something is intelligent if it is capable
of behaving intelligently. This shallow view of Al has plagued this field ever since.
Similarly, the “Wolfram test” for emergence and order is very behavioristic, not
taking into account the internal underlying phenomena: Something is interesting
if it looks interesting. This kind of “shallow view of complexity” may result in the
complex systems research being stuck in admiration of superficial patterns.

e From the point of view of research methodology, the all too common “big ham-
mer” syndrome makes everything look like a nail ... designing general-purpose
tools should not be an end in itself — it is still nature one wants to explain.
The approaches and tools have to be selected so that they match the phenomenon
being studied, and the level of abstraction should be appropriate, hiding irrele-

vant details'. The general-purpose tools often result in clumsier models than more

L After all, Wolfram has a point here — it would be a nice bonus if a single framework could span
the system properties on different levels. And, when studying cognitive processes, it is information
processing all the way from bottom to top ... indeed, also in this paper, some kind of “unified theory”
is searched for where functionalities on different mental levels could be collapsed into the same general
framework



special-purpose modeling methods do. Another point is that Wolfram happily ig-
nores deeper expertise in special fields to make his theories match the application;
this approach is easy to understand because devil lives in details — but without
details the discussions remain on the level of hand-vawing.

e Also from the point of view of relevance there are also problems: After all, it
was noticed already for a long time ago that all material consists of elementary
particles, all living things consist of cells. Neither from the point of view of cellular
automata, the results are not so revolutionary or new. So what is really new
here? Is there some new understanding or are there new conceptual tools? It is
possible to reduce all phenomena to the elementary level, but it is not a reasonable
level of abstraction when explaining complex things. Rather than escaping back to
reductionism, emergent phenomena should be attacked “from above”.

Still, there is potential in the idea of emergence — some things cannot naturally be
defined in any other framework. For example, it seems that the best way to define such
holistic phenomena as intelligence is through emergence: More concrete definitions have
already been implemented as software, but the essence of intelligence still seems to escape.

3 MODELING VIEW

3.1 About models

When modeling cognition, one first has to admit that models are always false. Model
is an abstraction where some details are more or less consciously ignored. All details
cannot be captured, but if the model reveals something essential, giving insight into the
phenomenon, then it is a good model — that is all one can hope for.

Still, let us not be too humble: Assuming that the brain itself is just an information
processing device, trying to analyze the surrounding world, it is implicitly solving the
same modeling problem as we are trying to solve explicitly — and finding the principles
of mental processing, one could construct mechanical devices carrying out the essentially
identical tasks of information processing (see [4]). Even though the physical realm cannot
be captured in the models, phenomena that are interesting from the cognitive point of
view can directly be attacked on the more abstract level of information processing and
representation. It has been ironically commented that “simulation of a hurricane does
not make you wet” — meaning that something essential is lost if one tries to mimic
cognitive phenomena in an artificial substrate outside the brain. But one is not studying
hurricanes now: Simulation of information processing is still information processing!

Good model is a compromise between different objectives: To serve the user of the
model, analyzability and understandability are essential; to serve the system to be mod-
eled, sufficient expressional power is necessary, and to serve applications, practical appli-
cability has to be considered. These viewpoints will briefly be studied below.

3.2 Analyzability

Mathematics is the only available analysis tool now. And mathematical analyzability ac-
tually means linearity. In a multivariate environment, a linear function can be expressed
in the form

y=A-z, (1)



where z and y are n, and n, dimensional vectors, respectively, and A is a compatible
real-valued matrix. The mathematical benefits of this starting point are illustrated in
Sec. 6; from the physiological point of view, the above linear formulation can be seen
as an approximation of the operation of a real grid of neurons. Applying this function,
the (unnormalized) correlations between the “signals” (vector x) and “synaptic weights”
(rows of A) are calculated; as shown by Donald O. Hebb, this kind of correlations are
the underlying essence beneath the neuronal behavior and adaptation. Hypothetically,
it can even be assumed that nature tries to be linear, but the devices and mechanisms
that are available are hopelessly nonideal and nonlinear?. Or, it can be claimed that the
world, as we see it, simply must be (piecewise) linear?.

Properties of (finite-dimensional) linear mappings are exactly known and possible be-
haviors of dynamic linear systems are well understood. The nice feature about linear
structures is that they are scalable, and qualitatively the same phenomena take place
also in high dimensions. On the other hand, this is also a drawback: New functionalities
cannot, emerge if linear structures are combined:

y = Ay - cApew
= (A Ay (2)
= A-zx,

that is, no matter how many linear structures are combined and how many variables
there are in the hidden layers, the functional complexity can still be expressed as a
single matrix. To reach the capacity of something unexpected emerging, some kind of
nonlinearity is necessary.

3.3 Expressional power

Here, when choosing the approach to extend the linear structure, one is facing major
challenges: What kind of nonlinearity would be powerful enough, still “gentle”, so that
not all benefits offered by the linearity would be lost — and, perhaps, what kind of
nonlinearity could also be motivated from the physiological point of view?

It turns out that positivity constraint is a nice compromise. In a positive system,
variable values never become negative. When looking at a neural system, the positivity
constraint seems to be well justified:

e [f the neural activity is studied on the level of chemistry, so that different kinds
of chemical concentrations explain the neural phenomena, it can be noticed that
concentrations never become negative.

e If the neural activity is studied on the level of signal processing, so that pulse
coded signals transfer the information, it can be noticed that pulse frequencies
never become negative.

2If the brain is an analog computer rather than digital, the experiences from analog electronics can
perhaps be applied: The nonideal, nonlinear amplifiers (transistors) are routinely used to implement
linear functions; it is all dependent of which part of the characteristic curve is utilized

3If the brain essentially is a tabula rase to start with, it is the properties of the surrounding world
that have to be revealed by the brain to construct appropriate representations. This means that the
brain can only recognize analyzable phenomena! No matter what the “real world” is like, our subjective
world, perhaps being only a tiny part of it all, has to be composed of linear constructs



v Figure 2: Remember the power of Positive Thinking!

Positive systems theory just might help in understanding
the underlying functions beyond thinking processes

How about higher cognitive levels? It can be claimed that also the “negative thoughts”,
even though they may be sinister, still having positive activity ... and remember the
intuitive appeal of positivity (see Fig. 2)!

In this context*, the positivity constraint is implemented as the “generalized cut”
function:

| @, ifa; >0, and
fouil(®) = { 0, otherwise. (3)
Function f.,, is vector valued; each element i, where i = 1,... dim(z), is calculated

independently, simply zeroing the entry if it is negative. If the variables in z remain
positive, this function is transparent, and the nonlinear nature does not at all pop up.
When studying the information representations, this kind of nonlinearity gives a practical
way to implement sparse coding.

3.4 Pragmatic issues

It seems that the “Turing power” of universality is a rather common capability among
nonlinear function structures — and, indeed, also the above positivity restriction results
in such omnipotent power: Any algorithm can be implemented in that framework (for
example, see [7]). Even though this sounds like a strength, it is a weakness: it makes
the systems unanalyzable. And when modeling phenomena that defy explicit definitions,
one cannot utilize the power anyway.

Another point is that even though something is possible it is not necessarily cognitively
plausible. Implementations of some functionality using such general-purpose framework
tend to become high-dimensional: When algorithms are implemented in the framework
of [3], the structural complexity of the algorithms is not avoided, it is only transformed
into dimensional complexity. The number of the free variables needed to represent the
algorithms in this kind of matrix form is typically high. There are many variables that
do not have any straightforward interpretation in terms of any observable quantities.
From the point of view of learning from data, for example — and assuming that there
do not exist (too many) hardwired, preprogrammed constructs in the brain, this kind
of observation-orientedness is crucial — these “latent variables” result in extreme com-
plexities. If the input and output were known, the parameters within a fixed structural
framework could be more or less easily optimized; on the other hand, if there exist various

4Because of their physical relevance, positive systems have been studied a lot — however, the studies
are often limited to positive linear systems, where special constraints to system parameters are imposed
to keep the variables of a strictly linear system always positive. It is easy to understand why this kind
of limitations are used — as was shown in [3], even a “simple” nonlinearity like the presented “cut”
function results in unanalyzable behaviors



layers with either the input or output (or both) being unknown, iteratively searching for
the appropriate parameter values soon becomes an untractable problem.

In this paper, and specially in [8], more “optimized” representations are presented,
so that cognitively relevant phenomena can be implemented in a maximally compressed
form with no extra variables, so that the inner representation has (in somewhat loose
terms) mazimum expressional power but minimum complezity. Each data structure can
be explicitly interpreted in terms that are natural in the domain area, so that no latent
variables remain. It turns out that this kind of chrystallization increases the transparency,
and perhaps also the cognitive plausibility of the models. For example, one of the main
objections against connectionist approaches can be attacked: When the underlying vari-
ables are conceptual enough, it turns out that all data structures need not be learned
solely based on the observation data; the learning can also be based on explicit rules or ex-
amples, and declarative knowledge can be integrated in the same basically data-oriented
model structure.

4 FRAMEWORK FOR COMPLEX SYSTEMS

4.1 Synthesis

The ideas of linearity and positivity are now integrated: The function form that will be
discussed from now on is

fcut (A‘/Ll) . (4)
In what follows, it will be assumed that this is the only operation that can be carried out

by the available machinery, and all functionalities somehow emerge from this. To make
this possible, this kind of simple functions have to be chained:

x(k + 1) = fcut(Ax(k))a (5)
starting from some initial vector z(0) and continuing ad infinitum, hoping that compli-
cated behaviors emerge when the iteration goes on.

Essentially, (5) is a linear mapping of the vector z(k), the nonlinearity only nullifying
negative values. Regardless of the seemingly simple system structure, it is extremely
difficult to say what is the faith of the iteration without actually running the process.
When the mapping is iterated indefinitely, the process (hopefully) finally converges to
some fixed point Z so that there holds 7 = f.,.(AZ). This vector Z this vector is the
emergent pattern.

4.2 Note on the formalism

In what follows it turns out that the iterations are often easiest to present in the form

where a is a constant vector dimensionally compatible with . The constant term in the
above formulation introduces no additional expressional power; it only helps to restruc-
ture the simple starting point. If one defines another vector x.., of dimension 2n, obeying
the following dynamics

b1) = () ) "
= fee(Auen T (F))




with

£ (0) = (ﬂ) , )

lal

exactly the same behavior can be observed as in (6) — the constants in a are just stored
in the augmented state vector.

This kind of state augmentation makes it easy to include also inputs y from the outside
(the observations) in the presented framework (see [4]). Indeed, yet another formulation
is possible — in all applications that will be studied, it would also be possible to have
the same dynamics by explicitly representing the external input y:

2(k+1) = fou(Az(k) + By). (9)

Further, this can be extended to a formulation that resembles a state-space model com-
monly applied in systems theory:

w(k+1,t) = fo(Az(k,t) + By(t))
i(t) = fu(Cx(t)).

Note that there are some peculiarities, though: First, now the input is called y rather
than u, and the output is the estimate for y, or §. Second, note that y is static, it does
not change during iteration, and g is valid only after the system has converged to some
fixed state Z; for completeness, the input sample index ¢ is also included in the model.

Because of the cut function, the coordinates will always be strictly positive if applying
iterations with the cut function. This means that the fixed point solution is searched for
only in the first (hyper)quadrant. The behavior of the strictly linear process x(k + 1) =
Ax(k) + a can be simulated by the nonlinear structure (14)) using the following model
(note that either ;" or z; has to be zero at any time):

)R (E8) (5] e

The state vector — possibly containing negative values — can then be reconstructed as

z(k) = at (k) —x (k). (12)

(10)

5 MODELING OF COGNITION

5.1 About semantics

Running the iteration (5), something perhaps pops up. However, it is not some obscure
fractals that would now make us happy, but it is some (cognitively) relevant functionalities
that should emerge. How could something new and interesting come out automatically
from such brainless formal activity? Real intelligence involves behaving in a reasonable
way in a new environment without guidance; some understanding of the meaning of
different entities in the environment is necessary to accomplish such task successfully.
Understanding of meaning is deeply connected to semantics — all these are very difficult
and loaded concepts, and some “engineering-like” simplification is necessary.

In formal manipulations, syntax remains syntax if no semantics is somehow involved in
the structures being manipulated. It is now assumed that it is naturalistic and contextual



semantics that will be concentrated on: Connections to measurements from outside world
or connections to other processing elements determine the meaning of a signal (see [4]).
This makes it possible that something meaningful (when “meaning” is defined in such a
narrow sense) can emerge from associative manipulation of correlation structures.

5.2 Observation vs. perception

As presented in [5], perhaps the most fundamental cognitivist concept to be studied is
that of a mental image or perception (these two concepts being daringly identified here®).
It turns out that many cognitive functionalities can be formulated in this extremely
powerful conceptual framework. In what follows, this “inner image” will be denoted as =,
and the observation inspiring this image is y. On the lowest level, these “observations”
are direct sensations coming from the senses/sensors, but on the higher levels, these
observations can also be some kind of combinations of lower-level perceptions. These
simple data structures, real-valued vectors x and y, are now assumed to stand for the
very abstract mental representations, whatever is their contents.

Assume that the above function calculation (5) is all that can be accomplished in the
cognitive framework. There are two main tasks that need to be carried out (see Fig. 3):

1. Reconstruction of the observation. Assuming that x is the inner image cor-
responding to an observation y, according to the assumptions in [4], etc., ideally
the reconstruction should be calculated simply as y = Cxz. Here C contains the
features, or “numeric chunks” (see [2]) as collected into a matrix, and z contains
the weight for each of them, that is, variable x; indicates how relevant the chunk
C; is when explaining y. If one restricts to positive values, this can be readily
approximated in the proposed framework:

Y= fcut(cx)' (13)

2. Determination of the inner image. As compared to the previous task, this is
much more complicated. In fact, the objective is to somehow invert the mapping
from x to y in (13), so that best possible = could be found when y is given. Because
of the nonlinearity (and because of the unmatching dimensions) this inversion is
by no means trivial. Having only the function form (5) available, the appropriate
x best explaining y must be determined by some iteration; starting from some
initial observation-dependent vector x(0) = g(y), where g(-) is some function of y,
and using some appropriate matrix A, the following is repeated until the process
(hopefully) converges:

x(k+1) = f..(Az(k)). (14)
If the above iterative scheme works, the inner image z where the iteration converges can

be regarded as an emergent phenomenon. Note that because of the function form in (14)
there always exists the trivial solution & = 0; to have non-degenerate solutions emerge,

SIndeed, every cognitive concept used here should be preceded by the word “artificial” — that is,
one is studying some kind of artificial cognition. Sticking to the strictly philosophical/cognitive concepts
would limit the freedom that is now necessary



Figure 3: According to hypotheses, it is assumed that given the “inner image”,
reconstruction of an estimate of the “outer image” is simple; the difficult task is
modeling of the environment, abstracting and compressing the incoming informa-
tion into the mental image

the construction of A and z(0) has to be studied closely — and, indeed, this is the main
objective in what follows.

Comparing the proposed inner image determination structure to that presented in [4],
it can be seen that some evolution has taken place. In the earlier formulation, only a fixed
number of substructures could be active at any time; now all non-zero correlations are
active. This makes the matching process simpler and better parallelizable — but, on the
other hand, the cognitivist short-term memory constraints cannot be put into practice
so efficiently. Another difference is, of course, the nonlinearity f..,.

5.3 Example: Forward chaining

First, study a simple Al application in the proposed framework — implementation of a
forward-chaining rule system. To realize the logical reasoning machinery in the numerical
form (14), let us assume that value 1 means “true” and 0 means “false”. Then the
negation of a proposition P, denoted =P, can be implemented as

Tp = fou(l = Te), (15)

where xp denotes the logical value of the proposition P. Further, conjunction of propo-
sitions, P; AND ... AND P,,, can be implemented as

TpyA...AP, — fcut(l‘Pl +--+xp, — N+ 1)- (16)

Using de Morgan rules, all logical functions can be constructed from these. Assume that
the knowledge has been coded in the rule form as IF Py AND ...AND P, THEN P,..,
meaning that the new proposition holds only if a set of other propositions all hold; this
kind of rules can be implemented as

l‘Pnew = fcut(xPI + -t xpn —n+ ].) (17)



For example, if there is just one rule IF P; AND P, THEN Pj, and the truth values of
P, and P, are assumed to be known, the corresponding “reasoning system” becomes

00 0 0 T,
z(k+1)= f.. 00 0 |- -z(k)+ 0 |+ | z», (18)
1 10 —1 0
with
:UPI
r=| xp, |. (19)
:L.P?y

The initial state 2(0) can be arbitrary. The solution may become more complicated, for
example, if there are various disjunctive rules for some P;; it may be necessary to include
additional variables in the model to limit the maximum values to 1. However, it turns
out that all logic constructs that are needed to implement the rule system can be written
in the form (14). Collecting all xp,, z_p, (only those that are needed) in the vector z,
A and a can be constructed so that iteration carries out forward reasoning. Vector a
contains the observed “world state”, and A contains the inference rules as shown above.
In a rule system with no cyclic structures, matrix A will be triangular with zero
diagonal. After a finite number of steps (the forward rule matrix determining a so called
dead-beat system), no more changes take place in the state vector z. It needs to be
noted that the “straight-forward chaining” can be extended in this framework: Allowing
non-binary weights, and fuzzy logical truth values, the resolution results can also be
recirculated in the system. This means that A no more needs to be triangular with zero
diagonal; finding a stable result becomes an infinite process that hopefully converges.

6 WHY NOT FORGET MATHEMATICS?

6.1 Connections to linear algebra

It seems that some people are specially relieved about Stephen Wolfram’s declaration that
“old mathematics is dead”. It is like in the field of control theory — the new methods
that promise that “no understanding is necessary” have become popular even though the
old methods would often be unbeatable. There is perhaps a need to briefly discuss the
issue why abandoning mathematics should be avoided.

The first reason to stick to mathematics is that it simply cannot be avoided: Math-
ematics is formalized logic, and if something is expressed exactly, it is mathematics.
Mathematics is a language — actually, it is the natural language of Nature — and it
seems to offer good abstractions and ready-to-use concepts for applications.

Mathematics is also a tool for getting insight. A glimpse of what this means will be
provided in this section. For this purpose, let us study the linear version of (10):

x(k+1,t) = Az (k,t) + By(t). (20)

One does not need to iterate the function (20) to know how it will behave. First, the
eigenvalues of A that can readily be calculated, dictate the stability properties of the
system: If all eigenvalues are inside a unit circle in the complex plain, the system will
be stable, no matter what the input y is. It turns out that what is actually solved by



the iteration — if it converges — is just another way of implementing a matrix inversion
problem:

#(t) = (I — A) " By(1). (21)

Further, note that if y = 0, the direction of z in the observation space will generally turn
towards the direction of the most significant eigenvector (if the eigenvalue is inside the
unit circle, the length will exponentially decay towards zero, though).

Mathematics can also offer analogies and (more or less) well motivated hypotheses
can be based on such intuitions. Assume that the parameters (synaptic weights) in
the data structures have been determined according to the Hebbian law, so that the
parameters connecting signals are determined by the long-term correlations between the
corresponding (converged) signals. This means that

E{z:()2.()} -+ B{21(t)Ta. (1)}
A= : : (22)

B{Zndi()} - B{Zndn (1)}

or A = E{z(t)zT(t)}, and, correspondingly, B = E{z(t)yT(t)}. If these are substituted
in (21), one has

z(t) = (I - E{f?(t)f?T(t)}f1 E{z()y" (1)} - y(2)- (23)

Now, study the structure of the general multilinear regression model (for example, see
[6]) solving for the least-squares estimate for Z(t) when y(t) is known:

i(t) = E{a(y" (0} (B{u(y"(0}) - u(t). (24)

Note that as y typically has huge dimension, the covariance matrix would be non-
invertible in practice. However, this strange analogy between (24) and (23) persuades us
to make a slight modification in the model structure:

2(k+1,t) = 2(k,t) = M -E{Z(t)2" (t)} - 2(k, 1) + M - E{Z(t)y" (t)} - y(1), (25)

where z has been introduced instead of x, and M is an arbitrary invertible matrix. This
means that there now holds

2(1) = (ELz02" (1)) B0y (1)} - y(0). (26)

Comparing this to (24), one can see a remarkable difference: The inverted matrix oper-
ates in the (low-dimensional) space of Z rather than in the (high-dimensional) space of y.
In least-squares regression, the role of this operation is to compensate for the covariance
structure in y before projecting the data onto z; now, on the other hand, the “postpro-
cessing” makes the elements of Z less correlated — and, indeed, looking closer at (25),
it is evident that it implements combined Hebbian — Anti-Hebbian learning: Strongly
correlating elements in Z try to inhibit each other. It is a well-known fact that Anti-
Hebbian learning (at least when augmented with some appropriate nonlinearity) tries to
implement sparse coding (see [1]).



Looking closer at (25), one can see that there is some freedom still available: Matrix M
can be selected, for example, as follows:

1 0
EI0RIC)
M= . (27)
1
0 TN O)

This selection means that the iteration (25) always remains stable; what is more, the
eigenvalues of the process all are located in the origin, so that the iteration will reach its
final value after n, steps. To make the process more cautious, M can still be multiplied
by some small constant p:

2k +1) = 2(k) — p-E{zz"} - 2(k) + - E{zy"} -y, (28)

where E{zz"} and E{zy”} denote the variance-compensated covariance matrices. In
stationary state where no more adaptation takes place the (uncentered) covariance of Z
is

B{zz") = (B{zz"}) " B{="} E{y"} -E' (="} (B(z="}) . (29)
This can be written as

E*{zz"} = B{zy"}E{yy"}E" {zy"}. (30)
If one assumes that there holds z = 67 - y for some n, X n, matrix 6, one has

(67 Blyy™}-0) =07 (B{yy"}) 0. (31)

This is a strange result. Tt is evident that any subset of eigenvectors of E{yy”} as collected
in the matrix € satisfy (31); it turns out that the cumbersome GHA-like sequential
extraction of covariance matrix eigenvectors (or principal components) is not necessary
in the Hebbian framework, but a parallel, linear, and neurally perhaps more plausible
process suffices!

When the mapping model 87 has been found, the least-squares estimate for the recon-
structed y can be seen from (26) to be

y(t) =0 -2(1). (32)

If there is the nonlinearity f., included in the model, the matrix no more consists of
principal components; the hypothesis here is that, rather, they are sparse components:
Only those elements of Z;(t) are active that correspond to features f; that are existent in
the y(t) input sample (similar “positive feature” decomposition assumption is explicitly
implemented by the HUTCH model; see [9]).

6.2 Shift from novice to expert

An interesting problem in cognitive science is that of shift from nowvice to expert [10]. It
can be assumed that a novice follows rules — in the forward-chaining manner — whereas
an expert applies pattern recognition using a pool of domain-oriented features. The
outlook of the reasoning processes is very different in these two cases; how can the qual-
itative leap be explained and overcome? Actually, this dilemma between different types



of reasoning is a painstaking paradox in cognitive science — but, as studied below, the
mathematical model can perhaps give some intuition and conceptual tools for attacking
the problem.

First let us study the structure of forward-chaining (assumedly being the basic mech-
anism underlying novice reasoning). Loosely speaking, the rule-form representations
(“xy causes ") are crisp, typically asymmetric, not reciprocal; associative, expert-like,
feature-based representations (“x; correlates with x5 AND z; correlates with x;,”) are less
crisp, and typically more symmetric, facilitating fast and consistent excitation of features
related to an observation. How to implement a change from one to the other?

Note that the covariance matrices discussed above contain the connections between
constructs; at least in special cases this covariance structrure can be interpreted as deter-
mining a numeric, continuous-valued semantic net among concepts. The covariance ma-
trix can be learned little by little starting from the “rule matrix”, gradually adapting the
matrices towards those data structures that are dictated by the Hebbian — Anti-Hebbian
learning. After this transfer phase is over, the matrix A is completely symmetric — or
“two-way”. The matrix elements are not crisp but fuzzy as compared to the original rule
matrix, and there are typically no zero entries. This means that the spread of activation
takes place fast among the constructs, and because of the number of additional connec-
tions the robustness is also enhanced. Note that the explicit, rule-based forward-chaining
phase is necessary to originally initialize the pool of & vectors before further adaptation
can take place; it is the nearest local minimum in the “feature space” where the process
converges®.

Technically speaking, to implement the transfer from declarative to “tacit” data struc-
tures in the presented framework, one needs to recognize that the model

x(k+1) = Ages - (k) + Baow * y (33)
can be transformed into the form
z(k+1)=U—n (I Auwa)) x(k) + 1" Baea* y (34)

without affecting the final outcome; the process just becomes slower if 7 is small. What is
more important, is that the new formulation is directly compatible with (28) — indeed,
one can combine the two:

2k +1) = (T=n- (I = Awa) = (1= ) - B{z2"}) - 2(k)
+ (1" Buoa + (1= n) - E{zy"}) - .

When enough data has been observed, so that the covariances can be reliably estimated,
the shift from novice to expert can be simulated by letting 7 decay from 1 (purely declara-
tive model) towards 0 (“tacit” representation). This transition process has to be gradual:
Changing system matrices change the state vectors, and vice versa. The nonlinearity f.,,
can assumedly be included in the model without pathological effects.

In the forward inference implementation, calculation and reasoning is seen as a process,
starting from some initial values and ending up in some final state where no more rules
are active. Another interpretation of the expert knowledge, on the other hand, is that the
expert data structures appropriately span substructures in the high-dimensional variable

(35)

6Because of the variance normalization, the first principal components, or the features grabbing most
attention, do not dominate exclusively; any of the covariance eigenvectors can pop up in the process



space, determining the “space of expertise”. The goal is to determine a location in that
space where the given constraints for variables are fulfilled (or where the observation
data can best be matched). The originally dynamic process of firing the declarative
rules, reasoning thus consisting of a number of sequential, causal steps, has changed
into a static problem — all that is needed is to find a point in an unchanging space.
Reasoning becomes a search process in that space, and the iterative processes are needed
to implement the search. It can be claimed that the different AI formalisms are just
different ways of spanning the high-dimensional space of expertise.

This kind of mathematically oriented issues and approaches are concentrated on in the
latter part of this paper: The main observation there is that many cognitive behaviors can
be formulated as optimization problems. This can be seen as a key to reaching “holistic
level mathematics”.
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