STUDIES ON EMERGENCE AND COGNITION
PART 2: HIGH-LEVEL FUNCTIONALITIES

Heikki Hyotyniema
Helsinki University of Technology
Control Engineering Laboratory
P.O. Box 5400, FIN-02015 HUT, Finland

This paper discusses the challenges one s facing when trying to match the theory of
complex systems against the realm of cognitive systems. The first part [7] studied the
low-level functions, whereas this part concentrates on showing how the same function
structure can also be used to implement more natural-looking functionalities.

1 INTRODUCTION

Typically, complex systems are studied through simulation: The nonlinear functions
are iterated until (hopefully) something interesting emerges. However, in the nonlinear
iteration processes the results soon become analytically intractable. If one would like to
truly understand a complex system and its properties — like cognition and higher mental
functions' — this kind of experimental approach is not useful. Nonlinear functions and
their behaviors are so diverse that it is difficult to say anything general about them; to
have closer understanding of the emergence processes, a special system structure is here
selected for closer study:

z(k +1) = fo(Az(k) +a). (1)

where f.(-) is the “generalized cut” function (see [7]). This system structure seems to
be a nice compromise between expressional power and mathematical simplicity.

Some researchers say that when studying complex systems, traditional mathematics
should be forgotten altogether. The claim here is that, on the contrary, mathematics is
probably the only tool to reach the higher level view of the emergent patterns, and the
only language for discussing them. There exist different kinds of mathematical tools that
can be efficiently applied when tackling with cognitive systems — these possibilities are
illustrated in this paper. For example, the following tricks turn out to be useful:

e Extending the search space from logical to real values, solving the problem utilizing
the differentiability properties, and interpreting only the results in symbolic terms.

e Transforming a dynamic (causal) poblem into a static pattern in a high-dimensional
space and searching for this pattern again using dynamic processes.

'Here, speaking of “high level cognitive functions” only means that rather ambitious concepts (like
“concept” itself) are being exploited. But — sincerely — it seems that such intuitively rich terminology
conveys the most appropriate connotations

But what is perhaps more fundamental, mathematics also offers intuitions to understand-
ing the complex systems issue in a wider perspective. It has been shown (for example,
see [6]) that the studied functional structure (1) is universal, so that all possible com-
putable functions can be expressed in that framework. This universality has a price —
it is the Godelian undecidability and unanalyzability of the system behavior. However,
just as mathematics has shown that there are problems buried in the system structure,
it is mathematics that also offers us tools to circumvent the problems.

In concrete terms, it turns out that a good framework for modeling of more advanced
cognitive phenomena is optimization,; that is, only such subclass of the systems of the
form (1) will be studied here that are solutions to some optimization problems. As will
be shown in this paper, cognitively relevant phenomena can often be represented in
such a form. The iteration that is carried out is now seen as just the search process
that finally (hopefully) converges to the optimum. The chaotic process that is typically
regarded as the essence of complexity becomes irrelevant, unveiling the real substance
of the complex system. In this way one can have a higher-level, holistic view of the
resulting emergent pattern, making it possible to analyze and modify the behavior of the
complex system. It is clear that abstract cognitive tasks can often better be understood
and expressed declaratively, without the need of taking the actual data manipulation
procedures simultaneously into account.

2 OPTIMALITY AND MINIMIZATION
Let us first define an essentially quadratic, general optimality criterion to be minimized:

1 1
J(z) = 3 o Hyx + 3 (y—Cz)" Hy (y — Cz) + hlz, (2)

matrices H; and H, being symmetric, typically positive semidefinite, compatible with
the vectors and y. The criterion is formulated in this way to emphasize the role of
its components: The first term tries to keep the elements in x low, and the second term
tries to keep the difference between y and C'xz low (more specific interpretations for these
data structures are presented later). This criterion has a unique minimum (assuming it
exists). To search for this minimum, the gradient can first be calculated as

dJ(x)

o= (H1 + CTHQC) -2+ hy — CT Hyy. (3)
The steepest descent method for finding the minimum can be formulated as
dJ(x)

zk+1) = z(k)—p
= (I = pH, = pCTHyC) - x(k) — phs + uC™ Hyy,

(4)

starting from some x(0) and continuing until the process (hopefully) converges to some
7. Here (and later), it is assumed that I is the identity matrix of compatible dimension.
If the step size p is conservative enough, the minimum will finally be found. Intuitively
speaking, if it is assumed that x represents the candidate solution to the problem, the
above algorithm gradually turns the solution vector towards the actual optimum. If the
search space is limited to the first (hyper)quadrant, so that all variables are positive, the
optimization algorithm can be written as

z(k+1) = feu ((I — pH, — NCTHQC) ~a(k) + (MCTHgy - uhg)) : (5)

In what follows, the vector hs is not explicitly needed and it will always be a zero vector;
the iteration becomes

v(k +1) = fo. (I = pHy = pCTHyC) - (k) + pC" Hy - y) . (6)

Whether or not the global optimum will finally be reached is very much dependent of the
properties of the matrices H; and Hy; problems may arise if they are not strictly positive
definite.

Comparing (5) to (1), one can see that they have the same structure. Indeed, one can
now select

A=1—pH, — puCTH,C and a = puCTHy, (7)

and let the process starting from some x(0) converge, to have some “inner image” emerge.
The cognitively relevant problem settings just need to be reformulated as quadratic op-
timization problems, and one is immediately capable of determining a dynamic process
from which the solution emerges!

In the following discussions, different kinds of mentally (more or less) plausible func-
tionalities will be presented in the above optimization framework. In addition to offering
a higher-level view of the qualitative effects of a complex iteration process, this frame-
work offers also other conceptual benefits: The cost criterion formulation makes it easy
to combine different criteria by weighting them appropriately.

3 TOWARDS “COGNITIVE OPTIMIZATION”

When the above optimization approach is applied to cognitive problems in the framework
that was discussed in [7], one can notice that the role of the first term in (2) is to keep
the elements in the “inner image” x low. The second term tries to make the inner and
outer images to match, so that there would hold y = C'x for some given chunk matrix C'.
Matrices H; and Hy can be used to determine the weights of different factors.

The criterion (2) is purely quadratic, and that is why such simple linear gradient
formulation is found. However, in [7] it was assumed that the mappings are nonlinear,
so that y = f...(Cz). For a moment, let us study the properties of this “cut” function.
Calculate its gradient when it is applied to an m dimensional vector function:

T = T @) L2 100
L@ @) (S (Ble) 0
L 0 fu(fale)

Above, the former part is the standard Jacobian, whereas the latter part stands for the
derivative of f,,: This has been expressed using the unit step function

fou) = {

0, if x <0, and
1, ifx > 0. (®)
For example, it is easy to show that there holds

d o
T (fuu (C)) = CT - L (Ca) (9

and

d _ 7 Afeu
dx (v = fou (C)) = =C dx

Further, if the cost criterion were defined in a consistent manner, matching with the
discussions in [7] as

(Cz). (10)

1 1
J(w) =5 o Hiw+ 5 (y - fan(C2))T Hy - (y — for(C7)) (11)
its gradient would be
dJ,(fI;) T dfcut
= Hyx — e -Hy - (y — fous , 12
- w = O === (C) - Hy - (y = o (C)) (12)
and the gradient algorithm for finding the minimum would read
dfcut

p(k +1) = w(k) — pHx (k) + pC" - === (Ca(k)) - Hz - (y — fou(C2(R)) . (13)

dx

However, the resulting dynamic systems in this case cannot be expressed in the assumed
simple form (1); this is a major problem in the adopted framework where extreme sim-
plicity was taken as the guiding principle.

To make it easier to rewrite the cognitive tasks using the optimization formulation,
and to circumvent the linearity problem, an extended and more structured view of (2)
can be given in the framework of constrained optimization. Study the linear/quadratic
programming problem

. . . . T T
{ Minimize " Hix + hyo (14)

1
2
when Cr=y and x>0.

If H, = n- I, and additionally Hy > H; (somewhat loosely speaking), solving the
unconstrained problem (2) with the presented data structures approximately solves (14).
The hard limits have been “smoothened”; however, many of the applications that will be
discussed later can be formulated so that in optimum the zero penalty is reached exactly,
all terms in the cost criterion being zeros. This makes it easy to check the status of
convergence, and whether the constraints have been met.

Using slack variables it is easy to implement constraints of the form y — Cz < 0, and
also relax the constraint x > 0: With the cost of higher dimensionality, entry x;, for
example, can be divided in two parts, z; = & — &, where both variables & and & are
non-negative. The dilemma of y = f...(Cz) can also be avoided — solve the optimization
problem y — (= C'x for x and (, applying no cost for (.

From the point of view of real mental processes, there are some points about the above
optimization approach that deserve closer analysis. Assuming that the data structures
like C' in (1) are known, complicated matrix functions (matrix transpositions and mul-
tiplications) are needed to find the formulas for iterating x. Physiologically, how could
such manipulations be explained in a credible way?

It needs to be noted that the negative gradient direction is not the only option, it
is just the (locally) optimal one; the formulation (4) can be relaxed. Assume that one
defines the update law as z(k + 1) = (k) + A(z(k)), so that the matrix A(z) indicates
the adaptation direction. Assuming smoothness of the optimality criterion, it can be

noticed that when such a step is taken (if it is short enough) the cost criterion decreases
only if the projection of the update direction onto the gradient vector is negative. That
is, according to the Lyapunovian stability theory, the minimum will finally be reached if
there always holds

T dJ (x)

A (z) - I < 0. (15)
What comes to neural plausibility of the presented optimization scheme, one more com-
ment is in place: It can be claimed that, indeed, in some cases it can be implemented
even if only the Hebbian — Anti-Hebbian adaptation capability of the neuronal machinery
is assumed. Looking at (6), and comparing it to the results in [7], it is evident that if
there holds H; = 0 and H, = I, the knowledge representations coded in C' can readily
be implemented. Note that the matrix CTC that needs to be calculated is a sum of
the outer products of the individual rows in C'; interpreting these rows as “virtual data
vectors” that are input in the Hebbian — Anti-Hebbian system, the “virtual covariance
matrix” that will be constructed will be 1/n, - CTC. This determines A, and when B is
selected simply as C, all data structures that are needed in (6) are readily available (for
details, see [7]). Explicit matrix multiplications can be avoided altogether.

From the pragmatic point of view, it seems that the optimality criteria constructed
in the ways described later sometimes result in rather badly conditioned optimization
problems and one could perhaps think of other iterative optimization schemes instead of
the straightforward gradient descent method. However, it seems that the more efficient
methods cannot easily be expressed in the form (1).

4 EXPERIMENTS

As an example of how to utilize the above formulation, study the determination of maz-
imum,; that is, find the location of the largest-valued entry in the vector x. It turns out
that this problem is solved when one selects

H=1—1, Hy=1, o:(1 1), and y=1. (16)

Above, 1 stands for a matrix consisting solely of ones; this means the H; is a matrix
having zeros on the diagonal and ones elsewhere?. If there is only one non-zero entry
in z, this term causes no penalty; the role of Hy, C, and y is to keep the total sum of
entries in x have numeric value 1 (so that there is only one constraint equation). The
linear weighting hs is not needed so that it is a zero vector (even though this could be
used to explicitly emphasize the numeric values). Finally, if a zero-cost solution is found
in iteration, there must be a unique 1 in z — if the update step length p is not too long,
the search process assures that it is located where the maximum element of z(0) was
located. If there are exactly equal entries in 2:(0), the process may get stuck in a saddle
point.

Note that the search for the best matching unit, or “winner”, is the most complicated
task when implementing the Kohonen self-organizing map algorithm [9]; this means that

2This means that H; is not positive definite! However, as the entries in & remain strictly positive,
2T H,x remains always non-negative. This is yet another (mathematical) motivation for using f.. in the
formulations: It takes care of conditioning otherwise pathological optimization problems and stabilizes
the corresponding optimization processes

the above iteration can be utilized to implement the SOM in an emergent fashion®. Some
additional control structures are needed around this kernel to carry out the higher-level
iterations through the training data set; such iteration structures can be implemented as
presented in [8].

Another neural network structure that can readily be emulated when the iteration for
finding the largest vector element is available is Hopfield net: This network structure can
store and associatively recall patterns (see [2]). Assume that there are (positive-valued)
pattern vectors C to Cy, where the number of patterns is lower than the dimension of
the vectors, N < n. Further, assume that the patterns are normalized to equal length
and collected as columns in the matrix C'. Given g, a noisy version of some of the pattern
vectors, the original pattern can be restored using associative recall as follows:

1. Calculate the correlations against all patterns, z(0) = f...(CT - 7).

2. Apply the iteration having the data structures as in (16), searching for the maxi-
mum element in 2(0); the unique “1” in the converged state vector T reveals the
appropriate pattern index.

3. Restore the pattern as § = f...(C - T).

5 MATCHING OF FEATURES

Assume that an observation y, a high-dimensional real-valued vector has been received,
and one would like to decompose it into features (chunks); further, assume that the
feature prototypes C; are packed into the matrix C'. These features (in this context
being high-dimensional, real-valued vectors) can be determined explicitly (for example,
using some specialized definition formalisms [5]), or they can be extracted from data (for
example, using the GGHA algorithm [4], or using independent component analysis ICA);
these issues are not concentrated on here.

Assume that the vector x contains the contributions of each of the features in the
observation vector. Our goal is to determine this vector x so that the observation would
be explained as well as possible, y = C'z. Typically, when the dimension of x is lower
than that of y, no exact match can be found. The general solution to this problem
is pseudoinverse * = C'y, in special cases (if the basis C is orthonormal, that is, if
CTC = I) reducing to x = CTy. However, physically motivated features seldom are
orthogonal: The features correlate with each other, and more complicated approaches
are needed.

Luckily, the pseudoinverse solution can be characterized also as an optimization prob-
lem: The pseudoinverse minimizes the length of the “unexplained” residue remaining
after the optimal fitting of the vectors y and C'z. This reconstruction error is defined as
e =y — Cz, and the square of its length is

efe=(y—Cx)" (y—Cx). (17)

Minimizing this can be achieved when one selects the matrices in (4) or (5) as H; = 0
and Hy, = I. The weighting matrices can also be defined in other ways: For example,

3Simple implementation of the “emergent self-organizing map”, implemented in Matlab, to-
gether with other examples explained in this paper, is available through Internet in the address
http://www.saato.hut.fi/hyotyniemi/publications/02_step_1/

letting Hy be only semidefinite, some constraints (or their combinations) are not weighted
in the criterion. This means that associative search (or smoothing, etc.) can also be
implemented. In some cases, if the features are almost parallel, it may be reasonable
to put some weight also on robustness; this can be achieved if the variable size is also
weighted, so that H; = « - I for some scalar alpha. In fact, this regularization results
in an approach that is known as ridge regression in multivariate theory. Indeed, this
approach deserves to be studied a bit closer.

Assume that the features determine the distribution of individuals with different at-
tribute values (weights of features) around the category center (now assuming this center
to be located in the origin). Further assume that this distribution is multivariate nor-
mal, so that the observations are scattered around the center forming a Gaussian (high-
dimensional) bell curve (this normality assumption should be well motivated, taking into
account the central limit theorem). This distribution is characterized uniquely by its
mean value vector (now zero) and the covariance matrix ¥. Using Bayesian theory, the
maximum a posteriori probability for x is

1
p\ryy) = —— 'P\T) plyr
(z]y) p(y)()1(|) 1
= c-exp <—§xTZ;1x> - exp <—§(y —Cx)'s7 (y — C’x)) ,
where ¢ is some constant. Natural logarithm of this gives the log-likelihood function

Inp(aly) = ¢ = 52751 = Sy - Co)", (y - C). (18)
Comparing this to (2), one can see that maximization of the log-likelihood can be carried
out by the presented gradient algorithm minimization when one selects H; = ¥ and
H, = ¥_;1. This means that a priori information about the attribute variation and error
distribution can be utilized. The cost is generally not zero; however, there are intuitive
interpretations:

1. The first non-constant term in (18) is closely related to the Hotellings T? statistic
that measures how well the observation can be explained within the model; it is
also closely related to the Mahalanobis distance.

2. The last term is closely related to the lack of fit () that measures how the observation
cannot be explained as seen from outside the model.

To conclude, if the set of features C; is given, applying the above adaptation one can
see the appropriate reconstruction of the observation vector y, or the “scores” of C},
emerge in the iteration process. If the features are not too much overlapping, rather
high values of step size u can be tolerated here. In the special case where the feature
basis is orthonormal, the feature matching process can be carried out in one step with
no iteration at all (H; =0, Hy =1, and p=1).

Note that in (17) all features are assumed to be freely scalable; if one of the features,
say cg, has a special role determining the cluster center, always having the weight 1, it
has to be taken care of separately. The features need to be rearranged so that the matrix
C only contains the scalable features, and ¢ is separately subtracted from y; (17) is
transformed into

efe=(y—cy—Cx)" (y—co—Cx). (19)

6 LEARNING BY EXAMPLES

Learning that is based on examples, or being capable of seeing the underlying pattern
without being explicitly told how, is a typical pattern recognition task that is routinely
carried out by using, say, feedforward neural networks. What would make this look
more “human-like” would be the capability of finding a simple explanation. Technically
speaking, this simplicity can be defined compactly: Use the minimum number of other
constructs. How this task can be carried out — and how an illusion of “intelligence”
emerges thereof — was originally presented in [3]; here it is presented how the solution
can be obtained using (1) without explicitly applying linear programming or SIMPLEX
algorithm.

Assume that the matrix C' contains concept definitions. Each row in C' represents one
concept (“concept” being used here in a rather technical sense), so that when the inner
product between it and the “mental image” x is calculated, either 0 or 1 results, depending
whether the concept applies in that case or not. Parallel “concept analyses” can be carried
out by calculating Cz (or f,,.(Cx)). Typically, if the concepts are interdependent, the
final analysis is found through iteration (1). External input, or observation, can be
integrated in the analysis as presented in [7], so that concepts can be based directly on
measurements coming from outside or on other concepts (in any case, finally reducing to
functions of external inputs).

Now assume that a new concept is to be determined based on the earlier, pre-determin-
ed concepts, so that there are ezamples of the new concept, coded in vectors y(t). These
observed patterns y(t) are processed so that the corresponding final states Z(t) are found
using the iterations presented earlier. Further, assume that some of these patterns are
positive, so that they represent the new concept to be learned, and some of them are
negative, so that the concept explicitly is not there (note that negative examples are just
as crucial as positive ones when learning the new concept). This means that always when
a positive pattern (denoted p) is presented, its inner product with the new (unknown)
concept vector C,.,, must be at least 1, so that C”_z > 1, and when a negative pattern
(denoted n) is presented the corresponding inner product must be at most 0, so that
CT 1z, <0. Collecting the positive pattern vectors in X, and negative ones in X,, these

new

can be written in matrix form as C._X, > 17 and C%_X, < 07, where matrices 1 and
0 are compatible vectors consisting exclusively of 1’s and 0’s, respectively.

Now there are many fixed 7's in the matrices X, and X,, and just one vector in C.,,,
to be determined; the easiest way to proceed for determining C,.,, using the iteration (1)
is to invert the roles of the data structures for a moment — note that one can write
CT X = (XTC,,,)T. The constraints determining the new concept can be expressed in

the familiar form C'x = y as follows:

Crew
X' | X' | -1]o0 Coo | (1
(Tt o) e =) 20)

that is, the new y contains the correct (binary) classifications for all examples, X consists
of the “conceptual deconstruction” of the examples, using prior, lower-level concepts, and
C... contains the relevances of these lower-level concepts when appropriately explaining
the new one. Because the references to prior concepts can be positive or negative, C., is

divided in positive and negative parts, and because it does not matter how much above
1 the positive classifications are, or how much below 0 the negative ones are, the slack
vectors £ and £ are included in the model.

When determining the other data structures in order to run the optimization (5), one
can note that H; only needs to emphasize variables in C} and C|__, the slack variables
in £ and £ having zero weight. How the weighting of these variables is implemented,
is a question of design, and the results may be different if there are various ways of
reaching minimum: For example, if only the diagonal is non-zero, alternative solutions are
equally demonstrated in solutions, whereas if the non-diagonal entries have considerable
weight, one of the solution with minimum number of distinct concepts is selected. It is
also possible to put more weight on the lower-level concepts and specially on the direct
observations, so that higher-level explanations would be preferred. If the examples have
equal relevance, it is natural to choose Hy = I.

When the definition for the new concept has been found, it can be included among
the other concepts by augmenting the dimension ot the system matrix:

¢« ((c+ _%_Hg) (21)

new new

Finding a classification between examples and non-examples is very much like it is with
support vector machines: Increasing the dimension of the problem description may make
classes linearly separable, so that the classification problem becomes easily solvable. The
key point here is to increase the number of concepts gradually, so that the new concepts
can be distinguished using the available concepts in a hierarchic fashion using the prior
concepts. Iterative learning is another thing: After the preliminary concept prototypes
have been determined, higher level concepts can be recirculated and utilized to find more
sophisticated and efficient concept descriptions; in such cases, the matrix C' does not
remain triangular with zero diagonal. The cost of having efficient (expert-like) represen-
tations is that the originally sequential (declarative) reasoning always lasting only a finite
time becomes a potentially very time-consuming pattern matching process (see previous
section).

7 BACKWARD INFERENCE

Perhaps the most convincing example concerning the power of the proposed framework
is concentrated on next. The claim here is that (a subset of) logic programming prob-
lems can be expressed and solved in the quadratic programming framework. There are
restrictions, coming from the fact that logic programming formalisms have the power
of the Turing machines whereas quadratic programming is more restricted. In concrete
terms, the restrictions are reflected as the limited size of the Herbrand universe: The set
of constants has to be limited to some predefined level. First we will study proposition
logic, and extend the discussions to predicate logic.

The modern logic programming formalisms like Prolog are based on the Aristotelian
syllogism, meaning that a set of inference steps can be truncated:

A—>B
A B—=C
= A —=C.

Using the properties of the logic connectives, it can be shown that the logical content
remains unchanged if the above reasoning is written in the following form:

-AVB
A —-BvC
= —-AVC.

What is the most interesting issue about the above formulation is that the somewhat
uneasy feeling of “causality” has been ripped off, the original information being expressed
in a “non-directional” form. Typically, the rules in a rule base are of a more complex
form, so that, for example, A; A---A A,, — B; however, using de Morgan rules, they can
still be simplified: One has =(A; A--- A A,,) V B, and further, =A; Vv ---V =A, V B.

Using the resolution principle, reasoning in the Prolog systems goes as follows. Assume
that one wants to know whether some logical clause can be deduced, given a consistent
knowledge base. One first inserts the negated goal clause among the other clauses, and
starts applying elimination steps of the type shown above. If it turns out that the negated
expression contradicts the other rules, that is, an “empty clause” can be deduced, the
goal is reached; then it must be so that the non-negated clause must be deducible.

To implement this kind of reasoning in a mathematical form, we can first notice that

the logical values of syllogisms can now easily be operated on — the table below is
consistent with the original deduction, showing only the logical values:
A B C
-1 1
+ -1 1
= -1 1

where 1 stands for “true” and -1 (now) for “false”, value 0 meaning “not used”. It seems
that logic expressions and manipulations with them can be coded as linear algebra —
this is elaborated on below.

Assume that the logical values of all propositions are collected in a vector p. Starting
from some truth value distribution in —p(0) (negation added because the inversion of the
goal clause), if adding vectors representing the logic expressions results in zero vector, the
mathematical correspondence of a contradiction has been reached! Assuming that the
“rule vectors” are collected as rows in the matrix C' and the weights, or “relevance values”,
or “activities”, of the rules are collected in the matrix z, the effect of the combined rules
can be expressed as C'z, so that after reasoning there should hold —p(0) + Cz = 0, or
written in another way, Cz = ——p(0) = p(0) = y. And, looking again at (2), it turns
out that the reasoning can readily be implemented in the form (1)!

There are some complications, though. In the numeric formulation, when rule vectors
refer to variables, the truths are being “exhausted” as they are utilized — this is not
the case when operating with true logical values. To circumvent this, x can contain
numeric values other than -1, 0, or 1, and, correspondingly, the truth values other than
-1, 0, or 1 are possible in p. The non-binary values simply have to be interpreted so
that any positive value stands for “true”, and negative values stand for “false”; if the
rule base is non-cyclic, and if there is originally only one “1” in y (this can be achieved
by an extra expression in the rule base, if necessary), no problems should emerge —
it is clear, at least, that clauses that are logically undeducible cannot be deduced in this
framework either. Another point that deserves attention is the logical structure: If a

rule vector is multiplied by a negative factor, in that case the logical contents of the rule
changes altogether, and its validity is lost. That is why, the values in x must always
remain non-negative — luckily, this positivity assumption is automatically fulfilled when
implementing reasoning in the proposed framework.

When implementing predicate calculus, so that expressions can contain variables, the
situation is much more complicated, and complete congruence between the formalisms
cannot be reached. First, because of the “closed world” assumption, the infinite Herbrand
universe, the search space, has to be truncated — all literals and their Skolem functions
need to be enumerated and listed. What is more, each literal can be used only in one
role: If there are non-unary predicates, for example, like “Parent(x,y)”, the variables x
and y having the same domain, the set of individuals has to be duplicated, so that x
and y can be genuinely distinct. Of course, speaking of grandparents (as “Parent(x,y)
A Parent(y,z)”, the set of appropriate literals has to be tripled. This kind of duplication
also applies to the predicates operating on the literals.

Because it is these variable bindings that are usually of the foremost interest when
applying logic programming, there is need to include the literals also in the search space
that only contained the weights for the rules in the above propositinal case. No doubt
an example is needed here. Assume that the knowledge base consists of the following
expressions:

(a)
—P(b)

P(x) = Q(x)

There is only one “x” here, so that the atomic literals a and b need not be duplicated.

The rules need to be rewritten:

3

a Literal a
b Literal b
a— P Expression 1
b— —P Expression 2
P—Q Expression 3

Every literal and every expression needs the “activity variable” of its own. Collected
together, one has the variable vector

T
l‘:(l'a Ty T1 To ZC3) .

The rule base can be written in a table form as

a b P Q
T, 1
T, 1
T —1 1
T -1 -1
T3 -1 1

so that the variables z; are the weighting factors for multiplying the rule vectors on the
corresponding line. Now, assume that we want to know “When would Q be true?” This
means that the objective is to find values for z; so that the sum in column Q would be 1,

\‘

 Variable value S

Iteration

A .
>

25 30 35 40 50
Figure 1: “Backward inference” implemented (see text)
and in all other columns the sum would be 0. To write the matrices in (5) appropriately,

one can recognize that C' can be constructed from the above table by simply transposing
it, and, similarly, y represents the transposed goal:

1 0 -1 0 O 0
0o 1 0 -1 0 0

“=l 0 0o 1 -1 1 and y =1 (22)
o 0 0 0 1 1

The weighting matrices in the optimality criterion can be selected as

01000
101000

H=[00]000 and Hy=1. (23)
000|000
000|000

The interpretation of Hs is clear; H; deserves closer inspection. Almost all entries in the
matrix are zeros, because no matter how many times the rules are applied, there is no
cost for them. The upper left corner, on the other hand, is of the form 1 — I, meaning
that if various literals of the same domain are simultaneously active, it decreases the
validity of the solution; if there is only one active literal, there is no cost Assuming that
there existed various sets of literals with different domains (with or without duplication),
so that these literals would not be mutually exclusive, there should exist various such
independent blocks of the form 1 — I in H;. If the goal is achievable, zero cost can be
reached. The results are shown in Fig. 1, having step size yu = 0.5: It seems that variable
#1 fulfills the condition, meaning that “a makes Q true (trough P)”.

It is typical for this kind of problems that there are various minima for the criterion
(2) — and optimization often becomes specially tedious because the process typically
first finds the saddle points with zero derivative! This is the case, for example, if solving
the question “When will Q be true?” in the following situation having two equally valid
solutions:

P(a)
P(b)
P(x) = Q(x)

How to fix this problem? Setting explicit preferences, or selecting different non-zero
values in the H; matrices, should work, giving a unique solution and ignoring the other
possibilities. The non-zero matrix elements can also be automatically randomized. At
least for simple knowledge bases, the above scheme seems to work quite nicely.

It is interesting to note the transformations along the methodology development: The
originally causal, in an obscure way time-bound reasoning process was first formulated
in a static form — and after that, the static pattern matching problem was changed
back into a dynamic process for solving it. It seems that dynamic thinking is truly
useful when modeling complex phenomena; this observation is parallel with the view of
cognition as consisting of dynamic processes with internal states. If the behavioristic view
of direct mapping from input (observed environment) to output (observed behavior) is to
be abandoned, one cannot ignore the role of dynamic systems theory in cognitive science.

8 CONCLUSIONS

In this paper, a framework was studied where different kinds of functionalities emerge
from cumulating correlation calculations. According to the experiments, it can be claimed
that this “sieve structure” [6] is the simplest possible general framework for implementing
any algorithm, pattern matching task, logic inference, etc. And if this approach is the
simplest, then, according to Occam’s razor, there must also be some truth in it?

REFERENCES

[1] Chang, C.-L. and Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, New York, 1973.

[2] Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan College Pub-
lishing, New York, 1994.

(3] Hyotyniemi, H.: Correlations — Building Blocks of Intelligence? In “History and
Dimensions of Intelligence”, FAIS Publications, Helsinki, 1995, pp. 199-226.

[4] Hyotyniemi, H.: Constructing Non-Orthogonal Feature bases. Proceedings of the In-
ternational Conference on Neural Networks (ICNN’96), June 3-6, 1996, Washington
DC, pp. 1759-1764.

[5] Hyo6tyniemi, H.: Explorations in “Naturalistic Formalisms”. Finnish Artificial Intel-
ligence Days STeP 2000, August 28-30, 2000, Vol. 3, pp. 123-131.

(6] Hy6tyniemi, H.: Complex Systems — Searching for Gold. Arpakannus 2/2002, spe-
cial issue on Complex Systems, pp. 29-34.

[7] Hy6tyniemi, H.: Studies on Emergence and Cognition — Part 1: Low-Level Func-
tions. Finnish Artificial Intelligence Conference (STeP’02), December 16-17, 2002,
Oulu, Finland.

[8] Hyd6tyniemi, H.: Towards Perception Hierarchies. Finnish Artificial Intelligence Con-
ference (STeP’02), December 16-17, 2002, Oulu, Finland.

[9] Kohonen, T.: Self-Organizing Maps. Springer—Verlag, Heidelberg, 1995.

