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”The best material model of a cat is another,

or preferably the same, cat.”

Norbert Wiener and Arturo Rosenblueth

Philosophy of Science 1945



1

Introduction

The Greek philosopher Heraclitus (about 540 B.C.) stated that there is no permanent

reality except the reality of change. He was one of the first to figure out the deepest

intuitions concerning complex real-life systems:

� Everything changes, everything remains the same. Cells are replaced in an organ,

material is replaced in a production site — still the functionality and essence remain

the same.

� Everything is based on hidden tensions. Species compete in ecology, companies in

economy — the tension results in balance and diversity.

� Everything is steered by all other things. There is no centralized control in the body

or in economy — but the interactions result in self-regulation.

Increasingly complex systems are studied because one is increasingly interested in the

essence behind complex natural and industrial systems. The requirement to know about

nature and life is continously increasing, and so is the complexity of systems all around

1
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Figure 1.1: Complexity theory pessimism vs. neocybernetic optimism

us. Facing these new challenges, the traditional way of understanding complex systems

comes to a halt, creating a pessimism about the modeling of complex systems.

A new approach, derived from cybernetics and combined with the power of simple mathe-

matical tools, tackles this dead end and opens new possibilities to regain optimism about

comprehension of complex systems. Cybernetics is a special way to look at complex

systems and neocybernetics is a special way to look at cybernetic systems, which makes

modeling and understanding easier.

Figure 1.1 illustrates the characterization of complexity theory and neocybernetics among

complex structures and systems.

In the present work this new approach is explained and applied to an industrial system.

First the details, ideas and advantages of neocybernetics are worked out to understand

the motivation behind it. After that the industrial setup, in which the approach will be

applied, is introduced and its complex structure presented. The complexity of the process

is emphasized by describing the existing models and recent attemps to obtain an accurate

model for control purposes. The recently developed model will also act as reference for

2



the model designed in the thesis at hand and therefore be elaborated in more detail. To

tie these loose ends together the neocybernetic ideas and its tools will be applied to the

process in order to gain a useful model and the results will be presented. A discussion will

help to fit the work into the big picture and future prospects with possible and necessary

tasks will be outlined.

Neocybernetics grabs the readers attention and the interesting framework provides a base

for further work. It will be demonstrated that the thoughts and assumptions hold and

meet good and useful results.

3
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Neocybernetics

In order to understand the motivation to deal with neocybernetics and its advantages

to system understanding, this section introduces the ideas of cybernetics, starting out

with the original ideas of the first cyberneticists and coming to the modern uses of the

cybernetic thoughts.

2.1 The Origin of Cybernetics

Ancient Greek is the language used by the first scientists on this world, who at that time

were mostly philosophers rather than scientists. They used it to think about, discuss

and write down their immense intuition about nature and science. Modern philosophy,

politics and science are based on these ideas written down in ancient Greek.

Kυβερνήτης (the ancient Greek word for a steersman, governor, pilot or rudder) was first

used by Norbert Wiener in his book “Cybernetics or Control and Communication in the

Animal and the Machine” [1] to introduce his new field of science. As mathematician he

started to break new ground in robotics, computer control, automation and dynamics,
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originating from his work about gunnery during World War II. At the intersection of net-

work theory, logic modeling and neurology a field of study for “teleological mechanisms”

was popularized. Cybernetics emerged apart from, but touched upon, such established

disciplines as electrical engineering, mathematics, biology, neurophysiology, anthropol-

ogy, and psychology, and hence was supposed to be not only multidisciplinary but rather

metadisciplinary, using new terms and methods to describe system behavior and provide

tools in order to steer these systems.

Pushed also by Arturo Rosenblueth and Julian Bigelow [2], cybernetics was established

among the notable sciences as the science and study of systems and control in an ab-

stracted sense. The emphasis is on the functional relations that hold between the different

parts of a system, rather than the parts themselves. These relations especially include

the transfer of information and circular relations. The main innovation brought about

by cybernetics is an understanding of goal-directedness or purpose as resulting from a

negative feedback loop which minimizes the deviation between the perceived situation

and the desired situation.

With these ideas cybernetics set the fundamentals of control engineering and systems the-

ory. It was suddenly possible to step back from actual matters and problems, implement

the complex behavior of any given dynamic structure as an abstract system and figure

out the performance according to changes in the flow of information at the borderlines of

the system. As said above this can be applied to tasks in any given domain, nontechnical

or technical.

Along with new ideas about abstract systems the scientists used already well known

mathematics as a tool to tackle the problem of an abstract representation of real life

nature. This led to the area of modeling and simulation. Powerful tools for mathematical

modeling of dynamic systems were found and arranged, to make a “copy” of the analyzed

original system, which should represent the original in appropriate ways. Eventually,
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holding a good model of an original system, tests and analyses can be carried out in order

to understand the interior of a considered system and to understand the reactions to

applied signals from the exterior. This finally leads to the implementation of a controller

if the goal is the manipulation of particular information in the system or at its border.

A lot of research was done about appropriate modeling. Considering the initiatory quo-

tation of Norbert Wiener and Arturo Rosenblueth, one can assume that this is quite a

difficult discussion, which light can be cast on from many different angles. Generally

speaking, one could say that the model should not only be as precise as possible, but also

as simple as possible. To find a good way through this conflict of aims, people often use

a lot of their own ideas, preknowledge and information, which always already affect the

resulting model and therefore also simulation results gained while using this model.

In general one wants to estimate the behavior between given inputs and outputs of a

system as accurately as possible. Using mathematical tools the model will be a set of

equations containing different variables. If one can use some a priori information, one can

more easily adjust the equations to fit this particular knowledge and match the known

behavior to the behavior of the system model. Said a priori knowledge is mostly based

on known dynamics in the system (leading to ordinary differential equations, ODE) and

known algebraic constraints (leading to differential algebraic equations, DAE).

Using this “traditional” way of modeling the structure of the considered system has to be

known before one starts with the actual modeling approach. To develop the model one

also needs an expert on the domain area, in which the studied system is embedded, to

get help for the setup of basic equations, describing the inner structure of the behaviour

of a system. Expert knowledge is also needed to control and supervise the process of

modelling. However, naturally the structures of contemporary man-made systems or

natural environments is too complex to be known beforehand and hidden, which causes

immense problems for the modeling approach.
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At this antagonism one can locate the starting points of neocybernetics, to which the next

section will give some more substance.

2.2 To a New Approach of Cybernetics

As explained above cybernetics is a special way to look abstractly at complex systems

and their dynamics and feedbacks. Further, neocybernetics is a way to look at cybernetic

systems. It combines mathematical compactness and expressional power in a consistent

framework.

The following principles and ideas can be used as guidelines into the framework of neo-

cybernetics. Complex looking phaenomena are seen through neocybernetic eye-glasses,

becoming obviously advantageous as a result of iterative refinement processes. The pre-

sentation here follows [3].

Emergence

The key concept and also the most important basis of neocybernetics is the idea of emer-

gence. Some qualitatively new and unanticipated functionality appears from the complex

system after cumulation of simple operations. There is no need to reduce the analysis of

higher-level phenomena to their components, like it is done for the traditional reduction-

istic modeling approaches described above.

To formalize the idea of emergence one can study examples and construct an intuitive

understanding of it and after that find common features and cast them in a mathemat-

ical framework. To demonstrate different levels of emergence consider Figure 2.1, where

emergence takes place between each level and concepts, variables and structures change

altogether. In this case the domain is the physics of particle movement.
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Figure 2.1: Different levels of abstraction while modeling interaction of particles [3]

� First, it seems that stochastic and deterministic expressions for each level are alter-

nating. This is reasonable, because, for example, two succesive deterministic levels

could easily be merged to a single one.

� Second, it seems that towards higher levels the volumes and time scales increase.

A higher, again stochastical, level of abstraction on top of the presented hierarchy becomes

necessary in systems consisting of many ideal mixers, like industrial processes, for example.

One can expect another emergence of a hidden behaviour as happened between the lower

levels, if performing the step to the next higher level.
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Dynamic Balance

The emphasis in cybernetic systems is on the balance rather than on the process itself. In

that steady state it is possible to attack the emergent pattern and forget about strongly

nonlinear interior processes. Of course this may be a dynamic equilibrium of tensions

caused by negative feedback loops, as long as these internal loops can maintain the overall

stability. In Section 2.3 the balance in cybernetic systems is discussed and ingrained in

mathematics.

But are not most complex systems unstable in at least one mode? How can one assume

stability in natural processes? — The motivation is quite simple: If a natural system were

unstable, it would have collapsed and ended in explosion or extinction long ago. No one

is trying to model all mathematical possible systems — only physically meaningful ones!

Environment

Neocybernetic systems are assumed to be oriented towards their environment. The un-

derlying idea is that there cannot be a cybernetic system in isolation, thus causing the

traditional system theory thinking to collapse. This traditional isolation indeed allows

communication with the exterior, but still the system has a well-defined isolating border.

A cybernetic system does not only interact with the environment, exchanging information

or material, it even more reflects the environment, somehow capturing and mirroring its

environment. Recalling Heraclitus’ statements one will find the thought of everything

carrying its opposite and mirroring its outside. Environment-orientedness gives another

motivation for emphasis on balance: only in stable conditions, when fast turbulent phe-

nomena have ceased, something new and fragile can emerge. For mathematics behind

environment-orientedness see also Section 2.3.
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Dimensionality

Using neocybernetic ideas in practice turns environment-orientedness into data-oriented-

ness. It cannot be assumed that the system and its environment are a priori known, but

only measurements are available. Defining features out of the environmental information

creates a high dimensional complexity instead of the structural complexity according to

traditional thinking. All possibly relevant features should be simultaneously captured and

made available to the modeling machinery, hoping that it constructs connections among

these pieces of data, finding the essence in it. Typically the data is highly redundant,

which means that multivariate methods and appropriate mathematical tools are necessary

to analyze the data in order to extract neocybernetic models.

Of course, it is only possible to gain the essence out of the given features, if they are

actually hidden in the used data. The domain-area semantics should somehow be coded

in the measured information.

Linearity

In neocybernetics, the starting point is the assumption of linearity. Generally the as-

sumption can be used to some extent, or it can be ignored, depending on how arguments

are favored and how open minded one is to apply these assumptions. However, there are

a couple of reasons to assume linearity in cybernetic systems:

� It is well known, that feedbacks “smoothen” nonlinearities. Especially in neocyber-

netic systems, where balance is emphasized, deviations around the equilibrium can

be assumed to be small, leading to a linear approximation. Only systems which

are in balance with their environment are studied. Natural systems fulfill this as-

sumption and one would like industrial systems to fulfill it also. Further successful
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controls nowadays keep the system near its setpoint in balance, regardles of strong

environmental disturbances.

� There is also a pragmatic motivation for the linearity assumption. Strong mathe-

matical analysis tools are available for linear systems, no matter what the system

dimension is. So it makes sense to avoid nonlinearity as long as it is reasonable, and

only introducing nonlinearity if it is absolutely necessary.

Linearity is more like a guiding principle, to be followed as long as possible. Only when

there is no other solution one should consider applying nonlinearities. Of course the

assumption then can be relaxed, but this should be done only after the basic nature of

the cybernetic system is captured.

In the following section the key ideas of neocybernetics will be studied including a math-

ematical framework, in order to build an understandable background which is not exclu-

sively based upon intuition.

2.3 With Mathematics Towards Elasticity

When modeling complex systems the structure is hidden. The objective is automatic ab-

straction, letting the structures automatically emerge. Statistical tools naturally carry out

abstraction and give significance only to phenomena that remain consistent over long-term

periods. To apply multivariate methods, one has to concentrate on the (thermo)dynamic

balances. As it turns out, the domain of chemical systems offers a compact framework

for such studies.
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2.3.1 Modeling Chemical Systems

Study a hypothetical example reaction, where there are α reactants on the left hand side

(Ai, 1 ≤ i ≤ α), and the β products on the right hand side (Bj, 1 ≤ j ≤ β):

a1A1 + · · ·+ aαAα

kB−−⇀↽−−
kA

b1B1 + · · ·+ bβBβ ∆H (2.1)

with kA and kB being reaction speed in forward and backward direction. The symbol ∆H

denotes the change in enthalpy during the reaction.

Applying the neocybernetic principles, one can “cybernetize” chemical reaction models

to achieve a mathematically more compact representation than (2.1).

Information Representation

To model complex systems, consisting of various reactions, the data representation has to

be extended and different vectors have to be embedded in the same vector space to make

them compatible.

The most compact mathematical representation of information is the vector form. Define a

vector C containing all chemical concentrations so that all Ai and Bj are represented there.

The chemical state can be captured in this vector and individual reactions determine

equations in that chemical space. If the coefficients −ai and bj from (2.1) are collected in

the vector G, one can express the concentration changes as

∆C = Gx. (2.2)

The scalar x reveals, how much and in which direction the reaction has proceeded. The

expression (2.2) can be extended to multiple simultaneous reactions, when G is a matrix

containing the individual reaction vectors as columns, and x is a vector. If one knows the

reaction rates (or the scalars xi), the changes in the chemical contents can be determined.

12



However, the reaction rates and, what is more, the reactions are typically not known.

Also (2.2) is not yet what one is looking for. It only captures the stoichiometric, more or

less formal balance among chemicals and does not capture the dynamic balance. One has

to study the reaction mechanism closer.

Thermodynamic Balance

According to (2.1) it takes a1 molecules of A1 and so on for one unit reaction to take place.

These molecules have to be sufficiently near to each other and the probability for that is

proportional to the number of such molecules in a volume unit. This molecular density

is revealed by concentration (mole/liter). Assuming that the locations of molecules are

independent from each other, the probability for them being found within the range is

proportional to the product of their concentrations. Because, in addition, the reverse

reaction according to the molecules of the right hand side of (2.1) takes place, the rate of

change for the concentration of the chemical Ai, for example, can be expressed as

dCA1

dt
= −kBC

a1

A1
. . . Caα

Aα
+ kAC

b1
B1
. . . C

bβ
Bβ
. (2.3)

In equilibrium there holds dCA1
/dt = 0, and one can define a constant characterizing the

thermodynamic equilibrium [3]

K =
kB

kA

=
Cb1

B1
. . . C

bβ
Bβ

Ca1

A1
. . . Caα

Aα

. (2.4)

Linearity Objective

One of the neocybernetic objectives is that of linearity (see Section 2.2). The expression

(2.4) is far from linear — indeed, it is purely multiplicative. The linearity can be reached

with simple syntactic tricks. Taking logarithms on both sides there holds

logK ′ = b1 logCB1
+ · · ·+ bβ logCBβ

− a1 logCA1
+ · · · − aα logCAα

. (2.5)
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To get rid of constants and logarithms, it is also possible to differentiate the expression:

0 = b1
∆CB1

C̄B1

+ · · ·+ bβ
∆CBβ

C̄Bβ

− a1
∆CA1

C̄A1

+ · · · − aα
∆CAα

C̄Aα

, (2.6)

where ∆Ci/C̄i are deviations from nominal values, divided by those nominal values, mean-

ing that it is relative changes that are of interest. The differentiated model is only valid

in the vicinity of the nominal value.

Assume that vector z contains all relevant variables including relative changes in all

chemical concentrations. This means that the vector Γi represents a single reaction, and

it can contain various zeros if the correspoding chemicals are not contributing the reaction

i. Collecting the vectors Γi as columns of the matrix Γ one can write

0 = Γ Tz, (2.7)

where one row now represents one chemical reaction.

The key point to observe here is that analysis of complicated reaction networks can be

avoided, one only needs to study the levels of concentrations, not changes in them. No

matter what has caused the chemical levels, only the prevailling tensions in the system

are of essence. Nothing mathematically special is being done, but when seen from the

appropriate point of view, new conceptual tools for modeling of complex systems can be

available.

The following subsection will give an insight of these new views, which were also previously

mentioned in the introducing sections of this chapter.

2.3.2 Constraints vs. Degrees of Freedom

It can be claimed that the freedoms-oriented way of modeling is just as natural as the

constraints-oriented approach. A closer look is needed to understand the meaning of this

idea.

14



Traditional models are based on constraints. The system properties and the connection

between interior variables are captured by a set of equations of the general form

0 = f(z), (2.8)

where f is some function (scalar or vector-valued) of the variables z. The chemical model

in (2.7) consists of various independent equations or constraints in matrix form. Even the

generally known form of linear models y = F Tx can be cast in that framework: Written

as 0 = F Tx− Iy and using the definitions

Γ =




F

−I



 z =




x

y



 (2.9)

one achieves the form of (2.7). Note that such models are not unique, since Γ can be

scaled freely without changing the validity of the equations.

To better understand the structure of models presented in the constraints-oriented form,

study a single-output system, where yi is a scalar and Γi is a vector. yi = F
T
i x defines

an one-dimensional null-space in the high-dimensional space of z and because the inner

product ΓT
i z between the data and the vector ΓT

i equals zero, this vector defines a vector

that is orthogonal to this subspace. A mathematical example in a three-dimensional data

space to visualize the freedoms-oriented model structures can be found in Appendix A.

Mathematically speaking, if there are µ seperate variables, there are µ degrees of freedom

in the data space, but each (linear) constraint, describing the coupling between variables,

decreases the number of degrees of freedom by one. Hence ν constraints leave µ−ν degrees

of freedom. In the directions of the constraints there is no variability, constituting a null-

space within the data space — all the remaining variation is concentrated in µ−ν degrees

of freedom.

The key point here is that essentially the same dependencies among variables can be

captured in terms of degress of freedom as with constraints. When the number of con-

straints increases, the most economical representation changes: the simplest model with

15
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Figure 2.2: Schematic illustration of the covariance structure among data when there are few

constraints (on the left) and when there are many constraints (on the right)

the least parameters is not the constraint-oriented model but the freedoms-oriented model.

Whereas the constraint-oriented modeling approach becomes an unmanagable mess, the

freedoms-oriented models become clearer as the data dimension increases. The higher the

number of variables is, the more appropriate the pattern-based representation seems to

become. Furthermore it turns out that freedoms-oriented models are more intuitive than

the constraints-oriented models.

Figure 2.2 shows schematically why said change of the system representation makes sense

if the number of constraints increases. It becomes clear that on the right hand side in a

dataset with many constraints the traditional view will end up in a model of a complex set

of equations, while the complexity of the new view is only dependent of the few degrees

of freedom.

The emergence, which was already discussed and introduced in Section 2.2 among other

ideas of neocybernetics, appears here in a more mathematical framework. The example

in Appendix A shows the emergence of an exponential behaviour which was not seen

before if only looking at the given constraints. Generally speaking there are the multi-

variate statistical methods that directly attack the degrees of freedom and emergence of
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behaviour, abstracting away structural details. Thus those methods will be introduced in

the following subsection.

2.3.3 Multivariate Methods

The data, that is collected from some process, can be preprocessed in different ways, but

the preprocessing should be done very carefully, because it affects the resulting model

immensly. A standard approach is mean-centering, where the substraction of the mean in

the data makes this mean equal to zero, and normalization to unit variance by dividing

the data by its variance, in order to make the variation in different variables equally

“visible”. The used way of data preprocessing will be specified in Section 6.1. Whatever

the data processing steps, the original data z after preprocessing will be denoted as ζ.

Since all measurment values are inaccurate, the assumtion of (2.7) cannot hold and must

be relaxed, and one has to extend the original model to

e = Γ Tz, (2.10)

when e represents the error. Traditionally one wants to minimize the sum of squared

errors over a set of measurement data:

Γ = arg min
Γ
{E{eTe}}. (2.11)

To avoid the trivial solutions of Γi = 0 and get a well-conditioned optimization task, the

additional restriction of |Γi| = 1 for all i is needed. When searching for the freedoms

instead of the constraints, the objective is exactly opposite:

ϕ = arg max
ϕ
{E{ξT ξ}}, (2.12)

again with the restriction of |ϕi| = 1 for all i. Here, ϕ and ξ are used to emphasize the

difference to Γ and e. Defining ξ = ϕT ζ instead of (2.10), it is now the “error” ξ that is to

be maximized and ϕ is the axis along which this maximum variation in data is reached.
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Applying the objective (2.12), it is assumed that variation in data represents information,

whereas traditionally this variation is only seen as noise. And, specifically, it is covariation

among varibales that carries information: covariations reveal the underlying common

causes that are reflected in measurements.

The solution for the problem (2.12) is given by Principal Component Analysis, or PCA

(see [4], [5], [6], etc). The following Chapter 3 will give more details to PCA and even

more useful tools, but the basic results can be summarized as follows:

The degrees of freedom can be analyzed studying the covariance matrix E{ζζT}.
The variability is distributed in the data space along the eigenvector directions

of this matrix, variance in the eigenvector direction θi given by the correspond-

ing eigenvalue λi:

E{ζζT}θi = λiθi. (2.13)

It turns out that the eigenvectors are orthogonal, so that the principal component direc-

tions can be used as well-conditioned subspace basis vectors in a mathematically efficient

way. If the variables are selected appropriately, there is no reason why a mathemati-

cal machinery could not capture the same phenomena that are followed by biological or

chemical machinery. This strong assumtion will be confirmed by the thesis at hand.

2.3.4 Restructuring Data

The formulation of the multivariate structured data in (2.7) must again be studied and

extended to get a better feeling about the variables in and around the system and to make

the next step in neocybernetic thoughts. The vector z in (2.7) is divided in two parts.

z =




u

x̄



 .
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Vector u of dimension m describes the environmental conditions, and vector x̄ of dimen-

sion n contains system specific internal variables, characterizing the equilibrium state of

the system. Distinguishing between the two different parts, assume that one can rewrite

the characterizing constraints of (2.7) to

Ax̄ = Bu. (2.14)

Having the same number of constraints as internal variables makes the internal system

well-defined and the matrix A square. According to environment-orientedness one can

assume a linear dependency between x̄ and u. Assuming that A is invertible, one can

explicitly solve the unique linear function from the variables of the environment into the

system state

x̄ = A−1Bu, (2.15)

and so define an explicit mapping matrix from u to x̄ as

φT = A−1B. (2.16)

However, the main motivation for the formulation (2.14) is that one can formally extend

the static model into a dynamic formulation. Assuming that the data structures are

selected appropriately, so that −A is stable (eigenvalues having only negative real parts),

on can define

dx

γdt
= −Ax+Bu. (2.17)

The parameter γ can be used to adjust the time scale. The steady state of (2.17) equals

(2.15), so that limt→∞ x = x̄ for constant u. Because of linearity, this steady state is

unique.

The extension to this dynamic model is justified, because there must exist such an inner

structure beyond the surface. The seemingly static dependencies of (2.7) have to be
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basically dynamic equilibria systems (see 2.17) so that the equality in the equation can

be restored after any disturbance. The actors, or molecules in case of a chemical model,

do not know the “big picture” of the whole reaction system, and it is the interactions

between the molecules that provide for the tensions resulting in the tendency towards

balance.

Thinking of the “mindless” actors in the system, the only reasonable explanation for the

common distributed behaviours is diffusion. It is the concentration gradients that only

are visible at the local scale of a chemical system. Interpreting (2.17) as a (negative)

gradient, there has to exist a criterion which is being minimized. By integration of (2.17)

with respect to x it is found that

J (x,u) =
1

2
xTAx− xTBu (2.18)

gives a mathematical “pattern” that also characterizes the system. Such an optimization-

oriented system view combines the two ways of seeing systems: the criterion itself repre-

sents the pattern view, whereas the optimization process represents the process view (see

[3] and [7]).

Looking somewhat closer at (2.15), one can conclude that it is not only the environment

changing the system by having a mapping φT into the system, but there has also to

be an inverse mapping. This inverse mapping ϕ characterizes the effect of the internal

system variables x to their environment u. Taking the starting point (2.7) into account, it

becomes clear that every variable may influence every other variable, so there are clearly

both directions of effect possible. One can speak of pancausality, or even of a holistic

view. Even Herclitus stated, that “all is one”.

This two way assumption blurs the traditional way of distinguishing clearly between a

system and its environment, creating a strict system border. Here no clear distinction

between the system itself and its environment can be seen. Further, the environment is

a combination of cybernetic systems and subsystems, so the vector u represents the net
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effect of all accompanying systems and subsystems. The deep connection between the

mappings ϕ and φT is a key issue when trying to capture the behaviours of cybernetic

systems.

Elastic Systems

Using the above presented mathematical background and ideas, one can assume that cy-

bernetic systems are elastic systems. Considering the mechanical domain for an example,

the following setup can be used to match the above equations. The vector u could denote

forces acting in a mechanical system (like a spring), and x denotes the resulting deforma-

tions. Further, A is interpreted as the elasticity matrix and B is the projection matrix,

mapping the forces onto the deformation axis. A must be symmetric and must be positive

definite to represent stable structures sustaining external stresses.

Then it turns out, that (2.18) is the difference between the potential energies stored in

the mechanical system. The principle of minimum potential (deformation) energy states

that a structure under pressure ends in minimum of this criterion, trying to exhaust the

external force with minimum of internal deformations. For example, a marble placed in a

bowl will move to the bottom and rest there or a tree branch full of snow will bend down

into a new position because of this new external force. These are stable configurations, so

called equilibria [8]. Hence, cybernetic systems are elastic and always end up in a state

of balance. For a mechanical system of a steel plate these phenomena were studied in the

neocybernetic framework by Sailer [9].

The same criterion can be seen to characterize all cybernetic balance systems, also from

different domains than the mechanical one. It does not matter what the domain is, and

what the physical interpretation of the “forces” u and of the “deformations” x is, the

structure of system behaviour remains intact. A pressed system bends away, but when

the pressure is released, the original state is restored. Indeed, in chemical environments,
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this principle is known as the Le Chatelier principle: if a chemical system at equilibrium

experiences a change in concentration, temperature or total pressure the equilibrium will

shift in order to minimize that change [10].

To summarize the above ideas and observations:

Neocybernetic systems are identical with elastic systems — systems that are

characterized by dynamic equilibria rather than static equivalences.

2.3.5 Neocybernetic Perspective

The following discussions are only relevant if thinking about biologically adapting systems.

Nevertheless they are part of the neocybernetic theory and therefore shortly presented.

The effect of environmental pressures on a system can easily be quantified. Just as in the

case of a potential field, it is the product of the force and the displacement that determines

the change in potential energy. Regardless of physical units one can similarly interpret

the product x̄iuj in terms of energy transferred from the environment into the system by

this particular pair of variables. It must be remembered that there is not only the effect

from the external environment into the internal system — there is symmetric interaction

that takes place. It is the matrices φT and ϕ that characterize the energy transfers. It is

not only so that u should be seen as the “force” and x̄ as the “effect”, but x̄ can be seen

as action and u as reaction as well.

The transferred energies are also effectively divided by time, so that it is some kind of

power that is transferred. Hyötyniemi [3] names this “emergent level energy” as emergy

and it works as “information energy”, which is the prerequisite for emergence of informa-

tion structures.

22



Goal of Evolution

Going on in this line of ideas and argumentation, one can step to evolution theory and

discuss about its goals. If the fitness criterion for evolution were the “maximum number

of offspring”, there would be only bacteria on earth [3]. On the other hand, the “blind

watchmaker” [11] theory with only random optimization simply cannot be the mechanism

beyond evolution.

Neocybernetic environment-orientedness suggests the idea of a kind of best match with en-

vironment. Applying the above discussion about energy transfer, an intuitively appealing

fitness criterion would be

Maximize the average amount of energy that is being transferred between the

system and the environment [3].

No matter what the physical manifestation of the environmental variables is in any special

case, a surviving system interprets them as resources, and uses them as efficiently as

possible. It is not predetermined what should be done with the extracted energy — there

are various options. This makes it possible, that the evolutionary process proceeds in

many different ways. The relevance of the changes and behaviour is later evaluated by

the evolutionary selection.

All changes among this process typically affect all elements of the mappings φT and ϕ

— but all of them only a little. This high number of discrete parameters is more or less

projected to low dimensional “emergent patterns”. What is more, the local optimizations

are independent of each other — this makes the optimization a parallel process, relatively

fast and robust (see also [9]). The time scale in this stochastic optimization is much longer

than in (2.17).

It is reasonable to assume that the process of adaption finds a fixed state [3], but it needs

to be recognized that the adaption of the system is completely local for any element
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Figure 2.3: Schematic illustration of two different time scales. The dynamics of u (scale t) are

much slower than the dynamics of x (scale τ)

in the matrices φT and ϕ even though the assumed goal of the process is evolutionary

improvement and presented in a collective matrix format. The net effects can still be far

from trivial.

Complex Structures

Above, the balances of x were studied among a fixed environment u. To reach interesting

results, the neocybernetic principles can be exploited. Specifically, see Figure 2.3. The

environment u changes now on the wider scale, denoted by t, but stays also stationary

and behaves like a system around its dynamic equilibrium. On the system time scale τ ,

which is far faster than the environment’s scale, the balance is restored quickly, assuming

the environment to be fixed for a short moment — a “balance model of balances”. A truly

cybernetic model is a second-order balance model, or even a higher-order balance model.

As an overall conlusion it can be observed, that within the neocybernetic framework
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local learning has globally meaningful results. From the functional point of view new

interpretations for cybernetic systems are available:

First-order cybernetic system finds balance under external pressure, pressures

being compensated by internal tension. It implements minimum (observed) defor-

mation emergy in the system.

Second-order sybernetic system adapts internal structures to better match the

observed environmental pressures, towards maximum experienced stiffness. It im-

plements minimum average observed deformation emergy in the system.

Higher-oder cybernetic system adapts the external structures of the system to

better match the observed environmental structures. Evolutionary optimal envi-

ronment, or system of systems, only contains higher-order cybernetic systems. It

implements maximum average transfer of emergy through the environment.

As it is shown in [3] and [9], local maximization of transferred emergy result in global

results: As a whole, the system spans a principal subspace of the resource variations, thus

optimizing exploitation.

This subsection gave an outlook on the neocybernetic line of thought, in order to give an

idea of the powerful intuitions that are behind cybernetic sytem thinking. However, the

system considered in the thesis at hand is more simple and ranks in the field of first-order

cybernetic systems.

With this background about the cybernetic history and about the neocybernetic ideas

with its anticipations the theoretical framework of this thesis is given. Also the strong

motivation to apply these ideas to real systems and expect good results is pointed out.

The corresponding mathematical tools which are used later to apply these ideas will be

described in the following Chapter 3.
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3

Multivariate Analysis

In the previous chapter it became clear that multivariate tools are the ideal instrument

to approach the problems addressed by neocyberntics. Hence this chapter introduces the

later applied methods and gives examples to understand their functionality.

Before one can apply mathematical tools to find patterns in a huge set of variables, the

data set has to be preprocessed. The way of preprocessing will be described and afterwards

the tools of analysis will be shown.

3.1 Data Preprocessing

The role of variable scaling during data preprocessing is to make the relevant features

optimally visible in the data. Study an example [6]: assume that there are temperature

values in the range of 100
�
C to 200

�
C and associated pressure values in the range from

100000Pa to 200000Pa. The variation range (ignoring units) in temperature is 100 and in

pressure 100000. In the mathematical analysis the role of temperature will be neglected

because the variation range is so narrow if variations are emphasized as the later described

tools do.
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Assume there is a set of two variables, which should be analyzed. Figure 3.1 shows the

way from the original data distribution, sketched with an oval in the two-dimensional

dataspace. Calculating the means of all (two) directions and substracting them from the

data values centers the distribution around the origin. Furthermore, normalization to

unit variance carries out the actual step of information “equalization” as described in the

example above. Another step could be data whitening, which removes all covariance from

the data vectors. So if x would be centered data, and x̃ the according whitened vector,

the covariance matrix of x̃ equals the identity matrix:

E{x̃x̃T} = I. (3.1)

For the data used later in Section 6, only the basic and necessary operations of centering

and normalization (corresponding to (b) and (c) in Figure 3.1) were carried out, to achieve

a good starting point for the multivariate tools on one hand, but to keep the data as

original as possible on the other hand. The algorithms that are introduced later in this

chapter can not find any structure or pattern in whitened data, since they are based on

the assumption that all data information can be found in its covariance [6].

3.2 Principal Component Analysis

How to handle now this high-dimensional dataspace and to find the underlying behaviour

among the variables? There are multivariate tools, which are very powerful and help

to find solutions for this problem. Principal Component Analysis or PCA, as already

mentioned in Subsection 2.3.3, can find patterns in a large dataspace, highlight differences

and similarities in it and give a structured view of the freedoms in the data. Whereas noise

is (assumed to be) purely random, consistent correlations between variables hopefully

reveal something about the real system structure [4], [6], [12].

The other main advantage of PCA is that once one has found these patterns in the data
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Figure 3.1: Data distributions after different preprocessing operations. The orignal distribu-

tion (a) is first centered (b), then normalized (c) and eventually whitened (d)

one can compress the data, for example, by reducing the number of dimensions without

loosing much information. This technique is also often used in image compression, where

one has to deal with high-dimensional data.

Assume that θi is the direction of maximum variance one is searching for in the dataset

X with k measurement samples. Points in X can be projected onto this one-dimensional

subspace by Zi = Xθi. The (scalar) variance of the projections can be calculated as

E{z2
i (k)} = 1

k
· ZT

i Zi = 1
k
· θTi XTXθi. Of course the length of the vector θi must be

restricted somehow, for example, to θTi θi = 1. This means one is facing a constrained

optimization problem with







f(θi) = 1
k
· θTi XTXθi

g(θi) = 1− θTi θi.
(3.2)

Using Lagrange multipliers, the optimum solution θi has to obey

dJ(θi)

dθi
=

d

dθi
(f(θi)− λi · g(θi)) = 0 (3.3)
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or

2
1

k
·XTXθi − 2λiθi = 0, (3.4)

giving

1

k
·XTX

︸ ︷︷ ︸

R

θi = λiθi. (3.5)

The variance maximization problem has turned into a much more familiar eigenvalue

problem, with the searched vector θi being an eigenvector of the matrix R = 1
k
· XTX.

The eigenvectors of the data covariance matrix are called principal components.

It will be assumed that the eigenvectors are always normalized to unit length. Since the

covariance matrix R is symmetric, it can be verified that

� the eigenvectors θi are orthogonal, and because of the assumed unit length also

orthonormal and

� the eigenvalues λi are always real and non-negative.

See also [6] and Appendix B for further proof. These characteristics are crucial — because

of orthogonality the eigenvectors are uncorrelated, and the basic vectors corresponding to

the maximum variance can be extracted without disturbing the analysis in other direc-

tions.

Assume again, that the dataspace X has two dimensions (n = 2). Figure 3.2 shows the

distribution of the example data after centering and normalizing to unit variance and

plotted in black into the data points its original “natural” basis. The data is designed to

be collinear, what means that there is at least one linear dependency among the variables.

It is actually obvious from the figure that there must be an underlying freedom for the

variables in one somewhat diagonal direction and a constraint in the other direction. This

guess will be verified by PCA analysis.
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The covariance matrix (scaling factor k omitted) of this in MATLAB generated data is

R = XTX =




1.0083 −0.8412
−0.8412 0.9962



 . (3.6)

Note that the variances of the two data vectors can be found as diagonal elements of

R. Beside some small numerical errors due to MATLAB algorithms they equal 1. The

eigenvectors of this matrix are

θ1 =
1√
2
·




−1
1



 θ2 =
1√
2
·




−1
−1



 , (3.7)

and the corresponding eigenvalues

λ1 = 1.8435 λ2 = 0.1611 (3.8)

if ordered in descending order of the numeric value of the eigenvalues. The directions of

the eigenvectors are also plotted into the data in Figure 3.2 in red color. One can see that

30



an initial guess of two different characteristics of freedoms/constraints can be found and

shown.

If one uses the eigenvectors as new basis for the data, then denoted as Z, the mapping

Z = XΘ with

Θ =
(

θ1 | . . . | θn

)

(3.9)

needs to be performed. These new variables are mutually uncorrelated and the eigenval-

ues λi directly reveal the variances of the new variables, broke down into the different

directions [6]. The variability in X is not changed, but only redistributed in Z, because

the covariance matrix of the data after projection 1
k
·ZTZ has the same eigenvalues as R

and it holds

var{z1}+ · · ·+ var{zn} = λ1 + · · ·+ λ2 = var{x1}+ · · ·+ var{xn}. (3.10)

If the dimension is to be reduced, the optimal approach is to drop out those variables

that carry least information. If an N < n dimensional basis is to be used instead of the

full n dimensional one, construct ΘN as

ΘN =
(

θ1 | . . . | θN

)

, (3.11)

and perform the mapping Z = XΘN . It turns out that the eigenvalues of R give a

straightforward method for estimating the significance of PCA basis vectors — the amount

of neglected data variance when θi is dropped is λi.

Furthermore, the noise, which actually remains in the projected and reordered data Z, can

be reduced by omitting some of the least important latent vectors. Figure 3.3 shows very

clearly that the signal/noise-ratio becomes increasinly worse for each principal component,

because there is no more actual information in the directions with lower λi. However, the

noise is assumedly randomly distributed among data and uncorrelated, thus present in

every principal component with the same significance. Uncorrelated noise has a covariance
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matrix of q · In, and adding this noise matrix to the data covariance matrix simply shifts

all eigenvalues of the final covariance matrix up the amount q (see the light grey parts in

Figure 3.3).

Back to the example of Figure 3.2, one can see that the ratio between the carried informa-

tion of the two variables, hence the ratio of the two eigenvalues, is λ1/λ2 = 11.4443. This

means that one variable carries around 11 times more information than the other one.

The basis vector θ1 is much more important as compared to θ2. One may also express the

amount of carried information in percent:

wθi =
λi

∑n

i=1 λi

wθ1 = 91.96% wθ2 = 8.04%. (3.12)

When a reduced basis with only one vector (obviously θ1) is applied, all the blue data

points are projected onto this vector direction and only the deviations from the line

x2 = −x1 are assumed to be noise and neglected. What is more, the data collinearity is

avoided alltogether.
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Also the equality in (3.10) holds

n∑

i=1

λi = 2.0046 =
n∑

i=1

var{xi} = trace{R}. (3.13)

This example explains the principles and very useful features of Principal Component

Analysis, especially when searching for degrees of freedom among data and trying to get

rid of noise in very correlated and redundant data.

3.3 Linear Model

Again the n variables Xi and their k measurements are collected in the matrix X with

dimension k×n. The aim of regression (and also of the thesis at hand) is the computation

of a simple and manageable model between some “input” variables and some “output”

variables. Hence there has to be a second set of measurements that holds the variables

to be estimated. These m variables Yi are collected in the matrix Y of the dimension

k ×m. It is assumed like it is mostly the case that there are much more measurements

available than varibales, hence k À n. One would like to find a matrix F so that

Y = X · F (3.14)

would simply hold. Finding a “good” matrix F is the main task here. There are n ·m
free parameters in this model, and the optimum is searched for in this parameter space.

3.4 Multilinear Regression

Assume m = 1 so that there is only one output Yi. This reduces (3.14) to

Yi = X · Fi (3.15)
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and the matrix F to a vector Fi. Generally no exact solutions can be found here, since X

is not invertible. To find an approximation, the model needs to inlcude modeling errors,

as

Yi = X · Fi +Ei, (3.16)

where Ei is an k × 1 vector containing the reconstruction error for each measurement k.

To simultaneously minimize all the errors in (3.16), one can write Ei = Yi −X · Fi and

minimize the sum of error squares. This sum can be expressed as

ET
i Ei = (Yi −X · Fi)

T (Yi −X · Fi)

= YT
i Yi −YT

i XFi − FT
i X

TYi + F
T
i X

TXFi. (3.17)

This scalar can be derivated with respect to the parameter vector Fi

d(ET
i Ei)

dFi

= 0−XTYi −XTYi + 2XTXFi. (3.18)

Because the second derivative is always positive, and because quadratic functions only

have one single extremum, the extremum in (3.18) is a minimum and also unique. Setting

(3.18) to zero gives the optimal parameters:

−2XTYi + 2XTXFi = 0 (3.19)

resulting in

Fi = (XTX)−1XTYi. (3.20)

With this, the estimate for Yi is found as

Ŷest, i = F
T
i Xest. (3.21)

As it can be seen later, it is necessary to split the available data X in a part for model

estimation (training set) and another seperate part for model validation. This is why X
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and Yi here are denoted here as Xest and Yest, i. The accent Ŷest, i is used to distinguish

between model estimated data and real measurement data Yest, i.

If there are various output signals (as it is in the nickel plating case), so that m > 1, the

above calculations can be carried out for each variable seperatly and collected together

as






F1 = (XTX)−1XTY1

...

Fm = (XTX)−1XTYm.

(3.22)

This set of formulas can be rewritten in a compact matrix form, so that

F =
(

F1 | . . . | Fm

)

= (XTX)−1XT ·
(

Y1 | . . . | Ym

)

. (3.23)

This results in a Multilinear Regression (MLR) model from X to estimated Y as

F = (XTX)−1XTY. (3.24)

The MLR solution is optimal and exact in the sense of the least squares criterion. How-

ever, one has to be careful using this regression method without proper reflecting. Trying

to explain noisy data too exactly may make the model sensitive to individual noise re-

alizations, or the algorithm may collapse alltogether. Also a non-orthogonal basis of the

data space corrupts the MLR algorithm. The different coordinates “compete” against

each other (heuristically speaking), often resulting in excessive numeric values. More

applications and analysis about MLR are carried out in [6].

3.5 Principal Component Regression

The reader may have noticed that the approach to tackle all problems of redundant data

and non-orthogonal bases was already introduced. Principal Component Analysis offers
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not only the possibility to find the most important directions among data and to get rid

of noise directions, even more it provides this new “filtered” information in an orthogonal,

even orthonormal basis. Using PCA as redundancy elimination it can serve as basis for the

regression algorithm. Using a new subspace basis Θ, derived by PCA, one can implement

the above explained MLR, which can thus be called Principal Component Regression

(PCR).

The overall regression model construction becomes a two phase process, implementing the

following tasks

1. Determine the basis Θ

2. Construct the mapping F 1 = Θ(ΘTΘ)−

3. Calculate the “latent variables” Z = XF 1

4. Construct the second-level mapping F 2 = (ZTZ)−1ZTY

5. Eventually estimate Ŷest = XestF = XestF
1F 2

The mappings that are calculated in this algorithm are visualized in Figure 3.4.

Here Z names the internal coordinates on the basis Θ. Obviously this algorithm works fine

for every basis Θ, and, as discussed above, even better and without numerical instability if

Θ is orthogonal and Z holds mostly real information as compared to noise. If one derives

Θ using PCA, this basis will be orthogonal and optimal in this sense.
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Since Θ is also even orthonormal, the construction of F 1 in step 2 is even more straight

forward. In this case there holds ΘTΘ = IN , thus F
1 = Θ. However, for unnormalized

bases the pseudoinverse [13] Θ
�
= (ΘTΘ)−1ΘT has to be used.

Two methods were introduced that offer the best possible solutions to well-defined com-

pact problems. Combined, they are a powerful tool not only for neocybernetic ideas

of freedoms-oriented modeling but also for the simplicity pursuit — the overall model

calculation for PCR including PCA and MLR

F = F 1F 2 = (ΘTXTXΘ)−ΘTXTY (3.25)

seems to be easy managable.

3.6 Partial Least Squares

The main disadvantage of PCR is the fact that it is exclusively concentrating on the input

variables. Keeping some of the first principal components for the regression to Y solves

the problem of possible multicollinearity in X — but they are chosen to explain X rather

than Y . And so, nothing guarantees that the principal components, which “explain” X,

are relevant for Y . The next step is to connect the output variables in the analysis and

synthesis of the model, since not only the variance among an input dataset X is to be

captured, but also the correlation between X and some output data Y . Among these

strategies the Partial Least Squares (PLS)1 seems to be most known among practicing

engineers, emphasizing correlations rather than variance.

The process becomes slightly more complex than in the case of PCA. Not only the input

block X has to be restructured, but the internal structure of Y is also searched for. The

procedure becomes such that X is projected on a X-oriented subspace spanned by the

1Sometimes also known as Projection onto Latent Structure [6].

37



PSfrag replacements

X Z1 Z2 Y

F 1 F 2 F 3

Figure 3.5: The dependency model y = f(x) refined (PLS)

basis vectors θi. After that, data is projected on the Y -oriented subspace spanned by the

vectors φi, and only after that, the final projection onto the Y space is carried out. Figure

3.5 shows the refined model and projection structure.

The PLS model is ususally constructed in yet another way as described here [6], but it is

extremely uninstructive and implicit. A practicing engineer does not have to grasp the

unpenetrable algorithmic presentation of the PLS ideas. Also here the available toolboxes

were used along with the given explanation.

The objective now is to find the basis vectors θi and φi so that the correlation between the

projected data vectors Xθi and Y φi is maximized while the lengths of the basis vectors

remain constant. Again one faces a constrained optimization problem






f(θi, φ) = 1
k
· θTi XT · Y φi

g1(θi) = 1− θTi θi

g2(φi) = 1− φT
i φi,

(3.26)

with two seperate constraints g1 and g2. Defining Langrange multipliers ηi and µi gives

1

k
· θTi XT · Y φi − ηi(1− θTi θi)− µi(1− φT

i φi) (3.27)

and setting the differentiation with respect to θi and φi to zero gives a pair of equations






1
k
·XTY φi − 2µiθi = 0

1
k
· Y TXθi − 2µiφi = 0.

(3.28)

Solving to θi and φi gives once more the familiar formulation of an eigenvalue problem:






1
k2 ·XTY Y TXθi = 4µiηi · θi
1
k2 · Y TXXTY φi = 4µiηi · φi.

(3.29)
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Again the significance of the vectors θi (for the X block) and φi (for the Y block) is

revealed by the corresponding eigenvalues λi = 4ηiµi.

Because XTY Y TX and Y TXXTY are symmetric, the orthogonality properties, which

are so crucial for PCR, apply to these eigenvectors. In practice, the basis vectors φi are

redundant and they need not to be explicitly calculated. The “complexity” of PLS is

an illusion and only presented in this way in order to reach conceptual comprehensibility,

since between Z1 and Z2 there is no additional information loss or compression introduced.

The key point here is that the basis vectors θi in (3.29) are derived by using also the output

block Y , hence bridging the input to the output.

The main advantage of PLS as compared to PCR is not only involving the output values

that one is actually interested in, but also the reduced dimension of the final linear model.

Because the rank of a product of matrices cannot exceed the rank of the multiplied ma-

trices, there will be only min{n,m} non-zero eigenvalues. That is why the PCR approach

may give higher dimensional models than PLS.

This chapter demonstrated the multivariate tools used later in the thesis at hand. To-

gether with neocybernetic ideas these tools provide a powerful framework for modeling

complex systems.

The following Chapter 4 will give an introduction to a very complicated chemical process,

the nickel plating of printed wiring boards. Its industrial background and relevance is

introduced and emphazised. The importance of a very accurate model is pointed out.

This leads to to Chapter 5, which describes shortly the existing models, developed in the

last century and also recently at the TKK Control Engineering Laboratory.

To tie these two loose ends together, Chapter 6 will show how neocybernetic ideas lead

to a model of the process. This simple model will be compared to the recent existing one

and the results will be presented.
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4

Electroless Nickel Plating

After introducing the framework and its ideas this chapter will describe the actual indus-

trial process, to which the neocybernetic thoughts should be applied. The complicated

and chemically still mostly unknown process of the surface finishing process electroless

nickel plating will be presented and embedded in its industrial background. The presen-

tation follows [14]. At the end of the chapter the motivation to model this process and

its important current parameters are emphasized.

4.1 Industrial Background

There are many uses for electroless nickel plating in industry, because it provides some

very accurate features compared to other surface finishing and plating methods. That

is why this coating method is widely used, for example, for hydraulic cylinders, valves,

gears, electronic conductors and plugs etc [14]. One application is PWB (printed wiring

board) manufacturing, where it is used as an oxidation barrier between the copper electric

circuits itself and the gold finishing. Figure 4.1 shows some applications as itemized above,

especially a PWB at the right hand side.
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Figure 4.1: Some different applications for electroless nickel plating [15]

In this method the deposited nickel is not provided by an anode (electro nickel plating)

but by a specific nickel salt. This salt is solved in an aqueous solution were the nickel then

is in ion form. A substrate, a piece which should be plated, serves as a cathode in a bath

of different components, including the nickel ion solution. Therefore the substrate surface

has to be catalytically active or before the process somehow activated. Fortunately nickel

itself is catalytically active, which makes it possible to accumulate nickel onto nickel and

in that way form very thick alloys.

During the plating process, the electrons, which reduce the nickel ions to actual nickel,

are not provided by an external current source as anode, but by a reducing agent which

makes the bath itself anodic against the catalytic surface of the substrate. This is the

reason for the name “electroless nickel plating”. However it is somehow misleading, even

without real electrodes the electric current still exists. Hence, autocatalytic deposition of

nickel and chemical reduction of nickel are other scientific and somewhat clearer names

for the process [14], [16].

In comparison to electroplating, where an external active power supply provides the

needed electrons, the electroless nickel deposit provides very good protection against cor-

rosion, it has high abrasion resistance and good adhesion, which makes it an excellent

surface finishing. Its hardness is greater and the thickness distribution far more uniform.

The thickness of the deposition is not bounded, because the surface is always active, even
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Figure 4.2: Comparison of electroless and immersion (active power supply) deposition [17]

if there are already some layers of nickel atoms on it (see Figure 4.2). However, the elec-

troless plated nickel alloy contains a small amount of the used reducing agent. Physical

properties of the surface, like hardness of the deposit, ductility, inner stress, resistance,

soldering and corrosion are affected by this small content [14].

In 90% of industrial electroless nickel plating lines sodium hypophosphite (NaH2PO2) is

used as reducing agent [14]. Due to that the deposit contains up to 15 weight percent

of phosphorus. A detailed list of bath components and their attributes will be given in

Section 5.1. All the above mentioned properties of the deposit can be affected by the

difference in the actual phosphorus content of the layer. Because of its great influence

there is a great interest to control the phosphorus content besides the alloy thickness itself

properly.

4.2 Ni-Au Finishing

This section goes closer to the plating process itself, to used material and important

variables. Glass fiber reinforced epoxy laminate, which is laminated with a thin copper

42



layer, is the base for PWB manufacturing. Often also multilayer wiring boards are used

with up to 10 layers. Into the copper layer(s) the wanted layout of the circuit board is

formed using a “print-and-etch”-process [14]. The copper layer, without any protection

against environment, would oxidize very fast, so it needs to be protected from oxidation,

especially when used as a keyboard, for example, for mobile phones or other applications

which bring the boards in contact with water or humid skin [18].

To protect the copper layer from oxidation it is necessary to coat the copper with a

very thin (0.05 − 0.15 � m) gold (Au) layer. However, gold cannot be plated directly

onto copper, because the copper would diffuse into the gold and create an again easily

oxidizing compound. That is why a nickel-phosphorus (Ni-P) layer (less than 5 � m) is

added between copper and gold layer. So the gold layer protects both underneath layers

from oxidation and the nickel layer protects the diffusion of copper into gold. The nickel

layer is added by using the electroless nickel plating technique. However, the additional

layer is not only used as a barrier between copper and gold, but also because of its above

already mentioned mechanical properties [14], [18].

Figure 4.3 shows the different layers on the base of a PWB after the Ni-Au finishing.

From right to left one can see the copper layer, into which the electronic circuits of the

PWB were etched, and the nickel layer. However, the anti-oxidizing gold layer (between

(c) the nickel layer and (b) the fastener tool) is so thin that it can not be distinguished

on the picture. It can be seen that the surface of the nickel layer is not even at all, which

might influence thickness measurements and make them quite noisy. Also the phosphorus

content measurement is very challenging, since the phosphorus is distributed unevenly

over the nickel layer, which makes it necessary to take multiple measurements.

The described plating processes are very crucial in the production of PWB’s and it is not

possible to measure the characteristics of the Ni-P layer during plating, which complicates

quality control a great deal. The quality inspections take place randomly when the plating
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Figure 4.3: The cross-section of a plated test plate taken with a scanning microscope. Layers:

(a) a metallic fastener and (b) a piece of conductive plastic to fix the sample, (c)

Ni-P layer, (d) copper layer, (e) the base of PWB (epoxy laminate) [14]

process is already over. Errors have radical consequences to the whole batch or even to

the costumer, if an error in a particular batch is not detected.

Desired Values

The most important values to be controlled during the plating process are the alloy

thickness and its phosphorus content. It is possible to derive desired values for these

variables from requirements to their functionality. The nickel deposit thickness should be

between 2.5 and 5 � m. If the layer is thinner it does not prevent diffusion of copper and

nickel into gold and if it is thicker it would harm solderability and corrosion resistance of

the whole alloy. The phosphorus content should be between 7 and 10 weight percent. The

corrosion resistance improves with increased phosphorus contents, solderability improves

with decreased phosphorus. It is quite difficult to find the optimum to this antagonism.

To prevent both copper and nickel layer from oxidation, the gold layer should have a

thickness between 0.05 and 0.15 � m [14].
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Process Steps

In literature there are many alternative processes suggested for the creation of a Ni-Au

line, depending on needed volume, used equipments and wanted final properties. This

work is based on the production results and measurements which were collected during

the research for [14] and [19].

After loading the raw copper PWB’s a crane takes them from bath to bath. After each

functional bath the boards are rinsed. The first baths are cleaning baths, clearing the

surface first from grease, dust and remains of organic solders, then etching away last

dirt and metal oxides, preparing the surface for activation. The “auro dip” removes the

cleaning acid and the “pre dip” acidifies the surface with sulphuric acid in preparation

for the next bath.

Because copper is catalytically passive, nickel would not deposit on it. To have the desired

reaction in the nickel bath, the PWD surface is now activated using dilute palladium

chloride solution. The outermost copper atoms are thereby replaced by palladium atoms

that form a catalytic surface. The “post dip” follows.

Now the PWBs are ready for the nickel bath. Despite intensive studies, this particular

step, the electroless nickel decomposition reaction mechanism, is still not clearly under-

stood [14], [17]. In Figure 4.4 one can see the two tanks responsible for nickel plating, one

of them with immersed PWBs, the other one idle. After the nickel bath and rinsing the

gold layer is added by a bath of potassium gold cyanide, then the finished PWD is dried

and stored.

Important Parts of the Nickel Bath

Focusing on the tank of the nickel bath there are some important parts to be mentioned.

The system is controlled by two computers and a PLC (programmable logic controller).
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Figure 4.4: Two tanks for electroless nickel reaction. Behind there are two bars of PWDs

immersed for deposition [14]

This system stores the measurements, activates the crane and shows the information to

the operator for supervising. The tank itself has to be large enough to be economically

profitable and strong enough to stand the weight of the bath and the reaction going on

inside without wasting expensive reactants by getting deposited onto the tank walls. The

bath is heated by electric immersion heaters to a temperature between 80 and 90
�
C. The

agitation of the bath is secured by air agitation, to guarantee that there are always fresh

reactants on the substrate surface and the by-products of the reaction are moved away.

To keep contaminants from the substrate or the air out of the bath the solution is also

continuously filtered by a bag filter.

Measurements

If it were possible to measure the thickness of the deposition and its phosphorus content

on-line and during the process itself, there would be no need for a model to estimate or

predict these variables for control purposes. Therefore, earlier tests were made to develop
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Figure 4.5: Schematic diagram of the Ni-controller [14]

an online measurement device, for example, on a QCM (quartz crystal microbalance)

detector [14], which vibrates at a certain frequency in the nickel bath. The QCM sensor

is getting covered with nickel like the substrate itself and changes its frequency while

being plated. However, with QCM it was not possible to measure the alloy’s phosphorus

content besides its thickness, so the experiments were not continued [14].

Therefore the present-day control strategy in a modern nickel plating line is based on

the assumption that the deposition rate does not change if there is no change of circum-

stances. According to this assumption the thickness is controlled only by immersion time.

The only interest in measurements is to keep the state of the bath constant. Thickness

and phosphorus content are measured only seldom in a laboratory. The idea to use the

measurements to build up a model of the plating process requires a closer look at the

measurement system, to understand where the used data comes from.

Temperature, pH and nickel concentration are measured with a device called Ni-controlle
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[14]. It also adds replenishers to the bath if one of the latter differs from a given set

value. Nickel sulphate is added when there is a loss of nickel in the bath detected and

ammonia when the pH value drops. Furthermore the MTO (metal turnover), which is

defined as the relation of pumped nickel to the nickel concentration of the fresh bath, is

calculated and can be seen as an indicator for the bath’s age. The schematic diagram

of the controller and its functionality are shown in Figure 4.5. One can see that after

preparing the sample the controller is taking the actual measurements and calculates the

needed amount of replenishers, which are then added by specific pumps.

Looking somewhat deeper inside the above given description one can find a control loop.

The current values of variables are measured, afterwards compared to desired values and

a correction is made in order to keep the variable to its set point. These control loops are

examples for the modern control machinery keeping the bath and its variables in balance.

Meanwhile these controllers are so effective, that the dynamic balance of the system is

well maintained (see Section 2.2).

The described measurement sequence takes some time, from 3 to 15 minutes, depending

on the amount of replenishers to be added. Because of this delay the measurements can

not strictly be called “online”. But since the time constant of the whole chemical process

in the bath itself is much higher [14], the measurements can be considered as on-line.

The measured data then has to be recorded for later use. For this purpose a data acquisi-

tion system was built up which records, for example, from the Ni-controller the time stamp

when the sample is taken, and with it the actual nickel concentration, pH value, and the

temperature of the sample. There is also a log file where the movements of the substrate

by the crane are recorded in order to save information about the load of the bath, the du-

ration of plating, and the time of immersion of each PWB. Nowadays most thickness and

phosphorus content control mechanisms are based on this information about immersion

time. The third source of data is the laboratory, where sometimes measurements of the
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alloy thickness and its phosphorus content are taken and recorded with the time stamp

when the examined PWB was actually plated. A computer program was developed [14]

to combine the different sources of data into one by time stamps synchronized source,

which now holds information, for example, about load, temperature, pH value and nickel

concentration arranged among a continuous timeline. There will be more information

about the used data in Section 6.2.

Of course it has to be considered, that sometimes the measurements are not accurate

because of erroneous sensors or they are simply not available. Especially thickness and

phosphorus content (seldom measured in comparison to other variables) naturally cause

a great deal of time stamps without information about the actual thickness. This is the

basic reason to consider the possibility of a thickness model, to get information about the

plating process continuously and not only from laboratory measurements.

4.3 Model and Control Tasks

Control of thickness of the PWBs being plated in state of the art Ni-Au lines is based on

the assumption, that with the state of the bath (maintained by the control loops described

above) also the deposition rate stays constant. Therefore, in this case it is only necessary

to control the time, how long a plate is immersed into the bath to reach the desired

thickness [20].

This approach is not satisfying at all. It is not known to the operator how the bath

conditions change, how the plate in the bath behaves, how the alloy is developing, or

how the quality of the PWB is changing. This can lead to a great deal of waste after

examining the thickness of the deposit and its quality from a random sample, let alone the

undetected waste, which causes much more economical damage to the producing factory

and its customers.
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Figure 4.6: Functionality of a nickel plating model

A technical model of the process, which is providing on-line information about the ac-

tually immersed plate, using information that is available through online measurements

throughtout the plating process, would give the chance to close the outer control loop.

Thickness, for example, could be predicted or estimated and according to that, the im-

mersed substrate can be emersed in time, before the thickness differs from a desired value.

No regular laboratory measurements would be needed, the thickness is known and the

finished product can be delivered. Only very rarely could laboratory measurements be

used to keep the quality and check the accuracy of the model. This principle is illustrated

in Figure 4.6.

Thus the aim is to get online information about the actual state of the substrate and use

it to secure quality and save money. For that, only simply available data should be used,

thus making the expensive measurements in a laboratory needless and the production and

its control economical.

As one will realize while reading the following chapters, this task is anything but easy.

The process going on in the bath is rather unknown and the few known things about

it are mostly a well kept secret of the producing companies. These companies are not

providing the full information about their plating lines in order to keep their position

on the economic market of surface finishing. Not even the chemical behaviour can be

summarized in simple reaction equations [17].
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Many different reactants are used to keep certain characteristics of the bath under control.

Along with these reactants, activators and inhibitors many form new, mostly unknown,

bindings between themself and the main substances. These connections can be seen as

additional constraints to the process variables, which must be taken into account while

modeling the process with the traditional methods and tools. This carries on the motiva-

tion to use a freedoms-oriented approach (see Subsection 2.3.2) to model characteristics

of the nickel plating process.

The next Chapter 5 will describe existing models and their behaviour in predicting the

important parameters and variables of the process. Chapter 6 will then look at the process

from another point of view.
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5

Existing Models

For a long time, chemists tried to discover what is happening during a nickel deposition.

This chapter describes the experiences with understanding and modeling the behaviour

of an electroless nickel plating process, starting in the 19th century up to present day.

5.1 Historical Models

In 1844, Wurtz observed that nickel cations were reduced by hypophosphite anions.

However, Wurtz only obtained black powder. The first bright depositions of nickel-

phosphorous allyos were developed in 1911 by Breteau. These baths decomposed spon-

taneously and formed deposites on every surface immersed into the solution, also on the

container walls. In 1946, Brenner and Riddell published a paper about the electroless

nickel deposition in proper conditions [17].

The chemical and physical properties of the electroless nickel coating depend on its com-

position, which depends on the operation conditions of the nickel bath. Typically the

constituents of the bath are
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� A source of nickel ions

� A reducing agent

� pH-control acid

� Suitable complexing agents

� Stabilizers/inhibitors

� Energy

The preferred, and in this case used, nickel source is nickel sulphate (NiSO4). The purpose

of the reducing agent is to provide electrons to the nickel ion and reduce it to a nickel atom.

This would theoretically mean that the deposit layer would be of pure nickel, which is

almost (99% and more) achieved when using Hydrazine. However, in the described plating

line sodium hypophosphite (NaH2PO2 · H2O) is used. In this case, the alloy contains not

only nickel, but also up to 15 weight percent of phosphorus. As said above, this influences

the properties of the deposition significantly. Ammonia (NH3) is used to control the pH

value of the bath.

The complexing agent is a compound that stabilizes the pH of the bath and prevents

precipitation of nickel salts. The agent makes the nickel complex more passive to make

the deposition possible only on the substrate surface. It changes the reaction rate but

keeps the bath and the ongoing reaction stable and controllable. To prevent the bath

from suddenly decomposing and building salts everywhere in the bath and not only on

the surface of the substrate, stabilizers are used. The stabilizer might make it possible

to accelerate the deposition because it lowers the possibility of a decomposition of the

bath. Its concentration is quite critical, because too much of it can stop the whole plating

reaction, so its use and concentration are mostly a well kept busieness secret. Energy is

given to the bath in form of heat. The temperature of the bath is kept around 80
�
C, a
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lower temperature would slow down the deposition process, a higher one would lead the

bath into an unstable state [14], [17].

Electroless nickel deposition can be seen, in a very elementary manner, as the sum of

two chemical reactions — an oxidation reaction liberating electrons and a nickel reaction

consuming them:

Oxidation of reducing agent

Red −→ Ox + ne

Reduction of nickel ion

mNi2+ + 2me – −→ mNi0, 2m = n

———————————————–

Overall or sum reaction

mNi2+ +Red −→ mNi0 +Ox.

Experimentally observed reaction characteristics indicate that the reaction has to be much

more difficult, since these stoichiometric equations fail to describe all the phenomena that

are observed during plating [17].

Before discussing chemical equations, which should explain the process of plating more

precisely, it might be informative to recall certain characteristics of the process the mech-

anism must explain [17]. Most important are the first two in the following list:

� The reduction of nickel is always accompanied by the evolution of hydrogen gas.

� The deposit contains not only nickel but also phosphorus from the reducing agent.

� The reduction reaction takes place on certain metals and also on the depositing

metal itself.

� Hydrogen ions are generated as by-product.
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� The molar ratio of nickel deposited to reducing agent consumed is usually equal to

or less than 1.

In the literature nickel deposition using hypophosphite was sometimes presented as

Ni2+ +H2PO
–
2 +H2O −→ Ni0 +H2PO

–
3 + 2H+

H2PO
–
2 +H2O

cat−→ H2PO
–
3 +H2

—————————————————————

Overall

Ni2+ + 2H2PO
–
2 + 2H2O −→ Ni0 + 2H2PO

–
3 + 2H+ +H2.

However, the presented mechanism fails to account for the phosphorus component in

the alloy. Further the rate of deposition would be proportional to the concentration of

the reactants. This was experimentally disproved, when Gutzeit showed that the rate is

independent of nickel ion concentration.

Since the publication of the above equations in 1946 four more mechanisms were proposed,

trying to explain more of the above listed characteristics [17]:

1 Atomic hydrogen mechanism Does not explain certain phenomena like the re-

duction of hydrogen or phosphorus deposition and why the utilization of hypophos-

phite is always less than 50 percent.

2 Hydride transfer mechanism More accurate than (1), but uses the unlikely

existence of H – -ions as an intermediate reducing agent.

3 Hydroxyd mechanism Based on experimental data and still better than (1) and

(2), but also uses some material (atomic hydrogen), whos existence is very unlikely.

4 Electrochemical mechanism Based on electrochemistry (compared to 1-3, which

are purely chemical). Implies that the nickel ion concentration should have an effect

on the rate of deposition — the converse is true.
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This summary should give the reader some idea of how difficult and unknown the process

at hand actually is. For more than 150 years scientists tried to describe all phenomena,

which was obviously not possible up to now.

None of the mentioned mechanisms is precisely right, although the latter two are quite

close to reality. Thus researchers believe that the process cannot be fully chemical, but

is controlled by an electrochemical mechanism. This is also the most commonly used

approach [14], [17].

Because of this the latter mechanism (4) was also used as a basis for the development

of the recent model at the TKK Control Engineering Laboratory by Kantola [14] and

Tenno [19]. This model will be the basis of comparison of the results, which the model

presented in this work (Chapter 6) is producing. For this reason, Kantola’s model is

shortly introduced in the following section and some results are presented.

5.2 Electrochemical Model

Based on chemistry and electrochemistry a mathematical model was derived, which pre-

dicts quite accurately the critical alloy characteristics like thickness and phosphorus con-

tent. In this section the development of the model will be sketched. The detailed descrip-

tion can be found in [14].

Process Chemistry

As a fundament for this model it is assumed that the process follows an electrochemical

mechanism, as mentioned above (4); the reactions of the mechanism (4) now go both ways

[14]. The chemistry can be described as:
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Anodic reaction: hypophosphite oxidation

H2PO
–
2 +H2O −⇀↽−− H2PO

–
3 + 2H+ + 2 e – U1 = −0.504V

Cathodic reactions: phosphorus deposition, hydrogen evolution, nickel deposition

H2PO
–
2 + 2H+ + e – ↽−−−⇀ P(s) + 2H2O U2 = 0.391V

2H+ + 2 e – ↽−−−⇀ H2(g) U3 = 0.000V

Ni2+ + 2 e – ↽−−−⇀ Ni(s) U4 = −0.257V,

with

s = solid

g = gas

U = voltage.

These equations account for the evolving hydrogen gas (H2(g)) and also for phosphorus

(P(s)) on the surface of the substrate. U1−4 are the normal potentials of each reaction

at 25
�
C. The voltages are necessary to combine the chemical equations with the mixed

potential theory, which is a good basis for mathematical modelling and was done in [14]

and [19].

The used mechanism only takes into account the main reagents. It does not describe the

reactions of stabilizers or accelerators, mainly because the exact chemistry for them is not

known and also because the model should stay as simple as possible.

Since chemical equations only describe stoichiometric correlations, there is still mathe-

matics needed, to derive equations, which take dynamics into account and the actual

interesting values like the alloy thickness or the phosphorus content. Also the influence

of chemicals, which are not represented in the chemical equations, are studied there.
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Mathematical Implementation

Kantola used mathematical equations from an electrochemical cell model, which was

originally developed for batteries [19], as basis for the mathematical model. There the

Butler-Volmer equation was used to model the four current densities i1−4 according to

potentials of the 4 electrochemical reactions (page 57). Every anodic/cathodic reaction

creates an electric potential, which in turn causes a current i that can be calculated using

the Butler-Volmer equation. The two free parameters in each equation were calculated

from the experimental data, because there are no accurate approximations available. Here,

assumed preknowledge about the process and real process information from data is mixed

to achieve a fully functional model.

Using the assumption of electrical neutrality, which states that the sum of all anodic

and cathodic current densities is zero, and the Arrhenius equation the free parameter

of current potentials can be calculated. The other free parameter, the anodic apparent

current coefficient, is gathered from the best fit to experimental data. Also basic formulas

for the potential of the bath and voltages (Nernst equation) and for the rate constant

(experimentally found) are used to close gaps in the current density equations.

The deposition formation itself was studied as the superposition of two independent pro-

cesses — a nickel deposition and a phosphorus deposition:

� Nickel deposition rate is proportional to the current denisity i4 and also dependent

on the molecular weight of nickel, the Faraday’s constant and nickel’s density, which

are all well known.

� Phosphorus deposition rate follows the same principle. It is proportional to the

current density i2 and dependent on the molecular weight of phosphorus and also

on the Faraday’s constant.
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Thus the alloy deposition rate is the sum of the two above presented deposition rates.

The thickness of each partial deposition and the overall deposition can be calculated by

integrating the corresponding deposition rate over plating time. Normally the plating

time is between 15 and 25 minutes. The phosphorus content is expressed as a weight

percent, thus nickel and phosphorus are weighted with the corresponding densities.

In this model the concentration dynamics are essential. The concentration of the reagents,

which is kept constant by measuring the actual amount of a reagent and adding fresh

substance, and the by-products of the ongoing reactions have a great effect on the plating

reaction, so a model was developed to describe their dynamics.

Equations for the concentration of hypophosphite, which works as a reducer in the reac-

tion, and nickel were derived. Also for produced hydrogen, which lowers the pH value,

and for ammonia, which is added to compensate the lowering, models were calculated.

Sulphate, ammonium, ammonium sulphate, orthophosphite, and hydrogen gas were also

cast in equations.

The main purpose (as already discussed in Section 4.3) of the model was to find relations

between the measurable values of the bath and the thickness and the phosphorus content

of the nickel deposition. However, the presented model is more wide-ranging and explains

the process in a broader manner.

Results

The results of the model are presented and compared with a set of experimental data.

This data was derived and gathered during active experiments, which means that during

the production of PWBs the circumstances in the bath were actively changed. The desired

value for nickel concentration was changed between 95 and 105% of its reference value,

which is 6mol/dm3. The other changed parameter was the pH value, which was varied

from 4.72 to 4.79. This was done to get feasible changes in measured data, to distinguish
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between real trends and measurement noise. Because of the Ni-controller (Section 4.2) the

properties of the bath followed the changing desired values very well. Figures, evaluations

and interpretations about the results are directly taken from [14].

Figure 5.1 shows the Ni-P alloy thickness, where measurement and model prediction are

plotted in one graph. As can be seen, the model predicts the thickness of the deposition

quite well, especially the trend behaviour is very accurate, considering the uneven surface

of the alloy (shown in Figure 4.3) and the resulting uncertainty of the measurement. The

large values of the first measurement are caused by two test runs to initialize the bath.

In Figure 5.2 the Ni-P deposition phosphorus content is presented. Again the measure-

ments and the prediction results are plotted in one figure. The measurements were taken

according to the capacity of the laboratory, thus the sample rate is varying from 2 to 5

hours. The “measured values” between the real measurements were interpolated using a

linear model. Partly the model follows the measured values quite well. The large differ-

ence around hour 36 can be explained by an error in the measurement or in the plating

process itself, especially errors in the preceeding baths before the nickel coating bath.

To control deposition properties and achieve good and steady quality it is also important to

monitor the properties of the bath, for example, the concentrations. Since the nickel con-

centration and also the pH value of the nickel bath is measured online, and also corrected

to a desired value with the Ni-controller, it is not very important to estimate these values.

However, measurements of hypophosphite and orthophosphite concentration, which also

influence the deposition process, are only measured seldom in a laboratory, hence it would

be practical to get online estimates for these concentrations.

Figure 5.3 shows the measurements of hypo- and orthophosphite concentration and the

prediction of the model. Again the measurements are interpolated linearly. The model

prediction follows the measurements quite well, and the good trend behaviour confirms

again the use of correct variables and parameters. The deviation between hours 20 and
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Figure 5.1: Measured and predicted thickness of the Ni-P alloy

0 5 10 15 20 25 30 35 40 45
6.5

7

7.5

8

8.5

9

9.5

10

Elapsed time, h

P
ho

sp
ho

ro
us

 c
on

te
nt

, w
%

Measured
Predicted

Figure 5.2: Measured and predicted phosphorus content of the Ni-P alloy
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25 in this experiment refers to an error during the laboratory measurements, because

the trend fits perfectly and there is no additional sign for a change in orthophosphite

concentration at this time.

Conclusions

The sketched model predicts the critical alloy characteristics like deposition thickness and

its phosphorus content satisfactorily. Because of the lack of measurements, it is not always

possible to evaluate the model accuracy.

Not only the presented variables can be estimated by this model, but also the full process

can be studied and evaluated. Kantola presents estimates for all concerned concentra-

tions, pH value, current densities and deposition speeds, thus even for values, which are

measured online and hence not that important. Because the later introduced model con-

centrates on the deposition thickness and its phosphorus content, and also on the hypo-
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and orthophosphite concentration, only these results were specified here.

This model can still be adjusted, for example, by adapting its parameters according

to previous online measured values. This might minimize the influence of errors and

optimize the quality of the estimates. In general this model is very accurate. It has to

be kept in mind that the data was collected during an active experiment, when process

characteristics were changed on purpose. During normal plating the process is kept as

constant as possible, which means that the model will be even more accurate than it was

during the experiments.
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6

Plating Process as

Cybernetic System

After introducing the mostly intuitive ideas of neocybernetics, the corresponding math-

ematical tools and presenting the setup of the industrial process, this chapter will tie

these ends together and give a another solution for the modeling problem. This solution

will surprise in its simplicity along with its power. Mathematics will help on the way to

practice and eventually the model with its estimation results will be shown.

6.1 The Way to Practice

On the way to a real application, theoretical derivations always have to be adapted and

adjusted. The measurement vector z in (2.7) needs to be further studied to make it

possible to capture all inner tensions in chemical systems. For example, the following

extensions can be implemented without ruining the linear structure among the variables

[3]:
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� Temperature. According to the Arrhenius formula (also used for the model in Sec-

tion 5.2), reaction rates k are functions of the temperature, so that k ∝ exp(c/T ).

When this is substituted, for example, in (2.4) and when logarithms and differen-

tiations are carried out, the model remains linear if one augments the data vector

and defines an additional variable zT = ∆T/T̄ 2.

� Acidity. The pH value of a solution is defined as pH = − log cH+ . Because this is

a logarithm of a concentration variable, one can directly include the changes in the

pH value among the variables as zpH = ∆pH.

� Voltage. In electrochemical reactions one may characterize the “concentration of

electrons”. It turns out that according to the Butler-Volmer theory (also used in

5.2) the amount of free electrons is exponentially proportional to the voltage. Hence,

after taking logarithms, the “electron pressure” can be characterized by ze− = ∆U .

� Physical phenomena. It is evident that phenomena that are originally linear

lie diffusion can directly be integrated in the model, assuming that appropriate

variables (deviations from a nominal state) are included among the variables.

The vector z is the measurement vector, carrying all possible quantities that affect the

process and the system behaviour — internal system variables and external environmental

variables alike. To get the actual data vector the vectors first have to be appropriately

scaled and preprocessed. In practice, speacially if the relationships between units are not

clear, it can be motivated to carry out data normalization and mean centering to make

data items more compatible.

There is still the motivation to extend the available data using intuition and the neocy-

bernetic guidelines. The more information the data vector z carries in the end the higher

are the chances to find the common pattern among this data.
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Integrals

The relative changes in the momentary deposition layer growth rate are linear functions

of the other state variables. As mentioned in Chapter 4, this is the basic assumption for

the status quo in controlling the alloy thickness, simply by changing the immersion time.

Hence, the overall relative change is reached when one integrates the momentary rate over

the plating time.

Equation (2.3) specifies the change in a concentration and hence the unidirectional flow

of material. If one considers the nickel concentration, for example, it makes sense to

integrate over this flow in order to get information about the actually consumed nickel.

This can be done also for other variables of the process.

In addition, because of the linearity of this mapping model F , the integration can be

moved “through” the model. The linearity pursuit in Section 2.2 motivates also the use

of this integral. If one includes the integrals of relative changes among the variables,

a linear model should be capable of capturing the layer changes around the nominal

cumulation rates.

There is also a more pragmatic reason for including the integrals to the dataspace. With-

out the integrals one would exclusively use the data at a time stamp, where all the

information (also the seldom measered alloy thickness etc.) is available, and discard the

measurements taken in-between. But since the plate is immersed for some time before

this very moment of emmersion, it clearly makes sense to use all the values affecting the

plate and its deposition layer during this time. It is somehow necessary to transport the

information from between the complete samples into such a sample and so extend it. This

is achieved by using the integrals.
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Smoothing

Yet another way to avoid the omission of the variables in-between complete samples is the

use of a smoothing function among past values. This means the values among the plating

time of an immersed plate are weighted from very small importance in the beginning of

the actual plating process up to a prime importance in the moment of plate emmersion.

This method also helps to reduce measurement noise in the data before it is taken to the

modeling machinery, since building a kind of average balances the data level and cuts

noise away.

Here one can use a linear or exponential weighting. The principle is shown in Figure 6.1.
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Figure 6.1: Weighting functions to smoothen values during the plating process

6.2 Available Process Data

During the research for the reports [14], [17] and [19] process data was collected. Active

experiments were performed to get enough data for modeling, estimating and validation.

The Ni-controller provided “online” measurements for the concentration of nickel, the

pH value of the solution and the temperature of the samples. Along with this, added

ammonia and nickel sulfate are recorded. The controller of the crane, which is moving

the substrate from one bath to the other, records the actual plated area (further denoted

as plating area), and with it the time of immersion and the time between immersion

and emmersion (further denoted as plating time). The sequence of measurements was

taken during almost 88 hours. So called online measurements are available around every
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Figure 6.2: Raw process data before synchronization

5 seconds, what makes around 62800 samples; measurements of plate characteristics (for

example alloy thickness) were available on average every 0.4 hours, making around 220

samples.

Figure 6.2 shows examples of the given files. Most of the important information is collected

by the Ni-controller, whose data can be seen in the very back — values like time stamp,

starting from an unspecified value of 8571, nickel reference value and pH value from the

left side and plating area and temperature to the right can be seen. The second file

shows specific information about the substrate from the laboratory, giving values for the

alloy thickness, immersion and emmersion time. Another file provides the phosphorus

content, also taken in the laboratory. The file in front shows measurements of hypo- and

orthophosphite concentration, which are taken in a laboratory at the same time, when

deposition thickness and phosphorus content were measured. Of course the measurement

takes some time, but the discovered values and characteristics are here already stored

with the time stamp, when the plate was taken out of the bath.

68



All the mentioned data were now collected in a single EXCEL-file, and all time stamps

were matched to get a consistent timeline with the available information at each time

stamp. The starting time of the measurements was set to zero. This made it possible

to handle the data, keep the overview and eventually to import the process data into

MATLAB for further use.

The calculations for the mentioned integrals and smoothened values were carried out

in MATLAB. After including this additional information to the data, the dimension of

the data vector is very high. As mentioned in Section 2.2 the structural complexity of

traditional system thinking turns into high-dimensionality when thinking in cybernetic

ways.

To visualize the dataset, which now can be used for all further processing steps and also

as basis for a freedoms-oriented modeling approach, Figure 6.3 shows a schematic view

of the synchronized data. The timeline (black) is sketched top down and along it the

measurement time stamps (blue). On the left hand side one can see the online measure-

ments for the bath characteristics like nickel concentration and temperature, followed by

the calculated integrals and smoothened older values. On the right hand side the seldom

measured variables of the plate characteristics, like thickness, are arranged among the

timeline, apparently having a very different “sampling time” between them as compared

to the continuous measurements. The information about plating time (green) is taken

from a time stamp with a complete dataset and used for integration and smoothening.

The overall aim is to find a model emerging from the given data and use only online

measurements, which are available online or computable during the actual process. The

model will be needed to estimate values for the characteristics of the substrate to get rid

of expensive and longsome laboratory measurements. This variables to be estimated are

marked in Figure 6.3 with red dots.
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Figure 6.3: Schematic view of the synchronized data sheet
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6.3 Towards the Real System

After demonstrating the mathematical tools in Chapter 3 and preparing the industrial

process in the previous section, one may now apply the instruments.

From now on the data spaceX denotes the online measurements of the bath characteristics

that are considered as input data and described in Section 6.2. The other part of the

measurements, like the characteristics of the plated substrate, are collected in the output

block Y .

6.3.1 Used Data

After many talks and discussions it turned out that the measurements of the following six

variables are trustworthy and could add new information to the data set X. They were

already indicated in Figure 6.3.

� Nickel concentration (here as deviation from its reference value, which is 6mol/dm3.

There is no difference to the use of absolute values — the information carried in the

data is the same, since one should concentrate anyway only on deviations around

an equilibrium)

� pH value

� Ammonia concentration

� Ammonia and nickel sulfate pumping

� Plating area and

� Temperature.
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These variables are the first six elements added as k × 1 vectors. The next six vectors

are filled with the corresponding integrals of the variables over plating time. These are

followed by another six variables, created from the smoothened data of the corresponding

variables, both likewise indicated in Figure 6.3. Linear smoothing was used at first, where

values are weighted from importance 0 to 1 from the time of plate immersion up to its

emersion. This X block now has the dimension k × 18.

Along with this the output block Y consists of the four measurements of

� Nickel alloy thickness

� Alloy Phosphorus content

� Concentration of Hypophosphite and

� Concentration of Orthophosphite,

hence has the dimension 4× k.

6.3.2 Applied PCA Analysis

Figure 6.4 shows the output of the PCA analysis of this dataset. Since the covariance

matrix is square and of the same dimension as the respective data, there are also 18

eigenvectors θi and corresponding eigenvalues λi. The eigenvalues are again ordered from

left to right among their numerical values. One can easily choose the new latent basis

Θ from all the 18 eigenvectors and project the data space X to another 18-dimensional

space Z.

But the essence here is the visualization of the distribution of variance and/or noise in

the data that is revealed by the order of eigenvalues in Figure 6.4. Of course, nobody can

tell the actual difference between system structure and noise — there would be no need
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for all the work at hand. But according to Figure 3.3 it makes sense to discard some of

the least important principal components in order to reduce not only the data dimension

but also the amount of captured noise.

Somehow intuition knows to take the first seven principal components into account and

to discard the rest. An “unnatural” drop in the numerical values after the seventh com-

ponent could have a meaning, deviding the components carrying real information and the

components reflecting almost only noise. Indeed, the first seven principal components

were taken into account for modeling and they capture around 91% of the maximum

information in the data when information is interpreted as variation.

To give an example, the base Θ, defined by the selected N = 7 eigenvectors, and the

corresponding eigenvalues are presented in Appendix C.
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6.3.3 Selection of Basis Vectors

The question, however, is how to determine the dimension of the latent basis? For nor-

malized data (as it is used here) it holds

n∑

i=1

λi = n, (6.1)

and a crude approximation is to inlcude only those first N latent vectors θi in the model

for which there holds λi > 1 [6]. Those directions carry “more than the average amount”

of the total information. However, the overall behaviour of the eigenvalue scope should be

taken into account. Plotted in descending order there might be a significant drop between

some of them — this may suggest where to put the model order.

As a general rule, it can be argued that the directions of the largest eigenvalues are the

most important, whereas the effects of noise are pushed to the later principal components.

However, analysis of the later components may also reveal some peculiarities in the system

structure, and this information should not be automatically rejected.

If the first principal component dominates excessively, it may be reasonable to check

whether the data preprocessing has been succesfull: for instance, if the data is not mean-

centered, it is this mean that dominates among all other information rather than the true

data variation. Especially if the numerical data values are far from the origin, as was the

case in the pressure example in Subsection 3.1, the large mean dominates. The absolute

minimum eigenvalue is zero, meaning that the set of measurements is linearly dependent

or there are too few measurements, so that k < n. Note that the PCA type of data

modeling can still be carried out, whereas simple MLR would collapse [6].

If there exists eigenvectors with exactly equal eigenvalues in the covariance matrix, the

selection of the eigenvectors is not unique. This is specially true for whitened data; PCA

can find no structure in whitened data [6].
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The reader may notice that after data preprocessing, the selection of the basis vectors for

the model is the second crucial step. Appropriate preprocessing, as well as selection of

principal components, effects the model essentially and therefore needs some experience

and also many experiments. As it turns out though, even the first guess of taking seven

principal components is very good — changing the number of used components indeed

affects the model, but only slightly. All this also applies for the use of PLS and its results,

which will be presented later.

6.3.4 About the Model

According to the algorithm presented in 3.5, the mapping F 1 should be calculated to

derive the latent variables Z. Since the new base Θ is orthonormal, F 1 equals Θ and is of

the dimension 18× 7. Therefore, the intermediate dataspace Z has the dimension seven.

Multilinear regression (see Section 3.4) finds the second-level mapping F 2 in minimizing

the sum of squared errors. This matrix projects the 7-dimensional space Z onto the

4-dimensional output space Y , ande hence has the dimension 7× 4.

The linear model F in (3.14) to estimate the output data is now the product of both

matrices, giving

F = F 1F 2 (6.2)

of the dimension 18× 4.

The matrix F holds for every input variable the information about its importance for the

output variables. A linear combination of the input sample directly gives the estimate of

the actual output value. For the estimate of the variable thickness, for example, this is
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done with F1, the first column of the mapping F .

FT
1 =

(

0.2174 0.1742 −0.0176 0.0016 −0.0439 −0.1406 . . .

0.2121 0.1733 0.0072 0.0385 −0.0076 0.1124 . . . (6.3)

0.2133 0.1733 0.0148 0.0032 0.0104 0.2129
)

.

The vector is already sorted in groups of six, to match the accoring values in the input

data. F1,1 to F1,6 are weights for the plain variables of the input sample. F1,7 to F1,12

refer to the values formed by the integral over plating time and F1,13 to F1,18 connect the

smoothened values to the output.

It turns out that information about the nickel concentration in the bath and the pH

value have highest significance in all its three versions (plain, integral, smoothed). Also

temperature carries a great deal of information. Least significant is the actual pumping,

which is becoming more important with its integral, but is still far from relevant. Nickel

concentration, pH value and temperature carry in all its specifications more than 90% of

the information for the estimate of thickness.

The actual plated area, which is the loading of the bath, obviously does not affect the

thickness of the plated substrate itself. Plating area is projected into the thickness es-

timate respectively by the fifth value of each group in (6.3), F1,5, F1,11 and F1,17. This

makes sense, since the nickel is distributed evenly in the bath and new nickel sulfate is

added to the bath continuously to maintain the available amount of nickel ions. It does

not matter, how many plates are immersed at the same time, their alloy will have (almost)

the same thickness.

This is already a very important and interesting result. If it turns out that this data-

based method of modeling and estimating is feasible for the process of nickel plating, the

linear model F could shed light on the necessary measurements. Since good and reliable
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measurements are always very expensive, one could learn from the model which values

are really needed and which could be omitted without harming the estimation too much.

Eventually the model was used to estimate process variables. To take the already started

line, the derived base of 7 vectors and the resulting mapping F was used for the following

results.

6.3.5 PCR Estimation Results

Throughout the following pages the style of presenting results will be the same. The data

was seperated in three parts, the first one used to estimate the model F and the other two

parts to validate the model. This means that the results along the estimation dataset can

be very good, because the algorithm of MLR minimized the error between measurement

and estimate exactly for that data. A good result here might not tell anything about the

quality of the model, because even adding a random variable to the dataspace X would

improve the result here. That is why there is validation, which uses the same model F ,

but the validation data was not seen by the modeling machinery before.

Where there was data available there is also the result of the electrochemical model (Sec-

tion 5.2) presented. This model was also calibrated using the first dataset and validated

with the other two parts. Since Kantola [14] used the measurements the same way a direct

comparison is possible. Original measurements (blue), elechtrochemical model estimates

(green) and data-based model esimates (red) are plotted among the time in one plot.

The measure of fit is carried out mainly visually, but also with the sum of squared errors

SSE =
1

k
· (Ŷest, i −Yest, i)

T (Ŷest, i −Yest, i). (6.4)

The overall SSE is calculated from both validation experiments as weighted sum and

taken as the most important criterion for the quality of the final model.
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Figure 6.5 shows a described plot, in this case for the thickness of the nickel alloy. The

first subplot shows that the electrochemical model follows the data very well. Also the

linear model F produces estimates, which are very close to the real data, and according

to the SSE-criterion, even closer. However, as said above, this information does not tell

enough about a model’s accuracy. The two following subplots show more measured data

and again the prediction of the two models. In the validation set 1 the linear model

F shows better behaviour than the electrochemical model, in validation set 2 it is very

similar.

The alloy phosphorus content in measurement and prediction is shown on Figure 6.6.

Again the model accuracy ranks around the existing electrochemical model. The model

finds the data level, but in this case cannot predict variations very well. In some spots

and areas, the data-based model is more accurate than the electrochemical one.

There are some notable key observations:

� The result of the linear data-based model is very good (considering the complicated

process it models and estimates).

� Especially variations of level and steps are modeled accurately.

� If the estimate differs from the measurement, the electrochemical model differs as

well (keeping in mind how complex the structure of the latter model is).

� There is still room for improvement using other multivariate tools.

Figure 6.7 shows the estimate of the bath characteristic hypophosphite concentration.

Here no estimates from the electrochemical model were available. Clearly the estimation

worked quite well and the model predicts the hypophosphite concentration accurately.

Looking at the second subplot one might expect a timeshift problem: the model seems
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Figure 6.5: Alloy thickness: measured data and two compared estimates
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Figure 6.6: Alloy phosphorus content: measured data and two compared estimates
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Figure 6.7: Hypophosphite concentration: measured data and two compared estimates
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Figure 6.8: Orthophosphite concentration: measured data and two compared estimates
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to predict variations around 2 hours too late. The validation set 2 is very well estimated,

the model follows even the large step off the average around hour 8.

The other critical bath characteristic, orthophosphite concentration, can also not be com-

pared to other model data. However, the databased model fails almost completely in

explaning variations in orthophosphite concentration. The average level is estimated well

enough, but the continuous increase is not reflected in the model estimate.

The following Section 6.4 shows the improvement which is still possible. PLS will be

applied and the input space X will be varied to achieve better results and minimize the

deviation from original data.

6.4 Final Model

In the previous section the first multivariate methods were applied and the first results

were shown. To improve the behaviour of the model one can still apply PLS and make

some experiments in the set of input variables.

6.4.1 Applied PLS Analysis

Using the same data setup as above, the PLS procedure offers four latent vectors. As

explained in Section 3.6 the PLS algorithm produces generally lower dimensional models

than PCA anaylsis, because the utilization of the output dataset lowers the rank of the

correlation matrices. Figure 6.9 shows the result of the PLS analysis of the 18-dimensional

input set and the 4-dimensional output set. The numerical values of the eigenvalues are

larger than in the PCA case, because the multiplication Y TXXTY produces very large

matrix entries.
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Figure 6.9: Latent vectors θi (PLS) and the numerical values of the corresponding eigenvalues

(equals importance of information among data)

It is possible, to choose only two latent vectors to capture 83% of the information hid-

den in the variation of the input data. The basis Θ would produce an intermediate

dataspace Z of the small dimension k × 2 containing all necessary information. This

remarkable reduction when compared to the PCA approach is feasable, because now the

algorithmsknows what kind of features it should search for among the input information.

After selecting the two most significant vectors as a new basis for the dataspace X, it

is projected using this basis into Z of dimension k × 2. The mapping to the final space

Y has the dimension 2 × 4, hence the overall linear model F apparently again has the

dimension 18× 4.

As an example the first vector F1 of the linear model is presented in the same format as
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above to give a clue about its composition:

FT
1 =

(

0.2005 0.1994 0.0041 −0.0083 0.0063 −0.0206 . . .

0.1976 0.1992 0.0130 0.0326 0.0202 0.0458 . . . (6.5)

0.1966 0.1970 0.0190 0.0356 0.0235 0.0487
)

.

Again nickel concentration in the bath and pH value have the largest significance. Ob-

viously it is no longer necessary to use the information about temperature in the bath.

The importance of temperature is now on the level of the other “unuseful” measurements,

like the loading of the bath and the currently plated area, which both do not effect the

thickness of the nickel layer.

It might also be interesting to look at the importance of the input data for the output

variable phosphorus content. This information is stored in the second column of F :

FT
2 =

(

−0.1545 −0.1985 0.0010 0.0091 0.0005 0.0185 . . .

−0.1516 −0.1982 −0.0046 −0.0273 −0.0096 −0.0402 . . . (6.6)

−0.1507 −0.1963 −0.0100 −0.0289 −0.0113 −0.0428
)

.

Here also, nickel concentration and pH value (F2,1 and F2,2) account mainly for the phos-

phorus content in the nickel alloy. It is notable that the information about these two

variables comes into the model negatively. This means that with higher nickel concentra-

tion and higher pH value the phosphorus content decreases.

Industry is not interested in spreading information about their already working processes

in nickel plating. However, the dependencies between a change in bath characteristics

and the resulting changes in plate attributes are known from many experiments and

the long experience of operators. According to consultations with domain experts and

their information the described behaviour of the linear model and the patterns it reveals

obviously match this experience and this fact corroborates the accuracy of the model F .
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6.4.2 PLS Estimation Results

How did the results change using a different method? The model based on PCA analysis

generated a good model, which already could compete with a highly complex electro-

chemical model. Now, using PLS, the gap between input and output is bridged and so

the result improved.

The model is now based on a subspace of X, which has only the dimension of k× 2. Note

that with two selected latent vectors all important information of X is captured instead

of using seven latent vectors as it was necessary after the PCA analysis. The results are

presented in the same framework as earlier.

Figure 6.10 shows the Ni-P alloy thickness and estimates from the PLS based model

and the elechtrochemical model. Again the simple linear model beats the constraints-

based model visually and also by means of SSE. The linear model is definitely better if

talking about level: validataion set 1 shows that the electrochemical model needs longer

to adapt to the real data level and to reach reasonable values. The first impression shows

no improvement as compared to the results of Section 6.3.5, but in means of SSE this

approach could enhance the estimate.

The phosphorus content in measured data, along with linearly and electrochemically es-

timated data is given in Figure 6.11. The phosphorus content is not better estimated

if it comes only to SSE. The linear estimate increases its sum of squared error a great

deal in validation set 2 if compared to the PCA case. However, a visual examination and

comparison will reveal a better and smoother behaviour not only in comparison to real

data, but also in comparison to the electrochemical model.

Generally the values of the linear estimate are now smoother than those from the PCA

based model. For this see the estimation dataset for phosphorus content in Figure 6.11

and compare it to the estimation of this variable in the previous case (Figure 6.6).

86



0 5 10 15 20 25 30 35 40 45
3

3.5

4

4.5

5

Time [h]

Th
ic

kn
es

s 
[µ

m
]

18 input vectors, 2 latent vectors capture 76.5465%

measured data
estimate, SSE = 0.028895
electrochemical model, SSE = 0.037088

0 5 10 15 20 25
3

3.5

4

4.5

5

Th
ic

kn
es

s 
[µ

m
]

Validation 1

measured data
estimate, SSE = 0.082567
electrochemical model, SSE = 0.14595

0 5 10 15 20 25
3

3.5

4

4.5

5

Overall Validation SSEs equals 0.064752

Th
ic

kn
es

s 
[µ

m
]

Validation 2

measured data
estimate, SSE = 0.05134
electrochemical model, SSE = 0.05939

Figure 6.10: Alloy thickness: measured data and two compared estimates
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Figure 6.11: Alloy phosphorus content: measured data and two compared estimates
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Figure 6.12: Hypophosphite concentration: measured data and two compared estimates
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Figure 6.13: Orthophosphite concentration: measured data and two compared estimates
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For the concentrations of hypophosphite and orthophosphite in Figure 6.12 and Figure

6.13 there is also no significant improvement. Still the estimates are sometimes too late,

sometimes trying to model variations where according to the measurements nothing had

happened. Not even the PLS approach could find a pattern among the input variables

that reveals the behaviour of these concentrations.

Obviously this method is more feasible to estimate plate characteristics than bath char-

acteristics. Since the aim was to model and estimate the behaviour of the alloy charac-

teristics, however, this modeling approach gives a very accurate alternative to a complex

constrained based model.

To summarize, the following Section 6.5 will give a discussion about the obtained results,

variations in the model, and its features.

6.5 Discussion

The conclusion is rather simple. Using neocybernetic ideas, despite its simplicity one can

achieve very accurate results. The very simple model for this complicated process turned

out to be equivalent and even better than the complex model. Freedoms-oriented thinking

helped to find the underlying patterns in the available data and made it easy to estimate

hidden characteristics. It took much more effort to obtain this result on the traditional

way of constraints-oriented thinking.

Furthermore, this model also tells which measurements are necessary and which variables

have no effect on the characteristics of the plated substrate. This may help to save money

while monitoring the process and its variables by avoiding expensive measurements. It

was, for example, possible to use only measurements about nickel concentration, pH value,

and temperature, and still only N = 4 latent vectors θi could capture 98% of information.

The difference to the presented results is marginal.
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Attempts to improve the presented results to a greater extend mostly failed or did not

add significant enhancement. It turned out that some modifications and increments of

the input data space of online available variables improved the overall result, and some

did not. The best results are presented in this work by means of best possible fit.

The biggest step was taken by adding the integral information. Using not only the values

of the actual time stamp, but also all available information during the plating time, helped

to improve the sum of squared error. There was also visually improvement detectable,

especially in the estimation for phosphorus content.

Adding the smoothened values did not improve the result significantly. The information

added by this approach was obviously already provided by the integral feature. In addition

PCR as well as PLS also remove noise from data, so the smoothing did not help in this

task. Maybe a different way of smoothing, for instance with an exponential “forgetting”

function, might improve the overall behaviour.

Since the process is based on electrochemical reactions, it might be helpful to include

information about the actual flow of current or the actual potential in the bath. These

values are unfortunately not measured accurately, hence the measurements were not used

in this data-based modeling approach. However, it is possible to calculate these voltages,

using the Nernst equation (see Appendix D). Also this method could not improve the

estimation result crucially, neither by means of SSE nor visual examination.

This is reasonable as the reader may have noticed. Adding information, which is calculated

out of already included information, makes no sense. The algorithms PCR and PLS are

searching for underlying patterns in the dataspace, and a combination of data added to

this space cannot give more information. One just adds more redundancy, which is filtered

out again when using the new basis Θ. Really measured information about the voltage

in the bath could help to improve the result, because it might add fresh information to

the algorithms.
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All this improvements and degradations are in the range of very small deviations. Indeed,

the sum of squared error for the thickness estimation improved by 12% when using PLS

instead of PCR while even reducing the information in terms of variation to two instead

of seven dimensions. All other attempts though produced only a difference of few percent.

Generally it is very remarkable that if there is deviation between the model estimation and

the measured values that not only the model at hand produced this difference, but also the

electrochemical model had difficulties to estimate correctly. This might be another hint

for errors in the measurement data, caused by mistakes during the actual measurements.

But there are also some parts where the linear model deviates in the different direction

than the electrochemical model — this might be caused by the dynamic behaviour this

electrochemical model implements.
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7

Future Prospects

The work and research at the Control Engineering Laboratory provided me an insight

into new ways of thinking. It was interesting to read about neocybernetics and follow the

advancements of its ideas. They give a new background in system thinking and reveal a

new area of modeling complex systems. This thesis tried to encompass the understandable

key points and arouse interest in the reader.

The industrial process of nickel plating was no less interesting than the neocybernetic

theory. It provided an insight into a new chemical domain and gave me the opportunity

to enter a new scientific field. Furthermore, the way of combining these two scientific

fields kept me intrigued. All assumptions and expectations given before any data analysis

or system modeling were in the end confirmed and even exceeded. The model proves that

neocybernetic ideas can be applied to this kind of chemical process with success.

Through simplicity and linearity a way was found to model the complicated nickel plating

process. A linear model for monitoring and estimating plate characteristics was presented

and explained. It was as accurate, if not better, than a model derived through tradi-

tional thinking — this underlines the accuracy of all assumptions. The model is easy

to understand, easy to use, and easy to adapt. Recall the introducing quote of Norbert
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Wiener; the best way is not always the modeling approach closest to the cat, closest to

the system itself. Stepping back and using simple tools can even produce better and more

understandable results.

The important tasks of estimating the Ni-P alloy thickness and its phosphorus content

were fulfilled. The other unknown variables were not modeled accurately enough — but

also other models failed to estimate the concentrations of hypophosphite or orthophosphite

accurately.

There is still work to do. Since there is a great deal of data available and the results vary

slightly among the use of data and the proposed additional features, the model has to be

fixed before further use. The following must be defined: which data should be used in the

end and which measurements are crucial and absolutely necessary for the model.

In the next step the model can be applied to the real process and its accuracy can be tested

by comparing the estimated variables to the real characteristics of the plated substrate.

The model could be opened for adaptation among measurements if it turns out that the

parameters in the mapping F are not properly calculated. Also a combination of the

linear model and the electrochemical model [14] might improve the behaviour of either

one.

The solution presented in the thesis at hand along with the solution presented by Kantola

in [14] might give companies the possibility to control plate characteristics during the

actual plating process. This would reduce expenses during the process and lower the

price of production. Furthermore, it would make the process and its products more

accurate and increase quality.

The future will tell if this approach can be used to satisfy all these expectations and if it

will make the step from a scientific work to an actual application on a real-life process.
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Appendix A

Example

Constraints vs. Freedom

Assume that the available variables are measurements of some time-domain signal y, so

that samples are indexed as y(κ), y(κ − 1), etc. Further assume that there are three

variables that are connected by a model






y(κ) = ay(κ− 1)

y(κ+ 1) = ay(κ).
(A.1)

The difficulty here is that one does not know beforehand whether some of the variables

are redundant. The data vectors are three-dimensional:

v(κ) =








y(κ− 1)

y(κ)

y(κ+ 1)







. (A.2)

In this case the constraint vectors without normalization are

Γ =








a 0

−1 a

0 −1







. (A.3)
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The whole data space S is spanned by the constraints and the degrees of freedom:

S =
(

Γ | Θ
)

. (A.4)

In this example apparently the constraints span a two-dimensional null-space in the three-

dimensional variable space. The remaining dimension, which is the degree of freedom,

can be solved by orthogonalization, for example applying the Gram-Schmidt procedure

according to [21]:








a 0 1

−1 a 0

0 −1 0








−→









a√
1−a2

a2√
(1+a2)(1+a2+a4)

1√
1+a2+a4

−1√
1−a2

a3√
(1+a2)(1+a2+a4)

a√
1+a2+a4

0 − (1+a2)√
(1+a2)(1+a2+a4)

a2
√

1+a2+a4









, (A.5)

where the 3 vectors are now not only orthogonal but also orthonormal. This means

according to (A.4) that the model Θ = θ becomes

θ =








1

a

a2







/
√
1 + a2 + a4. (A.6)

The “axis of freedom” clearly has an exponential outlook in the data space. This is an

exact correspondence with the time-domain behaviour of the system that is characterized

in (A.1). The degrees of freedom determine “behavioural fragments”, so that actual

observations can be constructed from combinations of them.

If the data vector v would be much larger, also the vector of the model would become

larger. But the pattern of the exponentional outlook will remain easily visible, whereas

in the huge data vector nothing can be seen.
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Appendix B

Eigenproblem Properties

The formulation of the eigenvalue problem (3.5) in Section 3 can be studied closer to

extract some very useful properties. These properties are the basis for all the helpful

applications of PCR and PLS.

The covariance matrix R turns out to be symmetric, because elements Rij and Rji have

equivalent expressions:

Rij =
1

k
·XT

i Xj =
1

k
·XT

j Xi = Rji. (B.1)

Next, multiply the eigenvalue problem (3.5) from the left with the vector θTi :

1

k
· θTi XT ·Xθi = λi · θTi θi. (B.2)

This expression consists essentially of two dot products that can be interpreted as squares

of vector lengths. Because these quantities must be real and non-negative, and because k

is positive integer, the eigenvalue λi is always real and non-negative.

Again, multiply the eigenvalue problem (3.5) from the left side, this time with another

vector θTj :

θTj Rθi = λi · θTj θi. (B.3)
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Because R is symmetric (R = RT ) there must hold

θTj R = (RT θj)
T = (Rθj)

T = λjθ
T
j , (B.4)

so that from (B.3) one has

λj · θTj θi = λi · θTj θi (B.5)

or

(λi − λj) · θTj θi = 0. (B.6)

For λi 6= λj this can only hold if θTj θi = 0. Eventually this means that the eigenvectors of

R are orthogonal.

Since MATLAB was used for the calculations and the implemented MATLAB functions

automatically return normalized vectors, said eigenvectors are always even orthonormal.
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Appendix C

Example

Eigenvectors and Eigenvalues

In Section 6.3 a selection of 7 vectors was chosen. To give an example, these vectors and

the corresponding eigenvalues are presented here.

The eigenvalues are

(

λ1 . . . λN

)

=

(

5.2617 2.6728 2.3393 1.7939 1.5778 1.4594 1.2524
)

, (C.1)

and the new base for the dataspace X is

Θ =
(

θ1 | . . . | θ7

)

=

100























































−0.2874 0.3244 0.1536 0.3197 −0.1391 0.0419 0.0450

0.2355 0.3876 −0.3505 −0.0228 0.0072 0.0721 0.0422

−0.2556 −0.0130 −0.1840 −0.3423 −0.3305 −0.0250 0.1052

−0.1168 −0.2221 −0.3506 0.3086 0.0961 −0.1733 0.0213

−0.2914 0.0608 −0.0957 −0.1517 0.4397 0.1104 −0.0898
0.0206 0.0806 −0.0067 −0.0386 −0.1850 −0.0031 −0.8395
−0.2920 0.3239 0.1625 0.3066 −0.1282 0.0497 0.0414

0.2377 0.3856 −0.3493 −0.0128 0.0097 0.0819 0.0414

−0.2992 0.0030 −0.2008 −0.3217 −0.3428 −0.0700 0.1263

−0.1350 −0.1964 −0.4063 0.3670 0.0422 −0.2087 0.0406

−0.3139 0.1141 −0.0772 −0.1773 0.4454 −0.0243 −0.1050
0.0826 0.2140 0.1092 −0.0983 −0.0580 −0.6586 −0.2946
−0.2813 0.3465 0.1939 0.2737 −0.1015 0.0600 0.0481

0.2497 0.3789 −0.3371 0.0071 0.0383 0.0706 0.0389

−0.2744 0.0487 −0.1746 −0.2896 −0.2985 −0.0424 0.0726

−0.1560 −0.1589 −0.3227 0.3084 −0.1056 −0.1922 −0.1585
−0.3026 0.1326 −0.0575 −0.1692 0.4107 −0.0493 −0.0860
0.1001 0.1581 0.1632 −0.0663 0.1279 −0.6391 0.3336





















































. (C.2)
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Appendix D

Calculated Voltages

The process of nickel plating is considered to be based on underlying electrochemical

reactions. Hence, there are variations in potential and small flows of current in the bath.

Since these variables are not measured very accurately, it might be possible to calculate

them from available data.

According to [14] the Nernst equation gives the possibility to calculate the equilibrium

potential from the bath concentrations and temperature:

u1 = U1 +∆U1 + κ(log c5 − log c1 − 2pH) (D.1)

u2 = U2 +∆U2 + 2κ(log c1 − 2pH) (D.2)

u3 = U3 − 2κpH (D.3)

u4 = U4 +∆U4 + κ log c4, (D.4)
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with

κ−1 = 2
F

RT
log10 e

F = Faraday’s constant, 96487C/mol

R = universal gas constant, 8.3145 J/(mol K)

T = Temperature [K]

c1 = hypophosphite concentration [mol/dm3]

c4 = nickel concentration [mol/dm3]

c5 = orthophosphite concentration [mol/dm3]

∆U1 = 10−6(T − 25 ◦C)360 µV/◦C

∆U2 = 10−6(T − 25 ◦C)300 µV/◦C

∆U4 = 10−6(T − 25 ◦C)60 µV/◦C.

Since there is no online information about the hypophosphite concentration c1 from the

measurements, one is only able to calculate u3 and u4. For each time stamp the voltages

were calculated and eventually added to the input data set, increasing its dimnesion to

k × 20. The obtained variables could add more information about the actual state of the

bath on which the estimates for the plate characteristics will be based.
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