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Used Abbreviations

act: actuator

b: break

exp: expected

ext: external

fem: Femlab

fo: first order

g: gravity

int: internal

mat: Matlab

rel: relative

PCA: Principal Component Analysis

PCR: Principal Component Regression

PSA: Principal Subspace Analysis

SISO: Single-input-single-output

so: second order
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Chapter 1

Introduction

It was Norbert Wiener who brought up the term cybernetics when his book Cyber-

netics: Or Control and Communication in the Animal and the Machine [25] was

published in 1948. The general idea of cybernetic systems is that observed complex

behavior in systems is caused by the dynamics of present actors. These dynamics

are a result of interactions and feedback structures among the actors. Per definition,

cybernetics can be described as the study of systems and control on an abstracted

level. Therefore it constitutes an excellent framework for the combination of control

theory, information theory and communication theory and as an interdisciplinary re-

search area it can be applied to different domains like biology or technology [15][14].

Until now, traditional control purposes are mainly implemented in a centralized man-

ner. Hence, the total potential of cybernetic thinking in control theory is not exploited

yet, if one thinks of distributed sensor/actuator networks for control purposes. Dis-

tributed sensor/actuator networks are gaining attention, but still the coordination

in such systems is not completely decentralized as there usually exist central units

or sinks for coordination and monitoring purposes [16]. The key question here is

how emergent behavior in complex systems can evolve, when only fundamental, de-

centralized interactions among low level sensor/actuator pairs are realized without

explicit knowledge of the global picture. One answer to this question is given by the

neocybernetic approach of modeling and controlling complex real-life systems.

In this framework, self-regulation and self-organization can evolve in systems. For
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analysis of these phenomena multivariate statistical tools are needed. A system theo-

retic approach reveals that Hebbian/anti-Hebbian learning results in emergent system

behavior, what can, for example, be used for smart data analysis in distributed sen-

sor networks [11]. Even stronger views can be derived from the new neocybernetic

approach to "elastic systems" [15]. These systems are determined by strong inter-

connections with their regarded environment caused by material or information flows

from and into the system. It turns out that the new approach can be used for the

decentralized control of deformable systems in a distributed sensor/actuator network

and this is shown in what follows.

As the neocybernetic thinking is not widespread yet, the general ideas of neocyber-

netics and the new approach on elastic systems are presented in the following two

chapters. After that the knowledge about elastic systems is used to realize a simula-

tion area for the research on the distributed control of deformable mechanical systems

with locally acting sensor/actuator pairs. In addition to that the highly iterative si-

mulation process demands a more sophisticated simulation strategy where the strong

interconnection between the used simulation tools Femlab and Matlab is restructured.

The outcomes of the simulations are presented in the thesis and interpreted.
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About Neocybernetics

2.1 Overview

If one wants to describe the idea of neocybernetics, one can say that this new or

extended theoretical framework tries to provide a new approach to describe real life

complex systems. Thereby it compensates shortcomings of other existing theories

like complexity theory, system theory, control theory or the traditional cybernetics

that are also related with the classification and handling of real-life complex systems.

Simplified, one can say that cybernetics itself offers a special view on complex sys-

tems, while neocybernetics offers a special view on cybernetic systems [13].

Compared to the complexity theory, where structurally complex nonlinear functions

are studied as independent entities, the neocybernetic approach concentrates on struc-

turally simple large scale systems. Here, the complexity is a result of system-wide

interactions and high-dimensionality of the systems. Control theoretic approaches

have their focus more on centralized, individual feedback loops rather than distrib-

uted control structures. Here, neocybernetics describes system dynamics with mutual

interactions and feedback structures among decentralized lower level actors. As a re-

sult self-organization and self-regulation emerge. These mechanisms of emergence are

emphasized and researched with the neocybernetic approach. In traditional cyber-

netic systems the issue of emergence is not addressed yet [13].

This chapter gives a closer look at the intuition of emergence in complex systems. As
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Figure 2.1: Different levels of abstraction while modeling a gaseous system [15].

a result, it is stated out that statistical tools can be applied to capture emergence in

neocybernetic systems. Therefore the considered systems have to be stationary and

only stable systems are taken into account. Linear structures are applied in order to

reach scalability of the results.

2.2 Emergence in Complex Systems

The key concept in complexity theory is emergence, meaning that some higher order

phenomena cannot be reduced to the analysis of their individual components. Quali-

tatively new, unanticipated functionalities may emerge, as a result of the cumulation

of simple low-level operations. In these cases the reductionistic modeling approaches

collapse, as the "whole" is more than the sum of all parts.

In order to get a better understanding of emergence, explicit examples can be studied

first and the common features can be represented in an explicit mathematical frame-

work. An example for emergence are models of gaseous systems in different scales,

like presented in Figure 2.1. There it can be seen that emergence solidifies in a way

that higher order behavior of a system cannot be described satisfactory as a sum of

all lower level interactions [15].
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The elementary particles are presenting the system on the lowest level. The orbital

models, describing these particles are stochastic. At the atom level, the Newtonian

approximative ideal gas model can be taken into account to define atoms as billiard

balls. On this level the concepts of velocity and momenta are deterministic. In a

larger system, individual collisions of millions of atoms cannot be traced and statisti-

cal mechanics becomes the appropriate framework. One step higher, macroscopic and

deterministic quantities like pressure, temperature or entropy describe the state of

system. In still larger volumes convections and turbulences result out of temperature

distributions and statistics are playing an important role again, in order to describe

the system. On the highest level, the deterministic modeling of ideal mixers (e.g.

cells) with lumped parameters emerges, if complete turbulence is assumed. On that

level there are concentrations that need to be taken into account.

In the described hierarchy it is obvious that stochastic and deterministic behavior

alternate. The alternation seems to be intuitively right as for example two succes-

sive deterministic levels could be merged to one level and no emergence could be

realized. It also turns out that the number of interacting entities increases with the

level height. On a still higher level of abstraction, statistical tools can describe the

system again, if the actual dynamic processes are abstracted. But in order to apply

statistical methods the underlying system has to be stationary and stationary signals

can only be reached in stable systems. The claim of stability can be explained, as

unstable systems would end up in explosion or an exhaustion of resources and there-

fore extinction. Hence, modeling of neocybernetic systems concentrates on stable

systems, where statistical tools can be applied [15], [13].

2.3 Key ideas

As one has a closer look at the basic principles of neocybernetic modeling, there are

three areas that have to be discussed, the dynamic balances in systems, the high-

dimensionality and the linearity pursuit of modeling.
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2.3.1 Dynamic balances

As stated out in the foregoing section, it is the emphasis on the final balance rather

than on processes that are finally leading to that balance. Instead of concentrating

on nonlinear interactions that are forming the process one is interested in the pattern

that emerges.

The researched balance in the system is a balance among tensions that are com-

pensated by internal mechanisms. In practice these dynamic balances are caused by

feedbacks. How these feedbacks are realized is not essential, as long as the system

can maintain the claim of stability. It also has to be mentioned that the concept of

balance can be interpreted in a wider sense, as the balances are defined with respect

to the considered variables. One can for example research the derivatives of some

other quantities and consider these derivatives to be balanced. Thereby one achieves

a constant level of dissipation. Furthermore, the idea of stable systems can be re-

laxed. Systems can also include oscillating parts, as long as it keeps its integrity and

statistical terms can be used to describe the system [15], [10].

2.3.2 High dimensionality

As the real structure of the environment can not be assumed to be known, one has to

take measurements of the environmental responses into account in order to build an

appropriate model of the considered environment. Compared to conventional complex

systems, where the models are structurally complex, the complexity in neocybernetic

models is a result of high-dimensional parallel handling of measured information. The

considered data is collected in data vectors. With these data vectors the modeling

machinery tries to construct appropriate connections among the available data seg-

ments. As the data normally turns out to be redundant, one can use multivariate

methods [9] and corresponding mathematical tools for a better analysis of neocyber-

netic models [15].

This bottom-up analysis of data can be carried out by Hebbian neurons, for example,

and is presented later on in Section 2.4 in order to get a better understanding of

neocybernetic modeling approaches [12].
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To achieve a consistent mathematical framework that is easy enough to provide a

simple analysis of complex systems and still captures the essence of the considered

neocybernetical models, the following section introduces the aspect of linear model-

ing.

2.3.3 Linear modeling

It turns out that the idea of linear modeling often offers a rather good match with

reality, at least if the nonlinearities in the system are linearizable and smooth. The

big advantage of linear modeling is that there exist powerful tools for analysis and

also intuitive transfers from a domain field to another can be made easily. With the

use of linear structures scalability of models can be reached [10].

A deeper view on the issue of linearity and a detailed argumentation can be found in

[15] and [10]. The linear framework can also be relaxed later on if necessary. More on

that can be found in [12]. In this work the used application tools for neocybernetic

modeling are linear tools.

One example that satisfies the introduced ideas of high-dimensionality and linearity is

the modeling of linear Hebbian neuron grids. It turns out that with the proper statis-

tical tools, Hebbian learning results in self-organization and self-regulation. Section

2.4 introduces these ideas and results are interpreted from the neocybernetic point

of view.

2.4 Example: Hebbian Neuron Grids

As mentioned above, the modeling of a Hebbian/anti-Hebbian neuron grid can be

taken as a prototype of modeling neocybernetic systems. When the neurons are

connected together properly, self-stabilization and self-organization takes place in a

neuronal system. It turns out that the implementation of these grids for data analysis

carries out PSA and if further structural constraints are implemented PCA and PCR

are realizable.

The resulting emergent pattern can also be formulated in terms of an optimality cri-
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terion (see Section 2.4.5) and the neocybernetic strategy constructs a "mirror image"

of the environment, being itself a model of the environment. It captures relevant

behavioral patterns as they are manifested in the data.

The following sections introduce the mathematical framework of Hebbian neuron

grids and interpretations are made later on. The information can be read in [12] at

length and additional information can be found in [10].

2.4.1 Dynamics in a Hebbian Neuron Grid

It is assumed that the d inputs to a neuronal system are collected in the vector u and

the vector of neuronal activities in a grid of c neurons is denoted as x. Now, there

is a new input sample u(l) during each time constant l and one is interested in the

internal neuronal state x(l) given by the neuronal activities.

It cannot be assumed that the internal state changes instantaneously. In the follow-

ing part a dynamic neuronal structure is introduced, describing the adaptation. For

that purpose another time constant t is needed. If a new set of input variables u(l)

is applied, t starts from zero and the adaptation of the continuous-time state vector

xcont(t, l) goes on, until the reaching of the steady state. The challenge in that kind

of system is that only the input vector u(l) is known and one should determine the

internal state and the internal system structure. Therefore some assumptions have

to be made.

If one assumes that the momentary change in the neuronal activity is linearly propor-

tional to the current neuronal state and also to the input activity, one can model the

whole grid of neurons simultaneously, when matrix formulation is used. The dynamic

in the grid of neurons is described as follows

dxcont

dt
(t, l) = Axcont(t, l) + Bu(l) (2.1)

Here, the synaptic weights are collected in the matrices A and B. Matrix A collects

the synaptic weights between neurons itself, as matrix B determines the weights

between neurons and inputs. In order to make the discussions directly compatible

with the algorithmic implementations later on, the continuous (2.1) can be presented
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in discrete-time formulation. The derivative can be approximated with

dxcont

dt
≈ xcont(t + h, l) − xcont(t, l)

h
(2.2)

After defining a discrete-time activity vector as

x(κ, l) = xcont(κh, l) (2.3)

(2.1) can be written in discrete-time as

x(κ + 1, l) = x(κ, l) + hAx(κ, l) + hBu(l) (2.4)

If the system is asymptotically stable, the state will finally converge to

x̄(l) = limκ→∞{x(κ, l)} (2.5)

Here it has to be assumed that the adaptation of the neuronal grid is faster than the

change of the input data u(l).

2.4.2 Modeling of a Hebbian Neuron

Based on the linear Hebbian neuron model, complex structures could already be de-

veloped as can be read in [6] or [18], for example. On the other hand, models have

become increasingly complex, what makes it difficult to find efficient methods for the

analysis.

Basis for the following mathematical considerations are neurophysiological observa-

tions that can be ascribed to the physician Donald O. Hebb half a century ago [7].

The Hebbian law can be formulated as follows:

• Hebbian law. Synaptic connection between the neuron and an incoming signal

becomes stronger if the signal and the current neuron activity correlate with

each other.

That simple rule gives a hint, how low-level neuronal functions are connected to fulfill

higher-level functionalities and higher order emergence could take place.

According to the Hebbian law, the synaptic weight rab between neuron a and input

b can be calculated as follows

rab(l + 1) = rab(l) + ρx̄a(l)ub(l) (2.6)
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The factor ρ > 0 determines the synaptic dynamics and x̄(l) is the steady-state

neural activity for the input u(l). As the synaptic connections can become stronger

and stronger without limit, the occurring instability can be eliminated by adding

a nonlinear term, named Oja’s rule [19]. The nonlinear term makes an analysis of

the overall system difficult; stability can also be reached by using a negative linear

feedback term additionally. The term can be added in (2.6) and as a result the

synaptic weight can be calculated as

rab(l + 1) = rab(l) + ρx̄a(l)ub(l) −
1

τ
rab(l) (2.7)

The parameter τ > 0 is the time constant determining the rate of decay. To represent

all input-output connections, matrix expression can be used and it follows

R(l + 1) = R(l) + ρx̄(l)uT (l) − 1

τ
R(l) (2.8)

If one assumes that the second order statistical properties of the data do not change

over time and the factor τ is large the steady-state value for the matrix R of synaptic

weights can be calculated out of (2.8) as

R = ρτE{x̄uT} (2.9)

Matrix R is called the covariance matrix of the vectors x̄ and u. Covariance matrices

can be defined for signals in vectors x and u in the same way. The covariance matrices

are decomposed in what follows as

Rx̄x̄ = E{x̄x̄T } =








E{x̄1x̄1} · · · E{x̄1x̄c}
...

. . .
...

E{x̄cx̄1} · · · E{x̄cx̄c}








(2.10)

and

Rx̄u = E{x̄uT} =








E{x̄1u1} · · · E{x̄1ud}
...

. . .
...

E{x̄cu1} · · · E{x̄cud}








(2.11)

Here it has to be mentioned that the expectation values have to be calculated over the

time index l as introduced in Section 2.4.1. The matrix form for the expectation values

makes it very easy to represent parallel operation and still interaction and adaptation
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operations are local. Weights between neurons are determined by the corresponding

output and input neurons alone. If it is assumed now that the synapses follow the

Hebbian principle, the matrices A and B in (2.1) can be chosen as

A = −µE{x̄x̄T} (2.12)

and

B = µE{x̄uT} (2.13)

Here, factor µ > 0 is a step size factor that is adjusting the time scale in the adaptation

algorithm. As can be seen in (2.12) and (2.13), the covariance structures are the same,

but the signs are different. The explanation can be derived from a single synapse:

Stability in the grid can be maintained, if negative feedback is applied in form of linear

dynamic structures. If the covariance matrix A is positive definite, all eigenvalues

of A are non-negative and the model (2.1) is stable. In what follows it is assumed

that the adaptation of the covariance matrices is much slower than the change in the

input data and the neuronal grid dynamics in (2.1) are still much faster.

The minus sign in the structure seems to invert the basic Hebbian law and one can

define the anti-Hebbian law as follows:

• Anti-Hebbian law. Synaptic connection between two neurons becomes wea-

ker if the neuronal activities correlate with each other.

An interpretation of the Hebbian law is that the effects from prior level are excita-

tory, as the lateral connections between the same level neurons are inhibitory. The

Hebbian/anti-Hebbian structure is carrying out PSA as can be seen in the follow-

ing section. While Hebbian learning searches for maximum variation directions in

the analyzed data, the anti-Hebbian learning results in an organization among the

neurons as it implements some kind of competitive learning.

2.4.3 Principal Subspace Analysis

If it can be assumed that the system reaches the stationary state x̄(l), (2.4) holds

x̄(l) = x̄(l) + hAx̄(l) + hBu(l) (2.14)
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and with (2.12) and (2.13) it is

x̄(l) = x̄(l) − µhE{x̄x̄T }x̄(l) + µhE{x̄uT}u(l) (2.15)

If one solves for the steady-state, x̄(l) is

x̄(l) = E{x̄x̄T}−1E{x̄uT}
︸ ︷︷ ︸

φT

u(l) (2.16)

regardless of factors µ and h, as long as the iteration is stable. The inverse covariance

matrix E{x̄x̄T }−1 exists, if the variables in x are not linearly dependent.

One can define a static linear mapping between the input u(l) and the steady-state

neuronal activity x̄(l) as

x̄(l) = φT u(l) (2.17)

where the d × c matrix φ is defined as

φ = E{x̄uT}T E{x̄x̄T }−1 (2.18)

Because the final neural activity, meaning x̄(l) corresponding to u(l), is not known

beforehand, determination of the covariance matrices is an iterative process (see Sec-

tion 2.4.4). One can see from (2.16) that the final neural states are determined by the

covariance matrices and the covariance matrices itself are determined by the steady

state respectively.

It can be proved that the stable fixed point for the mapping matrix φ spans the

principal subspace of the input data [12]. That means that the columns of φ are

linearly independent combinations of the c most significant eigenvectors of the input

covariance matrix E{uuT}, corresponding to the largest eigenvalues. Moreover, the

variability in x equals the total variance along the c most significant principal com-

ponent directions in u. More on PCA can be found in appendix F and [9].

As the number of neurons is smaller than the number of inputs, not all variation

in the data u can be explained by x, but the largest principal components explain

variations in the best possible way, trying to find the minimum for a quadratic cost

criterion (see also Section 2.4.5).

Overall, one can say that Hebbian/anti-Hebbian learning results in self-regulation,
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what means the resulting system is balanced, and also self-organisation, as the learn-

ing carries out PSA and emphasizes the directions in the data with the highest vari-

ation. Hebbian/anti-Hebbian learning is used in order to construct models for data

analysis purposes.

2.4.4 Algorithmic Implementation

If one has a closer look at the mapping matrix φ from (2.18) it can be realized that

only the input data u(l) is known, but not the final steady-state x̄(l) that is needed

for adapting the covariance matrices. The whole process is highly iterative. But if

such analysis is applied for technical purposes, a streamlining of the dynamic iteration

process can be done. The outcomes of the dynamic process can directly be employed,

as one implements explicit matrix inversions. The used algorithm can be described

in two steps:

1. First the covariance estimates have to be updated. Here λ describes the forget-

ting factor and there holds 0 � λ < 1







E{x̄x̄T}(l) = λE{x̄x̄T }(l − 1) + (1 − λ)x̄(l − 1)x̄T (l − 1)

E{x̄uT}(l) = λE{x̄uT}(l − 1) + (1 − λ)x̄(l − 1)uT (l − 1)
(2.19)

2. The signals estimate out of (2.16) can now be found as

{

x̄(l) = E{x̄x̄T }−1(l)E{x̄uT}(l)u(l) (2.20)

Here the covariances can be for example initialized as E{x̄x̄T}(0) = εIc, where ε is a

small constant.

As mentioned before, the input neurons are carrying out PSA . It is also possible to

implement PCA carried out by the input neurons directly. How the constraints have

to be set, in order to achieve that can be read in [12] and is not conducted here.

The introduced Hebbian/anti-Hebbian learning can also be explained in a more ab-

stract sense, what is shortly presented in the following section.
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2.4.5 Optimality of Hebbian learning

A general quadratic optimality criterion that has to be minimized, can be presented

as follows

J(x) =
1

2
(u − ϕx)T W (u − ϕx) (2.21)

Matrix W is symmetric, positive definite and compatible with the vector u. Matrix

ϕ is a d× c dimensional mapping matrix. In order to search for the unique minimum,

the gradient can be expressed as

dJ

dx
(x) = ϕT Wϕx − ϕT Wu (2.22)

The closed form solution for x is

x̄ =
(
ϕT Wϕ

)−1
ϕT Wu (2.23)

If one wants to search the minimum iteratively with the steepest descent method [24]

the formulation can be presented as

x(κ + 1) = x(κ) − β dJ
dx

(x(κ))

= x(κ) − βϕT Wϕx(κ) + βϕTWu
(2.24)

If one compares this equation to (2.4) one can see a certain similarity, if the different

applied sets of data l are neglected. With (2.12), (2.13) and (2.17) the expressions

are identical if






βϕT Wϕ = −hA = µhE{x̄x̄T} = µhφT E{uuT}φ
βϕT W = hB = µhE{x̄uT} = µhφTE{uuT}

(2.25)

These expressions are valid if






β = µh

ϕ = φ

W = E{uuT}

(2.26)

The optimality criterion from (2.21) results with (2.26) in

J(x) =
1

2
(u − φx)T E{uuT}(u − φx) (2.27)

As a result one can conclude that Hebbian/anti-Hebbian learning can also be formu-

lated in the framework of optimization. The algorithm in (2.4) can be interpreted as
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the descent gradient algorithm, trying to find the minimum for the introduced cost

criteria. One can state out that in the neocybernetic point of view not the process

itself represented by the iteration is important (process view), but the final emerging

pattern (pattern view) that results out of the iteration.

The algorithm tries to minimize the difference between u and φx. With the weighting

matrix W = E{uuT} it can be said that errors in the directions with high variations

are emphasized. That makes the algorithm robust if one searches for the principal

components while suppressing noise as well.

The next chapter is introducing a new neocybernetic approach called elastic systems.

It turns out that Hebbian/anti-Hebbian learning is a special case of evolutionary

adaptation performed by elastic systems in order to embed systems better into their

environment.



Chapter 3

About Elastic Systems

The new ideas of modeling neocybernetic systems as elastic systems can be read in

[15] at length. As that approach starts from determining the goals of evolution there

has to be stated out that 1

The alternative employed here is rather radical [15].

3.1 Overview

In this chapter a new approach is introduced in order to describe emergent behavior

in real-life systems in form of self-organization and self-regulation. Starting from this

evolutionary goal the idea of elastic systems is introduced. Elastic systems can be

characterized as systems that are connected strongly to their environment: In real-life

systems there exist no unidirectional flows: if a system takes energy from its environ-

ment the energy consumption changes the environment respectively. This behavior

can be described as an implicit feedback structure from the system into its environ-

ment. From this point of view new ideas about self-organization and self-regulation

in neocybernetic systems can be derived. Starting from the biological domain, it

can be shown that the ideas of elastic systems can be extended and an approach for

decentralized control purposes can be derived (see Chapter 4).

1It has to be emphasized that the ideas presented in [15] are still progressing and the derivations

made here should give general intuitions about elastic systems.
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Figure 3.1: New approach of control structures.

Figure 3.1 describes the general structures of control and the role of the new "envi-

ronmental" structures. In a traditional control approach information of subsystems

is collected and evaluated by a central unit in order to coordinate the system in the

desired direction. New neocybernetic modeling approaches concentrate on emergent

behavior, as a result of communication structures among distributed actors, where

finally self-organization and self-regulation emerges. Hebbian/anti-Hebbian learning

leads to that behavior, for example, as introduced in Section 2.4. It turns out that

new thoughts on elastic systems lead to emergent behavior as well and can be seen –

in a wider sense – as an extension of Hebbian/anti-Hebbian learning.

3.2 Theoretical Approach

The following sections form the theoretical framework of elastic systems. After gen-

eral thoughts of data structuring, the idea of elastic systems is presented and evolu-

tionary fitness is addressed. Afterwards, the emergent behavior of elastic systems in

form of self-regulation and self-organization is researched closer.
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3.2.1 Static and Dynamic Structuring of Data

Consider a deformed balanced system resulting out of applied external tensions. The

static equilibrium state x̄ of that linear system can be described as

Ax̄ = Bu (3.1)

Vector u has dimension m and describes the environmental conditions, whereas vector

x̄ of dimension n contains variables, describing the internal system-specific equilib-

rium states. It has to be mentioned that the internal states are not necessarily

observable by an external observer. In order to keep the system well-defined, there

exist as many constraints as there are latent variables in the form of x̄, with matrix

A square (A ∈ R
n×n). Here, a linear dependency between x̄ and u is assumed. If the

matrix A is invertible, the steady state x̄ of the system can be directly solved from

(3.1) as

x̄ = A−1B
︸ ︷︷ ︸

φT

u (3.2)

and a direct mapping matrix from u to x̄ is defined as

φT = A−1B (3.3)

The main motivation for (3.1) is to extend static modeling towards dynamic struc-

tures. If the data structures are selected properly one can define a dynamic model

dx

γdT
= −Ax + Bu, γ > 0 (3.4)

The selection of accurate data structures means that the matrix −A is stable. Factor

γ is a scaling factor to adjust the time axis. The steady state for x of (3.4) is

x̄ = limT→∞ x. As the dynamics of the systems are linear, the steady state is unique,

independent of the initial state of the system. With the use of that structure, the

static pattern has been transformed into a dynamic one, where the emergent static

structure reflects the underlying dynamic equilibrium.

Here, the motivation for the dynamical description of a system can be explained

intuitively. The static dependencies of (3.1) are basically dynamic equilibria, so that

the system will find a new balanced state when external tensions are changing. It is
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the interaction among actors in the system which try to drive the system back into

a new balanced state. So the mathematical dynamic model describes what a system

really does. (3.4) can be interpreted as a negative gradient resulting out of a cost

criterion that has to be minimized. So if (3.4) is integrated with respect to variable

x the cost criterion can be described as

J (x, u) =
1

2
xT Ax − xT Bu (3.5)

Here it can be emphasized again that neocybernetics concentrates more on the emer-

gent pattern of the system as a result of the actual process than on the process itself

that leads to that pattern. The cost criterion itself represents the pattern view and

the optimization process represents the process view. This idea was already intro-

duced in Section 2.4.5 for the Hebbian/anti-Hebbian learning. A second criterion

from (2.21) that was introduced for the Hebbian learning can also be interpreted

within the new structure:

J(x, u) = 1
2
(u − ϕx)T W (u − ϕx)

= 1
2
xT ϕT Wϕx − xT ϕT Wu + 1

2
uTWu

(3.6)

so that there holds

J(x, u) = J (x, u) +
1

2
uT Wu (3.7)

These two cost criteria are equivalent with respect to x. The constant factor 1
2
uTWu

does not change the gradient and therefore neither the dynamics of the system. The

two criteria are consistent if one defines the matrices A and B as






A = ϕT Wϕ

B = ϕT W
(3.8)

These structures are studied closer (see Section 3.2.4.3). If (3.8) holds with W pos-

itive definite [15], then the eigenvalues of matrix A are non-negative and a process

described with (3.4) always remains stable. Cost criterion (3.6) also gives another

view of the gradient based minimization. The steepest descent gradient approach

used for minimization can be implemented as a continuous time process of the form

dx

γdT
= ϕT W (u − ϕx) (3.9)
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One can see that this equation equals (3.4), if (3.8) is used. The dynamics of the

system can therefore be described as the steepest descent gradient approach of the

cost criterion (3.6). Especially the latter part u − ϕx leads to very sophisticated

results, what is discussed later on (see Section 3.2.4.1).

While the matrix φT implements mapping from the environmental variables into the

system variables x̄, matrix ϕ can be interpreted as an inverse mapping from the space

of the system variables x into the space of u. It can be seen from (3.3) with (3.8)

that there must hold

φT =
(
ϕT Wϕ

)−1
ϕT W (3.10)

Later on, more useful results for the interconnection of these mapping matrices can

be found.

Now, a new way of thinking has to be emphasized. The changing in any variable of

the system causes changes in other variables no matter whether the variable belongs

to x or u. The diffusion processes ϕx and φT u from and into the system might find

a balance but it is difficult to find the "original causes" for that. Environmental

variables can change the system states, but also a change in the system states can

change the environment respectively. A result of these considerations is that a clear

separation between the system itself and the environment does not exist any longer.

Actually, there exists no intact environment to start with, as a change of state vari-

ables leads directly to a change in the environmental variables. The assumption of

this two way connection seems to blur the traditional view of distinguishing between

a system and its environment. These new ideas of neocybernetic thinking can be
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visualized in Figure 3.2.

In order to improve the capture of neocybernetic systems, the connection between

the mappings ϕ and φT has to be researched closer, as they are essential.

3.2.2 Idea of Elastic Systems

The introduced cost criterion (3.5) can also be seen in a wider sense and if the

terminology of "elastic systems" is introduced the cost criterion has a very familiar

look. For that study first a system of n interconnected springs where m external

forces are applied.

A single spring with the spring constant k is stretched by an amount ss, caused by

an external force Fs. Hence, there are internal and external energies stored in the

spring (Figure 3.3):

• Due to the potential field: Wext =
∫ ss

0
Fs dss = −Fsss

• Due to the internal tensions: Wint =
∫ ss

0
kss dss = 1

2
ks2

s

This relationship can be extended to a system with many forces and interconnected

springs as mentioned above. Then, for example, the internal tension between two

points s1 and s2 can be written as follows

Wint (ss1, ss2) =
1

2
k12(ss1 − ss2)

2 =
1

2
k12s

2
s1 − k12ss1ss2 +

1

2
k12s

2
s2 (3.11)

As one defines the vectors ss ∈ Rn and Fs ∈ Rm matrix formulation can be used for

the above introduced internal and external energies. To achieve that, the interaction
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factors are collected in the matrices A and B and it follows

Wint(ss) =
1

2








ss1

...

ssn








T

A








ss1

...

ssn








(3.12)

and

Wext(ss, Fs) = −








ss1

...

ssn








T

B








Fs1

...

Fsm








(3.13)

Now, vector u indicates forces that are acting in a discretized mechanical system and

vector x the resulting deformations. Furthermore, matrix A is supposed to be the

elasticity matrix and matrix B is a projection matrix, mapping the external forces

onto the deformation axes. To gain a stable mechanical system that bears external

stresses, matrix A must be symmetric and positive definite. These conditions are

fulfilled if (3.8) holds.

With these assumptions, (3.5) becomes the difference between the stored potential

energies in the system. Principle of Minimum Potential Energy [27] defines that a

pressured structure finds an equilibrium that minimizes this criterion as it tries to

exhaust the external forces with minimum change of internal deformations.

Any balanced neocybernetic system follows this criterion. In non-mechanical struc-

tures the same intuition can be applied as derived for mechanical systems. The

physical interpretation of "force" and "deformation" can be different, but the overall

behavior of the system remains intact. If a system is exposed to external tensions

deformations take place, but if the external pressure is released the system returns

to its original state. In chemistry for example that manner is called Le Chatelier

Principle [4] where the dynamic equilibrium of chemical reactions moves in order to

counteract external changes.

Shortly it can be said that every neocybernetic system is identical with

elastic systems, characterized by dynamic equilibria.

To quantify the effect of environmental pressures on the system one can once more

consider the elastic mechanical system as a prototype. Here, the change in potential
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energy results out of the product of force and displacement. That can be extended

to any elastic system, regardless of the physical units and variables. The product of

the variables x̄iuj can therefore be interpreted as energy, being transferred from the

environment into the system through the variables uj and x̄i. Now, this observation

is studied in what follows under the following definition:

Emergy (a scalar dimensionless quantity) is the product of the (abstract)

force and the corresponding (abstract) deformation.[15]

This definition of "emergy" makes it possible to apply the idea of elastic systems to

a wide scope.

As mentioned above, there is not only a transfer of emergy from the environment into

the system but also a transfer of emergy from the system itself into the environment.

These emergy transfers can be characterized by the matrices φT and ϕ. Because of

that duality, it is not only x̄ that should be seen as a reaction to u but also vice versa.

3.2.3 Evolutionary Fitness

Starting from the discussions above, about the connection between neocybernetic

systems with their environment, there should exist a criterion that emphasizes this

match with environment. If one includes the ideas about the transfer of emergy from

and into systems, a fitness criterion for the system would be

Maximize the average amount of emergy that is being transferred between

the system and the environment

The physical interpretation of the environmental variables is not important, the sys-

tem will interpret these as resources, trying to exploit them as effectively as possible.

Here, it is not predetermined how the available emergy will be used by the system.

As one takes for example a yeast cell, where provided glucose steps can be seen as the

external "forces" influencing the system, the energy can be used in different ways. In

some cases the mannose-production path outperforms other activities in order to re-

produce. The provided energy could also lead to heat production on the other hand.
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Altogether one can state out that reproduction and survival are competing goals, but

in the long run the yeast cell will exploit the available forces most efficiently [15].

It was already mentioned in Section 3.2.2 that energy transported from the environ-

ment to the system can be written as the product of the affected variables. Now, the

defined momentary emergy floating from the environmental variable j to the state

variable i can be written as x̄iuj or if all variables are simultaneously taken into

account as x̄uT . In the other direction, the emergy floating from the state variable

i into the environmental variable j can be written as ujx̄i and for all variables si-

multaneously as ux̄T . That matrix determines the emergy traverse from the system

into the environment. If evolutionary development proceeds with consistency, then

the differences between those variable pairs should determine the growth rates of

the corresponding links. One can assume for the mapping matrices φT and ϕ that

a stochastic adaptation process takes place, whereas the observations determine the

stochastic gradient direction:







dφT

dt
∝ x̄(t)uT (t)

dϕ

dt
∝ u(t)x̄T (t)

(3.14)

The mentioned adaptation process has to be slower than the dynamics of the system

itself, described by (3.4). As one has a closer look at (3.3) and (3.14) together, one

can realize that these adaptation processes are unstable. High correlations between

system and environmental variables could result in still higher correlations between

these variables and lead to growth without limit. This adaptation rule is an extension

of the Hebbian learning principle introduced in Section 2.4. There, linear feedback

for stabilization was proposed from the neocybernetic point of view.

If one assumes for the moment that x̄ and u remain bounded for some reason without

any explicit additional term, then (3.14) should find a steady state. Moreover, for

the solution of this steady state it can be assumed that the matrix elements φT
ij are

relative to the correlations between x̄i and uj

φT = q · E{x̄uT} (3.15)
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and in the opposite direction there is

ϕ = b · E{ux̄T} (3.16)

The parameters q and b are constant coupling coefficients and their role will be

studied later. Additionally it can be said that the mapping matrices φ and ϕ should

be proportional to each other so that there follows

ϕ =
b

q
φ (3.17)

From (3.15) and (3.16) it can be seen that the adaptation in the system is com-

pletely local for any element in the matrices φ or ϕ, although the evolutionary goal

is presented in collective matrix formulation.

3.2.4 Towards Self-Organization

The two main aspects that are studied closer now are self-regulation and self-orga-

nization. The answer for self-regulation is negative feedback. First it has to be re-

searched, how that feedback is implemented, as there are no organized communication

structures or signal transfer infrastructures within the considered systems. Section

3.2.4.1 explains the background analysis to understand the question of feedback and

after that the aspect of self-organization is researched closer in Section 3.2.4.2. Sec-

tion 3.2.4.3 gives additional mathematical understanding of the new proposed system

adaptation structures and its consequences.

3.2.4.1 Feedback through Environment

In Section 2.4 the problem of stability and therefore self-regulation was solved by

adding a linear term for limitation. Here a different approach is considered that

was already mentioned in Section 3.1 and can be described as an implicit feedback

through the environment.

As mentioned before, there exist no uni-directional flows in real systems: when emergy

is consumed by the system, this emergy is taken from the environment. One can speak

of an exhaustion of environmental resources in that case. For better understanding
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one can take a closer look at the pattern matching process described by (3.9). The

first part ϕT W matches data against the model and the latter part u − ϕx can be

defined as some virtual environment that is matched. Thereby, the negative feedback

structure −ϕx represents material flow from the system into the environment. So the

changed environment ũ is

ũ = u
︸︷︷︸

actual environment

− ϕx
︸︷︷︸

feedback

(3.18)

That means that the system itself never sees the original environment u, only the

distorted ũ, where the momentary material flow ϕx back in the environment is taken

into account. Once more, one is only interested in the final balance of the system

after all transients have vanished so that there follows from (3.18)

ū = u − ϕx̄ (3.19)

The key issue here is that the negative feedback from the system into the environment

keeps the system in balance. From now on it is assumed that the system never sees

the original environment u but the "system-influenced" environment ū. With that

non-ideality, new functionalities like self-organization are possible and will be shown

in the next section. In the beginning no special assumptions are made for the mapping

matrix ϕ. This matrix is any m×n mapping matrix. Starting from (3.19), multiplying

x̄T from the right, taking expectations and restructuring the resulting equation one

has

E{(u − ū)x̄T}E{x̄x̄T }−1 = ϕ (3.20)

If one defines a quantity, describing the difference between the undisturbed open-loop

environment u and the disturbed balanced closed-loop environment ū as

∆u = u − ū (3.21)

there follows from (3.19)

∆u = ϕx̄ (3.22)

and with (3.20) this leads to

∆u = E{x̄∆uT}TE{x̄x̄T}−1x̄ (3.23)
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As ∆u is assumedly linearly dependent of the undisturbed environment u this variable

can be seen as the actual system input that directs the closed loop behavior and a

mapping from ∆u to x̄ can be defined as

x̄ = ΦT ∆u (3.24)

Hence, here exists an algebraic loop in the system between x̄ and ∆u as it can be

seen in Figure 3.4. The input ∆u leads to a change of the system variables x̄ what

leads instantaneous to a change of ∆u respectively. Assuming that the feedback −ϕ

implements stabilization, the system in Figure 3.4 will search a balanced state so that

there holds from (3.24) with (3.22)

x̄ = ΦT ϕx̄ (3.25)

In order that this is not only true for trivial x̄ ≡ 0 there must hold

ΦT ϕ = In (3.26)

meaning that the feedforward and feedback mappings are mutually orthogonal. In

order to determine Φ, symmetry to (3.20) is assumed and the matrix ΦT is evaluated

as

ΦT = E{x̄x̄T }−1E{x̄∆uT} (3.27)

In the following part this heuristic attempt for ΦT is elaborated closer and the results

of this assumption are presented. It can already be seen that this mapping from ∆u
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to x̄ is similar to the Hebbian/anti-Hebbian mapping rule from (2.16). This time,

not the undisturbed environment u is taken into account, but ∆u as the difference

between the open-loop and closed-loop environment.

3.2.4.2 Principal Subspace
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Figure 3.5: Illustration of two time scales. It is assumed that the dynamics of u (on

the t scale) are much slower than that of x (on the T scale) [15]

In the sections above one was interested in the balances x̄ of x. For that analysis

the environment was assumed fixed. But to reach more interesting results, the neo-

cybernetic principles are applied again. Now it is assumed that there exist various

levels of balances within the system and these balances are exploited on each level.

As shown in Figure 3.5, the balances of u can be relaxed, as one assumes that the

dynamics of the environment have much slower changes than the dynamics of x. If

the environment u has fixed statistical properties, one can find a balanced model of

balances. A neocybernetic system is a "second-order balance model" over the varia-

tions in the system. As one considers these thoughts one reaches stronger views to

see systems including self-organization as shown below.

If there holds that the dynamics of u are much slower than the dynamics of x one can

study the statistical properties of x̄. For that, the covariance matrix E{x̄x̄T} of x̄
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is constructed. Taking (3.24), multiplying x̄T from the right and taking expectation

values one gains with (3.27)

x̄x̄T = E{x̄x̄T }−1E{x̄∆uT}∆u∆uTE{x̄∆uT}TE{x̄x̄T}−1 (3.28)

As covariance matrices are symmetric [26] there holds for E{x̄x̄T}:

E{x̄x̄T} = E{x̄x̄T }T (3.29)

Applying the expectation operator E{·} on both sides, (3.28) leads to

E{x̄x̄T} = E{x̄x̄T}−1E{x̄∆uT}E{∆u∆uT}E{x̄∆uT}TE{x̄x̄T}−1 (3.30)

Multiplied from the left and from the right side with E{x̄x̄T } there follows

E{x̄x̄T}3 = E{x̄∆uT}E{∆u∆uT}E{x̄∆uT}T (3.31)

and with the mapping rule x̄ = ΦT ∆u there holds

(
ΦT (E{∆u∆uT}Φ

)3
= ΦT E{∆u∆uT}3Φ (3.32)

In the case of n = m any orthogonal matrix ΦT = Φ−1 will do. If the number of

system variables n is smaller than the number of environmental variables m, the

solution for (3.32) is non-trivial. In [12] it is proved that any subset of input data ∆u

principal component axes can be selected to constitute Φ, meaning that the columns

Φi are any set of linear combination of n eigenvectors out of m existing eigenvectors

θj of the data covariance matrix E{∆u∆uT}, so that there holds Φ = θD. D is any

orthogonal n × n matrix so that DT = D−1. In this case, there holds

ΦT Φ = In (3.33)

As one goes back to the assumption from (3.27) one can prove that orthogonality

from (3.26) is fulfilled, selecting Φ as introduced above and with ϕ from (3.20):

ΦT ϕ = E{x̄x̄T}−1E{x̄∆uT}E{x̄∆uT}TE{x̄x̄T}−1

(3.24)
= E{x̄x̄T}−1ΦT E{∆u∆uT}E{∆u∆uT}T ΦE{x̄x̄T }−1

= E{x̄x̄T}−1ΦT E{∆u∆uT}2ΦE{x̄x̄T }−1

= E{x̄x̄T}−1E{x̄x̄T}2E{x̄x̄T}−1

= In

(3.34)
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The above made derivations show that for the different combinations of eigenvectors

θj, the n most significant eigenvectors are selected and therefore principal subspace

analysis for the input data ∆u is implemented by the system [12]. As the mixing

matrix D varies, the result is not unique, but the spanned subspace is the same and

captures always the same variation in the input data. Besides that it turns out that

any reconstruction û of the environment would be equally accurate, no matter if the

principal components or the principal subspace are used.

Finally, one can conclude the same observations that where already made in case of

Hebbian/anti-Hebbian learning of input data. In the case of Hebbian/anti-Hebbian

learning, this learning carried out self-regulation, as the system remained stable and

self-organization in terms of principal subspace analysis. The same can now be said

for systems, where the feedback is included implicitly through the environment. Here,

self-regulation and self-organization emerge in the same way (see Figure 3.6).
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3.2.4.3 Closer Look at Cost Criteria

If one compares (3.3) with (3.27) the matrices A and B can be chosen for the mapping

between x̄ and ∆u as 2

A = E{x̄x̄T }
B = E{x̄∆uT}

(3.35)

to connect the data structures appropriately. Compared to (2.16), this mapping ma-

trix φT was also found when Hebbian learning was applied together with anti-Hebbian

structures, realizing active feedback structures (see Section 2.4). The new approach

concerning the distorted environment leads to the same results as the Hebbian/anti-

Hebbian learning structures but it offers a simpler learning. Anyhow there is a differ-

ence observable between the Hebbian/anti-Hebbian structure and the implicit feed-

back through the environment: while the explicit feedback structure implemented in

the Hebbian/anti-Hebbian case analyzes the undisturbed environment, the implicit

feedback structure in the case of elastic systems takes the environmental disturbances

∆u into account. These disturbances are not known beforehand, as the difference be-

tween the open-loop and the closed-loop environment is only measurable after the

system is adapted. Then, the analysis made for the original u can be made for the

disturbances ∆u. In the case of Hebbian/anti-Hebbian learning there is assumed that

the environment does not change, meaning that the feedback is implemented without

affecting the environment itself.

In order to avoid contradictions there follows for W from (3.8) with (3.22)

W = E{∆u∆uT} (3.36)

In the case of explicit feedback the weighting matrix is E{uuT} respectively (see

(2.26) in Section 2.4.5). It turns out that the ideas of the previous sections describe

an appropriate way of describing behaviors in locally controlled but idealized sys-

tems. The observations for emergent behavior in neocybernetic system carry out the

modeling process of the environment ∆u applying principal subspace analysis (slow

adaptation of φ) and pattern matching (fast process of determinating x̄).

2With linear dependency between ∆u and u the derivations concerning dynamic balances can

also be made for ∆u
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Due to the assumed linearity between ∆u and u the cost criterion can also be applied

for ∆u. If one applies the new knowledge about the matrices A and B in (3.5) under

the assumption that (3.27) holds , there follows for the cost criterion of the balanced

system, where x̄ is already found

J (u) = 1
2
x̄T Ax̄ − x̄T B∆u

(3.35)
= 1

2
x̄T E{x̄x̄T}x̄ − x̄T E{x̄∆uT}∆u

(3.24)
= 1

2
x̄T E{x̄x̄T}x̄ − ∆uT E{x̄∆uT}T E{x̄x̄T}−1E{x̄∆uT}∆u

= 1
2
x̄T E{x̄x̄T}x̄ − ∆uT E{x̄∆uT}T E{x̄x̄T}−1

︸ ︷︷ ︸

x̄T

E{x̄x̄T }E{x̄x̄T }−1E{x̄∆uT}∆u
︸ ︷︷ ︸

x̄

= −1
2
x̄T E{x̄x̄T }x̄

The average of that criterion can be written as

E{trace{J (u)}} = − 1
2
E
{
trace

{
x̄T E{x̄x̄T}x̄

}}

= −1
2
E
{
trace

{
x̄x̄T E{x̄x̄T }

}}

= −1
2
trace

{
E
{
x̄x̄T E{x̄x̄T }

}}

= −1
2
trace

{
E{x̄x̄T }2

}

= −1
2

∑n
i=1 λ2

i

(3.37)

The above results can be explained with the properties of the trace of a matrix and the

linearity of the operators. The matrix trace is the sum of the diagonal elements and

simultaneously it is the sum of the matrix eigenvalues. Additionally, matrices within

trace can be rotated if they are appropriately compatible [29]. This result means

that the completely adapted system maximizes the sum of the n most significant

eigenvalue squares as seen from within the system. If the criterion from (3.5) is used,

the optimum reaches

E{trace{J(u)}} (3.6)
= E

{
trace{J (u) + 1

2
uT Wu}

}

(3.36),(3.37)
= −1

2

∑n
i=1 λ2

i + 1
2
trace

{
E{∆uT E{∆u∆uT}∆u}

}

=
∑n

i=1 λ2
i + 1

2
trace

{
E{∆u∆uT}2

}

= 1
2

∑m
j=n+1 λ2

j

(3.38)

It has to be mentioned that the eigenvalues λi are eigenvalues of the covariance matrix

E{∆u∆uT} and not the open-loop environment E{uuT}. Only if intelligent active

feedback agents are realizing the feedback the eigenvalues are those of E{uuT}.
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3.3 Practical Approach

The following part gives intuition how elastic systems can be applied to real-life

complex systems and the resulting behavior of these systems is researched. Finally,

it is presented, how the free choice of system variables offers the opportunity of the

implementation of active control signals in elastic systems.

3.3.1 Applicability of Derivations

The above considerations gave a qualitative understanding about the properties of

an existent implicit feedback loop, but there is a lack of applicability, as the system

is not able to see the original environment u without disturbing it directly. ∆u is

only known after the adaptation of the system. From now on, it is assumed that

the system only sees the balanced environment ū disturbed by the feedbacks and

according to (3.15) a mapping can be defined as 3

x̄ = φT ū (3.41)

with

φT = qE{x̄ūT} (3.42)

Now it is only the real measurable environment being involved in the local interac-

tions. In what follows the properties of this definition are researched closer.

By multiplying x̄T from the right and taking expectation values (3.41) leads with

(3.42) to

E{x̄x̄T } = qE{x̄ūT}E{x̄ūT}T (3.43)

3To get an intuition how (3.41) and (3.27) are related together and represent the same system

there can be derived

φT (3.42)
= qE{x̄ūT }

(3.17)
= qE{x̄(u − b/qφx̄)T }
= qE{x̄uT } − bE{x̄x̄T }φT

(3.39)

and solving for φT and letting b grow one has

φT =

(

E{x̄x̄T } +
1

b
In

)−1
q

b
E{x̄ūT } (3.40)
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If none of the latent variables x̄i fades away and therefore matrix E{x̄x̄T }−1 exists,

this holds.

By multiplying ūT from the right and taking expectation values (3.41) can be written

as

E{x̄ūT} = qE{x̄ūT}E{ūūT} (3.44)

Now, (3.43) becomes with (3.44)

E{x̄x̄T} = q2E{x̄ūT}E{ūūT}E{x̄ūT}T (3.45)

or

1
q
In =

√
qE{x̄x̄T}−1/2E{x̄ūT}E{ūūT}E{x̄ūT}T E{x̄x̄T }−1/2√q

= θ̄T E{ūūT}θ̄
(3.46)

with

θ̄T =
√

qE{x̄x̄T }−1/2E{x̄ūT} (3.47)

For the matrix θ̄T there follows from (3.43)

θ̄T θ̄ = In (3.48)

With that result there can be said that θ spans the subspace, determined by n of the

principal components of the expectation matrix E{ūūT} and it can be proved with

simulations that the principal subspace is spanned by the n most significant principal

components. Moreover, all eigenvalues λ̄j in the closed loop system are equalized

with 1/q (see (3.46) and Chapter 6).

Now, the realizable mapping matrix φT is taken into account and the effects of the

virtual mapping on x̄ and u are researched closer. Starting from (3.41) with (3.19)

and solving for x̄ there holds

x̄ = (In + φT ϕ)−1φT u (3.49)

and applying the evolutionary learning from (3.15) and (3.16) there is

x̄ = (In + bqE{x̄ūT}E{x̄ūT}T )−1qE{x̄ūT}u
(3.43)
= (In + bE{x̄x̄T }T )−1qE{x̄ūT}u

(3.50)
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Taking (3.50) to derive x̄T and forming the covariance matrix E{x̄x̄T} there holds

(
In + bE{x̄x̄T }

)
E{x̄x̄T }

(
In + bE{x̄x̄T}

)
= q2E{x̄ūT}E{uuT}E{x̄ūT}T (3.51)

and rewritten
(
In + bE{x̄x̄T}

)2

= q
√

qE{x̄x̄T }−1/2E{x̄ūT}E{uuT}E{x̄ūT}TE{x̄x̄T}−1/2√q

= qθ̄T E{uuT}θ̄

(3.52)

This can be done, as there holds for a square matrix M that M f(M) = f(M) M , if

a function f is defined in terms of matrix power series. Finally matrix E{x̄x̄T } is

E{x̄x̄T } =

√
q

b
θ̄T E{uuT}1/2θ̄ − 1

b
In (3.53)

The eigenvalues of E{x̄x̄T} can be expressed in terms of the n most significant eigen-

values λj of the undisturbed environment E{uuT}:

eig{E{x̄x̄T}}j =

√
qλj − 1

b
(3.54)

Compared to the discussions in Section 3.2.4.2 one can see now that there is a loss

in variation within the system. Whereas in the nominal principal component model

the maximum variation is defined as [9]

n∑

i=1

E{x̄2
ii} =

n∑

j=1

λj (3.55)

the new analysis reveals a reduced variation in the data.

3.3.2 Balance between System and Environment

As (3.46) revealed, an equalization of the environmental variation takes place and a

loss of excitation respectively. This equalization is not only a result of the adaptation

of the system but also affected by changes in the environment itself. These results of

"constant elasticity" are very important in the case of the distributed control of the

steel plate, as Chapter 6 reveals. The coupling coefficient q determines directly the

shape of the steel plate. In order to gain a neocybernetic system, where all n latent

variables are occupied, there must hold

qλn > 1 (3.56)
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as can be seen from (3.54).

It has to be mentioned that there are also different values for qi and bi possible in order

to generate individual feedback loops, represented by the different latent variables xi

so that there follows

φT = Q · E{x̄ūT}
ϕT = B̃ · E{x̄ūT}

(3.57)

for the mappings φT and ϕT . The matrices Q and B̃ are defined as

Q =








q1 0
. . .

0 qn








, B̃ =








b1 0
. . .

0 bn








(3.58)

In this case, the matrix E{x̄x̄T} becomes diagonal as the different eigenvalues be-

come localized. The remaining covariance matrix corresponding to the neocybernetic

modes in the observed environment becomes







1
q1

0
. . .

0 1
qn








(3.59)

The reduced covariance matrix of the neocybernetic modes in the system is resprec-

tively







√
q1λj(1)−1

b1
0

. . .

0

√
qnλj(n)−1

bn








(3.60)

The notation j(i) means that any permutation of the n most significant eigenvalues of

E{uuT} is possible. With that selection of the variables qi and bi all cross-correlations

of the system variables are eliminated and the covariance matrix E{x̄x̄T} is diagonal.

However, the covariance-matrix E{ūūT} is not diagonal.

In Chapter 6 it can be seen that the neocybernetic properties of the system still remain

available if the number of latent variables equals the number of system variables

n = m. In order to have all modes neocybernetic, there must hold

qiλn > 1 (3.61)
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Figure 3.7 visualizes the different possible equalizations of the eigenvalues depending

on the choice of the coupling coefficient qi. A system, where the constraint (3.61)

holds, is called marginally neocybernetic. Systems, where the coupling is too weak

is called sub-neocybernetic. The behaviour of sub-neocybernetic systems can be

explained in what follows.

As the mapping matrix θ̄T demands an invertible matrix E{x̄x̄T }, the latent variables

xi do not fade away in fully neocybernetic systems. But there exists a trivial solution,

letting the variables fading away

x̄ ≡ 0 and E{x̄ūT} ≡ 0 (3.62)

Another behavior can be seen in Figure 3.7. Systems can become hyper-neocyber-

netic. That is the case, if the variation structure is outweighed by less dominant

variation directions. As the system still sees the originial variation in u rather than

the compensated ū there are no convergence problems, no matter how high the values

of qi are selected.

The coupling coefficients qi and bi remain free design parameters that can have any
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values, as long as (3.61) is fulfilled. These coefficients can be explained intuitively:

• Stiffness ratio qi determines how tightly the system is connected to its envi-

ronment and how strong the system affects its environment.

• Dissipation rate bi determines how efficiently variation on the lower environ-

mental level is transferred onto the higher system level itself.

To assure neocybernetic operation on the system where all variables x̄i remain occu-

pied there could also be taken a variable qi factor, making the parameters adaptive

qi =
ν

E{x̄2
i }

(3.63)

with the parameter ν > 1.

3.3.3 Implementing Control Structures as System Variables

The discussions above were idealized and an evolutionary optimality in the sense of

emergy transfer was assumed. However, (3.15) holds generally for a neocybernetic

adaptation process, leading to an equalization of the visible environmental signals.

On the other hand it can be shown that the whole cybernetic structure still holds

if the inverse adaptation from the system to the environment described with (3.16)

does not hold and is , for example, fixed for some physical reason with the constant

mapping matrix F . If one assumes that the feedback still stabilizes the system from

Figure 3.4 the balance will be searched so that there holds

ΦT F = In (3.64)

so that the feedforward and feedback mappings are still mutually orthogonal. The

feedback structure ∆u = F x̄ can be written as in (3.23) and to make (3.64) hold Φ is

given again by (3.27), spanning the principal subspace of E{∆u∆uT}, because (3.34)

still holds. In the case of a fixed mapping F the system properties remain essentially

the same, as the system optimizes the observed variances ∆u in the fixed subspace

spanned by F .

It turns out that the latent variables can also be selected freely. For that, it is assumed
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that there exists a mapping of the form

x′ = Dx (3.65)

with some invertible matrix D. Then the original formulation of the mapping from

the environmental variables ū onto the system variables x̄ from (3.41) can be rewritten

by multiplying the matrix D from the left and there follows

x̄′ = q · E{x̄′ūT}
︸ ︷︷ ︸

φT

ū (3.66)

These observations can be applied for analysis of non-ideal real-life systems.

In the case of the research of the deformable mechanical systems as introduced in

the following chapters these latent variables x′
i can be selected as actual control

signals acting on the system. If one concentrates on the steady-state values of the

adaptation process once more, this neocybernetic scheme implements a multivariate

control system.



Chapter 4

Control of Elastic Systems

This chapter introduces the application of active control in elastic systems with a

distributed set of sensor/actuator couples. In the first section local adaptation is

proposed. The adaptation process in a mechanical system is introduced afterwards

and the mathematical implementation of these features in a simulation environment

is presented.

4.1 Decentralized Control with Local Information

As shown in Section 3.3.3 is it possible to define active control signals x̄′ as latent

variables in the case of elastic systems. This feature can be extended to set up

a distributed control of deformable systems with local sensor/actuator couples. In

a distributed network of sensor/actuator couples, the number m of environmental

variables u equals the number n of latent control variables x′.

In practical approaches it is usual that not all sensor/actuator information is available

for everybody. If it is assumed that the distributed sensor/actuator couples have

no active communication structures implemented and adapt only due to its local

information, the connection structure (3.66) is diagonal with matrix φT and respect
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to individual control parameters qi

φT = Q








E{x̄′
1ū1} 0

. . .

0 E{x̄′
mūm}








(4.1)

Now every sensor/actuator couple is acting completely locally. The sensors measure

only local deformations ū and out of that local counter forces x̄′ are implied by the

actuators.

However, this very basic consideration of local acting of the participating sensor/ac-

tuator couples leads to global emergent behavior in the system. The global goal of

self-regulation and self-organization can be seen as the deformation of the structure

is getting restructured, according to (3.46). More on the results of the proposed

adaptation process can be read in Chapter 6.

In what follows, the realization of the adaptation process is applied to a mechanical

deformable system in form of a structural steel plate. The control purpose is per-

formed in a simulation environment by combination of the tools Femlab and Matlab.

4.2 Realization of the Adaptation Process

As one applies external forces on the system surface of a steel plate, a continuous

deformation s takes place. These deformations are measured by the applied sensors

on the plate and the actuators are evolving forces to counteract to the deforma-

tions. With the discretization of the system by using a restricted number m of

sensor/actuator couples, not all applied external forces are visible and not all defor-

mations in the system can be compensated, but the "visible" part, projected through

m deformation measurements, can be mastered in the neocybernetic framework. For

that part, a restructuring of the deformation variations takes place as (3.46) reveals.

The evolutionary control law for the distributed system can directly be taken from

(3.66). Here, the environment u is the measured deformation s and the latent control

variables x′ are the actuator forces Fact of the sensor/actuator couples. If a set of

external forces is applied, the balanced state for the actuator forces F̄act and the bal-
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anced measured deformations s̄ can be described by the control law analog to (3.66)

as

F̄act = qE{F̄acts̄
T}s̄T (4.2)

In this special distributed case, the individual observations and feedbacks are paired in

form of sensor/actuator couples. So the general control law (4.2) can be evaluated for

every single sensor/actuator pair i, taking only local sensor information into account

F̄act,i = qiE{F̄act,is̄i}s̄i i = 1, ..., m (4.3)

Generally, there are three possibilities for the control variable qi analog to the previous

chapter

qi =







q = const

qi

ν

E{F̄ 2
act,i}

∀i = 1, ..., m (4.4)

The previously introduced feedback through environment can now be explained intu-

itively as the latent variables are chosen as active control signals: as a set of external

forces is applied, the system deforms respectively. This deformation is noticed by the

sensors and forces are applied by every single actuator in order to counteract. These

actuator forces lead instantly to a change in deformation of the steel plate, so that the

counter forces are adapted again until the system finds a balance for the deformations
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s̄ and the actuator forces F̄act described by (4.3). The resulting balanced system can

be described as a "first-order neocybernetic system". Figure 4.1 illustrates this first

order balance.

As the applied external forces are not considered to be constant but changing over

time, the system tries to find a second order balance through adequate updating of

the mapping matrix φT

φT = qE{F̄acts̄
T} (4.5)

Once again, the locality of the feedback structures can be taken into account, meaning

that the mapping matrix is diagonal and every entry φT
ii can be updated locally for

every sensor/actuator couple i

φT
ii = qiE{F̄act,is̄i} i = 1, ..., m (4.6)

This adaptation of the internal structures tries to match the observed environmental

deformations towards maximum experienced stiffness. In Section 3.2.4.2 there was

already mentioned that this second adaptation process is considered to be slower

than the first order adaptation of the system described by the control law (4.3). The

resulting second-order balanced system can be described as a "second-order neocy-

bernetic system".

In the simulation this second order adaptation process is realized by an update of the

covariance matrix elements E{F̄act,is̄i} for every actuator i = 1, ..., m and respectively

the update of the elements E{F̄ 2
act,i} if a variable qi factor is used (see (4.4)). Figure

4.2 visualizes the ongoing adaptation processes exemplary. How the first order adap-

tation and the update of the expectation values are implemented in the simulation

can be read in the following section 4.3.

In summary, there can be said that two adaptation processes are taking place

• First-order adaptation. The control law (4.2) finds a balance between the

measured steel plate deformation s̄ and the actuator force F̄act that compen-

sates deformation, resulting of a set of applied external forces. This first-order

adaptation minimizes the actual observed deformation emergy.
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• Second-order adaptation. The second adaptation process optimizes the

mapping matrix φT , in order to adjust the system to different sets of external

forces. The system learns from the different conditions it is exposed to. The

second order adaptation minimizes the average observed deformation emergy.
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Figure 4.2: Exemplary learning process of the distributed control of a deformable

mechanical system.



Chapter 4. Control of Elastic Systems 45

4.3 Simulative Mathematical Implementation

For the ongoing sections the expectation values E{F̄act,is̄i}(l) and E{F̄ 2
act,i}(l) are

shortly written as

ei(l) = E{F̄act,is̄i}(l)
eq,i(l) = E{F̄ 2

act,i}(l)
i = 1, ..., m (4.7)

Here, the introduced indicator l describes the use of different sets of external forces

that are considered to be constant while the first order balances are calculated. As the

previous section revealed, there are two adaptation processes taking place. The first-

order adaptation, described by (4.2), expresses the steady state for the actuator forces

F̄act(l) and the measured deformation s̄(l) for one particular set l of external forces.

But this steady state is not known beforehand and has to be found iteratively. Figure

4.2 shows a "smooth" first order adaptation that could take place in the real system.

In order to realize an implementable process the adaptation has to be discretized

for simulation purposes and is realized as an iterative process that can be described

analog to (4.3) for every single sensor/actuator pair as

F o
act,i(l) = qi(l)E{F̄act,is̄i}(l)so−1

i (l)
(4.7)
= qi(l)ei(l)

︸ ︷︷ ︸

φT
ii(l)=const.

so−1
i (l) i = 1, ..., m o = 1, 2, ... (4.8)

qi(l) can be constant for all actuator forces or a variable factor for every single actuator

analog to (4.4)

qi(l) =







q = const

qi

ν

E{F̄ 2
act,i}(l)

(4.7)
=

ν

eq,i(l)

i = 1, ..., m (4.9)

The factor o in (4.8) denotes the ongoing iteration. The first order adaptation (4.8)

for one set l of external forces can be described as follows:
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First, the set l of external forces is applied and the steel plate is simulated. The

resulting deformations are measured by the sensors and the initial values s0
i (l)

for the algorithm are determined. Out of these deformations, the actuator forces

F 1
act,i(l) are calculated with (4.8) and applied to the steel plate. Then, the system

is simulated again, now with external applied forces and the resulting actuator

forces. As a result of these actuator forces, the measured deformations s1
i (l) will

change. The new deformations lead with (4.8) to new actuator forces F 2
act,i(l)

that are applied again.

The iteration is stopped when the maximum measured deformation change of one

sensor i is smaller than a predefined value ∆s

max
i

{|sob

i (l) − sob−1
i (l)|} < ∆s i = 1, ..., m (4.10)

ob determines the iteration step that leads to a stop of the iteration and (4.10) is

fulfilled. If the simulation is stopped the first order steady states for the actuator

forces F̄act,i(l) and the deformations s̄i(l) can be approximated with

F̄act,i(l) = F ob

act,i(l)

s̄i(l) = sob

i (l) i = 1, ..., m
(4.11)

If the first order balance is found, the mapping matrix elements φT
ii(l)

φT
ii(l) = qi(l)ei(l) i = 1, ..., m (4.12)

are updated respectively, before the next set l + 1 of external forces is applied after-

wards. This update can be described as the second order adaptation that is taking

place in order to optimize the system for different sets of external forces. One can

see from (4.12) with (4.9) that one, or in the case of variable qi factors two different

kinds of expectation values (ei(l) and eq,i(l)) have to be considered for the matrix

element update. These expectation values depend on the final steady states F̄act,i(l)

and s̄i(l) of the actuator forces and deformations. These values are not known before-

hand. That is why the update of the expectation values follows a similar algorithmic

implementation as proposed for the Hebbian/anti-Hebbian learning in section 2.4.4

in order to determine the mapping matrix elements φT
ii(l).
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For that, the expectation values ei(1) and eq,i(1) for the first set of applied external

forces have to be initialized with proper values

ei(1) = εi < 0

eq,i(1) = νi > 0
i = 1, ..., m (4.13)

A proper selection of the initial values is essential for the success of the adaptation

process. Therefore, it is necessary that the expectation values ei(1) are initialized

with values smaller than zero and remain so for the whole adaptation process and

the expectation values eq,i(1) are larger than zero and remain so. The choice of

negative initial values for ei(1) can be motivated with the causality that measured

negative deformations si initialize positive actuator forces Fact,i to counteract this

deformation. Furthermore it has to be emphasized that the values, especially for εi,

should start from some small values, so that the adaptation process can be carried out

by the system itself, as dominant expectation values gain weight and less important

stay small.

With the definition of initial expectation values, the second order update can be

calculated analog to (2.19) as

ei(l + 1) = λei(l) + (1 − λ)F̄act,i(l) · s̄i(l) i = 1, ..., m (4.14)

and

eq,i(l + 1) = λqeq,i(l) + (1 − λq)F̄
2
act,i(l) i = 1, ..., m (4.15)

Here, λ and λq are forgetting factors and determine, how much of the past information

of the system should be taken into account for the learning process. To achieve

reasonable results, the values should be higher than

λ, λq > 0.95 (4.16)

The whole adaptation process can be stopped, when the maximum change of the

matrix elements φT
ii(l) is smaller than a certain value

max
i

{|φT
ii(lb + 1) − φT

ii(lb)|} < ∆φ i = 1, ..., m (4.17)

Analog to the first order breaking indicator ob, defines lb the set number of applied

external forces that stops the second order adaptation.
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This rule can be used if there is no change in the set l of external applied forces. It

has to be slightly changed, if varying external forces are taken into account. In that

case, mean values of adjacent mapping matrix elements are considered for the break

of the second order adaptation (see Section 6.2.3).

Figure 4.3 visualizes the flowchart of the implemented algorithm, used for adaptation

of the simulated deformable systems. The colorization indicates already, how the two

used environments MatLab and FemLab are involved in the simulation. More on this

interconnection can be read in Section 5.1.1.

In what follows, the measured deformation so
i (l) of the steel plate sensors is the total

displacement of the sensor i for sensor i = 1, ..., m. Anyhow, the displacement is

not necessarily the evaluated information. In different setups the sensors could also

evaluate different quantities, like stresses or strains in order to use these variables for

adaptation purposes.
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Figure 4.3: Flowchart of the algorithmic implementation of the adaptation of a de-

formable system.



Chapter 5

Derivation of a New Simulation

Algorithm

The previous chapter introduced a completely new framework for the control of elastic

systems. This chapter deals with the realization of the simulation of deformable

systems and concentrates on the derivation and validation of a faster simulation

algorithm.

5.1 Simulation Environment

The following part introduces shortly the used simulation environment consisting

of Matlab and Femlab. After that the shortcomings of the conventional simulative

control algorithm are addressed.

5.1.1 Interconnection of Matlab and Femlab

In order to simulate mechanical deformable systems, the tool Femlab 3.1 [1], [2] is used

for the numerical simulation of deformed systems, where different forces (external

and actuator) are applied. Femlab is a multiphysics modeling tool, where physical

processes are described with partial differential equations and solved with the finite

element method. For the proposed control purposes of deformable mechanical systems

the structural mechanics toolbox of Femlab is used. Nowadays, the successor of

Femlab is COMSOL MultiphysicsTM[5].
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Figure 5.1: Interconnection between Matlab and Femlab for the streamlining of the

simulation algorithm.

The process for the adaptation of a simulated deformable system in the neocybernetic

framework is a highly iterative process and a lot of simulations have to be taken into

account until proper results can be achieved, as Section 4.3 reveals. The first order

adaptation is an iterative process that has to be repeated until steady states for the

actuator forces F̄act,i(l) and the resulting displacements s̄i(l) of the sensor/actuator

pairs i are found. The iteration routine has to be repeated for different sets of external

forces l in order to gain information for the second order balance of the system.

That is why the use of Femlab alone for the simulations carried out, is very clumsy

and difficult manageable. For the iterative purposes Femlab does not offer simulation

techniques, where different applied forces are updated automatically and the new

deformed system is calculated afterwards. For an automation of the whole simulation

process Matlab is taken as a second tool and Femlab routines are embedded in a

Matlab-automated simulation area. Femlab offers the possibility to save all designed

models as Matlab m-files, so it can directly be used for automation. The colored

flowchart 4.3 presents in general, how these two tools are interconnected with the

introduced simulation algorithm. A more general view of how Matlab and Femlab

are linked can be seen in Figure 5.1 1.

1It has to be emphasized that the appropriate combination of Matlab and Femlab was imple-

mented by the author of this work and not present yet. However, as the thesis concentrates more

on the neocybernetic framework for the control of deformable systems, the realization is presented

only briefly.
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5.1.2 Shortcomings of Conventional Algorithm

During simulations of the steel plate it turns out that the propagated algorithm from

Section 4.3 and its execution shown in the flowchart 4.3 have two major problems

that make it difficult to achieve good simulation results in order to analyze the new

neocybernetic controlling approach. These two challenges are introduced in the fol-

lowing two sections. First, the simulation times are researched closer and then the

possible instability of the first order iteration is presented.

5.1.2.1 Simulation Times

As already mentioned, the algorithm for the second order adaptation of a deformable

system is very computing concerning the complexity of the simulation: plenty of

simulations of the deformed steel plate have to be calculated with Femlab. For that

reason, the total simulation time is immense, as a single Femlab simulation can take

approximately 20s or even longer. Figure 5.2 illustrates exemplary how long one

overall simulation of the steel plate could take until the system is fully adapted. As

one tries to research different steel plate setups like different boundary conditions,

shapes of the steel plate or layouts of sensor/actuator couples, it is very time intensive

to gain interpretable results. Also the closer research of the influence of the control

parameters qi(l) on the final control results is limited. These concerns put the question

if some better algorithm can be found in order to shorten the total simulation time

for an adaptation process.

5.1.2.2 Instability and Alternation

Despite the long simulation times one even more crucial problem can be observed.

Different simulations reveal that too high control parameters qi(l) for the actuators

lead to an instable iteration of the first order adaptation, so that convergence fails.

Figure 5.3 shows exemplary the development of the measured sensor displacements

so
i (l) for an adaptation process, turning instable after some stable second order up-

dates of the mapping matrix elements φT
ii(l). It can also be seen in the figure that

the first order iterations are oscillating what holds in the simulated cases, where the
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external forces sets l have always same sign. This observation can be used later on,

to extend the new applied simulation algorithm to get balanced steel plate systems

even if instable first order iterations appear (see Section 5.2.2.3).

The alternation can be explained with the used iteration algorithm (4.8). Big mea-

sured displacements lead to big counteracting actuator forces, as control law (4.8)

reveals proportionality between the measured displacement and the resulting actua-

tor force. The application of these big actuator forces leads to a reduced deformation

of the steel plate in the next iteration step, as most of the external forces are com-

pensated by the applied actuator forces. In the next step, the control law calculates

smaller actuator forces, as the resulting steel plate deformations and therefore the

sensor displacement measurements are smaller. Now, the application of these smaller

actuator forces leads to bigger displacements likewise as the applied external forces

are compensated worse than the step before. Table 5.1 shows these causalities once

more.
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Figure 5.3: Exemplary instable development of the displacements so
i (l). Simulation

setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces posi-

tions (Figure C.1), control parameter "Set 1" from Table C.3

However, this alternation is not always for every sensor/actuator couple the case, as

the single couples can not be considered to be isolated from each other. The mea-

sured sensor displacements are a result of all calculated actuator forces, so that there

exists the possibility that neighboring pairs work against each other, in the sense of

alternation. Is this the case, new control parameters have to be considered.

There has to be emphasized that the occurring instability due to high coupling pa-

rameters qi(l) is a result of the implemented simulation algorithm for the first order

adaptation and should therefore not appear in real-life systems. In Section 3.3.2 it

was already mentioned that convergence takes place, no matter how high the control

parameters qi(l) are selected. However, this claim can not be researched deeper in

simulations.

The following section puts the possible instability into a theoretical framework, so

that predictions can be made before the instability actually occurs during the adapta-

tion process. In addition to that, the research on instability leads to a faster algorithm
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that can be used for the adaptation process of the steel plate.

leads to

so−1
i (l) big

(4.8)→ F o
act,i(l) big

F o
act,i(l) big

simulation→ so
i (l) small

so
i (l) small

(4.8)→ F o+1
act,i(l) small

F o+1
act,i(l) small

simulation→ so+1
i (l) big

so+1
i (l) big

(4.8)→ F o+2
act,i(l) big

Table 5.1: Quantitative progress of the first order iteration for one sensor/actuator

couple i. The successive displacements and actuator forces alternate.

5.2 Introduction of a New Algorithm

The following sections deals with the manageability of instability and proposes a

new simulation algorithm to avoid the presented shortcomings of instability and long

simulation times. After that, it is presented, how the system parameters for the

new algorithm are identified. In order to prove the accuracy of the new algorithm a

validation is shown in the end.

5.2.1 Research on Instability of First Order Adaptation

A possible instability of the first order iteration causes the whole adaptation process

to fail. This matter of instability makes it crucial to estimate proper starting values

for the control variables qi(l) before the simulation is started. However, one cannot

know beforehand if the control parameters were selected correctly or not. That can

not be said until the adaptation finds a second order balanced system or fails before

that.

The stability problem provokes the question, if the instability can be predicted before

it actually occurs. This section introduces a closer mathematical analysis of the first

order iteration process from (4.8) and it can be shown that the instability can be

put in a mathematical framework that makes prediction possible. For that reason
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theoretical thoughts about the deformations of elastic systems are made beforehand

and after that the mathematical analysis of the algorithm is derived for prediction

purposes.

5.2.1.1 Derivation of a Recursive Sequence for the Sensor Displacements

If one has a closer look at the deformation of an elastic system like the researched

steel plate setups, one can assume that a single measured displacement si(l) of a

sensor i can be described as a sum of displacements caused by all applied external

and actuator forces Fext,j(l) and Fact,i(l) and the gravity operating on the steel plate.

It is assumed that a set l of p external forces is applied and there are m sensor/actuator

couples distributed on the steel plate. Now, the measured deformation si(l) of a sensor

i can be approximated with

si(l) ∼= sg,i
︸︷︷︸

gravity

+

p
∑

k=1

ηik · nk · Fext,k(l)

︸ ︷︷ ︸

influence external forces

+
m∑

j=1

ξij · mj · Fact,j(l)

︸ ︷︷ ︸

influence actuator forces

(5.1)

The variables are explained as follows:

• sg,i: measured displacement of sensor i, caused by the operating gravity, if no

forces are applied.

• ηik: influence of external applied force k on the measured displacement of sensor

i. ηik can be seen as a constant damping factor, indicating how much of the

applied external force k is actually measurable as displacement for sensor i.

The factor depends on the boundary conditions of the simulated steel plate and

how distant the considered external force and the sensor are.

• nk: determines the stiffness of the steel plate at the point of the applied exter-

nal force k. This constant factor can be seen as an "inverse spring constant"

indicating how the applied external force is mapped on a displacement at the

attacking point.

• ξij: influence of actuator force j on the measured displacement of sensor i.

Analog to ηik, ξij can be described as a constant damping factor, indicating how
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much of the applied actuator force j is actually measurable as displacement for

sensor i. The factor depends on the boundary conditions of the simulated steel

plate and how distant the applied actuator force and the sensor are.

• mj: determines the stiffness of the steel plate at the point of the applied actuator

force j. Analog to nk, this constant factor can be described as an "inverse spring

constant" indicating how the actuator force can be mapped on a displacement

at the attacking point.

As the set l of applied external forces is constant during the first order adaptation,

(5.1) can be written as

si(l) = s̃i(l) +

m∑

j=1

ξij · mj · Fact,j(l) (5.2)

with

s̃i(l) = sg,i +

p
∑

k=1

ηik · nk · Fext,k(l) (5.3)

The term s̃i(l) is constant during the calculation of the first order adaptation of the

system. (5.2) can be formulated as

so
i (l) = s̃i(l) +

m∑

j=1

ξij · mj · F o
act,j(l) (5.4)

if the first order iteration is taken into account. The iteration step is once again

denoted with o. The displacement so
i (l) of sensor i depends on the calculated actuator

forces F o
act,j(l) in this step of the iteration and with (4.8) there follows

so
i (l) = s̃i(l) +

m∑

j=1

ξij · mj · qj(l)ej(l)
︸ ︷︷ ︸

φT
ii(l)

so−1
j (l) (5.5)

The initial displacements s0
i (l) for the start of the iteration are the sensor displace-

ments without the application of any actuator forces (see Figure 4.3). (5.3) fulfills

this demand so that the initial displacements can be taken as

s0
i (l) = s̃i(l) (5.6)

If all sensors i are taken into account at once, one can use matrix notation so that

there follows analog to (5.5) for the displacement of all sensors

so(l) = s̃(l) + ΞMφT (l)
︸ ︷︷ ︸

Z(l)

so−1(l) (5.7)



Chapter 5. Derivation of a New Simulation Algorithm 58

with the sequence matrix Z(l)

Z(l) = ΞMφT (l) (5.8)

The displacement vectors are

so(l) =








so
1(l)
...

so
m(l)








, so(l) ∈ Rm, s̃(l) =








s̃1(l)
...

s̃m(l)








, s̃(l) ∈ Rm (5.9)

and the matrices Ξ, M and Q(l) can be written as

Ξ =











ξ11 ξ12 · · · ξ1m

ξ21
. . . ξ2m

...
. . .

...

ξm1 ξm2 · · · ξmm











, Ξ ∈ Rm×m

M =








m1 0
. . .

0 mm








, M ∈ Rm×m

φT (l) =








q1(l)e1(l) 0
. . .

0 qm(l)em(l)








, φT (l) ∈ Rm×m

(5.10)

The result of (5.7) is a relationship between consecutive sensor displacements so(l)

and so−1(l) of the first order iteration. This recursive sequence can now be analyzed,

in order to predict nonexistent convergence.

5.2.1.2 Convergence Research

The researched recursive sequence for the sensor displacements follows from (5.7)

with the initial displacements s0(l) analog to (5.6)

so(l) = s̃(l) + Z(l)so−1(l)

s0(l) = s̃(l), o = 1, 2, ...
(5.11)

Now, the convergence of this recursive sequence for the displacement vector so(l) can

be derived easily, if matrix Z(l) is diagonalizable so that there exists a transformation
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on principal axes with the transformation

s(l) = Ds∗(l) (5.12)

Matrix Z(l) is diagonalizable, if all algebraic and geometric multiplicities of the eigen-

values of the matrix Z(l) are equal [28]. The transformation matrix D from (5.12)

is the matrix of eigenvectors of Z(l) and the diagonalized matrix Λ(l) contains the

eigenvalues of Z(l) respectively. (5.11) delivers with (5.12) the transformed recursive

sequence for the displacements so
∗(l)

Dso
∗(l) = Ds̃∗(l) + Z(l)Dso−1

∗ (l)

→ so
∗(l) = D−1D

︸ ︷︷ ︸

Im

s̃∗(l) + D−1Z(l)D
︸ ︷︷ ︸

Λ(l)

so−1
∗ (l)

= s̃∗(l) + Λ(l)so−1
∗ (l)

s0
∗(l) = s̃∗(l) o = 1, 2, ...

(5.13)

with

Λ(l) =








λ1(l) 0
. . .

0 λm(l)








, Λ(l) ∈ R
m×m (5.14)

The essential observation here is that the single transformed sensor displacements

so
i,∗(l) are only dependent on their own predecessor as matrix Λ(l) is diagonal. The

overall process converges now, if all single sequences so
i,∗(l) converge [3]. For a single

sequence i it follows from (5.13) with (5.14)

so
i,∗(l) = s̃i,∗(l) + λi(l)s

o−1
i,∗ (l) (5.15)

and with respect to the initial value, the sequence can be written as a geometric

progression

so
i,∗(l) = s̃i,∗(l)

o∑

j=0

λi(l)
j (5.16)

Now, the complete system converges towards some steady state, if every geometric

progression converges. In case of the geometric progression (5.16), this holds when

|λi(l)| < 1 ∀ i = 1, ..., m (5.17)
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is fulfilled [17]. In other terms, one can state out that the first order iteration is stable

as long, as the magnitudes of the eigenvalues of the matrix Z(l) are smaller than one

|eig{Z(l)}|i < 1 ∀ i = 1, ..., m (5.18)

Hence, instability can be tested before the next first order iteration is started with a

new set of external applied forces. For that, matrix Z(l) is updated and the eigen-

values are calculated. As the matrix Z(l) has to be updated after every stable first

order iteration, the eigenvalues of Z(l) are researched "online" during the adaptation

process and can therefore only predict the following iteration.

5.2.2 Derivation of the Algorithm

This section introduces a faster control algorithm that can be used for the simula-

tion instead of the proposed conventional algorithm from Section 4.3. In addition

to that, extensions are made in order to improve the speed of the algorithm (see

Section 5.2.2.2) or to extend the application areas (see Section 5.2.2.3). In the end,

an overview for the used algorithm for the simulation of the adaptation process is

presented. As annotation a smart solution for the balances of the actuator forces

F̄act(l) and the displacements s̄(l) is shortly presented. However, it turns out that

this approach is restricted due to numerical problems of matrix inversions.

5.2.2.1 New Approach

Equation (5.1) can also be presented in compact matrix notation for all sensor dis-

placements s(l). If the first order iteration o is also taken into account, the matrix

notation for the displacements so(l) dependent on the actuator forces F o
act(l) can be

written as

so(l) = sg + H · N · Fext(l)
︸ ︷︷ ︸

s̃(l)

+Ξ · M · F o
act(l) (5.19)
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With p external forces and m actuator forces there follows

Fext(l) =








Fext,1(l)
...

Fext,p(l)








, Fext(l) ∈ Rp

F o
act(l) =








F o
act,1(l)

...

F o
act,m(l)








, F o
act(l) ∈ Rm

(5.20)

Analog to (5.10), H and N are defined as follows

H =








η11 . . . η1p

...
. . .

...

ηm1 . . . ηmp








, H ∈ Rm×p

N =








n1 0
. . .

0 np








, N ∈ Rp×p

(5.21)

Equation (4.8) can be written in matrix notation using the mapping matrix φT (l)

as defined in (5.10), so that the calculation of the next actuator forces F o
act with the

measured displacements so−1(l) can be presented with the control law as

F o
act(l) = φT (l)so−1(l) (5.22)

The initial displacement s0(l) for the first order adaptation, after a new set l of

external forces is applied can be calculated as the result of the gravity and the applied

external forces

s0(l) = s̃(l)
(5.19)
= sg + H · N · Fext(l) (5.23)

Now it turns out that the whole process can be simulated, without the explicit use of

Femlab routines during the ongoing adaptation process. (5.19) replaces the Femlab

simulation of the steel plate deformation with the applied calculated actuator forces.

The resulting displacements so(l) can directly be evaluated with (5.19) after the

actuator forces F o
act(l) are calculated with the control law (5.22). Figure 5.4 visualizes,

how the new algorithm can be used without the explicit simulation of the steel plate

deformation with Femlab routines.
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Figure 5.4: New flowchart of the faster algorithmic implementation of the adaptation

process. The Femlab simulation of the steel plate deformation is replaced with (5.19).

Before the adaptation process for the steel plate can be started, it is necessary to

determine the matrices H, N , Ξ, M and the displacements sg. These matrices and

vectors determine the steel plate deformation behavior. Therefore, it is essential to

identify these parameters properly. How these parameters can be found is presented

in Section 5.2.3.

5.2.2.2 Initial Values of First Order Iteration

During the simulations of different steel plate setups it turns out that the algorithm

can also be advanced, by setting smarter initial values for the first order displacements

s0(l). As some entries of the mapping matrix φT (l) grow with more and more sets l

of external forces the calculated actuator forces are growing respectively with (5.22).

That leads to bigger changes in the deformation of the steel plate for the ongoing

first order iteration, so that first order convergence takes increasing iteration steps
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with increasing sets l of external forces.

In order to achieve faster convergence results, the steady state values s̄(l − 1) of the

previous first order iteration are taken as the initial values s0(l) for the new applied

set l of external forces. So the new law for the initial values s0(l) is

s0(l) =







sg + H · N · Fext(l) l = 1

s̄(l − 1) l = 2, ...
(5.24)

Idea of that approach is that the steady states s̄(l− 1) of the first order iteration are

closer to the final, smaller steel plate deformations after the plate is fully adapted. So

the initial displacement s0(l) is only in case of the first set l = 1 of applied forces cal-

culated with (5.23) and in the other cases, the previous final steady states s̄(l−1) are

used for the start of the next first order iterations. An exemplary adaptation process

of a steel plate and the advantage of the new proposal for the initial displacements

is presented in Section 5.3.3.

5.2.2.3 Extension of the Algorithm for Instable First Order Iterations

In Section 5.1.2.2 it was already mentioned that the measured sensor displacements

so
i (l) and the applied actuator forces F o

act,j(l) for the search of the first order balance

are generally oscillating, as it is shown in Figure 5.3. As one assumes that the in-

stability is only a result of the discretization and therefore a numerical problem that

does not occur in real systems, one can extend the algorithm in order to gain a second

order balanced system, even if the inner adaptation is instable. The extension makes

it possible to research higher control factors qi(l) as the eigenvalue research of the

Z(l) matrix would normally allow.

So far the simulation is stopped, if the magnitude of one of the eigenvalues λi(l) of

the sequence matrix Z(l) is bigger than one, and the iteration is turning instable (see

Section 5.2.1). If one assumes that the growth of the sensor displacements so
i (l) is

exponential and alternating for all sensors i (see Figure 5.3), the thoughts from Ap-

pendix D can be taken into account and steady states s̄i(l) of the "inverse exponential

growing sequences" can be calculated meaning the value, where the alternating se-

quence for the displacement is coming from and not where it is going to. This steady
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Figure 5.5: Approximation of the instable first order iteration of a single sensor dis-

placement so
i (l) with an exponential growing sequence where the steady state can be

calculated.

state is taken as the searched steady state s̄i(l) of the first order adaptation. The nec-

essary balanced actuator force F̄act,i(l) that causes this displacement can be evaluated

afterwards with the control law (5.22). The mathematical calculation is presented in

what follows. Figure 5.5 visualizes, how the instable iteration is alternating around

the searched steady state s̄i(l + 1) for the sensor displacement so
i (l + 1).

If the check of the eigenvalues of the matrix Z(l) reveals that the magnitude of one

eigenvalue is bigger than one and the iteration will turn instable, the initial displace-

ment s0
i (l) and the two following ones s1

i (l) and s2
i (l) are calculated for every sensor

i analog to the used algorithm, presented in flowchart 5.4. Finally, the steady states

s̄i(l) for the inverse sequence can be calculated for every sensor with (D.10) and it

follows

s̄i(l) = s0
i (l) +

s1
i (l) − s0

i (l)
|s2

i (l)−s1
i (l)|

|s1
i (l)−s0

i (l)|
+ 1

(5.25)

With the control law (5.22) the balanced actuator forces can be calculated afterwards

F̄act(l) = φT (l)s̄(l) (5.26)

As a balanced state is now found for the actuator forces and the measured displace-

ments, the mapping matrix φT (l) from (5.10) can be updated respectively with (4.14)
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and (4.15) and a new set of external forces can be applied. As a result, the problem

of instability can be relaxed and higher control parameters qi(l) can be researched.

The results of these calculated second order balanced systems have to be validated

with Femlab simulation results as one cannot assure that the proposed "by-pass" of

the first order adaptation in case of instability leads to reasonable deformation re-

sults that occur when the steady state actuator forces are applied on a steel plate in

a Femlab model. Section 5.3.5 shows how a second order balanced system, calculated

with the by-pass for the first order adaptation is validated with Femlab simulations

of the steel plate deformation.

The adaptation process for the steel plate can not be continued, if the oscillatory

alternation is not predictable for every single sensor/actuator pair i, because in this

case the steady state displacement s̄i(l) can not be calculated with (5.25). Then a

new set of control parameters has to be taken into account and the whole adaptation

process of the steel plate has to be restarted.

Furthermore, the proposed exponential growth makes it appealing to apply that cal-

culation in the other direction as well, so that the first order iteration is always done

after three steps. However, the forward implementation of the algorithm is still re-

alized iterative, as the exponential growth is just an approximation of the actual

behavior of the sensor displacements so
i (l) during the iteration process. Problems can

occur if external forces lead to actuator forces that are acting in opposite directions

with remarkable different strength. Then, the assumed exponential displacement al-

ternation could be invalid and a forward calculation with assumed exponential growth

leads to wrong results. The simulative adaptation of the steel plate fails. Therefore,

the use of the conventional forward iteration makes the algorithm more robust.

5.2.2.4 Implementation

As one takes all previous considerations into account, the complete algorithm that

is used for the adaptation process of different steel plate setups can be presented in

flowchart 5.6. The new algorithm compensates the two introduced shortcomings from
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Figure 5.6: Flowchart of the complete used algorithm for the simulation of deformable

steel plates.
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Section 5.1.2:

• Simulation Time. The Femlab based simulation routines that calculate the

steel plate deformations are replaced with (5.19) to calculate the measured

sensor displacements directly. This replacement fastens the whole algorithm, as

the displacements can be calculated with simple matrix and vector operations.

The duration of the Femlab based deformation calculations is reduced from

a couple of seconds to some milliseconds. As a consequence, the algorithm

reduces the total simulation time from hours to a few minutes (improvement:

more than 99%!) as all calculations for the system adaptation can be realized

with Matlab routines; Femlab is only needed in the beginning of the process.

This offers a much better opportunity to research different parameters, like

control parameters, boundary conditions and so on. The only new Femlab

based part concerns the identification of the needed parameters for (5.19). How

the parameter identification is realized, is presented in the following section.

This is the only time intensive part. However, it has to be done only once

before the adaptation process of the researched steel plate setup is started. As

the found parameters are constant for one specific setup, they can easily be

saved within Matlab and recalled at any time.

• Instability. A deeper analysis of the new equation for the calculation of the

sensor displacements makes it possible to predict future instability of the inner

iteration algorithm. It turns out that the check for instability can be reduced

to an eigenvalue problem of a constructed matrix Z(l) according to (5.8). This

matrix is updated and the eigenvalues are checked every time before the inner

adaptation process is started. In addition to that, a new approach is intro-

duced that by-passes the instable iteration, so that the second order adapta-

tion process can still proceed, even if the inner adaptation would turn instable.

The extension makes it possible to research bigger control parameters, as these

parameters are responsible for instability of the inner adaptation.
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5.2.2.5 Annotation: Closed Form First Order Iteration

As one goes back to (5.16), presenting a geometric progression for the transformed

displacements si,∗(l) one can state out that this progression has the final value

s̄i,∗(l) = lim
o→∞

(

s̃i,∗(l) ·
o∑

j=0

λi(l)
j

)

= s̃i,∗(l) ·
1

1 − λi(l)
|λi(l) < 1| (5.27)

as long as the magnitude of the eigenvalue λi(l) is smaller than one [17]. In matrix

notation, the steady states for all transformed sensor displacements can be written

accordingly

s̄∗(l) =








s̃1,∗(l) · 1
1−λ1(l)

...

s̃m,∗(l) · 1
1−λm(l)








, s̄∗(l) ∈ Rm (5.28)

This observation makes the first order iteration after a new set of applied external

forces unnecessary. The final sensor displacements s̄(l) can be derived directly. For

that, the initial displacements s̃(l) are calculated with (5.23) for every set l of external

applied forces and then transformed in the principal axes coordinate system, where

the steady states are given with (5.28) and transformed back into the original system.

The transformation of the initial values s̃(l) in the principal axes system is with (5.12)

s̃∗(l) = D−1s̃(l) (5.29)

Matrix D is once again the matrix of eigenvectors of the calculated sequence matrix

Z(l). The steady states s̄∗(l) can be calculated with (5.28) and afterwards the final

steady states of the displacements s̄(l) can be denoted as

s̄(l) = Ds̄∗(l) (5.30)

For the necessary second order update of the mapping matrix φT (l) the actuator

forces Fact(l) can now be calculated afterwards with the control law (5.22) so that

F̄act(l) = φT (l) · s̄(l) (5.31)

follows. This approach simplifies the control algorithm, as the steady states F̄act(l)

and s̄(l) can be calculated explicitly without the need of the first order iteration with

the conventional breaking criterion following (4.10).
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This theoretic approach turns out to be very sensitive, as the transformation matrix

D has to be invertible. The numerical inversion of the transformation matrix D can

be problematic, causing errors for the calculated sensor displacements (see Section

5.3.4). That is why the closed form analysis of the steady states is not realized within

the actual used simulation algorithm but calculated with the algorithm introduced

above.

5.2.3 Identification of System Parameters

It is assumed that m sensor/actuator couples are fixed on the researched steel plate

and up to p external forces are applied at predefined positions. Additionally, gravity

is acting on the steel plate.

5.2.3.1 Identification of Vector sg

sg can be determined if the researched steel plate deformation is simulated with

Femlab routines and no forces are applied. The deformation results only of gravity

and the sensor displacements can be post-evaluated with Femlab

sg =








sg,1

...

sg,m








, sg ∈ Rm (5.32)

The gravitation caused displacements sext
g of the points where external forces Fext

occur are defined as

sext
g =








sext
g,1

...

sext
g,p








, sext
g ∈ Rp (5.33)

5.2.3.2 Identification of Matrix M

If linearity between a single sensor displacement si and the applied actuator force

Fact,i at that point is assumed, the relationship for that single sensor/actuator couple

i can be approximated with a straight line as

si = miFact,i + sg,i, i = 1, ..., m (5.34)
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The factor sg,i is already known as the measured displacement caused by gravity (see

(5.32)). The slope mi of this straight line can be determined, if a single test force

Fact,i = Ftest is applied on the steel plate.

mi =
si − sg,i

Ftest
, i = 1, ..., m (5.35)

This research can be accomplished for every sensor/actuator couple and the resulting

slopes mi form the matrix entries of matrix M

M =








m1 0
. . .

0 mm








, M ∈ Rm×m (5.36)

5.2.3.3 Identification of Matrix Ξ

The application of one test force Ftest for a specific actuator force Fact,i can also be

used to determine the damping factors of the column ξi of matrix Ξ. The ith column

ξi can be defined as follows

ξi =








ξ1i

...

ξmi








, i = 1, ..., m (5.37)

One matrix column determines, how the single applied actuator force Ftest at position

i affects the displacements of all sensor/actuator couples in relation to the displace-

ment of sensor i where the force is applied. The factors can be found by scaling all

measured sensor displacements s with respect to the displacement si of the active

sensor/actuator couple, where the actuator test force Fact,i = Ftest is applied. Addi-

tionally, the influence of gravity has to be considered and the column ξi is determined

with

ξi =
1

si − sg,i








s1 − sg,1

...

sm − sg,m








=
1

si − sg,i

(s − sg), i = 1, ..., m (5.38)

Because of this standardization there follows

ξij =







1, i = j

ξ, i 6= j,
i, j = 1, ..., m (5.39)
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for the matrix entries ξij. Matrix Ξ follows with the determined columns ξi as

Ξ = (ξ1| · · · |ξm), Ξ ∈ Rm×m (5.40)

5.2.3.4 Identification of Matrix N

The assumption of linearity between displacement and applied force leads to an analog

calculation of the elements nj of matrix N . For this, the test force Ftest is applied at

the position of the external force Fext,j and the deformation is simulated with Femlab.

Out of the measured displacement sext
j there follows for the matrix entry nj

nj =
sext

j − sext
g,j

Ftest
, j = 1, ..., p (5.41)

with

N =








n1 0
. . .

0 np








, N ∈ Rp×p (5.42)

5.2.3.5 Identification of Matrix H

Analog to the determination of the columns of matrix Ξ are the columns

ηj =








η1j

...

ηmj








, j = 1, ..., p (5.43)

of matrix N determined by standardization of the measured sensor displacements s

of the sensor/actuator couples with respect to the displacement sext
j at the position of

the applied force Ftest. The column j defines, how the external force j influences the

displacements of the sensor/actuator couples i. Additionally, the influence of gravity

sext
g is taken into account and the column ηj is determined as

ηj =
1

sext
j − sext

g,j








s1 − sg,1

...

sm − sg,m








=
1

sext
j − sext

g,j

(s − sg), j = 1, ..., p (5.44)

Matrix N follows with the determined columns ηj as

H = (η1| · · · |ηp) H ∈ Rm×p (5.45)
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Figure 5.7 illustrates for a simple deformable system, how the parameter identification

is working. For that a one dimensional beam was considered with 2 sensor/actuator

couples and only 1 possible position for external forces is taken into account.

5.3 Validation of the Algorithm

The key point of the new simulation algorithm is (5.19). This relationship replaces

on the one hand the Femlab deformation calculation of the steel. On the other

hand, the instability check of the constructed sequence matrix Z(l) is based on that

equation. Therefore, it is essential that this approximate displacement calculation of

the deformed steel plate holds with the proposed parameter identification.

This section presents the functionality of the introduced algorithm and shows also its

shortcomings.

5.3.1 First Order Instability

The predictability of the first order stability based on the magnitude of the eigenval-

ues of the constructed sequence matrix Z(l) can be shown exemplary for one steel

plate adaptation process that is performed with the conventional simulation algo-

rithm according to flowchart 4.3. Figure A.1(a) shows the development of the sensor

displacements during the adaptation process and A.1(b) visualizes the correspond-

ing magnitudes of the eigenvalues of the sequence matrix Z(l). It can be seen that

first order instability can be predicted as proposed in Section 5.2.1.2 by checking the

eigenvalues of the sequence matrix Z(l). The first adaptation steps are stable, until

the sixth set of external forces is applied. For this set the eigenvalue check reveals

that now an instable iteration process will follow, as the magnitude of one eigenvalue

is bigger than one. And indeed, the sensor displacements in Figure A.1(a) show that

the iteration turns instable.
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5.3.2 Accuracy

In order to achieve reasonable results with the new algorithm (see flowchart 5.4),

the development of the sensor displacements should be the same as gained with the

conventional algorithm (see flowchart 4.3). To show the accuracy of the formula with

the proposed parameter identification from Section 5.2.3, a steel plate is simulated

exemplary with both algorithms, the conventional and the newly proposed, and the

relative errors for the development of the sensor displacements are compared. In or-

der to neglect the extended approach of by-passing instable first order iterations the

simulation takes part for a stable adaptation process, meaning that the magnitudes

of the eigenvalues are smaller than one during the whole adaptation process as shown

in Figure A.2(c). Figure A.2(b) reveals that the relative errors for the sensor displace-

ments for this simulation never exceed 1%. This good accuracy can be achieved for all

researched stable simulations. Therefore, the proposed new algorithm can replace the

longlasting conventional simulation algorithm easily, as the results are satisfactory.

5.3.3 Initial Values

Figures A.3(a) and A.3(b) show the developments of the total sensor displacements

for two ongoing adaptation processes. In both cases, the same steel plate setup is

chosen, but the initial values are differing in these cases.

Figure A.3(a) presents the displacements of the sensor, if the initial values are de-

termined as s0(l) = sg + HNFext(l). The ongoing adaptation process turns out to

oscillate very strong and convergence takes very long as can be seen in the total num-

ber of iterations, which is more than 3000 to gain a second order balanced system.

Figure A.3(b) shows the sensor displacement development for the new inital value

approach according with the initial values determined as s0(l) = s̄(l − 1). The adap-

tation of the process goes remarkably faster, as the overall iterations for a balanced

system take circa 200 iterations and the adaptation is way more smooth compared

to the highly oscillatory adaptation above.

Figure A.3(c) compares the convergences of the first order iterations in the two

cases of initial values. It can be seen that the conventional initial displacements
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s0(l) = sg +HNFext(l) find a balance at circa 50 iterations for the first order balance,

as the new approach never exceeds 5 iterations to achieve convergence.

5.3.4 Closed Form First Order Iteration

The problem of the closed form first order iteration according to Section 5.2.2.5 is the

invertibility of the transformation matrix D. Figure A.4(a) shows an exemplary steel

plate adaptation, where the transformation matrix D gets badly conditioned within

the ongoing process. Therefore, the numerical matrix inversion of the transformation

matrix D could lead to defective displacement calculations (in the example: sensor

two). Figure A.4(b) shows the development of the condition number of the matrix

D. It can be seen that the number is growing very strong with values bigger than

1 · 104. A well-conditioned matrix is indicated with a condition number around one

[22].

Figure A.4(c) reveals that the adaptation is simulated for a stable process, as the

closed form algorithm holds only in cases of stable first order adaptations (see Section

5.2.2.5).

5.3.5 By-Passing for Instable Iterations

Figure A.5(a) shows the development of the sensor displacements of an exemplary

fully adapted system that is calculated with the algorithm presented in flowchart 5.6.

Figure A.5(b) visualizes the magnitude of the eigenvalues of matrix Z(l). Here, one

eigenvalue is beyond the stability border, caused by too big control parameters qi(l).

Hence, this calculated system has to be validated with a Femlab simulation of the

steel plate deformation. For that, the calculated actuator forces F̄act(lb) causing the

final displacements s̄(lb) shown in Figure A.5(a) are applied to the steel plate model in

Femlab as a test setup and the deformation of the steel plate is simulated. Afterwards,

the calculated deformations s̄(lb) are compared with the sensor displacements s̄fem

evaluated within Femlab. In the case of the simulated steel plate, the final calculated

displacements s̄(lb) and the Femlab evaluated displacements s̄fem have the values

shown in Table 5.2.
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Sensor s̄i(lb) s̄fem,i s̄rel,i = | s̄fem,i−s̄i(lb)
s̄fem,i

|
1 −0.6167 · 10−4 −0.6157 · 10−4 0.0016

2 −0.5166 · 10−4 −0.5220 · 10−4 0.0104

3 −0.7069 · 10−4 −0.7073 · 10−4 0.0005

4 −0.6995 · 10−4 −0.7073 · 10−4 0.0112

5 −0.7043 · 10−4 −0.7052 · 10−4 0.0013

6 −0.7136 · 10−4 −0.7072 · 10−4 0.0090

7 −0.7045 · 10−4 −0.7072 · 10−4 0.0038

8 −0.6104 · 10−4 −0.6068 · 10−4 0.0109

9 −0.5875 · 10−4 −0.5905 · 10−4 0.0051

Table 5.2: Proper validation of instability by-pass.

The relative error s̄rel,i for the sensors is in this case around one percent, meaning that

the calculated actuator forces and displacements resulting from the used algorithm are

appropriate. Anyhow, this validation has to be made always if instable eigenvalues are

appearing during the adaptation process. It turns out that eigenvalue magnitudes far

beyond one lead to results for actuator forces and steel plate deformations that cannot

be proved with Femlab simulations. In these cases the responsible control parameters

qi(l) have to be reduced again, as the calculations for the balanced system cannot be

validated with Femlab simulations.

Figures A.6(a) and A.6(b) show the simulation results for the displacements of the

sensors and the calculated magnitudes of the eigenvalues of the Z(l) matrix for the

same steel plate setup but this time higher control values qi(l) are chosen. Now there

are three calculated eigenvalues bigger than the threshold one. The validation of the

achieved second order balance is now executed again and there follow for the different

calculated and Femlab post-evaluated displacements of the sensors the values from

Table 5.3.

Here the relative errors for the sensors are varying strongly between circa one percent

and 22 percent with four sensor displacements above ten percent. In that case,

the calculated second order balanced system does not hold with Femlab simulated

deformations of the steel plate as the differences are too high for some sensors. A
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Sensor s̄i(lb) s̄fem,i s̄rel,i = | s̄fem,i−s̄i(lb)
s̄fem,i

|
1 −0.2237 · 10−4 −0.1828 · 10−4 0.2236

2 −0.2229 · 10−4 −0.2103 · 10−4 0.0597

3 −0.2233 · 10−4 −0.2216 · 10−4 0.0078

4 −0.2239 · 10−4 −0.2328 · 10−4 0.0383

5 −0.1871 · 10−4 −0.2163 · 10−4 0.1348

6 −0.2237 · 10−4 −0.2528 · 10−4 0.1152

7 −0.2236 · 10−4 −0.2390 · 10−4 0.0644

8 −0.2236 · 10−4 −0.2160 · 10−4 0.0352

9 −0.2236 · 10−4 −0.1954 · 10−4 0.1442

Table 5.3: Inaccurate results for instability by-pass.

possible reason for that is that the linearity assumption of (5.19) for too high control

parameters qi(l) is inaccurate, as the resulting deformations of the steel plate are

getting too big and elasticity of the steel plate cannot be assumed any longer. In

that case, there is no other possibility then neglecting these simulation results and

continue researches for smaller control values qi(l).



Chapter 6

Simulation: Results and

Interpretations

This section presents the simulation results and combines them with the approach

about elastic systems, derived in Chapter 3. Generally, there are three parts follow-

ing.

The first section introduces shortly how the adapted system can be described math-

ematically, according to the derivations made earlier.

Section 6.2.2 shows the results achieved with local learning information. This ap-

proach is interesting for control purposes of totally decentralized sensor/actuator

networks, where every sensor/actuator couple is just "aware of itself".

The next part is more related to the theoretical approaches of elastic systems and

deals therefore with distributed sensor/actuator networks, where the single sen-

sor/actuator couples have not only their information but also sensor information

from all other sensor/actuator couples. However, the practical relevancy of these

control setups with a full mapping matrix is limited. The section should give an

outlook of the simulative validation of the theoretical approaches from Chapter 3 in

a more complex simulation framework and also emphasize the evolutionary fitness of

the outcomes.

The last section interprets the simulation results in different contexts like the system

theoretic point of view, the control aspect and in a wider sense the evolutionary in-

terpretation of steel plate adaptations.



Chapter 6. Simulation: Results and Interpretations 79

The theoretical considerations about the used simulation algorithm in chapter 5 hold

in the case of a full mapping matrix φT and can be applied for these simulation

purposes.

6.1 Criteria for Validation of the Theoretical Ap-

proaches and Emergent Behavior

With the assumed mapping from (3.65) all derived equations for latent variables x̄

are also valid for control variables x̄′ = F̄act, so that these variables can be replaced

with F̄act in the derived formulas of Chapter 3. The undisturbed environment u is

constituted by the initial displacements s̃ of the sensors, when no adaptation is taking

place. In what follows the replacements are defined as







x̄ = F̄act

ū = s̄

u = s̃

(6.1)

Furthermore, the variability of the control parameter qi(l) is taken into account and

is therefore written analog to (3.58) as matrix Q. The possible values of the coupling

parameters qi are defined in (4.4).

(3.46) can now be written as

Q−1 = θ̄T E{s̄s̄T}θ̄ (6.2)

This equation reveals that the eigenvalues of the covariance matrix of the balanced

environment are equalized and determined by the matrix Q. For control purposes

in the case of local sensor/actuator information the coupling matrix Q can be taken

directly in order to predict the local variances of the sensor displacements (see Sec-

tion 6.2.1). Therefore the emergent shape of the steel plate can be predicted with

the control parameters qi of Q before the adaptation process is started.

In the case of decentralized learning for the sensor/actuator couples, (6.2) can be

taken in order to validate the theoretical approaches. In the balanced system, the

eigenvalues of the balanced environmental covariance matrix E{s̄s̄T} are determined
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directly by the coupling parameters qi(l) of matrix Q.

As the number of control signals n equals the number of measured sensor displace-

ments m, the claim for complete neocybernetic modes is determined by the smallest

eigenvalue λm of the undisturbed environmental covariance matrix E{s̃s̃T}. To make

an equalization of all eigenvalues possible there must hold

qiλm > 1 (6.3)

analog to (3.61). This statement can be taken as a second criteria to compare the

theoretical results with simulations.1

6.2 Localized Learning

In what follows, the results for local learning of the sensor/actuator couples are shown

for different coupling parameters qi(l). Before that, mathematical considerations are

made in order to interpret the results for the steel plate adaptations in the theoretical

framework.

6.2.1 Mathematical Considerations

As one takes into account that the covariance matrix E{F̄acts̄
T} is diagonal in the

researched case, this diagonalization leads to some more conclusions. The covariance

matrix E{F̄actF̄
T
act} from (3.43) is now

E{F̄actF̄
T
act} = QE{F̄acts̄

T}E{F̄acts̄
T}T (6.4)

This equation reveals that the covariance matrix E{F̄actF̄
T
act} for the actuator forces

becomes diagonalized as well. So (6.4) can be written as

E{F̄actF̄
T
act} = QE{F̄acts̄

T}2 (6.5)

1For the ongoing considerations of local information adaptation, all considered signals s̄, s̃ and

F̄act have zero mean.
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This equation can be used in (3.47) to calculate the mapping matrix θ̄T and there

follows for the mapping

θ̄T = Q1/2E{F̄actF̄act}−1/2E{F̄acts̄
T}

= Q1/2



Q E{F̄acts̄
T}2

︸ ︷︷ ︸

>0





−1/2

E{F̄acts̄
T}

︸ ︷︷ ︸

<0

= −In

(6.6)

The positive sign of the first covariance term is a result of the quadrature of the

mapping covariance matrix E{F̄acts̄
T} in (6.5) and the negative sign in the second

term is a matter of causality between measured displacement and applied actuator

force (see Section 4.3).

Finally it can be said that the covariance matrix of the observed environment E{s̄s̄T}
becomes a variance matrix, where the values are determined by the coupling matrix

Q. This can be seen from (6.2) with (6.6) and the result is

Q−1 = E{s̄s̄T} = E{ūūT} =








E{s̄2
1} 0

. . .

0 E{s̄2
m}








(6.7)

The undisturbed environment matrix E{s̃s̃T} becomes a variance matrix as well.

This localization in (6.7) makes it very easy to predict the behavior of the steel plate

during the adaptation process, as the coupling parameters qi(l) of the matrix Q deter-

mine directly the variances E{s̄2
i } of the sensors after the adaptation of the system.

These observations are shown in the following sections exemplary for different setups

of the steel plate.

It has to be stated out that the neocybernetic scaling demands an invertible scaling

matrix E{F̄actF̄
T
act} (see (6.6)). Simulations show that the trivial solution of (3.62)

can occur in the balanced system, meaning that expectation values E{F̄act,is̄i} are

getting zero, zeroing the induced actuator forces F̄act,i likewise. In that case only the

entries corresponding to the non-zero covariance matrix entries E{F̄act,is̄i} are fol-

lowing (6.7). It turns out that the sensor variances, belonging to the zeroed actuator

forces, are smaller in the case of inactive actuators, meaning that (6.7) indicates in

these cases the maximum expected variance max E{s̄2
i } = 1/qi of the corresponding

sensor displacement.
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6.2.2 Constant External Forces

In order to get a better understanding about the ongoing steel plate adaptation and

the interpretations of the fully adapted system, constant forces can be used for the

external forces sets l so that there holds

Fext(l) = Fext = const. ∀l = 1, ..., lb (6.8)

From this starting point rather intuitive observations are gained from the final bal-

anced systems and the results can be adapted easily to the more practical case of

varying external forces (see Section 6.2.3). For this approach different coupling coef-

ficients qi(l) are taken into account and the adapted steel plate is researched closer.

Simulations show that in the case of the steel plate adaptation three general obser-

vations can be made and categorized from the neocybernetic point of view. These

different categories can be determined by the strength of the coupling parameters

qi(l):

• No emergence in the system. If the coupling parameter qi(l) is to small, no

global emergence is instantiated and the system falls back to its original defor-

mation. Every sensor/actuator couple turns inactive again, after the adaptation

process is started. This can be explained with the fact that the q factor is deter-

mining the maximum variance of the balanced sensor displacements and too low

coupling coefficients q allow variances that are higher than the original sensor

displacement variances. This is the case, if

1

qi(l)
> λ1 (6.9)

Here, λ1 indicates the biggest eigenvalue of the variance matrix E{s̃s̃T} of the

undisturbed environment.

• Sub-neocybernetic system. The coupling parameter qi(l) is high enough to

lead to an adaptation of the system, but not all actuators are staying active

in the adapted system. Some actuator forces are zeroed during the adaptation

process, as the respective mapping matrix elements φT
ii are zeroed during the

iteration process.
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• Neocybernetic system. All actuator forces are finally on a non zero level,

meaning that all actuators are staying active.

6.2.2.1 Constant Coupling Parameters

In this section constant coupling parameters are researched, meaning that qi(l) is

according to (4.4)

qi(l) = q = const ∀i = 1, ..., m (6.10)

Analog to Figure 3.7, Figure 6.1 shows the results of the equalization process for the

environmental variables s̄i of a fully adapted steel plate. The balanced environmen-

tal variances E{s̄2
i } are compared to the open loop variances E{s̃2

i } (blue markers)

depending on the choice of the coupling parameter q of the mapping matrix φT . The

variances are sorted in descending order.

It can directly be seen from the picture that the coupling parameter q determines

the maximum variation in the data. The higher the value of the coupling coefficient,

the bigger is the loss of variation in the data as it is described in Section 3.3.2. It

can also be seen that with higher q factors, more and more balanced environmental

signals s̄i are equalized:

For q1, only one sensor signal is following equalization (6.7). With higher q factors

there are two (q2, q3), three (q4) and finally all sensor signals equalized (q5), as it is

predicted with formula (6.7). Only for q = q5 the system behaves neocybernetic. In

the other cases the system is sub-neocybernetic and the equalization is not a result

for all measured sensor signals. The respective actuator forces are fading away and

not active part of the control structure after adaptation.

The zeroing of different modes F̄act,i(l) for low q factors can be explained with the

fact that in this case only the actuator/sensor couples with high displacements are

gaining weight. The sensors measuring lower displacements (for example the cou-

ples closer to the boundary) are turning out to get inactive. The active couples are

enough to reach the goal of maximum variation given by the coupling factor q and

the lower variances of the inactive sensor/actuator couples are a side effect of the

active couples. For an equalization the q factor has to be high enough to emphasize

the less dominant sensor/actuator couples as well.
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Figure 6.1: Influence of constant q factors on the equalization of the displacement

variances of E{s̄2
i }.

As the use of a diagonal mapping matrix φT localizes the eigenvalues of the balanced

environmental signals and constant forces are applied this leads to a smart estima-

tion of the maximum sensor displacement, connected closely to (6.7). In this case

the maximum measured balanced sensor displacement s̄i can be determined by the

coupling factor q directly and there follows

max |s̄i| ≤
√

1

q
∀i = 1, ..., m (6.11)

These observations can be validated in simulations of the steel plate adaptation

process and are shown in appendix B. In the case of q = q5 this means that the

steel plate adaptation leads to a state, where all measured sensor displacements s̄i

are equal. In the other cases, some balanced displacements are already smaller than

the maximum determined.

The development of the displacements s̄i(l) of the sensors, the resulting actuator

forces F̄act,i(l) and the mapping matrix φT (l) during the adaptation process are shown

for the cases q = q2 and q = q5 in Figures B.1(a) to B.2(c) and the results can be
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connected to the observations in Figure 6.1. Figure B.1(a) shows for the case of q = q2

that the steady state displacements of sensor 3 and 4 are equalized with the ongoing

adaptation process, as only these mapping matrix φT elements stay active (B.1(a)).

In the case q = q5 all sensor displacements are equalized (see Figure B.2(a)). This

equalization is a result of all sensor/actuator couples staying active.

6.2.2.2 Individual Coupling Parameters

Now individual coupling parameters are researched, meaning that qi(l) is according

to (4.4)

qi(l) = qi = const ∀i = 1, ..., m (6.12)

In this case, every coupling parameter qi is set separately for the sensor/actuator

couple i, determining directly the variance of the sensor displacement E{s̄2
i } analog

to (6.7). Figure 6.2 shows the variances of the adapted steel plate for three different

setups qset,j of individual coupling parameters compared to the open loop variances

E{s̃2
i } (blue marker). The solid lines show the real variance values E{s̄2

i } of the

sensor displacements and the dashed lines indicate the expected variances Eexp{s̄2
i }

determined by the coupling parameter sets qset,j .

With increasing coupling parameters, the system becomes fully neocybernetic and

every actuator is staying active. This is the case for parameter set qset,3 (cyan line),

where every sensor variance E{s̄2
i } equals the predetermined variance Eexp{s̄2

i }. The

parameter sets qset,1 (green dashed line) and qset,2 (red dashed line) lead to system

states where not every mode is activated. Parameter set qset,1 leads to a system where

only actuator one and three are active. The other actuator forces are fading away.

In the case of parameter set qset,2 actuator four stays active as well and only actuator

two becomes inactive. But for both setups it can be said that the variances of the

inactive actuators remain smaller than the coupling factor would let it expect. Once

again these lower variances can be explained as a side effect of the active actuators

on the steel plate (see also section 6.2.2.1). For parameter set qset,3 every actuator is

activated, the system is fully neo-cybernetic and the expected and real variances are

equal.

The development of the displacements s̄i(l) of the sensors, the resulting actuator
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Figure 6.2: Influence of variable qi factors on the displacement variances E{s̄2
i }.

forces F̄act,i(l) and the mapping matrix φT (l) during the adaptation process are shown

for the cases q = qset,2 and q = qset,3 in the figures B.3(a) to B.4(c). Here once again it

can be seen that in the case of qset,2 actuator force two is fading away as the respective

mapping matrix entry is zeroed in the adapted system (figures B.3(b) and B.3(c)).

In the case of qset,3 every actuator is activated (see Figure B.4(b)) and the steady

state variances E{s̄2
i } are directly determined by the values of the individual coupling

parameters qset,3.

Analog to the thoughts for the maximum sensor displacements in the adapted system

from section 6.2.2.1 there follows with (6.11)

max |s̄i| ≤
√

1

qi
∀i = 1, ..., m (6.13)

determining the maximum expected displacement of the single sensors i in the case

of differing coupling parameters.
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6.2.2.3 Adaptive Coupling Parameters

In this section, adaptive learning coupling parameters are researched, meaning that

qi(l) is according to (4.4)

qi(l) =
ν

E{F̄ 2
act,i}

∀i = 1, ..., m (6.14)

It turns out that this strategy keeps all actuators active, as the coupling coefficients

are growing, when the actuator forces are decreasing due to the factor E{F̄ 2
act,i} in

the denominator. The fading actuators regain life again. Simulations show that

this applied control strategy results in a balanced neocybernetic system for every

adaptation process and the variances of the sensor displacements are determined by

the steady state values of the adapted coupling coefficient q̄i = qi(lb). Figure 6.3

shows the variances E{s̄2
i } of the adapted system sensor/actuator couples and the

influence of the free design parameter ν. It can be seen that an increasing ν factor

leads to a steel plate adaptation with less variance. Furthermore, it can be remarked

that the original variance structure is generally kept, no matter what value ν has. One

could say that the adaptive coupling parameters damp the variances in the system

proportional to the original variances.

Figures B.6 and B.7 show the development of the mapping matrix entries φT
ii(l) for

two different control parameters ν. Remarkable is the fact that the adaptation of the

steel plate leads to equal steady states for all matrix entries.

Figures B.5(a) to B.5(c) show the sensor displacements s̄i(l), the development of the

actuator forces F̄act,i(l) and the development of the adaptive coupling parameter qi(l)

during the adaptation process of the steel plate for ν = 5 · 1012. The adaptation of

the steel plate turns out to be very smooth, as there is no real "competition" between

the single sensor/actuator couples. This can be seen for the individual and constant

coupling coefficients (see for example B.4(c)).

Compared to the other two sorts of coupling parameters qi(l), this system has the

advantage that every sensor/actuator couple of the distributed network is actively

taking part in the control of the steel plate. On the other hand, as the parameters

qi(l) are adaptive it is somehow difficult to determine, how the balanced system is
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Figure 6.3: Influence of adaptive coupling factors qi on the displacement variances

E{s̄2
i }.

converging. One does not know beforehand how the parameters will develop. One

knows only that it will converge with every actuator staying active.

The next section shows simulation results in case of varying external forces that is

better applicable in real systems.

6.2.3 Varying External Forces

The same mathematical thoughts that are holding in the case of constant forces are

also valid for variable external forces, applied on the steel plate during the adaptation

process and the equations from Section 6.2.1 are still valid. It turns out that the

results in the case of varying forces are the same, compared to the case of constant

forces. Although this adaptation is closer to real-life systems as the environment

is not expected to be constant during the adaptation but changing. The system is

adapting with respect to the environmental variations and emerges towards maximum

experienced stiffness.
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variances of E{s̄2
i } in the case of variable external forces.

As the results of the adaptation are similar to constant forces, the simulations are

only performed for constant coupling parameters q and the outcomes are presented.

It is mentioned in Section 4.3 that the breaking criterion for the algorithm has to be

changed slightly, if varying external forces are considered for the adaptation of the

system. The problems are higher variations for the mapping matrix entries φT
ii(l) and

therefore past information should be regarded as well for the breaking criterion. The

adaptation of the steel plate is finished if the maximum mean value difference over

the last w values is smaller than the given mean value ∆φ and analog to (4.17) the

modified breaking criterion is

max
i

{ 1

w

(
lb+1∑

j=lb−w+1

φT
ii(j) −

lb∑

k=lb−w

φT
ii(k)

)

} < ∆φ i = 1, ..., m (6.15)

Figure 6.4 shows the development of the variances E{s̄2
i } of the adapted system

compared to the original undisturbed environmental variances E{s̃2
i } (blue markers)

depending on the coupling coefficient q for the mapping matrix φT . Here the devel-
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opment is analog to Section 6.2.2:

With increasing q factors the variances are getting equalized again. For q = q1 only

two actuator variances equal. The other two variances are already lower than the q

factor would determine analog to the results for the constant external forces. Once

again, these actuator forces are zeroed during the adaptation process. For q = q2 the

variances are getting closer together and in case of the third adapted system q = q3

equalization is reached again and all four actuators are occupied.

Figures B.8(a) to B.8(c) show exemplary the development of the sensor displacements

s̄i(l), the actuator forces F̄act,i(l) and the mapping matrix φT
ii(l) for the use of q = q3.

In the case of varying external forces, a connection can also be made between the

steady states of the displacements s̄i after the adaptation and the coupling parameter

q in the case of equalization of all variances. It turns out that the expectation value

of all sensor displacements E{s̄i} can be determined analog to (6.11) as

max
i

|E{s̄i}| ≤
√

1

q
∀i = 1, ..., m (6.16)

6.3 Outlook: Non-Localized Learning

In order to manifest the theoretical thoughts on elastic systems, the idea of decentral-

ized learning with communication structures between the sensor/actuator couples is

addressed shortly. Firstly, mathematical considerations are presented and simulation

results are shown in case of constant coupling parameters q.

6.3.1 Mathematical Considerations

If the sensor/actuator couples in the distributed network take also the signals of the

other couples into account, the mapping matrix φT has cross-correlated entries and

can be written as

φT = Q · E{F̄acts̄
T} = Q ·











E{F̄act,1s̄1} · · · E{F̄act,1s̄m}
E{F̄act,2s̄1} · · · E{F̄act,2s̄m}

...
...

E{F̄act,ms̄1} · · · E{F̄act,ms̄m}











(6.17)
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For the algorithmic implementation every matrix entry eij(l) = E{F̄act,is̄j} has to

be initialized analog to (4.13) with some small value εij < 0. The update of the

covariance matrix E{F̄acts̄
T}(l) is now parallel to (2.19) not for every single sen-

sor/actuator but the complete network at once with the found steady state forces

F̄act(l) and displacements s̄(l) of the first order iteration

E{F̄acts̄
T}(l + 1) = λE{F̄acts̄

T}(l) + (1 − λ)F̄act(l)s̄
T (l) (6.18)

Here, the simplifications made for the diagonal learning in Section 6.2.1 are not valid

any longer, but (6.2) determines how the emergent system should look like:

The coupling coefficients qi determine directly the eigenvalues of the covariance matrix

of the balanced environment E{s̄s̄T} and the system is truly neocybernetic, if (6.3)

holds.

The emergence of a steel plate adaptation in this case is shown in what follows. In

order to gain interpretable results, variation for the external forces Fext(l) is taken

into account.

6.3.2 Constant Coupling Parameters

An exemplary global learning system is evaluated in the case of constant coupling

coefficients and the challenges occuring in the simulation are presented shortly.

Figure 6.5 shows exemplary the eigenvalues of the open loop system, determined by

the covariance matrix of the undisturbed environment E{s̃s̃T} and the emerging sys-

tem behavior for different constant coupling coefficients q of the mapping matrix. It

can be seen directly that the q factor determines the variation in the balanced envi-

ronment. With increasing q there is a loss in variation on the one hand but on the

other hand, equalization of variations emerges. From (6.3) it can be derived that the

coupling coefficient determines the number of modes that are behaving neocybernetic

as this equation must hold, if the q factor is high enough to capture all different vari-

ations. For q = q1 only the first eigenvalue is determined by the coupling coefficient

as the other eigenvalues remain. For q = q2 and q = q3 the first two eigenvalues

are equalized, as the coupling coefficient q is chosen high enough that the second

eigenvalue of the undisturbed environment covariance matrix becomes neocybernetic
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Figure 6.5: Influence of constant q factors on the equalization of the balanced covari-

ance eigenvalues of E{s̄s̄T} in the case of a full matrix φT .

as well and there holds

λ2 · q > 1 (6.19)

analog to (6.3). Table 6.1 shows an overview for the eigenvalues of the undisturbed

environment covariance matrix and the balanced outcomes and compares the ex-

pected values, determined by the factor 1/qi, with the real variances in the balanced

environment. The occurring error can be explained with numerical uncertainties of

the simulation within Femlab and Matlab. The accuracy of the outcomes is still

satisfactory.

If one has a closer look at the eigenvalues of the open loop system in Figure 6.5 (blue

marker) one can see that most of the variance in the system is mainly determined by

one dominant eigenvalue. The second one is still high enough to validate the neocy-

bernetic behavior for these two modes of the system as (6.3) is fulfilled for λ2. The

lasting eigenvalues are negligible. This fact can be explained with the rigidity of the

researched steel plate. As the shape is very simple the variation of the measured sen-
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λ(10−7) λ̄q1
(10−7) λ̄q2

(10−7) λ̄q3
(10−7) max. error

1 1.141 0.193 0.149 0.101 4.2%

2 0.146 0.147 0.138 0.097 3.5%

3 0.017 0.017 0.017 0.018 −
4 ≈ 0 ≈ 0 ≈ 0 ≈ 0 −
1
qi

− 0.200 0.143 0.100 −
# neocybernetic modes 1 2 2 −

Table 6.1: Comparison of open and closed loop eigenvalues for different coupling

coefficients q. Simulation setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator

and external forces positions (see Figure C.2), control parameter "Set 1" (Table C.7)

sor deformations is rather limited. In order to prove that more neocybernetic modes

could be activated, very high coupling coefficients q would be necessary to direct the

system in the balanced area of the remaining small eigenvalues. These higher cou-

pling coefficients are not useful in simulations as the problem of numerical instability

introduced in Section 5.1 occurs and the discrepancy between the calculated balanced

results and the Femlab simulations is too high.

A solution for this problem would be a research on complexer steel plate shapes,

where more variation of data can be expected and the smallest eigenvalue of the

undisturbed environment is high enough to be adaptable as well with the correct

choice of the coupling coefficient q.

6.4 Interpretations

Finally, the observed simulation results are put in a wider framework and interpreted

from three different point of views. The first field of interest is the system theo-

retic view on elastic systems, followed by the application of these results for control

purposes and at last the evolutionary fitness of elastic systems is described closer.

6.4.1 System Theoretic Approach

The idea of elastic systems is rather new and so far existent on paper and validated

in simple simulations. In order to manifest the theoretic ideas of Chapter 3 the idea



Chapter 6. Simulation: Results and Interpretations 94

of global learning is introduced in Section 6.3, meaning that the mapping matrix

φT is full and the sensor/actuator couples forming the distributed network have all

information available.

The section shows that the adaptation of the system follows the guidelines introduced

for elastic systems. It can be seen that the coupling coefficient q determines directly

the number of activated modes in the system and therefore the loss of excitation. In

addition it can be seen that there is not only a loss of variation but also an equaliza-

tion; with proper coupling coefficients q all variations can be equalized. Furthermore

it turns out that the control variables can be taken in order to replace the latent

system variables as proposed in Section 3.3.3.

In summary it can be said that the theoretic framework of elastic systems can also

be proved in complexer simulations as the proposed steel plate adaptation process

indicates.

6.4.2 Neocybernetic Control

As one compares the neocybernetic control of the distributed sensor/actuator network

to conventional control mechanisms, some advantages of this new thinking can be

remarked.

Conventional control purposes for complex systems are mainly based on SISO controls

or sophisticated multivariate techniques are applied. Using distributed controlling,

there is always the question how the communication of single sensor/actuator couples

should be realized in order to reach an emergent goal. The entities could also compete

or disturb each other, worsening the overall global result. In the case of the proposed

elastic control algorithm, these problems seem to vanish. Emergent behavior in the

system can be achieved with only local information available, as the sensor/actuators

are communicating implicitly through the environment. The system adaptation is

only taking local actuator forces and local deformations into account. In addition,

the proposed neocybernetic control does not need explicit knowledge about the actual

system dynamics or an appropriate model of the system. As one concentrates more on

the pattern view than on the process itself statistical properties can be applied and

the multivariate distributed controllers are adapting data-based and learning from
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different variations in the observable environment completely locally [8].

Anyhow, the results of this local adaptation processes show emergent behavior in the

system. In the case of the steel plate adaptation processes the coupling parameter

q determines directly the expectable displacements of the sensors in finally balanced

systems and therefore the emergent shape of the plate.

6.4.3 Evolutionary Fitness

Going back to the evolutionary motivation of the control formula, the results of the

steel plate adaptations can also be explained in a wider sense.

The proposed algorithm optimizes the steel plate towards its maximum experienced

stiffness, meaning that it is adapting in a way where environmental variations are try-

ing to be minimized. From the simulation results it can be seen that sensor/actuator

couples with higher measuring displacements are intuitively developing higher forces

to counteract these deformations. Reason for higher displacements can be the po-

sition of the sensor/actuator couples on the plate and the impact of external forces

on these controllers. In this context the fading away of actuator forces during the

adaptation process can also be explained more intuitively; Controllers with less signif-

icance have not much influence on the overall stiffness of the system. Sensor/actuator

couples closer to the "source of concern" or with better position for compensations

are developing stronger. This control can be related intuitively to evolutionary fitness

in biological systems: the human skin is getting thicker in areas that are used more

intensive and more often (finger tips of guitar players, soles of feet, ...), muscles of

human beings or animals are getting better evolved, if they are used more intense and

so on. In biology this phenomenon is known as hyperplasia and hypertrophy [23].

Even if the ongoing process in the case of the steel plate adaptation is active, the

emergent result can be implemented passively, by adding extra layers at these po-

sitions, where the actuators evolve high forces during the adaptation. It has to be

remarked that this passive control strategy demands different types of sensors (strains

or stresses) to make the results more practicable.



Chapter 7

Summary and Outlook

The thesis studied the possibilities of implementing new kinds of sensor/actuator

systems in order to control deformable systems. The new approach concentrates

on distributed networks where sensor/actuators are acting completely local and still

emergent global behavior evolves out of these actions. For this approach neocyber-

netic tools were applied.

First the general ideas of neocybernetic modeling of complex real-life systems were

introduced. The question was, how self-organization and self-regulation can emerge

in systems out of local interactions among low level actuators. After introducing the

key ideas of the used mathematical tools in this context, Hebbian and anti-Hebbian

learning was presented as a possible modeling strategy.

The next chapter considered a new point of view for modeling neocybernetic systems

that finally fell back into known domains of self-regulation and self-organization of

neocybernetic systems in the sense of stabilization and PSA. Starting point were

thoughts about the evolutionary fitness of systems that are in strong interconnection

with their environment. Additionally it turned out that active control structures can

be implemented for control purposes of elastic systems. This basic idea was evaluated

closer in the next chapter.

With the assumption of totally local activities of sensor/actuator couples, a distrib-

uted control of deformable systems could be built up and researched closer with
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simulations. The used tools were Matlab and Femlab. It turned out that the highly

iterative simulation process demanded a new simulation strategy where the strong

connection between the used simulation tools Femlab and Matlab was loosened. The

next chapter introduced this new algorithm. The advantages of the new algorithm

were mainly the time efficiency and the possibility of by-passing problems of numer-

ical instability, which made it possible to research a wider area of setups faster.

The simulation results shown in the next chapter, revealed that global emergent be-

havior can be seen after the adaptation process of the steel plate, even if the learning

strategy of the sensor/actuator couples was completely local and no explicit commu-

nication between the sensor/actuator couples was implemented. The outcomes were

shown for different coupling parameters and external forces. First only constant de-

formations were taken into account, as the results are easily expandable to adaptation

processes, where varying initial deformations were used. The results show generally

a loss of excitation in the system and the remaining variations can be predicted di-

rectly by the used coupling parameters. This means that the emergent shape of the

steel plate can be determined beforehand with the coupling parameters. As the steel

plate adaptation was also used to strengthen the theoretical framework about elastic

systems some more simulations were made, with assumed communication between

the sensor/actuator couples. Finally, the results were interpreted from the system

theoretic point of view, for control purposes and — in a wider sense — from the

evolutionary point of view.

As the adapted steel plate results can be used for passive control by adding for exam-

ple some extra layers at the proper positions in order to increase the stiffness of the

system, some more simulations can be made with different types of sensors (for ex-

ample stresses and strains) to gain more intuitions. In addition to that more complex

real applicable steel structures could be researched. Thinking of real-life applications,

it is conceivable to use the distributed sensor/actuator network directly in practical

applications in order to perform fatigue or vibration analysis for mechanical systems.



Appendix A

Charts for Algorithm Validation



Appendix A. Charts for Algorithm Validation 99

0 10 20 30 40 50 60 70
−2

−1.75

−1.5

−1.25

−1

−0.75

−0.5
x 10

−4

PSfrag replacements

Number of total iterations (o · l)

1

2
3

4
5 6

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
Sensor 9

set numbers l

Displacements of Sensors

so i
(l

)
[m

]

(a) Total Displacements of sensors during adaptation process.

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Magnitude of Eigenvalues of Z(l)

|ei
g
{Z

(l
)}

i|

Set number l of external forces

stability border

Instability

(b) Magnitude of eigenvalues of matrix Z(l) during adaptation process.

Figure A.1: Predictability of first order instability with evaluation of eigenvalues of

matrix Z(l). Simulation setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator

and external forces positions (Figure C.1), control parameters "Set 1" from Table C.3.
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Figure A.2: Comparison of conventional adaptation algorithm (flowchart 4.3) with

new adaptation (flowchart 5.4) for a stable process. Simulation setup: "Quadratic Steel

Plate" (Table C.2), sensor/actuator and external forces positions (Figure C.1), control

parameter "Set 2" (Table C.3).
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Figure A.3: Comparison of different inital first order iteration conditions. Simula-

tion setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces

positions (Figure C.1), control parameter "Set 2" (Table C.3).
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Figure A.4: Inaccuracy of closed form first order iteration. Simulation setup: "Spring

Board" (Table C.2), sensor/actuator and external forces positions (Figure C.3), control

parameter "Set 3" (Table C.3).
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Figure A.5: Extension of the conventional algorithm for instable first order iterations.

Simulation setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator and external

forces positions (Figure C.1), control parameter "Set 4" (Table C.3).
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Figure A.6: Extension of the conventional algorithm for instable first order iterations.

Simulation setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator and external

forces positions (Figure C.1), control parameter "Set 5" (Table C.3).
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Figure B.1: Adaptation process of the steel plate for q = 4 · 107. Simulation setup:

"Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces positions (Fig-

ure C.2), control parameter "Set 6" (Table C.3)
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(c) Mapping matrix elements.

Figure B.2: Adaptation process of the steel plate for q = 7 · 107. Simulation setup:

"Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces positions (Fig-

ure C.2), control parameter "Set 7" (Table C.3)



Appendix B. Simulation Charts 108

0 500 1000 1500 2000 2500 3000
−1.9

−1.85

−1.8

−1.75

−1.7

−1.65

−1.6

−1.55

−1.5

−1.45

−1.4
x 10

−4

PSfrag replacements

set number l of external forces

Sensor 1
Sensor 2
Sensor 3
Sensor 4

Displacements of Sensors

s̄ i
(l

)
[m

]

(a) Displacements of sensors.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

PSfrag replacements

set number l of external forces

Actuator 1
Actuator 2
Actuator 3
Actuator 4

Forces of Actuators

F̄
a
c
t,

i
(l

)
[N

]

(b) Forces of actuators.
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Figure B.3: Adaptation process of the steel plate for q = qset,2. Simulation setup:

"Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces positions (Fig-

ure C.2), control parameter "Set 1" (Table C.4)
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(b) Forces of actuators.
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(c) Mapping matrix elements.

Figure B.4: Adaptation process of the steel plate for q = qset,3. Simulation setup:

"Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces positions (Fig-

ure C.2), control parameter "Set 2" (Table C.4)
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(a) Displacements of sensors.
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(b) Forces of actuators.
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(c) Adaptive coupling parameters.

Figure B.5: Adaptation process of the steel plate for adaptive coupling parameters and

ν = 5 · 1012. Simulation setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator

and external forces positions (Figure C.2), control parameter "Set 2" (Table C.5)
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Figure B.6: Adaptation of mapping matrix entries φT
ii(l) ν = 5 · 1012. Simulation

setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces posi-

tions (Figure C.2), control parameter "Set 2" (Table C.5)
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Figure B.7: Adaptation of mapping matrix entries φT
ii(l) for ν = 5 · 1011. Simula-

tion setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator and external forces

positions (Figure C.2), control parameter "Set 1" (Table C.5)
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(a) Displacements of sensors.
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(b) Forces of actuators.
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(c) Mapping matrix elements.

Figure B.8: Adaptation process of the steel plate for q = 7 · 107 and variable external

forces Fext(l). Simulation setup: "Quadratic Steel Plate" (Table C.2), sensor/actuator

and external forces positions (Figure C.2), control parameter "Set 1" (Table C.6)
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Figure C.1: Steel Plate set with nine sensor/actuator pairs and three external applied

forces positions.
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Figure C.2: Steel Plate set with four sensor/actuator pairs and three external applied

forces positions.
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Figure C.3: Spring Board set with ten sensor/actuator couples and three external

applied forces positions.
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For simulation purposes the steel plate is considered to be structural steel. The

following parameters are used for Femlab simulations and parameter identification:

Structural Steel

Description Parameter Value Unit

Youngs’ modulus E 200 · 109
[

N
m2

]

Poisson’s ratio ν 0.33 [−]

Density ρ 7850
[

kg
m3

]

Thermal Expansion Coeff. α 12.3 · 10−6
[

1
K

]

Heat Capacity C 475
[

J
K

]

Thermal Conductivity k 44.5
[

W
m·K

]

Conductivity σ 4.032 · 106
[

S
m

]

Relative Permittivity εr 1 [−]

Relative Permeability µr 1 [−]

Table C.1: Structural Steel parameters.

Quadratic Steel Plate Spring Board

Length [m] 0.80 1.0

Width [m] 0.80 0.40

Depth [m] 0.01 0.01

Table C.2: Dimensions of steel plates.



A
p
p
en

d
ix

C
.

L
ayou

ts
an

d
P
aram

eter
S
ets

116

Parameter Unit Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

q
[

1
m2

]
3 · 108 1 · 108 2.5 · 103 2 · 108 2 · 109 4 · 107 7 · 107

ei(1), i = 1, ..., m [Nm] −1 · 10−3 −0.1 −1 · 10−3 −1 · 10−4

λ [−] 0.90 0.99 0.90

∆s [m] 7 · 10−7 1 · 10−4 7 · 10−7

∆φ
[

N
m

]
230 230 0.25 200 2000 0.3 0.01

Fext,1 [N ] -500

Fext,2 [N ] -400

Fext,2 [N ] -500

Table C.3: Control parameter sets for constant external forces Fext and constant coupling coefficients qi = q = const.
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Parameter Unit Set 1 Set 2

q1

[
1

m2

]
4.76 · 107 6.67 · 107

q2

[
1

m2

]
4.61 · 107 6.45 · 107

q3

[
1

m2

]
3.97 · 107 5.56 · 107

q4

[
1

m2

]
4.20 · 107 5.88 · 107

ei(1), i = 1, ..., m [Nm] −1 · 10−4

λ [−] 0.90

∆s [m] 7 · 10−7

∆φ
[

N
m

]
0.01

Fext,1 [N ] −500

Fext,2 [N ] −400

Fext,2 [N ] −500

Table C.4: Control parameter sets for constant external forces Fext and individual

coupling coefficients qi.

Parameter Unit Set 1 Set 2

ν
[

N2

m2

]

5 · 1011 5 · 1012

eq,i(1), i = 1, ..., m
[
N2
]

4 · 104

ei(1), i = 1, ..., m [Nm] −1 · 10−4

λ [−] 0.99

λq [−] 0.99

∆s [m] 7 · 10−7

∆φ
[

N
m

]
0.1

Fext,1 [N ] −500

Fext,2 [N ] −400

Fext,2 [N ] −500

Table C.5: Control parameter sets for constant external forces Fext and adaptive

coupling coefficients qi(l).
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Parameter Unit Set 1

q
[

1
m2

]
7 · 107

ei(1), i = 1, ..., m [Nm] −1 · 10−4

λ [−] 0.98

∆s [m] 7 · 10−7

∆φ
[

N
m

]
10

w [−] 1000

uniformly distributed

Fext,1(l) [N ] −400 to −600

Fext,2(l) [N ] −400 to −600

Fext,2(l) [N ] −400 to −600

Table C.6: Control parameter sets for variable external forces Fext(l) and constant

coupling coefficients qi = q = const.

Parameter Unit Set 1

E{F̄acts̄
T } [Nm] −1 · 10−4 ·











1.0 0.5 0.5 0.3

0.5 1.0 0.3 0.5

0.5 0.3 1.0 0.5

0.3 0.5 0.5 1.0











λ [−] 0.99

∆s [m] 7 · 10−7

∆φ
[

N
m

]
1

w [−] 1000

uniformly distributed between

Fext,1(l) [N ] −1000 to −800 and 800 to 1000

Fext,2(l) [N ] −1000 to −800 and 800 to 1000

Fext,2(l) [N ] −1000 to −800 and 800 to 1000

Table C.7: Control parameter sets for variable external forces Fext(l) and constant

coupling coefficients qi = q = const in the case of a full mapping matrix φT .



Appendix D

Alternating Sequences with

Exponential Growth

Generally, an alternating sequence (see Figure D.1) with exponential growth can be

described as follows

si = s̄ + α(−1)ieγi i ∈ N0 (D.1)

Here, γ is the exponential growth factor (γ > 0) and α can be considered to be a

scaling factor.

In (D.1) it can easily be seen that the inverted alternating sequence converges towards

s̄. Inversion means that the indices for i are non-positive and there follows

lime→−∞si = s̄ (D.2)

As there are the unknown parameters α,γ and s̄ in the sequence si, three equations

are needed to solve them in dependency of three succeeding parts sj, sj+1, sj+2 of the

sequence si. For the derivation, the first three indices i = 0, 1, 2 are used. The three

first elements of the sequence are

s0 = s̄ + α (D.3)

s1 = s̄ − αeγ (D.4)

s2 = s̄ + αe2γ (D.5)

In order to calculate the exponential growth rate γ it suffices if one calculates the

absolute differences between the succeeding elements s2 and s1 as well all as the
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Figure D.1: Alternating Sequence with Exponential Growth.

elements s1 and s0. Out of (D.3) to (D.5) results

|s2 − s1| = α(e2γ + eγ) (D.6)

|s1 − s0| = α(eγ + 1) (D.7)

If one divides the two equations and applies the logarithm to the quotient it leads to

ln
|s2 − s1|
|s1 − s0| = ln

e2γ + eγ

eγ + 1
= γ (D.8)

In a second step the value α can be calculated from (D.3) and (D.4)

α =
s0 − s1

eγ + 1
(D.9)

Finally the steady state s̄ can be calculated from (D.3) with (D.8) and (D.9)

s̄ = s0 − α
(D.9)
= s0 +

s1 − s0

eγ + 1

(D.8)
= s0 +

s1 − s0

|s2−s1|
|s1−s0|

+ 1
(D.10)



Appendix E

About Linear Spaces

This Appendix is taken from [12] and should be a very brief summary of basic linear

algebra.

The set of all possible real-valued vectors u of dimension d constitutes the linear

space R
d. If S ∈ R

d is a set of vectors, a subspace spanned by S, or L(S), is the

set of all linear combinations of the vectors in S. A set of linearly independent

vectors θi spanning a subspace is called a basis for that subspace.

The number of linearly independent vectors in the subspace basis determines the

dimension of the subspace. The basis vectors θ1 to θc of a c dimensional subspace

can conveniently be represented in a matrix form:

θ = (θ1 |· · · | θc) (E.1)

Given a basis of a subspace, all points uθ in that subspace have a unique representa-

tion. The basis vectors θi can be interpreted as coordinate axes in the subspace, and

weights of the basis vectors, denoted now zi, determine the corresponding coordinate

values, or scores, of the point:

uθ =
c∑

i=1

ziθi (E.2)

or in matrix form

uθ = θz (E.3)

If d > c, an arbitrary data point u cannot necessarily be represented in the new basis.

Using the least squares technique an approximation can be found that minimizes the
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projection error

ẑ =
(
θT θ
)−1

θT u (E.4)

If the basis vectors are orthonormal so that there holds θT θ = Ic, it is evident that

(E.4) gives a simple solution:

ẑ = θT u (E.5)



Appendix F

Principal Components

This Appendix is taken from [12]. More about PCA can be read in [9].

PCA is a mathematical procedure for determining a subspace that optimally cap-

tures the variation in the higher-dimensional data. The easiest way to determine the

principal components is by analysis of the data covariance matrix. For understanding

principal components, knowledge of eigenvalues and eigenvectors is necessary. The

eigenvector Θi and the corresponding eigenvalue λi of the data covariance matrix

fulfill

E{uuT}Θi = λiΘi (F.1)

There are d distinct eigenvectors and corresponding eigenvalues. If one collects the

eigenvectors of E{uuT} in the d × d dimensional matrix Θ, and the corresponding

eigenvalues on the diagonal of d × d dimensional Λ, so that

Θ = (Θ1 |· · · |Θc) and Λ =








λ1 0
. . .

0 λc








(F.2)

the covariance matrix can be decomposed as

E{uuT} = ΘΛΘ−1 = ΘΛΘT (F.3)

This comes from the fact, that eigenvectors of the symmetric matrix are orthogonal.

Because of the construction of the covariance matrix, the eigenvalues are real and non-

negative; one can order the eigenvectors in the order of decreasing significance, so that
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λ1 ≥ · · · ≥ λc ≥ 0. The eigenvalues λi reveal how much of the data variation takes

place in the direction of the eigenvector Θi. This gives a practical way to compress

data - select only the d most significant eigenvectors to constitute an orthonormal

basis θ:

θ = (Θ1 |· · · |Θd) with d < c (F.4)

When the data u is projected onto this subspace, so that z = θT u, one receives the

latent variables or principal components that are mutually uncorrelated and capture

the variation in u in an optimal way.



Appendix G

Table of Symbols

In this work appearing symbols in alphabetical order:

Chapter 2

Symbol Description

A
Matrix of synaptic weights between neurons

a Index

B Matrix of weights between input and neurons

b Index

C Matrix of weights between neurons and output

c Number of neurons

d Number of inputs

E{x̄uT } Covariance matrix of steady state neural activity x̄ and input u

E{x̄x̄T } Covariance matrix of steady state neural activity x̄

E{uuT} Covariance matrix of input u

h Discrete time step

Ic Identity matrix of dimension c × c

J(x) Cost criterion

l Sample index

R Vector of neural synaptic weights

R(k) Vector of sampled neural synaptic weights

Rx̄x̄ Covariance matrix of steady state neural activity x̄

Rx̄u Covariance matrix of steady state neural activity x̄ and input u

rab(k) Sampled synaptic weight between neuron a and input b

t Time
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Symbol Description

u Input data vector

u(k) Sampled input data vector

ub(k) Input b

W Weighting matrix for cost criteria

x Vector of neural activities

x(k) Sampled vector of neural activities

x̄(k) Vector of neural activity steady-states

x̄a(k) Steady-state neural activity of neuron a

xcont(t, k) Continuous time vector of neural activity

xcont(κh, k) Sampled time vector of neural activity

x(κ, k) Discrete-time neural activity vector

y(k) Data output vector

ŷ(k) Vector of estimated data output

ε Scaling factor

β Factor for Steepest Descent Method

κ Discrete-time factor

λ Forgetting factor for covariance matrix updates

µ Step size factor

φ Mapping matrix

ϕ Mapping matrix

ρ Factor of synaptic weights between data input and neurons

τ Time constant

θ Matrix of PCA eigenvectors

Chapter 3, 4, 5, 6

Symbol Description

A
Linear system matrix

B Input matrix

B̃ Coupling coefficient matrix for evolutionary fitness

b Coupling coefficient for evolutionary fitness

bi Individual coupling coefficient for sensor/actuator i

D Orthogonal transformation matrix

E{x̄ūT } Covariance matrix of balanced system x̄ and balanced environment ū
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Symbol Description

E{x̄x̄T } Covariance matrix of balanced system x̄

E{x̄∆uT } Covariance matrix of balanced system x̄ and environmental difference

∆u

E{∆u∆uT} Covariance matrix of environmental differences ∆u

E{uuT} Covariance matrix of undisturbed environment u

E{x̄2
i } Variance of balanced system variable x̄i

E{x̄uT } Covariance matrix of balanced system and undisturbed environment

E{x̄′ūT } Covariance matrix of balanced system x̄′ (variables free) and balanced

environment ū

E{F̄acts̄
T } Covariance matrix of actuator forces F̄act and sensor displacements s̄

E{F̄act,is̄
T
i } Covariance of sensor/actuator couple i

E{F̄ 2
act,i} Variance of actuator force F̄act,i

E{s̃s̃T } Covariance matrix of undisturbed sensor displacements s̃

E{s̃2
i } Variance of undisturbed displacement s̃i

E{s̄s̄T } Covariance matrix of balanced sensor displacements s̄

E{s̄2
i } Variance of balanced sensor displacement s̄i

ei(l) Sampled covariance of sensor/actuator couple i, E{F̄act,is̄i}(l)
eq,i(l) Sampled variance of actuator force i, E{F̄ 2

act,i}(l)
F Fixed mapping for evolutionary fitness

Fact,i Actuator force i

Fact,i(l) Actuator force i during applied external forces set l

F o
act(l) Vector of actuator forces during ongoing adaptation process

F o
act,i(l) Actuator force i during ongoing adaptation process

F̄act Vector of balanced actuator forces

F̄act,i Balanced actuator force of actuator i

F̄act,i(l) Balanced actuator force i during adaptation process

F̄act(l) Vector of balanced actuator forces during adaptation process

Fext,j(l) External force j during ongoing adaptation process

Fext(l) Vector of external forces during ongoing adaptation process

Fs Applied spring force

Ftest Defined test force for identification purposes

H Matrix of damping factors for external forces

Im Identity matrix dimension m × m

In Identity matrix dimension n × n
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Symbol Description

i Index

J(x, u) Cost criterion

j Index

J (x, u) Cost criterion

k Spring constant

l Set of external forces

lb Index for second order iteration stop

M Matrix of inverse spring constants for actuators

m Number of environmental variables

mj Inverse spring constant of actuator force j

N Matrix of inverse spring constants for external forces

n Number of system variables

nk Inverse spring constant of external force k

o Iteration index for first order iteration

ob Index for first order iteration stop

Q Coupling coefficient matrix for evolutionary fitness

q Coupling coefficient for evolutionary fitness

qi Individual coupling coefficient for sensor/actuator i

qi(l) Coupling coefficient for sensor/actuator couple i during adaptation

process

s̄ Vector of balanced sensor displacements

s̄i Balanced sensor displacement of sensor i

s̄i(l) Balanced sensor displacement of sensor i during adaptation process

s̄(l) Vector of balanced sensor displacements during adaptation process

s̃(l) Vector of initial displacements of sensors with applied set l of external

forces

s̃i(l) Initial displacement of sensor i with applied set l of external forces

sext
j Displacement of external forces position j

sg,i Sensor displacement i due to gravity

sg Vector of sensor displacements due to gravity

sext
g Vector of displacements of external forces positions due to gravity

si Sensor displacement for sensor i

si(l) Sensor displacement for sensor i and applied external forces set l

so(l) Vector of sensor displacements during ongoing adaptation
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Symbol Description

so
i (l) Sensor displacement for sensor i during ongoing adaptation

s∗ Vector of transformed sensor displacements (remark: all mentioned sen-

sor displacements exist also in transformed coordinates)

ss Displacement of spring

T Time

u Vector of environmental variables

∆u Vector of difference between undisturbed and balanced environment

ũ Vector of changed environment

ū Vector of balanced environmental variables

W Weighting matrix for cost criteria

Wext(ss) External spring energy

Wint(ss, Fs) Internal Spring energy

w Window size for mean value calculation of mapping matrix elements φT
ii

x Vector of system variables

x̄ Vector of system steady-states

x′ Vector of free system variables

x̄′ Vector of balanced free system variables

Z(l) Sequence matrix for stability check during adaptation

α Scaling factor

εi Initial value for ei(l)

ηik damping from external force k to sensor i

γ Scaling factor

Λ(l) Eigenvalue matrix of transformed sequence matrix Z(l)

λ Forgetting factor for covariance matrix of evolutionary fitness

λi Eigenvalue i of undisturbed environmental covariance matrix

λi(l) Eigenvalue i of sequence matrix Z(l)

λ̄i Eigenvalue of balanced environmental covariance matrix

λq Forgetting factor for adaptive coupling coefficients

ν Controlling parameter in case of adaptive learning coupling coefficients

qi

νi Initial value for eq,i(l)

Φ Mapping matrix

φT Mapping matrix



Appendix G. Table of Symbols 130

Symbol Description

φT (l) Mapping matrix during ongoing adaptation

∆φ Breaking criterion for second order iteration

∆φ Breaking criterion for second order iteration in case of varying external

forces

φT
ii Diagonal mapping matrix entry

φT
ii(l) Diagonal mapping matrix entry for ongoing adaptation

∆s Breaking criterion for first order iteration

θ Matrix of eigenvectors for PCA

θ̄ Mapping matrix

θi Eigenvector i of matrix θ

ϕ Mapping matrix

Ξ Matrix of damping factors of actuators

ξij damping from actuator force j to sensor i
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