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Abstract 
In June 12, 2000, Helsinki University of Tech-
nology established a new professorship on Com-
plex Systems – Modeling, Simulation, and Con-
trol. Heikki Hyötyniemi, Dr.Tech., was ap-
pointed, starting from Nov. 1, 2001. This text is 
a transcription of the manuscript for the inaugu-
ral lecture that will be given in March 12, 2002, 
at 14.15 in Auditorium B at HUT in Otaniemi 
(in Finnish). As it is formally stated: “All friends 
and supporters of research are welcome!” 
 

1.  Towards Golden Lands 
In the old times, there were heroic men and women going 
west, conquering the frontier areas and finding gold. To-
day, nobody goes to Klondyke any more. The boundaries 
of the world have been discovered, there are no new gold 
rushes ahead. Are the times of big adventures gone for-
ever? Can one still strike paydirt? 

Yes, there still exists a mystery land. The device that 
can take you there is the computer. Within a computer, 
new worlds can be defined, where new strange creatures 
obey “laws of nature” as dictated by you. These creatures 
are processes defined through formal algorithms.  

You can find deserted and dull worlds but you can 
also find worlds full of beauty. When extracting gold 
nuggets from the dirt, the computer is your gold washing 
pan – and everything has to be presented in a numeric 
form. The procedure goes like this: First take some dirt 
(numbers) and shuffle it (run them trough a function); 
this shuffling is continued until something interesting 
(hopefully) emerges. In mathematical terms, this iteration 
can be expressed in the form 

( 1) ( ( ))x k g x k+ = , (1) 

where g is some function, and x(0) is some initial value. 
Indeed, if one selects the function to be iterated, for ex-
ample, as 

2( )g x x C= + , (2) 

 

Figure 1. A Gold Nugget 

where C is a complex-valued scalar constant, very com-
plicated patterns of behavior emerge (for example, see 
Hyötyniemi, 2001). If one plots those values of C in the 
complex plane where the iteration remains bounded in 
black colour, the boundary between the black and the 
non-black areas is extremely complicated; this pattern is 
known as the Mandelbrot set (see Fig. 1). The celebrated 
ideas of chaos, fractality, self-similarity, etc., all are 
demonstrated in this little grain of intellectual gold. 

This new Eldorado has been exploited by gold dig-
gers for some time now, and all kinds of structures re-
sembling natural forms have been found. We have heard 
of fantastic promises of how the new excavations in the 
wonderland will solve all mysteries concerning complex 
systems, including diseases, economics, and life itself. 
However, the gold diggers’ moral is what is has always 
been – do not take everything too seriously! After all,  
even in the Golden Land you have to work hard.  

The computer is no philosopher’s stone that could 
change worthless materials into gold; it can only reveal 
the hidden treasures. And the key question in this field  
is that there is no way to tell beforehand whether some-
thing will be found after all. The analogues between 
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natural systems and computer simulations are extremely 
vague – for example, study the celebrated self-similar 
“fern” structure in Fig. 2, being produced by a massive 
computer iteration. It looks like a natural thing, yes, but 
the underlying processes in the computer and in nature 
are totally different – this leaf gives no clue of the com-
plex real processes taking place in a growing tree.  

It is no doubt difficult to see the forest for the trees, 
when one cannot see the tree for the leaves! Is there any 
way of mastering the emergent phenomena?  

2.  First You Do Manual Excavations … 
Look the structure in Fig. 3. Rather than a gold washing 
pan, it is now a sieve: Each mark on it denotes a “hole”, 
and grains are screened through it. In fact, now the grains 
are again numbers; when a set of numbers is screened 
through the sieve, some of them go trough and some 
(negative) do not – the numbers may also change in this 
process (see Fig. 4). A more technical explanation about 
the operation of the sieve is given later.  

What happens when this screening process is contin-
ued long enough? The following sequence emerges: 

 
 

Shuffle Value 
1 2 

40 3 
285 5 
796 7 

2418 11 
4261 13 
7961 17 

11932 19 
18504 23 

  
It turns out that all values that are produced are succes-
sive primes, indivisible numbers. The primes have inter-
ested number theorists for thousands of years, but lately, 
the new ciphering schemes have increased also their 
practical value. There is no simple way to detect primes, 
and it can be claimed that the emergent structures pro-
duced by the presented sieve do now have some real 
relevance! 

There is another conceptual “device” quite related to the 
presented one: The sieve of Eratosthenes is an age-old, 
elementary method for screening out primes. However, 
this sieve has fixed, predetermined size, meaning that the 
upper bound for primes to be extracted has to be deter-
mined beforehand; what is interesting about the new 
sieve, on the other hand, is that all primes – and there are 
infinitely many of them – are produced if enough shuf-
fling is done. Just as in the case of fractal images, one 
may ask oneself: How is it possible that a finite structure 
can produce a result having infinite complexity?  

 

 

Figure 3. “Heikki’s Sieve” 

       

    shuffle 1      shuffle 2   

   

shuffle 3 …

 

Figure 4. Sort the gold from the chaff  

Figure 2. The Fern 
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The key to understanding the presented sieve is given by 
computability theory. It can be shown that  
 

“All computable functions (this means that prac-
tically anything!) can be expressed in the form 
x(k+1) = f (Ax(k)), where A is some matrix, and  
the cut function is defined elementwise as  

, when 0
( )

0, when 0,
i i

i
i

x x
f x

x
>

=  ≤
 

 
that is, all negative values are simply ignored, 
whereas positive values go directly through”. 

 
This result is shown in (Hyötyniemi, 1997), and it means 
that, for example, the definition of primes can be realized 
in this framework. Indeed, when the program code pre-
sented in Fig. 5 is compiled (for closer look on the lan-
guage, see Hyötyniemi, 1998), the resulting data struc-
tures are shown in Fig. 11. Starting from the initial value 
x(0), as shown also in Fig. 11, the computation continues 
ad infinitum, every now and then giving out newly re-
solved primes. It is exactly this matrix A that is shown in 
Fig. 3; the “–” signs stand for “–1” and “+” for “+1”. 

Even though the data structures may now be high-
dimensional, the outlook of the iteration x(k+1) = g(x(k)) 
= f (Ax(k)) is still extremely simple. The linear mapping 
defined by the matrix A does not essentially complicate 
things, and, intuitively, you could not find a nonlinearity 
simpler than f (of course, this simplicity is misleading!). 

As a conclusion, it can be noted that this “Midas” 
compiler transforms all algorithms into gold nuggets – 
writing the program code ourselves we already know that 
something interesting to us will emerge! 

3.  … But Have Someone Dig the Dirt!  
The assumed system structure x(k+1) = f (Ax(k)) is very 
general (indeed, as shown it is universal). Could one 
apply it to some really relevant task – such that perhaps 
has not yet been solved by any other means? In this con-
text, experiments with modeling of mental functions are 
reviewed. It seems that in this application it is not only 
the surface form but also something intuitively deeper 
that can be captured by the sieve paradigm. 

Donald O. Hebb recognized in 1940’s that the opera-
tion of neural cells can be explained in terms of correla-
tions – that is, synapses adapt according to observed in-
terdependencies between signals. And, indeed, what the 
matrix operation Ax does in our sieve formula, is essen-
tially to calculate correlations between the vector x and 
the rows of A. In a sense, we can interpret the sieve as a 
recurrent neural network structure (see Fig. 6).  

And it is not only the physiological level of neurons 
that can be simulated in the proposed framework: It has 
been claimed that the mystery of intelligence itself is an 
emergent phenomenon, being a result of a huge number 
of elementary data processing tasks cumulating. Assum-
ing that this view of the nature of intelligence holds, we 

now have a framework to attack the eternal challenge 
of “deep AI” – it is large numbers of elementary-level 
correlations that are now repeated (this long line of 
studies starting in Hyötyniemi, 1995). As shown for 
example in (Hyötyniemi, 1998), different kinds of 
conceptual tools can be constructed in this framework 
for better managing the complexity: In addition to 

Figure 5. The “Prime Sieve” source code  
written in the “Midas” language 

1 VAR A=2
2 VAR B=0
3 VAR C=0
4 VAR D=0

5 A=A+1 GOTO 6
6 IF B=0 AND D=0

THEN GOTO 9
ELSE B=B-1 D=D-1 GOTO 6

9 B=B+1 GOTO 10
10 B=B+1 GOTO 11
11 IF A-B=0

THEN prime! B=B-1 GOTO 5
ELSE GOTO 14

14 IF C=0
THEN GOTO 17
ELSE C=C-1 GOTO 14

17 IF D=0
THEN GOTO 20
ELSE D=D-1 GOTO 17

20 C=C+1 D=D+1 GOTO 21
21 IF (B-D)+(A-C)=0

THEN A=A+1 GOTO 6
ELSE GOTO 24

24 IF A-C=0
THEN GOTO 10
ELSE GOTO 27

27 IF B-D=0
THEN GOTO 17
ELSE GOTO 20

Figure 6. “Neural network” implementing               
the parity function (see Hyötyniemi, 2001) 

delay
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arbitrary algorithms, also reasoning and associative 
matching of patterns can be implemented. 

It is perhaps difficult to see how something essen-
tially new could emerge from repeated calculation of 
correlations. The theoretical justification for this, of 
course, is that the calculations are not strictly linear – 
remember the function f in the formulas. Intuitively, per-
haps the best illustration of the emerging “intelligence” 
is given in Fig. 7: The computer can pass the IQ test! 

Just as in all AI applications, knowing how it is 
done, destroys all magic. For example, lines consist of a 
combination of dots, where successive locations correlate 
positively, etc. Defining higher and higher levels of con-
cepts, little by little making them more abstract, it turns 
out that between successive levels the definitions are 
always based on some kind of correlations. Indeed, on 
the “highest level” – you either become a member of 
Mensa or not! – when taking a formal intelligence test, it 
is again the question of finding the underlying rule – or 
correlation – between the sample patterns.  

Of course, the above example is more like a joke,  
perhaps best illustrating the deficiency of the formal IQ 
tests, not really measuring the real essence of human in-
telligence but some very constrained aspect of it. There 
exist much more relevant tests for AI models, where the 
plausibility of the approach can really be evaluated. One 
of such tests can be formulated using the game of chess 
as a test bench. 

The chess game is the “banana fly” of cognitive sci-
ence: It offers an extremely constrained environment, 
while still reflecting many of the fundamental phenom-
ena concerning mental processes. For example, it has 
been recognized that chess experts, after looking at a 
configuration on the board for a few seconds (see Fig. 8), 
are capable of recalling almost all pieces; novice players 
can recall just a few pieces. Nothing strange here really – 
but the problem setting becomes interesting when one 
notices that this holds only if the configuration on the 
board is meaningful: If the pieces are located randomly, 

there is no significant difference between the expert and 
the novice. What happens here? It turns out that there are 
some more or less “hard-wired” constraints what comes 
to the human brain: It is some seven separate things that 
can be kept in mind simultaneously. This explains why 
the novices can recall only a few pieces. The chess ex-
perts, on the other hand, do not think in terms of individ-

 

Figure 7. ‘Intelligence tests’ solved by the computer:  
What is the simplest underlying principle that makes 
the three first figures differ from the rightmost one? 

(Answers: “Horizontal line” / “Two objects”)  

Figure 8. Typical configuration in chess 
 

    

   

Figure 9. “Chunk representation” for the configuration     
in Fig. 8. When “expert chunks” are added together, the  

“mental image” starts resembling the original one         
(starting from upper left, ending in lower right)  
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ual pieces: they have (subconsciously) constructed higher 
level representations for the chess configurations. These 
“atoms of perceiving” or “chunks” are again based on the 
underlying correlation structures: The expert’s percep-
tion machinery has (somehow) recognized that there are 
some piece combinations that often pop up, and these 
combinations are then stored as a single perceptual unit.  

When these phenomena were studied in the dis-
cussed framework (Hyötyniemi & Saariluoma, 1999), 
promising results were found (see Fig. 9). Using just one 
chunk, the most characteristic patterns (castlings and 
pawn chains) were already recovered. However, of 
course there are differences between games, and the suc-
cessive chunks are needed to fix the discrepancies (the 
technical details of the implementation are skipped here). 
Note that in this experiment, the numeric chunks ex-
tended possibly over the whole board, whereas in stan-
dard chunk theory these (symbolic) constructs seem to be 
more localized.  

There are dozens of different kinds of mental models 
proposed. Mostly they have been tailored to reflect some 
specific cognitive phenomenon, and they cannot predict 
behaviors in different situations. The plausibility of the 
model can also be tested by exceeding the capacity of the 
model, and checking whether the collapse in the behavior 
is graceful or catastrophic – and sudden collapses give a 
hint that there must be something unnatural about the 
model. Indeed, when the above model was evaluated in 
this way, it turned out that the errors it made were rather 
expert-like (see the last image in Fig. 9): The rook on the 
bottom row is in incorrect place, but – according to chess 
experts – this kind of mistake is something that could 
also be done by a human! 

However, all of the experiments with the proposed 
model have been implemented in “toy worlds”, studying 
just one level of processing at a time. And it is the exten-
sion, or scaling up of the models that has always turned 
out to be extremely difficult in AI research. In  
(Hyötyniemi, 2000), a more systemic approach to mental 
modeling is discussed based on the proposed framework 
– however, there is still an uneasy feeling, and, clearly, 
the uniting view is missing.   

5.  Conclusions 
So we started our journey in the Golden Land by taking 
the gold washing pan and shuffling … later, we found a 
mine of endless resources of gold nuggets … but as an 
engineer, we cannot be satisfied until this hard labor also 
is automated. 

When using the sieve system, it is still the human 
who has to define the gold nuggets him/herself. The 
problem here is that you can only find such nuggets you 
already know to exist – and there are many things that 
are precious even if they do not shine. So, our dream (or 
nightmare) is a clever “brain machine”, cleverer than us 
(at least in sniffing out gold), capable of finding the gold 
veins all by itself.  

With this kind of piggie (see Fig. 10), you could go to 
the forest of gold truffles, admire the trees, forgetting 
about the leaves, just enjoying the complexity – and let 
the piggie dig the dirt! 

 
What is certain is that there are adventures ahead of us, 
perhaps even a golden era of increased understanding of 
complex processes. However, today we still cannot see 
the “golden ratio” between the piggies, chaos, and com-
plexes – perhaps the best conclusion at this time is to 
trust intuition, and think of these mysteries and the ap-
proaches to explaining them more as an art than as a se-
rious science – a wonderland for everybody looking for 
adventures (see Fig. 12). 
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Figure 10. The “Aivokone” Piggie                         
– always searching for gold truffles 
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Figure 11. The description of the dynamic “Sieve System” (see text on page 31) 
 
 
 

 

Figure 12. Wagner the Piggie, having a complex about chaos. Courtesy of Jussi (“Juba”) Tuomola
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