
Enformation Theory — Part II:
—

From Elements to Structures?

Heikki Hyötyniemi

Aalto University School of Electrical Engineering
Department of Automation and Systems Technology

P.O. Box 15500, 00076 Aalto, Finland

Abstract. The local enformation maximization principle of Part I is
studied closer and global-level results are found: it turns out that the
system implements principal subspace analysis of the experienced data,
and it can be extended towards sparsity pursuit . The resulting model of
the environmental enformation is based on linear features that together
span the observed patterns. As a fundamental guideline in the derivations
one has the fact: There exist no pure information flows.

1 Introduction

In Part I, it was observed that for an m dimensional vector ū of input data and
an n dimensional vector x̄ of system activations, where typically m � n, and
for some diagonal coupling matrix Q, one can write the enformation-maximizing
mapping applying the “emergence operator” E as

x̄ = Q E
{
x̄ūT

}
ū. (1)

However, one knows that this kind of Hebbian-style learning structure is unstable,
because the adaptation law is based on an internal positive feedback. To keep
the system stable, there are different kinds of ways to attenuate the signals,
like adding nonlinearities in the structure (for example, applying Oja’s rule,
the weight vectors are explicitly normalized). Here, on the other hand, negative
feedback is employed; the additional explicit loop structure becomes seemingly
complex, but, however, it is structurally simple — the overall mapping remains
linear. The motivation for the negative feedback is that if a signal is exploited, it
simultaneously becomes exhausted.

Previously, the focus was on an individual ; now, the emphasis will be extended
to the system. Here, a brief excursion through the resulting neocybernetic system
structure is shown.
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2 Interplay among levels

One can find many expressions governing the signal covariances (or the system
enformations). When multiplying (1) from the right by x̄T and applying the
emergence operator, one has the following expression:

E
{
x̄x̄T

}
= Q E

{
x̄ūT

}
E
{
ūx̄T

}
= Q E

{
x̄ūT

}
E
{
x̄ūT

}
T. (2)

The transpose of this gives yet another expression (remember that QT = Q):

E
{
x̄x̄T

}
= E

{
x̄ūT

}
E
{
x̄ūT

}
TQ. (3)

Multiplying the former expression by Q from the right and the latter from the
left, it becomes evident that there must hold

Q E
{
x̄x̄T

}
= E

{
x̄x̄T

}
Q, (4)

so that also
f (Q) g

(
E
{
x̄x̄T

})
= g

(
E
{
x̄x̄T

})
f (Q) , (5)

where f and g are any functions that can be defined in terms of matrix power series.
This commutativity property means that many mathematical manipulations of
the matrix data structures become very much like scalar algebra in later analyses.

Further, assuming invertibility of E{x̄x̄T}, and noting (5), from (2) or (3) one
has

In = Q1/2E
{
x̄x̄T

}−1/2E {x̄ūT} E {x̄ūT}TE {x̄x̄T}−1/2Q1/2. (6)

When defining
θT = Q1/2E

{
x̄x̄T

}−1/2E {x̄ūT}, (7)

one has
In = θT θ. (8)

The columns in this new matrix θ are thus orthonormal. Further, by multiplying
(1) from the right this time by ūT and applying the emergence operator, one has

E
{
x̄ūT

}
= Q E

{
x̄ūT

}
E
{
ūūT

}
. (9)

Substituting this in (3), there holds

E
{
x̄x̄T

}
= Q E

{
x̄ūT

}
E
{
ūūT

}
E
{
x̄ūT

}
TQ. (10)

Noting (5), this can be changed to read

Q−1 = Q1/2E
{
x̄x̄T

}−1/2E {x̄ūT}E {ūūT}E {x̄ūT}TE {x̄x̄T}−1/2Q1/2, (11)

so that one gets
Q−1 = θT E

{
ūūT

}
θ. (12)

This means that if ever the basic assumption (1) is fulfilled, the statistical
properties of the effective, observed input ū are fixed to the selected Q. This
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modification of the environment can be seen as a manifestation of a more general
observer effect. As will be shown later, the coupling parameters qi in Q can be
seen as determining the “stiffnesses” of the coupled system elements. Even though
it is the environment that is “in charge”, the system makes it become somehow
organized.

The expression (12), together with (8), reveals that the columns in θ span a
space determined by eigenvectors of the data covariance matrix E

{
x̄x̄T

}
. It can

further be shown that after convergence the employed eigenvectors correspond to
the most significant eigenvalues (see Sec. 4); thus, the vectors span the subspace
capturing the maximum of data covariation (enformation). The original local
behaviors have become global .

What comes to the actual axis vectors θi, there are the following two essentially
opposite possibilities of interest:

1. If all qi in Q are distinct, according to (12), the original data eigenvalues λj
change to λ̄j = 1/qi (assuming that the unit i has become coupled to mode
j); further, for (4) to hold, E{x̄x̄T} must become diagonal, and from (7) it is
evident that there is no shuffling of basis vectors — the system implements
principal component analysis.

2. If all qi in Q are equal, on the other hand, so that Q = q In, all eigenvalues
are equalized, all λ̄j of the closed loop system equalling 1/q, no matter what
the original λj > 1/q are; now there are no limitations for E{x̄x̄T} because
of (4), so that the system implements only principal subspace analysis with
rotatable basis vectors.

The latter case is the more interesting one, and it is reasonable to study how the
internal feedback structures rotate the basis axes. It deserves to be recognized
that “whitening” of the effective data in ū has been automatically accomplished
without any preprocessing (centering or scaling) of the original data in the
coupling process, and “higher order” properties in data have become visible.

3 Feedback through the environment

The above analyses apply if such a mapping matrix really exists as proposed in
(1). How to make signals stationary and the formulas meaningful? How to avoid
the excessive growth (explosion) of x̄ and the resulting instability of adaptation?
Indeed, this instability problem is the traditional curse of all Hebbian-based
approaches. How to supply the “integrated intelligence” to assure the balance on
the “edge between order and chaos”? In the cybernetic spirit, of course, dynamics
and feedback is here proposed.

When the system element i has been put running, and it has activity x̄i,
it sucks from resource j such an amount of resource that is proportional to
the connection strength qiE{x̄iūj} (possible scaling needs are included in x; see
details in [1]). This means that the change in the whole set of inputs can be
written in matrix form as

∆ū = E
{
x̄ūT

}
TQ x̄. (13)
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If such feedback is not enough to implement stabilization of the loop, the adap-
tation increases the signals until the “balance of tensions” is reached for some
x̄′i = cix̄i, or x̄′ = Cx̄ for some diagonal C. Because

x̄′ = Cx̄ = C QE
{
x̄ūT

}
ū = QC E

{
x̄ūT

}
ū = QE

{
Cx̄ūT

}
ū = QE

{
x̄′ūT

}
ū,

one can freely scale the state variables; in what follows, it is assumed that the
signals x̄ and ū have already been scaled to match each other.

This far, symbols like ū and x̄ have been used all the time; they are the final
effective variables, dynamic balance values that result after underlying interactions
have converged in the equilibrium of tensions. The original undisturbed resource
vector u is invisible for the local actors, because in reality it is disturbed by
the systems (this can be called the observer effect). For the disturbed input, or
residual, there holds

ũ(t) = u−∆u(t), (14)

and the asymptotic values are defined (in a somewhat sloppy way) as

ū = lim
t→∞

{ũ(t)} (15)

and, correspondingly, x̄ can be found only after convergence:

x̄ = lim
t→∞

{x(t)} = lim
t→∞

{
QE
{
x̄ūT

}
ũ(t)

}
. (16)

In the asymptotic case, when the balance has been found, the situation looks
like that shown in (1). Here it is assumed that one only studies some kind of
“local infinities” at the local time scale that is relevant to the dynamics of x.
Indeed, to capture the “momentary nature” of behaviors in the system, one has to
concentrate on the following scales separately (when concentrating on a specific
time scale, signals from other scales look like constants):

– Fastest, the internal time scale: relevant to momentary signals like x
– Moderate, environmental time scale: applies to signals like u, ū and x̄
– Slowest, “system scale”: models of (co)variation, for example E

{
x̄ūT

}
.

When the above expressions concerning the feedback are combined, one has

x̄ = Q E
{
x̄ūT

}
ū = Q E

{
x̄ūT

}
u−Q E

{
x̄ūT

}
E
{
x̄ūT

}
TQ x̄, (17)

or, when solved,

x̄ =
(
In +QE

{
x̄ūT

}
E
{
x̄ūT

}
TQ
)−1

QE
{
x̄ūT

}
u. (18)

Using (3) and simplifying, one has an expression for x̄ directly in terms of u:

x̄ =
(
Q−1 + E

{
x̄x̄T

})−1 E {x̄ūT}u. (19)

The variables x̄i present the functionally different approaches to surviving in the
environment, that is, they represent some kinds of ecological lockers or niches.
Typically in nature, these lockers are inhabited by populations of individuals, so
that the numerical value of the variable reveals the (scaled) abundance.
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4 Maximum of enformation captured

In the formula (19) there is a discrepancy: the input is u but the covariances are
given in terms of ū. The other of the variables can be eliminated by manipulating
the expression:

E
{
x̄ūT

}
= E

{
x̄
(
u− E

{
x̄ūT

}
TQx̄

)
T
}

= E
{
x̄uT

}
− E

{
x̄x̄T

}
QE
{
x̄ūT

}
.

Solving this for E{x̄ūT}, one has

E
{
x̄ūT

}
=
(
Q−1 + E

{
x̄x̄T

})−1
Q−1E

{
x̄uT

}
.

Combining this with (19)

x̄ =
(
Q−1 + E

{
x̄x̄T

})−2
Q−1︸ ︷︷ ︸

M1

E
{
x̄uT

}︸ ︷︷ ︸
M2

u. (20)

Using this expression, one can study the connection between the undisturbed
u and x̄. If the statistical properties of the input data u are assumed to remain
intact, one has

Theorem.
If data is rich enough (non-zero variation dimensions in data d ≥ n), and if
each mode remains cybernetic or alive (see Section 5), after convergence the
neuronal mapping from u to x̄ spans the principal subspace of data variation
in u, corresponding to the n most significant eigenvector directions of the data
covariance matrix E{uuT}.

Proof.
Rather than studying the adaptation process as a continuous process, the time
axis is here assumed to be divided in long enough subparts; these subparts are
indexed below using superscript numbers in parentheses. The expectations, when
calculated as sample averages within each interval, are already assumed to be
accurate enough. If one starts from some arbitrary mapping matrices M1

(0) and
M2

(0), the step-by-step covariance adaptation, iterating (20), proceeds as

x̄(0) = M
(0)
1 M

(0)
2 u

x̄(1) = M
(1)
1 E

{
x̄(0)uT

}
u = M

(1)
1 E

{
M

(0)
1 M

(0)
2 uuT

}
u

= M
(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}
u

x̄(2) = M
(2)
1 E

{
x̄(1)uT

}
u = M

(2)
1 E

{
M

(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}
uuT

}
u

= M
(2)
1 M

(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}2
u

...

x̄(k) = M
(k)
1 M

(k)
2 u =

(
k∏
i=0

M
(k−i)
1

)
M

(0)
2 E

{
uuT

}k
u.

(21)
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Assume that the eigenvalue decomposition of the data covariance is written as

E
{
uuT

}
= ΘΛΘT. (22)

The final mapping matrix in (21) becomes

M
(k)
1 M

(k)
2 = M

(k)
1 M

(0)
2 E

{
uuT

}k
= M

(k)
1 M

(0)
2 Θ︸ ︷︷ ︸

n×n

ΛkΘT︸ ︷︷ ︸
n×m

. (23)

The former part is a scaling matrix of dimension n× n and it does not affect the
subspace being spanned by the mapping; from the latter part one can see that
in the mapping matrix the relevance of the principal component direction j is
weighted by λkj . At each iteration, the eigenvectors become better aligned with
the most significant eigenvectors. Because the variables x̄i are linearly indepen-
dent, it is the n most significant covariance matrix eigenvectors that determine
the mapping after adaptation (assuming that in an ordered list of decreasing
eigenvalues, there holds λn > λn+1). These eigenvectors define the same subspace
as in the case of x̄ vs. ū (but the eigenvalues differ). �

5 Emergence of new structures

Despite the analyses above, there are two classes of solutions to (1). In addition
to the case that was discussed in previous sections, the trivial solution x̄ ≡ 0 for
all inputs, or x̄i ≡ 0 for a subset of them, also satisfies the assumed constraint,
the corresponding mappings vanishing, E{x̄iū} ≡ 0. To understand the faith of
the entity i, whether it fades away or stays “alive”, depends on the corresponding
coupling to the environment.

From (19) one can write yet another expression for the covariance by mul-
tiplying the expression by its transpose, and applying the emergence operator,
giving

E
{
x̄x̄T

}
=
(
Q−1 + E

{
x̄x̄T

})−1 E {x̄ūT} E {uuT} E {x̄ūT}T (Q−1 + E
{
x̄x̄T

})−1
that can be written(
Q−1 + E

{
x̄x̄T

})
E
{
x̄x̄T

} (
Q−1 + E

{
x̄x̄T

})
= E

{
x̄ūT

}
E
{
uuT

}
E
{
x̄ūT

}
T.

Observing the commutativity of the matrices:(
Q−1 + E

{
x̄x̄T

})2
= E

{
x̄x̄T

}−1/2E {x̄ūT} E {uuT} E {x̄ūT}TE {x̄x̄T}−1/2
= Q−1/2 θT E

{
uuT

}
θ Q−1/2.

Further, because of the orthogonality of θ,

Q−1 + E
{
x̄x̄T

}
= Q−1/4 θT E

{
uuT

}1/2
θ Q−1/4, (24)
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or
E
{
x̄x̄T

}
= Q−1/4 θT E

{
uuT

}1/2
θ Q−1/4 −Q−1. (25)

If the coupling factors qi are distinct for all i, the θ mapping has a diagonalizing
property, and

E
{
x̄x̄T

}
= Q−1/4 PTΛ

1/2
[n] P Q−1/4 −Q−1, (26)

where Λ[n] is a diagonal n×n matrix containing the most significant eigenvalues of
the original data u, and P is a permutation matrix. Assuming that the eigenvalue
λj in the data has become coupled with variable xi, one can write

E
{
x̄2i
}

=

√
λj
qi
− 1

qi
. (27)

Because the variances always must be non-negative, meaning that variations in
each direction must have real values, one can see that the non-trivial solutions are
only possible if the variation level in the input data is high enough, so that the
additional factor −Q−1 in (26) becomes fully compensated. To keep the entity
functional, there must hold

qi >
1

λj
. (28)

This assures that the studies in the previous sections are relevant; this also assures
that the matrix E{x̄x̄T} remains invertible (assuming the the input data is rich
enough).

Where is this activation lost, where does the “static friction” come from, intro-
ducing nonlinearity in the linear structures as seen from above? This threshold
can perhaps be seen as some kind of minimum dissipation that is needed to keep
the mills rolling. It is the loop-based iteration that essentially solves a set of
linear equations when finding the equilibrium in the algebraic loop, providing
data whitening, and only using enough pressure (strong enough coupling qi), this
can be accomplished.

6 Getting rid of free parameters

To minimize the number of unknown parameters in a large system, it has to be
assumed that there is some local mechanism for adjusting the coupling factors
qi. A practical formulation is found when the determination of x̄ for given u is
seen as a stochastic estimation task; intuition can then be gained from recursive
least-squares identification. It is reasonable to scale down the variable by the
inverse of its variance, so that one can select

qi = b
1

E {x̄2i }
, (29)

with b > 0 being some scaling factor. There are various technical motivations
for selecting qi in such a way: first, variables with such compensation are always



8 From Elements to Structures

stable, so that the system as a whole remains stable even if the negative feedback
through the environment would fail. It also assures that the variable remains
“alive” (or “cybernetic”), increasing the coupling if the activation seems to vanish;
indeed, the selection (29) assures maximum system activation. — What is more,
also natural neurons turn out to implement similar activity-based controls.

The “exaggerated variance compensation” against the growth of variables
means that activity is aggressively pushed to other neurons; as the total variance
still remains to be shared, the neurons finally end in having the same variance load.
This means that, as the variances are then equal, also qi are, and, according to
(12), eigenvalues λ̄i get equalized and variance structure in E{x̄x̄T} gets blurred,
becoming non-diagonal. Rotations can then be introduced.

As all variances E{x̄2i } become equal with the selection (29), one can easily
apply the matrix trace to (25), and one has for all i and j a formula for the
variances:

E
{
x̄2i
}

=
b

qi
= b λ̄j =

 ∑n
ι=1

√
λι

n
(√

b+ 1√
b

)
2

. (30)

When one selects b = 1, there is an intuitively appealing balance between the
internal and external variances, so that the value of E{x̄2i } = λ̄j is the same
for all i and j. Following the terminology of Geoffrey Hinton, variables become
“equivariant capsules”.

It is interesting to note that the square roots of the data covariance matrix,
or the numbers

√
λj , are directly the singular values of the data matrix; and the

expression
∑n
j=1

√
λj for ordered λj is called the Ky Fan n-norm of the data

matrix.
One can even propose a system size optimization scheme based on the formula

(30): for the coupling to take place, there must hold λ̄j < λj for each j ≤ n
within the system; now, then, select n so that the maximum number of modes
gets captured without violating this eigenvalue criterion. Assuming that the
eigenvalues λj are ordered in descending order, for the last j = n to be included
there should (for large n, and for b = 1) hold

√
λn >

1

2

∑n−1
ι=1

√
λι

n− 1
, (31)

so that the new singular value to be included must be at least half of the average
of the previous ones. This test can be used for all n ≥ 2 (there are never coupling
problems for the model size n = 1). The maximum n is dictated by the properties
of the original data, or by the outlook of the λj eigenvalue envelope. The criterion
can be relaxed using data preprocessing, that is, by making the distribution range
of the eigenvalues narrower, and, in the extreme case (if eigenvalues are made
equal), there are no theoretical limitations for the system size. Such a formal
criterion, model size being determined without closer data analysis, suggests that
the feature representations cannot be unique.

If n is selected below the maximum, the system can become “hyper-cybernetic”
with twisted eigenvalue structure: in the visible residual data, it seems that
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the most significant of the eigenvalues are left outside the model, the modes
that are included in the model being over-compensated. Values of n beyond the
optimum result in redundancy, neurons sharing each others’ activity patterns,
meaning that E{x̄x̄T} becomes singular. Because of the regularization term Q−1

in the formulas, the extra variables do not collapse the numerical behavior of the
system, however, and the abundance of nodes (even beyond m) makes it possible
to emulate special “lossy” model structures.

Examples of the neocybernetic algorithm being applied to real data are
available in [1]. The operation of the algorithm seems “very interesting and
promising”. It is easy to propose extensions to the basic algorithm, too, without
jeopardizing the basic stabilizing nature of the approach.

Assume that the data consists of sums of positively weighted (orthogonal)
sparse components, and one would like to extract these physically motivated
basis vectors out from the principal subspace. By adding an explicit nonlinearity
in the internal loop, so that all negative values of xi are cut off, it turns out
that the model implements sparsity pursuit, because then the maximum overall
variance becomes captured. After convergence, the overall behavior of the system
can still be linear. — One can also explicitly only select the most significant of
the variables (in the spirit of “magical number 7± 2”).

In practice, a more relevant case is faced when the structure is extended into
an input-output system. It turns out that if there are two sets of signals, u and y,
canonical correlation regression between these spaces can be approximated when
the two individual signal models are combined by calculating the averages of the
corresponding x vectors; when the average is recirculated and used for learning in
both subsystems, after converges it can be seen as the latent variable representing
the lower-dimensional intermediate space for implementing the mapping from
the input to the output.
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