Neuron Grids as seen as Elastic Systems

Heikki Hyötyniemi TKK / Control Engineering

Presentation at NeuroCafé March 31, 2006

Heikki Hyötyniemi

- Chairman of the Finnish Artificial Intelligence Society (FAIS) 1999 – 2001
- Some 150 scientific publications
- Professor at HUT Control Engineering since Nov. 1, 2001
- Research topic

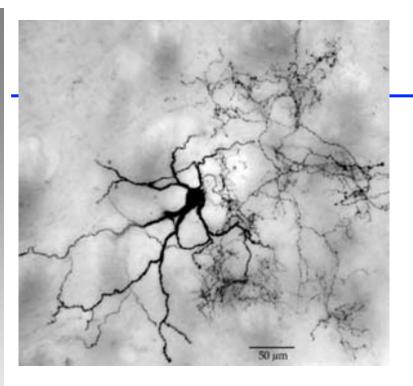
Cybernetic Systems

Neocybernetic starting points – summary

- The details (along time axis) are abstracted away, holistic view from the above is applied
- There exist local actions only, there are no structures of centralized control
- It is assumed that the underlying interactions and feedbacks are consistent, maintaining the system integrity
- This means that one can assume stationarity and dynamic balance in the system in varying environmental conditions
- An additional assumption: Linearity is pursued as long as it is reasonable

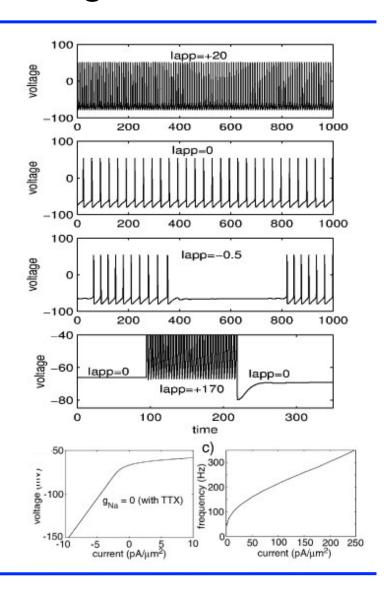
Sounds simple – are there any new intuitions available?

Strong guiding principles for modeling



Modeling a neuron

- Neural (chemical) signals are pulse coded, asynchronous, ... extremely complicated
- Simplification: Only the relevant information is represented – the activation levels



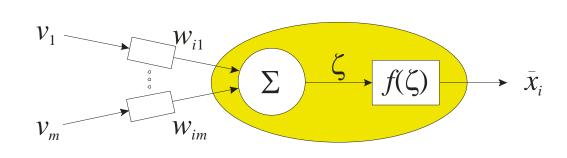
Abstraction level #1

- Triggering of neuronal pulses is stochastic
- Assume that in stationary environmental conditions the average number of pulses in some time interval remains constant
- Only study statistical phenomena: Abstract the time axis away, only model average activity
- *Perceptron*: Linear summation of input signals v_j + activation function:

$$\overline{x}_i = f\left(W_i^T v\right)$$

and linear version

$$\overline{x}_i = W_i^T v = \sum_{j=1}^m w_{ij}^T v_j$$



- The emergence idea is exploited here deterministic activity variables are employed to describe behaviors
- How to exploit the "first-level" neuron abstraction, how to reach the neuron grid level of abstraction?
- Neural networks research studies this opposite ends:

1. Feedforward perceptron networks

- Non-intuitive: Black-box model, unanalyzable
- Mathematically strong: Smooth functions can be approximated to arbitrary accuracy

2. Kohonen's self-organizing maps (SOM)

- Intuitive: Easily interpretable by humans (visual pattern recognition capability exploited)
- Less mathematical: A mapping from m dimensional real-valued vectors to n integers

Yet another approach available?

More general point of view

- Basic mystery: How can the global-level expressions be implemented by the local-level actors?
- Interpret static equations as dynamic equilibria: It is not only noise that can cause deviations from the static model
- Extension gives intuition: Observed constraint is just an emergent pattern – now study the supporting processes
- Basic assumptions:
 - System's responses reflect the environmental pressures
 - Balance of tensions is caused by various counteracting phenomena
 - Balances can be reached through local diffusion processes

From static pattern to a dynamic one

Assume the system reacts (linearly) to its environment:

$$\overline{x} = \phi^T u$$

Assume that the system is restructured appropriately:

$$A\overline{x} = Bu$$

Assume the equality represents a tension equilibrium:

$$\frac{dx}{\gamma dt} = -Ax + Bu$$

• For such diffusion, there is a *cost* characterizing the system:

$$J = \frac{1}{2} x^T A x - x^T B u$$

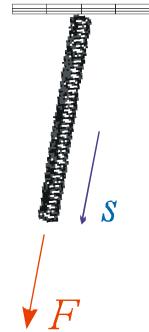
How to interpret

- Study a one-dimensional case: Spring (spring constant k) stretched (deformation s) by an external force F
- There are external and internal stored energies in spring (zero level = zero force):
- Due to the external potential field

$$W_{\rm ext} = -\int_{0}^{s} F \, ds = -Fs$$

Due to the internal tensions

$$W_{\rm int} = \int_0^s ks \, ds = \frac{1}{2} ks^2$$



- Generalization: There are many forces, and many points
- Spring between points s_1 and s_2 (can also be torsional, etc.)

$$W_{\text{int}}(s_1, s_2) = \frac{1}{2}k_{1,2}(s_1 - s_2)^2 = \frac{1}{2}k_{1,2}s_1^2 - k_{1,2}s_1s_2 + \frac{1}{2}k_{1,2}s_1^2$$

• A matrix formulation is also possible:

$$W_{\text{int}}(s) = \frac{1}{2} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix}^T A \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix}$$

$$W_{\text{ext}}(s, F) = - \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix}^T B \begin{pmatrix} F_1 \\ \vdots \\ F_m \end{pmatrix}$$

 F_j: Virtual "generalized forces" as projected along the directions of movements – also torques, shear stresses, etc., all presented in the same framework (for linear structures)

"All" complex reasonable systems are elastic!

 Now: The difference of potential energies can be expressed as

$$J(s,F) = \frac{1}{2}s^{T}As - s^{T}BF$$

- Here, A is matrix of elasticity, and B determines projections
- Matrix A must be symmetric, and must be positive definite to represent stable structures sustaining external stresses
- Principle of minimum potential (deformation) energy:
 Structure under pressure ends in minimum of this criterion
- Elastic systems yield when pressed, but bounce back after it
- Are there additional intuitions available?

Goals of evolution – local scale

- Compare to gravitational field: Potential energy is $W_{\text{pot}} = mg \ \Delta h$ "force times deformation"
- Elastic system: Average transferred energy / power $E\{\overline{x}_i u_j\}$
- Now assume:

System tries to maximize the coupling with its environment

That is:

Maximize the average product of action and reaction

 Special case: Neuronal system and Hebbian learning seem to implement this principle

Hebbian learning

 The Hebbian learning rule (by physician Donald O. Hebb) dates back to mid-1900's:

"If the neuron activity correlates with the input signal, the corresponding synaptic weight increases"

- Are there some goals for neurons included here? Is there something teleological taking place?
- Bold assumptions make it possible to reach powerful models

Traditional Hebbian learning

• Assume: Perceptron activity \bar{x}_i is a linear function of the input signal v_i , where the vector w_{ij} contains the synaptic weight:

$$\overline{x}_{ij} = w_{ij}v_j$$
 with $\overline{x}_i = \sum_{j=1}^m \overline{x}_{ij}$

• Hebbian law applied in adaptation: Correlation between input and neuronal activity expressed as $\bar{x}_i v_i$, so that

$$\frac{dw_{ij}}{dt} \underbrace{\gamma \cdot \overline{x}_i v_j} \rightarrow \gamma \cdot w_{ij} v_j^2$$

assuming here, for simplicity, that m = 1.

• This learning law is unstable – the synaptic weight grows infinitely, and so does \bar{x}_i !

Enhancements

Stabilization by the Oja's rule (by Erkki Oja):

$$\frac{dw_{ij}}{dt} = \gamma \cdot w_{ij} v_j^2 - (\gamma \cdot w_{ij} \overline{x}_i^2)$$

Compare to the logistic formulation of limited growth!

- Motivation: Keeps the weight vector bounded ($|W_i| = 1$), and average signal size $E\{|\overline{x}_i|\} = 1$
- Extracts the first principal component of the data
- Extension: Generalized Hebbian Algorithm (GHA): Structural tailoring makes it possible to deflate pc's one at a time
- However, the new formula is nonlinear: Analysis of neuron grids containing such elements is difficult, and extending them is equally difficult — What to do instead?

Level of synapses

- The neocybernetic guidelines are: Search for balance and linearity
- Note: Nonlinearity was not included in the original Hebbian law – it was only introduced for pragmatic reasons

Are there other ways to reach stability – in linear terms?

Yes – one can apply negative feedback:

$$\frac{dw_{ij}}{dt} = \gamma_i \cdot \overline{x}_i v_j + \frac{1}{\tau_i} w_{ij} \quad \text{or in matrix form} \quad \frac{dW}{dt} = \gamma \cdot \overline{x} v^T - \tau^{-1} W$$

$$\frac{dW}{dt} = \gamma \cdot \overline{x}v^T - \tau^{-1}W$$

The steady-state is

$$\overline{W} = \gamma \tau \cdot \mathbf{E} \left\{ \overline{x} v^T \right\} = \Gamma \cdot \mathbf{E} \left\{ \overline{x} v^T \right\}$$

Synaptic weights can be coded in a correlation matrix

Level of neuron grids

 Just the same principles can be applied when studying the neuron grid level – balance and linearity

Define

$$\overline{W} = (A \mid B)$$
 and $v = \left(\frac{-x}{u}\right)$
so that $A = \Gamma \cdot E\{\overline{x}\overline{x}^T\}$ and $B = \Gamma \cdot E\{\overline{x}u^T\}$

• To implement negative feedback, one needs to apply the *anti-Hebbian* action between otherwise Hebbian neurons:

$$\frac{dx}{dt} = -Ax + Bu$$

so that the steady state becomes

$$\overline{x} = A^{-1}B u = E\left\{\overline{x}\overline{x}^{T}\right\}^{-1} E\left\{\overline{x}u^{T}\right\} u = \phi^{T}u$$

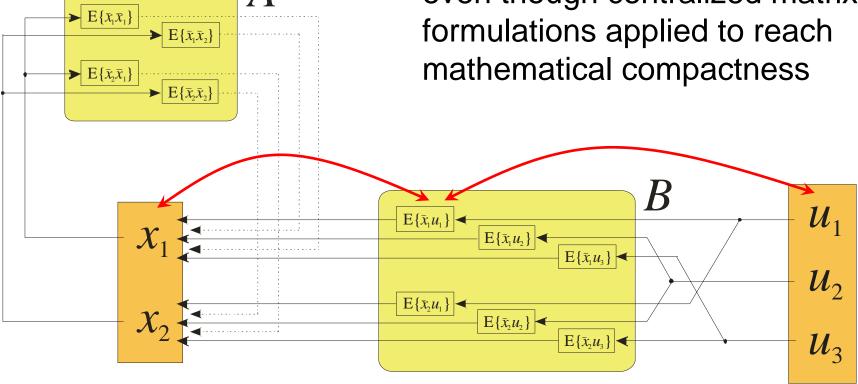
Model is stable! Eigenvalues of *A* always real and non-negative

Hebbian/anti-Hebbian system

$$\dot{x} = -A x + Bu$$

Explicit feedback structures

Completely localized operation, even though centralized matrix formulations applied to reach mathematical compactness



Towards abstraction level #2

- Cybernetic model = statistical model of balances $\overline{x}(u)$
- Assume dynamics of u is essentially slower than that of x and study the covariance properties:

$$E\{\overline{xx}^T\} = E\{\overline{xx}^T\}^{-1} E\{\overline{x}u^T\} E\{uu^T\} E\{\overline{x}u^T\}^T E\{\overline{xx}^T\}^{-1}$$

or

$$E\{\overline{x}\overline{x}^T\}^3 = E\{\overline{x}u^T\} E\{uu^T\} E\{\overline{x}u^T\}^T$$

or

$$\left(\phi^T \mathbf{E} \left\{ u u^T \right\} \phi\right)^3 = \phi^T \mathbf{E} \left\{ u u^T \right\}^3 \phi \qquad n < m$$

Balance on the statistical level = second-order balance

Solution

- Expression fulfilled for $\phi = \theta_n D$, where θ_n is a matrix of n of the covariance matrix eigenvectors, and D is orthogonal
- This is because left-hand side is then

$$\left(\phi^T \mathbf{E}\left\{uu^T\right\}\phi\right)^3 = \left(D^T \theta_n^T \mathbf{E}\left\{uu^T\right\}\theta_n D\right)^3 = \left(D^T \Lambda_n D\right)^3 = D^T \Lambda_n^3 D$$

and right-hand side is

$$\phi^T \mathbf{E} \left\{ u u^T \right\}^3 \phi = D^T \theta_n^T \mathbf{E} \left\{ u u^T \right\}^3 \theta_n D = D^T \Lambda_n^3 D$$

• Stable solution when θ_n contains the *most significant* data covariance matrix eigenvectors

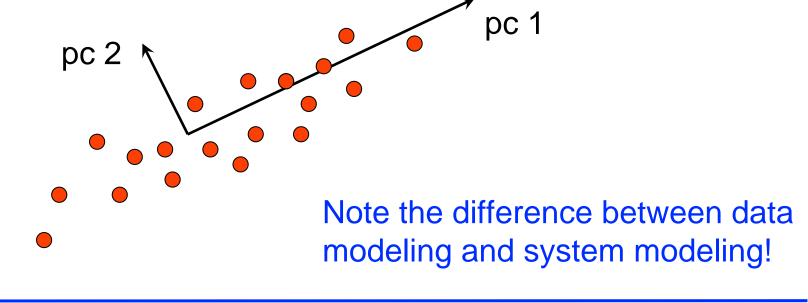
Principal subspace analysis

- Any subset of input data principal components can be selected for ϕ
- The subspace spanned by the n most significant principal components gives a stable solution
- Conclusion:

Competitive learning (combined Hebbian and anti-Hebbian learning) without any structural constraints results in self-regulation (balance) and self-organization (in terms of principal subspace).

Principal components

- Principal Component Analysis = Data is projected onto the most significant eigenvectors of the data covariance matrix
- This projection captures maximum of the variation in data
- Principal subspace = PCA basis vectors rotated somehow



Pattern matching

One can also formulate the cost criterion as

$$J(x,u) = \frac{1}{2} (u - \phi x)^T E\{uu^T\} (u - \phi x)$$

- This means that the neuron grid carries out pattern matching of input data
- Note that the traditional maximum (log)likelihood criterion for Gaussian data would be

$$J(x,u) = \frac{1}{2} \left(u - \phi x \right)^T E \left\{ u u^T \right\}^{-1} \left(u - \phi x \right)$$

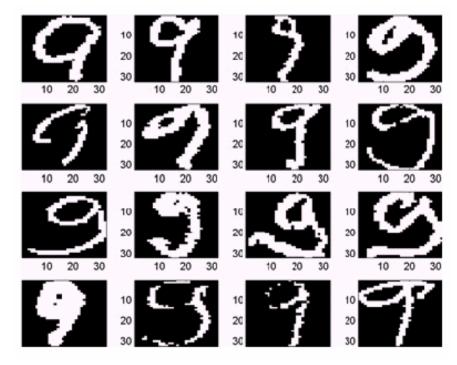
 Now: More emphasis on main directions; no invertibility problems!

Example: Hand-written digits

 There were a large body of 32x32 pixel images, representing digits from 0 to 9, over 8000 samples (thanks to Jorma Laaksonen)

Examples of typical "9"

Examples of less typical "9"



Algorithm for Hebbian/anti-Hebbian learning ...

```
LOOP - iterate for data in kxm matrix U

% Balance of latent variables
Xbar = U * (inv(Exx)*Exu)';

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar'*U/k;
Exx = lambda*Exx + (1-lambda)*Xbar'*Xbar/k;

% PCA rather than PSA
Exx = tril(ones(n,n)).*Exx;
END
```

% Recursive algorithm can be boosted with matrix inversion lemma

... resulting in Principal Components

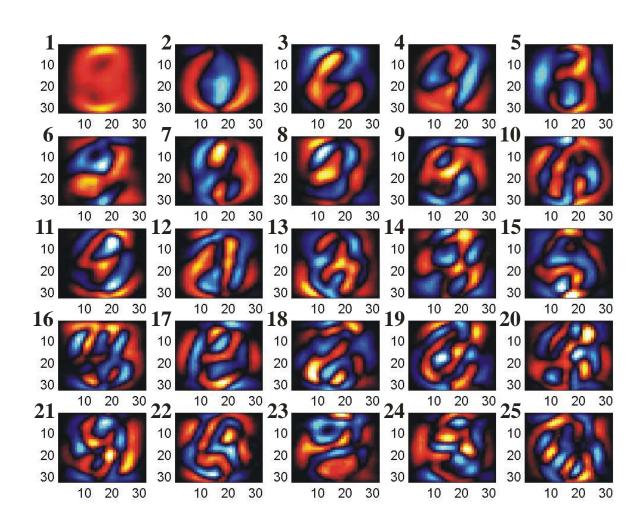
Parameters:

m = 1024

n = 16

 $\lambda = 0.5$

DEMO digitpca.m



"Elastic systems"

New interpretation of cybernetic systems –

"First-order cybernetic system"

- Finds balance under external pressures, pressures being compensated by internal tensions
- Any existing (complex) interacting system that maintains its integrity!
- Implements minimum observed deformation energy

"Second-order cybernetic system"

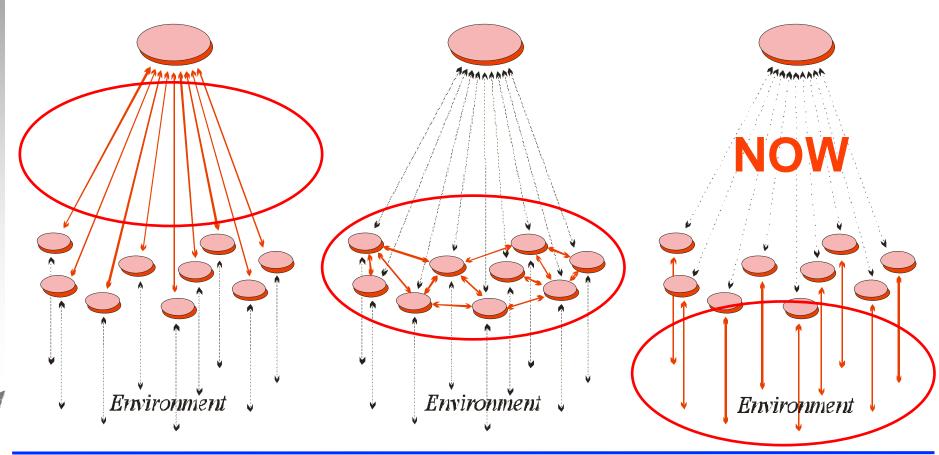
- Adapts the internal structures to better match the observed environmental pressures – towards maximum experienced stiffness
- Any existing (competing) interacting system that has survived in evolution!
- Implements minimum average observed deformation energy

Summary this far

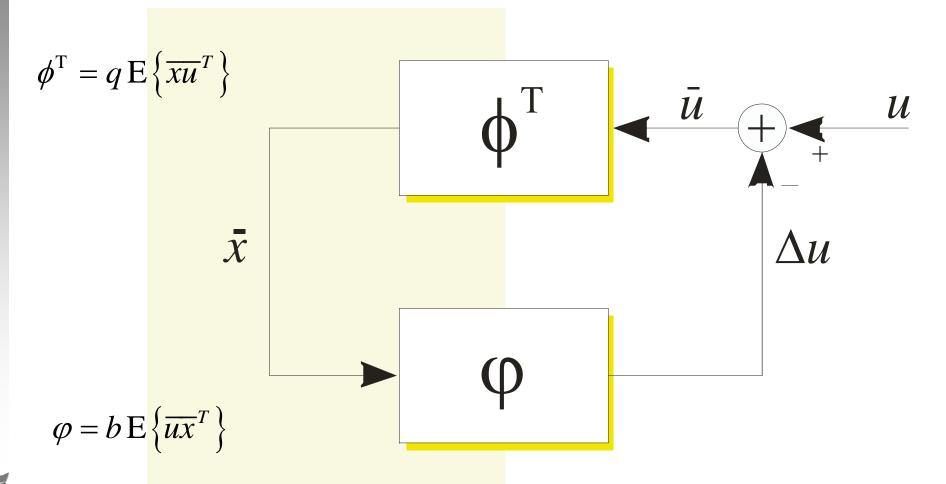
- Emergence in terms of self-regulation (stability) and selforganization (principal subspace analysis) reached
- This is reached applying physiologically plausible operations and model is linear – scalable beyond toy domains
- Learning is local but not completely local: Need "communication" among neurons (anti-Hebbian structures)
- Roles of signals different: How to motivate the inversion in adaptation direction (anti-Hebbian learning)?
- Solution: Apply non-idealities in an unorthodox way!
- There exist no unidirectional causal flows in real life systems
- Feedback: Exploiting a signal exhausts that signal

New schema

• Control neither *centralized* nor *distributed* (traditional sense)



Evolutionary balance extended



 $\varphi = \frac{b}{q} \phi$

Simply "go for resources"

 Again: Balancing is reached by feedback, but now not explicitly but implicitly through the environment

$$\begin{cases} \overline{x} = \phi^T \overline{u} \\ \overline{u} = u - \varphi \overline{x} \end{cases}$$

- Also environment finds its balance
- Only exploiting locally visible quantities, implement evolutionary adaptation symmetrically as

$$\begin{cases} \phi^T = q \ \mathbf{E} \{ \overline{x} \overline{u}^T \} \\ \phi^T = b \ \mathbf{E} \{ \overline{x} \overline{u}^T \} \end{cases}$$

How to characterize this "environmental balance"?

• Because $\overline{x} = q \mathbf{E} \{ \overline{x} \overline{u}^T \} \overline{u}$, one can write two covariances:

$$E\{\overline{xu}^T\} = qE\{\overline{xu}^T\}E\{\overline{uu}^T\}$$

and

$$\mathbf{E}\left\{\overline{x}\overline{x}^{T}\right\} = q^{2} \,\mathbf{E}\left\{\overline{x}\overline{u}^{T}\right\} \mathbf{E}\left\{\overline{u}\overline{u}^{T}\right\} \mathbf{E}\left\{\overline{x}\overline{u}^{T}\right\}^{T} = q \,\mathbf{E}\left\{\overline{x}\overline{u}^{T}\right\} \mathbf{E}\left\{\overline{x}\overline{u}^{T}\right\}^{T}$$

so that

$$\begin{cases} I_{n} = \sqrt{q} \ \mathbb{E}\left\{\overline{x}\overline{x}^{T}\right\}^{-1/2} \ \mathbb{E}\left\{\overline{x}\overline{u}^{T}\right\} \\ \frac{1}{q} I_{n} = \sqrt{q} \ \mathbb{E}\left\{\overline{x}\overline{x}^{T}\right\}^{-1/2} \ \mathbb{E}\left\{\overline{x}\overline{u}^{T}\right\} \\ \mathbb{E}\left\{\overline{x}\overline{$$

Forget the trivial solution where x_i is identically zero

• Similarly, if $\overline{x} = QE\{\overline{xu}^T\}\overline{u}$ for some (diagonal) matrix Q:

$$E\left\{\overline{xu}^{T}\right\} = QE\left\{\overline{xu}^{T}\right\}E\left\{\overline{uu}^{T}\right\}$$

and

$$E\left\{\overline{x}\overline{x}^{T}\right\} = QE\left\{\overline{x}\overline{u}^{T}\right\}E\left\{\overline{u}\overline{u}^{T}\right\}E\left\{\overline{x}\overline{u}^{T}\right\}^{T}Q^{T} = E\left\{\overline{x}\overline{u}^{T}\right\}E\left\{\overline{x}\overline{u}^{T}\right\}^{T}Q^{T}$$

Note: this has to be symmetric, so that

$$E\left\{\overline{xx}^{T}\right\} = E\left\{\overline{xx}^{T}\right\}^{T} = QE\left\{\overline{xu}^{T}\right\}E\left\{\overline{xu}^{T}\right\}^{T}$$

Stronger formulation is reached:

$$\theta = \mathbf{E} \left\{ \overline{xu}^T \right\}^T \mathbf{E} \left\{ \overline{xx}^T \right\}^{-1/2} Q^{1/2}$$

For non-identical q_i , this has to become diagonal also

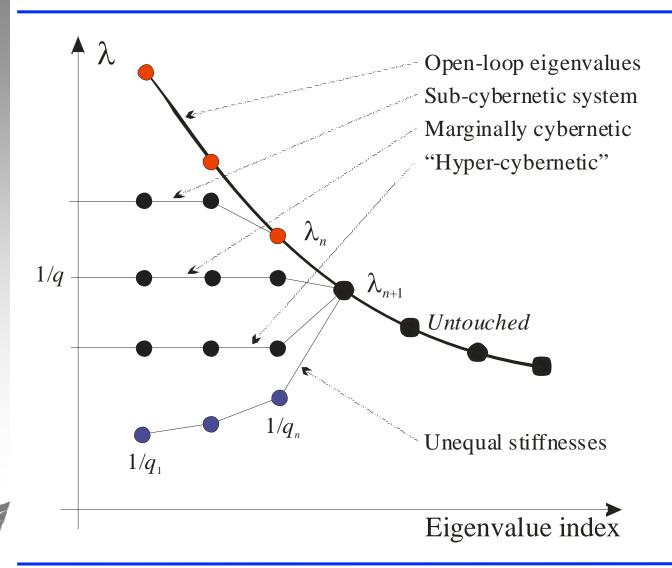
Equalization of environmental variances

- Because $\theta^T \theta = I_n$ and $\theta^T \mathrm{E} \left\{ \overline{u} \overline{u}^T \right\} \theta = Q^{-1}$, θ consists of the n (most significant) eigenvectors of $\mathrm{E} \left\{ \overline{u} \overline{u}^T \right\}$, and $\mathrm{E} \left\{ u u^T \right\}$
- If n = m, the variation structure becomes trivial:

$$\mathrm{E}\left\{\overline{u}\overline{u}^{T}\right\} = \frac{1}{q}I_{m}$$
 or $\mathrm{E}\left\{\overline{u}\overline{u}^{T}\right\} = Q^{-1}$

- Visible data variation becomes whitened by the feedback
- Relation to ICA: Assume that this whitened data is further processed by neurons (FOBI) – but this has to be nonlinear!
- On the other hand, if q_i are different, the modes become separated in the PCA style (rather than PSA)

Still try to avoid nonlinearity!



equalvar.m

Variance inheritance

• Further – study the relationship between \bar{x} and original u:

$$\overline{x} = \left(I_n + qb \operatorname{E}\left\{\overline{x}\overline{u}^T\right\} \operatorname{E}\left\{\overline{x}\overline{u}^T\right\}^T\right)^{-1} q\operatorname{E}\left\{\overline{x}\overline{u}^T\right\} u$$
$$= \left(I_n + b \operatorname{E}\left\{\overline{x}\overline{x}^T\right\}\right)^{-1} q\operatorname{E}\left\{\overline{x}\overline{u}^T\right\} u$$

Multiply from the right by transpose, and take expectations:

$$(I_n + b E\{\overline{x}\overline{x}^T\})E\{\overline{x}\overline{x}^T\}(I_n + b E\{\overline{x}\overline{x}^T\})$$

$$= E\{\overline{x}\overline{x}^T\}^{1/2}(I_n + b E\{\overline{x}\overline{x}^T\})^2 E\{\overline{x}\overline{x}^T\}^{1/2}$$

$$= q^2 E\{\overline{x}\overline{u}^T\}E\{uu^T\}E\{\overline{x}\overline{u}^T\}^T$$

$$\left(I_{n} + b \operatorname{E}\left\{\overline{x}\overline{x}^{T}\right\}\right)^{2} \\
= q \underbrace{\sqrt{q} \operatorname{E}\left\{\overline{x}\overline{x}^{T}\right\}^{-1/2} \operatorname{E}\left\{\overline{x}\overline{u}^{T}\right\} \operatorname{E}\left\{uu^{T}\right\} \operatorname{E}\left\{\overline{x}\overline{u}^{T}\right\}^{T} \operatorname{E}\left\{\overline{x}\overline{x}^{T}\right\}^{-1/2} \sqrt{q}}_{\theta D}$$

Solving for the latent covariance:

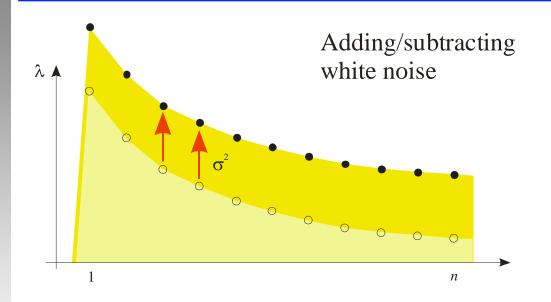
$$\mathbf{E}\left\{\overline{x}\overline{x}^{T}\right\} = \frac{1}{b}\left(q\ D^{T}\theta^{T}\mathbf{E}\left\{uu^{T}\right\}\theta D\right)^{1/2} - \frac{1}{b}I_{n}$$

This means that the external and internal eigenvalues (variances) are related as follows:

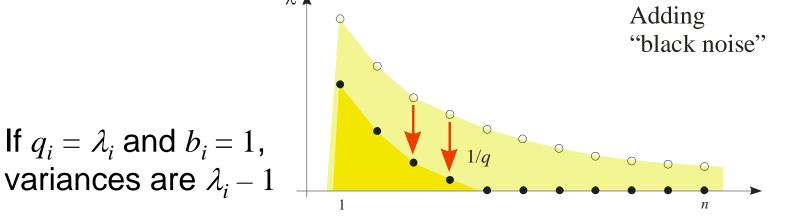
$$\frac{\sqrt{q_i\lambda_i}-1}{b_i}$$

- There must hold

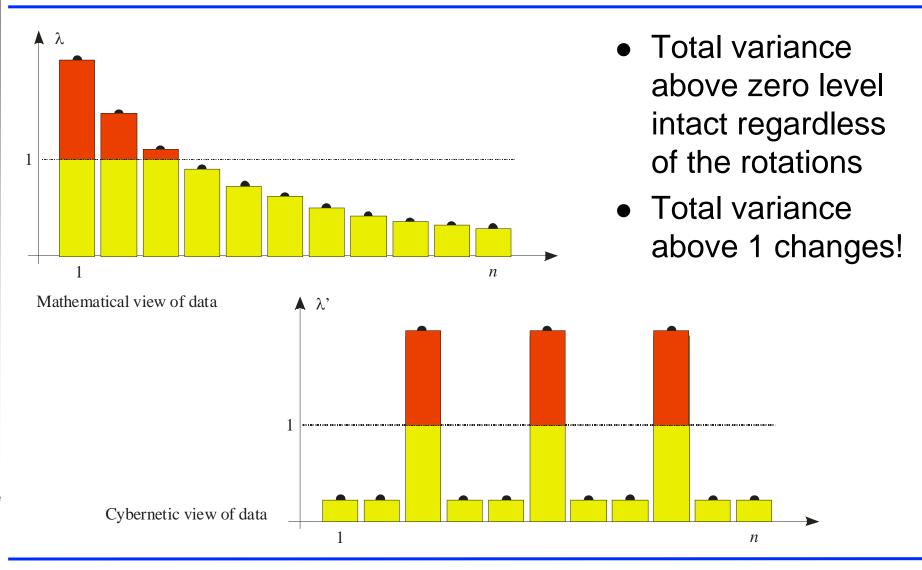
Effect of feedback = add "black noise"



- White noise =
 Constant increase
 in all directions
- "Black noise" =
 Decrease in all
 directions (if poss.)



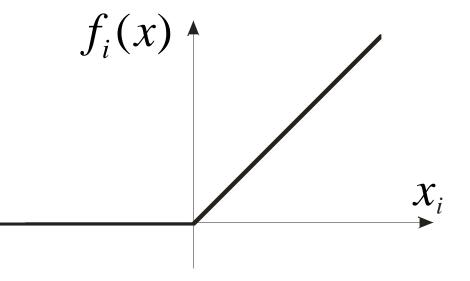
Results of orthogonal basis rotations



Towards differentiation of features

- A simple example of nonlinear extensions: CUT function
- If variable is positive, let it through; otherwise, filter it out –
 Well in line with modeling of activity in neuronal systems:
 - Frequencies cannot become negative (interpretation in terms of pulse trains)
 - Concentrations cannot become negative (interpretation in terms of chemicals)
- Makes modes separated
- Still: End result linear!

$$f_i(x) = \begin{cases} x_i, & \text{when } x_i > 0 \\ 0, & \text{when } x_i \le 0 \end{cases}$$



Algorithm for Hebbian feedback learning ...

```
LOOP - iterate for data in kxm matrix U
  % Balance of latent variables
  Xbar = U * (inv(eye(n)+q*Exu*Exu')*q*Exu)';
  % Enhance model convergence by nonlinearity
  Xbar = Xbar.*(Xbar>0);
  % Balance of the environmental signals
  Ubar = U - Xbar*Exu;
  % Model adaptation
  Exu = lambda*Exu + (1-lambda)*Xbar'*Ubar/k;
  % Maintaining system activity
  Exx = Xbar'*Xbar/k;
  q = q + P*diaq(ref - sqrt(diaq(Exx)));
```


END

... resulting in Sparse Components!

Parameters:

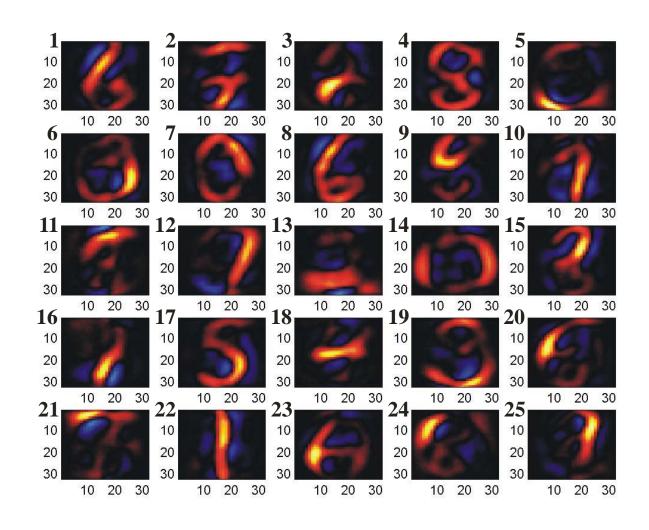
m = 1024

n = 16

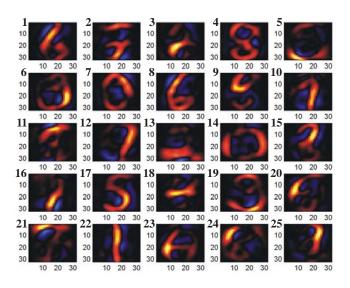
 $\lambda = 0.97$

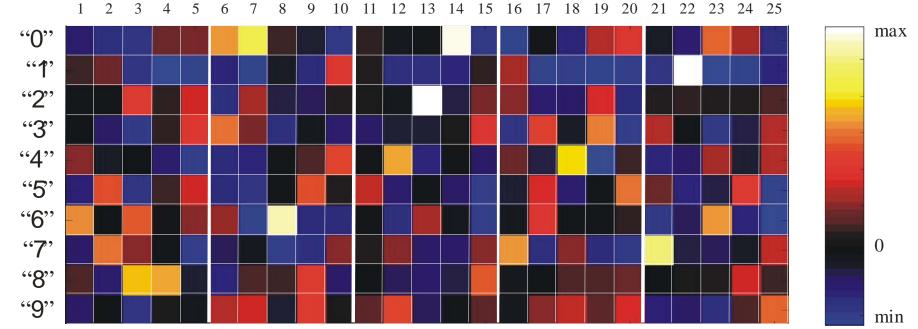
ref = 1

DEMO
digitfeat.m

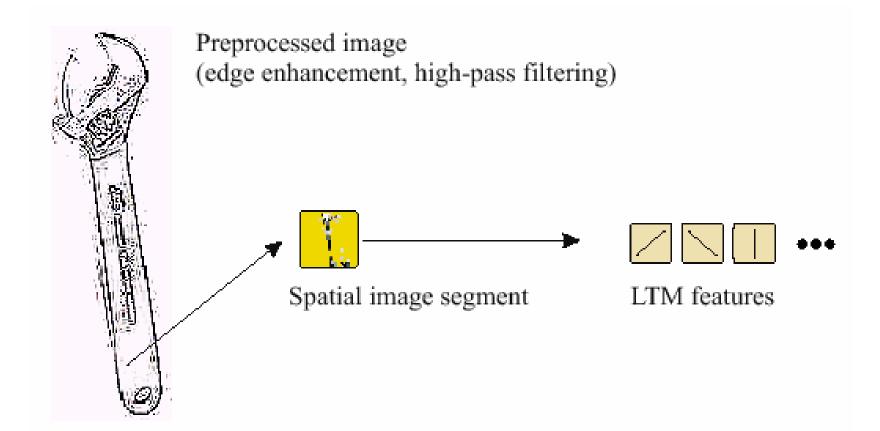


- "Work load" becomes distributed
- Correlations between inputs and neuronal activities shown below:





Visual V1 cortex seems to do this kind of decomposing



"Loop invariant"

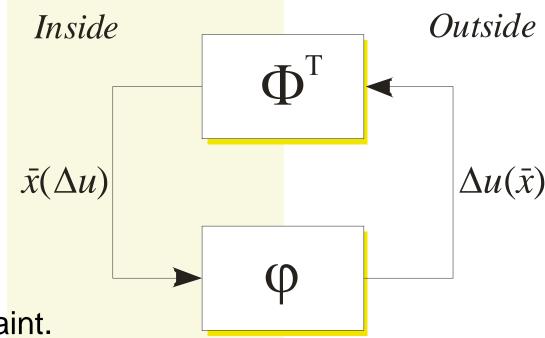
- There are two main structures that dictate the properties of the Hebbian feedback system from different points of view:
 - Hebbian learning (studied above)
 - Feedback (studied now):
- It must be so that

$$\overline{x} = \Phi^T \varphi \ \overline{x}$$

or

$$\Phi^T \varphi = I_n$$

This is a harsh constraint.



Mapping in terms of data

Note:

Least-squares

fitting formula!

Study how the feedback mapping can be characterized.
 Because

$$\Delta u = \varphi \overline{x}$$

there holds

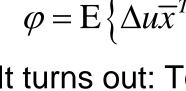
$$E\left\{\Delta u\overline{x}^{T}\right\} = \varphi E\left\{\overline{x}\overline{x}^{T}\right\}$$

or, when manipulating,

$$\varphi = \mathbf{E} \left\{ \Delta u \overline{x}^T \right\} \mathbf{E} \left\{ \overline{x} x^T \right\}^{-1} = \mathbf{E} \left\{ \overline{x} \Delta u^T \right\}^T \mathbf{E} \left\{ \overline{x} x^T \right\}^{-1}$$

• It turns out: To obey $\Phi^T \varphi = I_n$ feedforward mapping is

$$\Phi^{T} = \mathbf{E} \left\{ \overline{x} \overline{x}^{T} \right\}^{-1} \mathbf{E} \left\{ \overline{x} \Delta u^{T} \right\}$$



The same derivations – for ∆u now

- Again derive the statistical model of balances $\overline{x}(\Delta u)$
- Assume that dynamics of u is essentially slower than that of x and study the covariance properties:

$$\mathbf{E}\left\{\overline{x}\overline{x}^{T}\right\} = \mathbf{E}\left\{\overline{x}\overline{x}^{T}\right\}^{-1}\mathbf{E}\left\{\overline{x}\Delta u^{T}\right\}\mathbf{E}\left\{\Delta u\Delta u^{T}\right\}\mathbf{E}\left\{\overline{x}\Delta u^{T}\right\}^{T}\mathbf{E}\left\{\overline{x}\overline{x}^{T}\right\}^{-1}$$

or

$$E\left\{\overline{x}\overline{x}^{T}\right\}^{3} = E\left\{\overline{x}\Delta u^{T}\right\}E\left\{\Delta u\Delta u^{T}\right\}E\left\{\overline{x}\Delta u^{T}\right\}^{T}$$

or

$$\left(\Phi^T \mathbf{E}\left\{\Delta u \Delta u^T\right\} \Phi\right)^3 = \Phi^T \mathbf{E}\left\{\Delta u \Delta u^T\right\}^3 \Phi \qquad n < m$$

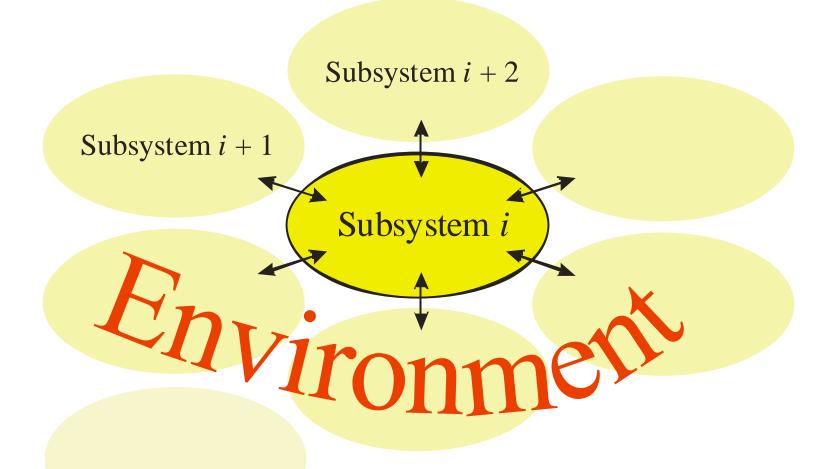
• Same PSA properties – now for signals \bar{x} and Δu

- The mapping matrix Φ also spans the subspace determined by φ ...
- Trivial result if no adaptation (however, note nonlinearity!)
- But combined with the Hebbian learning, the mapping matrices adapt to represent the principal subspace of u (Note that this all applies only if there holds $x \neq 0$)
- There are also more fundamental consequences ...
- Conclusion: Essentially the system is modeling *its own* behavior in the environment, or mapping between \overline{x} and Δu
- One can see $E\{\overline{x}_i\Delta u_j\}$ as an atom of causal information

Towards modeling of causality

- Age-old observation (Hume): One can only see correlations in data, not causalities
- Another observation (Kant): Human still for some reason is capable of constructring causal models
- Hebbian feedback learning:
 Modeling of results of own actions in the environment (actions being reactions to phenomena in the environment)
- Now one implicitly knows what is cause, what is effect
- Learning needs to be of "hands-on" type, otherwise learning (applying explicit anti-Hebbian law) becomes superficial?!

Yet another elasticity benefit

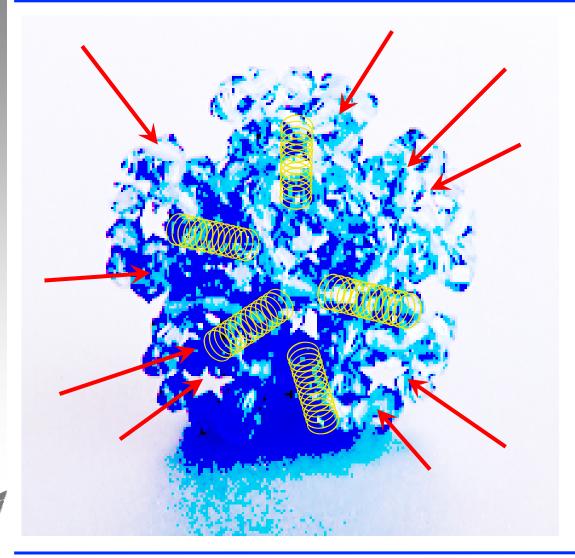


How to master subsystems?

Analogues rehabilitated

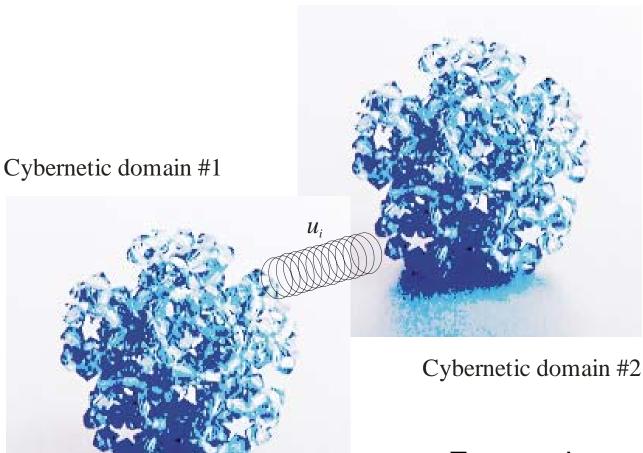
- When applying linearity, the number of available structures is rather limited – there are more systems than models!
- This idea has been applied routinely: Complicated systems are visualized in terms of structures with the same dynamics
- In the presence of modern simulation tools, this kind of lumped parameter simplifications seem rather outdated ...
- However, in the case of really complicated distributed parameter systems, mechanical analogues may have reincarnation – steel plates are still simple to visualize!
- Another class of analogues (current/voltage rather than force/deformation) can also be constructed:
 - External forces are the loads; the deformation is the voltage drop, and the control action is the increased current

For mechanical engineers ...



- Assumption: Internal tensions compensate external pressures
- The forces acting on the system cannot all be captured, nor can the interconnections among actions
- The complexity of the system/environment is projected onto the finite, discrete set of concrete actors

... and for electrical engineers



 For maximum energy transfer impedances have to match!

Cybernetics Rules!

... But what are those rules?

ybernetics Growt

Let us find it out!

http://www.control.hut.fi/cybernetics