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Neocybernetic starting points – summary

The details (along time axis) are abstracted away, holistic 
view from the above is applied
There exist local actions only, there are no structures of 
centralized control
It is assumed that the underlying interactions and feedbacks 
are consistent, maintaining the system integrity
This means that one can assume stationarity and dynamic
balance in the system in varying environmental conditions
An additional assumption: Linearity is pursued as long as it is 
reasonable

Sounds simple – are there any new intuitions available?

Strong guiding principles for modeling



Modeling a neuron

Neural (chemical) signals are 
pulse coded, asynchronous, ... 
extremely complicated
Simplification: Only the relevant 
information is represented – the 
activation levels



Abstraction level #1

Triggering of neuronal pulses is stochastic
Assume that in stationary environmental  conditions the 
average number of pulses in some time interval remains 
constant
Only study statistical phenomena: Abstract the time axis 
away, only model average activity
Perceptron: Linear summation of input signals vj + activation 
function:
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The emergence idea is exploited here – deterministic activity 
variables are employed to describe behaviors
How to exploit the ”first-level” neuron abstraction, how to 
reach the neuron grid level of abstraction?
Neural networks research studies this – opposite ends:

1. Feedforward perceptron networks
Non-intuitive: Black-box model, unanalyzable
Mathematically strong: Smooth functions can be approximated to arbitrary 
accuracy

2. Kohonen’s self-organizing maps (SOM)
Intuitive: Easily interpretable by humans (visual pattern recognition capability 
exploited)
Less mathematical: A mapping from m dimensional real-valued vectors to n
integers

Yet another approach available?



More general point of view

Basic mystery: How can the global-level expressions be 
implemented by the local-level actors?

Interpret static equations as dynamic equilibria: It is not only
noise that can cause deviations from the static model
Extension gives intuition: Observed constraint is just an 
emergent pattern – now study the supporting processes

Basic assumptions:
System’s responses reflect the environmental pressures
Balance of tensions is caused by various counteracting phenomena
Balances can be reached through local diffusion processes



From static pattern to a dynamic one

Assume the system reacts (linearly) to its environment:

Assume that the system is restructured appropriately:

Assume the equality represents a tension equilibrium:

For such diffusion, there is a cost characterizing the system:
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How to interpret

Study a one-dimensional case: Spring (spring constant k) 
stretched (deformation s) by an external force F
There are external and internal stored energies in spring 
(zero level = zero force):

1. Due to the external potential field

2. Due to the internal tensions
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Generalization: There are many forces, and many points 
Spring between points s1 and s2 (can also be torsional, etc.) 

A matrix formulation is also possible:

Fj: Virtual ”generalized forces” as projected along the 
directions of movements – also torques, shear stresses, etc., 
all presented in the same framework (for linear structures)
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”All” complex reasonable systems are elastic!

Now: The difference of potential energies can be expressed 
as

Here, A is matrix of elasticity, and B determines projections
Matrix A must be symmetric, and must be positive definite to 
represent stable structures sustaining external stresses
Principle of minimum potential (deformation) energy: 
Structure under pressure ends in minimum of this criterion

Elastic systems yield when pressed, but bounce back after it

Are there additional intuitions available?
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Goals of evolution – local scale 

Compare to gravitational field: Potential energy is 
”force times deformation”

Elastic system: Average transferred energy / power

Now assume: 
System tries to maximize the coupling with its environment
That is:
Maximize the average product of action and reaction

Special case: Neuronal system and Hebbian learning seem 
to implement this principle
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Hebbian learning

The Hebbian learning rule (by physician Donald O. Hebb) 
dates back to mid-1900’s:

”If the neuron activity correlates with 
the input signal, the corresponding 
synaptic weight increases”

Are there some goals for neurons included here? Is there 
something teleological taking place? 
Bold assumptions make it possible to reach powerful models



Assume: Perceptron activity xi is a linear function of the input 
signal vj, where the vector wij contains the synaptic weight:

with

Hebbian law applied in adaptation: Correlation between input 
and neuronal activity expressed as xi νj, so that

assuming here, for simplicity, that m = 1. 
This learning law is unstable – the synaptic weight grows 
infinitely, and so does xi !

Traditional Hebbian learning
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Stabilization by the Oja’s rule (by Erkki Oja):

Motivation: Keeps the weight vector bounded (|Wi| = 1), and 
average signal size E{|xi|} = 1
Extracts the first principal component of the data
Extension: Generalized Hebbian Algorithm (GHA): Structural 
tailoring makes it possible to deflate pc’s one at a time

However, the new formula is nonlinear: Analysis of neuron 
grids containing such elements is difficult, and extending 
them is equally difficult   – What to do instead?

Enhancements
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logistic formulation 
of limited growth!



Level of synapses

The neocybernetic guidelines are: Search for balance and 
linearity
Note: Nonlinearity was not included in the original Hebbian 
law – it was only introduced for pragmatic reasons 

Are there other ways to reach stability – in linear terms?

Yes – one can apply negative feedback:

or in matrix form

The steady-state is
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Level of neuron grids

Just the same principles can be applied when studying the 
neuron grid level – balance and linearity
Define

and

so that                             and
To implement negative feedback, one needs to apply the 
anti-Hebbian action between otherwise Hebbian neurons:

so that the steady state becomes
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Model is stable! 
Eigenvalues of A
always real and 
non-negative



Hebbian/anti-Hebbian system

Explicit feedback structures
Completely localized operation, 
even though centralized matrix 
formulations applied to reach 
mathematical compactness 
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Towards abstraction level #2

Cybernetic model = statistical model of balances x(u)
Assume dynamics of u is essentially slower than that of x and 
study the covariance properties: 

or

or

Balance on the statistical level =  second-order balance
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Solution

Expression fulfilled for φ = θnD, where θn is a matrix of n of 
the covariance matrix eigenvectors, and D is orthogonal

This is because left-hand side is then

and right-hand side is

Stable solution when θn contains the most significant data 
covariance matrix eigenvectors
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Principal subspace analysis

Any subset of input data principal components can be 
selected for φ
The subspace spanned by the n most significant principal 
components gives a stable solution

Conclusion:

Competitive learning (combined Hebbian and 
anti-Hebbian learning) without any structural 
constraints results in self-regulation (balance) 
and self-organization (in terms of principal 
subspace).



Principal components

Principal Component Analysis = Data is projected onto the 
most significant eigenvectors of the data covariance matrix
This projection captures maximum of the variation in data
Principal subspace = PCA basis vectors rotated somehow

pc 1
pc 2

Note the difference between data 
modeling and system modeling!



Pattern matching

One can also formulate the cost criterion as

This means that the neuron grid carries out pattern matching
of input data
Note that the traditional maximum (log)likelihood criterion for 
Gaussian data would be

Now: More emphasis on main directions; no invertibility 
problems!

( ) { } ( )11( , ) E
2

T TJ x u u x uu u xφ φ
−

= − −

( ) { }( )1( , ) E
2

T TJ x u u x uu u xφ φ= − −



Example: Hand-written digits

There were a large body of 32x32 pixel images, representing 
digits from 0 to 9, over 8000 samples  (thanks to Jorma Laaksonen)

Examples of typical ”9” Examples of less typical ”9”



Algorithm for Hebbian/anti-Hebbian learning ...

LOOP – iterate for data in kxm matrix U

% Balance of latent variables

Xbar = U * (inv(Exx)*Exu)';

% Model adaptation

Exu = lambda*Exu + (1-lambda)*Xbar'*U/k;
Exx = lambda*Exx + (1-lambda)*Xbar'*Xbar/k;

% PCA rather than PSA

Exx = tril(ones(n,n)).*Exx;

END

% Recursive algorithm can be boosted with matrix inversion lemma



... resulting in Principal Components

Parameters:
m = 1024
n = 16
λ = 0.5

DEMO
digitpca.m
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”Elastic systems”

New interpretation of cybernetic systems –

”First-order cybernetic system”
Finds balance under external pressures, pressures being compensated by 
internal tensions 
Any existing (complex) interacting system that maintains its integrity!
Implements minimum observed deformation energy

”Second-order cybernetic system”
Adapts the internal structures to better match the observed environmental 
pressures – towards maximum experienced stiffness
Any existing (competing) interacting system that has survived in evolution!
Implements minimum average observed deformation energy



Summary this far

Emergence in terms of self-regulation (stability) and self-
organization (principal subspace analysis) reached
This is reached applying physiologically plausible operations 
and model is linear – scalable beyond toy domains
Learning is local – but not completely local: Need 
”communication” among neurons (anti-Hebbian structures)
Roles of signals different: How to motivate the inversion in 
adaptation direction (anti-Hebbian learning)?

Solution: Apply non-idealities – in an unorthodox way!
There exist no unidirectional causal flows in real life systems
Feedback: Exploiting a signal exhausts that signal



New schema

Control neither centralized nor distributed (traditional sense)  

NOW



Evolutionary balance extended
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Simply ”go for resources”

Again: Balancing is reached by feedback, but now not 
explicitly but implicitly through the environment

Also environment finds its balance
Only exploiting locally visible quantities, implement 
evolutionary adaptation symmetrically as
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Because                          , one can write two covariances:

and

so that
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Forget the trivial solution 
where xi is identically zero



Similarly, if                            for some (diagonal) matrix Q:

and

Note: this has to be symmetric, so that

Stronger formulation is reached:
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Equalization of environmental variances

Because                  and                               , θ consists of the 
n (most significant) eigenvectors of              ,  and
If n = m, the variation structure becomes trivial:

or

Visible data variation becomes whitened by the feedback 
Relation to ICA : Assume that this whitened data is further 
processed by neurons (FOBI) – but this has to be nonlinear!

On the other hand, if qi are different, the modes become 
separated in the PCA style (rather than PSA)
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Still try to avoid nonlinearity!



DEMO
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Open-loop eigenvalues
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Variance inheritance

Further – study the relationship between x and original u:

Multiply from the right by transpose, and take expectations:
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Solving for the latent covariance:

This means that the external and internal eigenvalues 
(variances) are related as follows:

– There must hold
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1 n

σ2

Adding/subtracting
white noise

Adding
“black noise”

1 n

1/q

Effect of feedback = add ”black noise”

White noise = 
Constant increase 
in all directions
”Black noise” = 
Decrease in all 
directions (if poss.)

If qi = λi and bi = 1, 
variances are λi – 1



Results of orthogonal basis rotations

1 n

λ

1

1 n

λ’

1

Cybernetic view of data

Mathematical view of data

Total variance 
above zero level 
intact regardless 
of the rotations
Total variance 
above 1 changes!



fcut,i( )z
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Towards differentiation of features

A simple example of nonlinear extensions: CUT function
If variable is positive, let it through; otherwise, filter it out –
Well in line with modeling of activity in neuronal systems:

Frequencies cannot become negative (interpretation in terms of pulse trains)
Concentrations cannot become negative (interpretation in terms of chemicals) 

Makes modes separated
Still: End result linear!
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Algorithm for Hebbian feedback learning ...

LOOP – iterate for data in kxm matrix U

% Balance of latent variables
Xbar = U * (inv(eye(n)+q*Exu*Exu')*q*Exu)';

% Enhance model convergence by nonlinearity
Xbar = Xbar.*(Xbar>0);

% Balance of the environmental signals
Ubar = U - Xbar*Exu;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar'*Ubar/k;

% Maintaining system activity
Exx = Xbar'*Xbar/k;
q = q + P*diag(ref - sqrt(diag(Exx)));

END



... resulting in Sparse Components!

252422 2321

201917 1816

151412 1311

1097 86

542 31Parameters:
m = 1024
n = 16
λ = 0.97
ref = 1

DEMO
digitfeat.m



”Work load” becomes distributed
Correlations between inputs and 
neuronal activities shown below: 252422 2321

201917 1816

151412 1311

1097 86

542 31

“ ”0

“ ”8
“ ”7
“ ”6
“ ”5
“ ”4
“ ”3
“ ”2
“ ”1

“ ”9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
max

0

min



Visual V1 cortex seems to do this kind of decomposing
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Inside Outside

”Loop invariant”

There are two main structures that dictate the properties of 
the Hebbian feedback system from different points of view:

Hebbian learning (studied above)
Feedback (studied now):

It must be so that

or

This is a harsh constraint.
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T
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Mapping in terms of data

Study how the feedback mapping can be characterized. 
Because

there holds

or, when manipulating,

It turns out: To obey                    feedforward mapping is
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The same derivations – for ∆u now

Again – derive the statistical model of balances x(∆u)
Assume that dynamics of u is essentially slower than that of x
and study the covariance properties: 

or

or

Same PSA properties – now for signals x and ∆u
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The mapping matrix Φ also spans the subspace determined 
by ϕ ...
Trivial result if no adaptation (however, note nonlinearity!)
But combined with the Hebbian learning, the mapping 
matrices adapt to represent the principal subspace of u
(Note that this all applies only if there holds           )

There are also more fundamental consequences ...
Conclusion: Essentially the system is modeling its own 
behavior in the environment, or mapping between x and ∆u
One can see                  as an atom of causal information

0x ≡

{ }E i jx u∆



Towards modeling of causality

Age-old observation (Hume): One can only see correlations 
in data, not causalities
Another observation (Kant): Human still for some reason is 
capable of constructring causal models

Hebbian feedback learning: 
Modeling of results of own actions in the environment         
(actions being reactions to phenomena in the environment)
Now one implicitly knows what is cause, what is effect

Learning needs to be of ”hands-on” type, otherwise learning 
(applying explicit anti-Hebbian law) becomes superficial?! 



Subsystem i

Subsystem  + 1i

Subsystem  + 2i

nm

Yet another elasticity benefit

How to master subsystems?



Analogues rehabilitated

When applying linearity, the number of available structures 
is rather limited – there are more systems than models!
This idea has been applied routinely: Complicated systems 
are visualized in terms of structures with the same dynamics
In the presence of modern simulation tools, this kind of 
lumped parameter simplifications seem rather outdated ...
However, in the case of really complicated distributed 
parameter systems, mechanical analogues may have 
reincarnation – steel plates are still simple to visualize!
Another class of analogues (current/voltage rather than 
force/deformation) can also be constructed:

External forces are the loads; the deformation is the voltage drop, and the 
control action is the increased current



For mechanical engineers ...

Assumption: Internal 
tensions compensate 
external pressures
The forces acting on 
the system cannot all 
be captured, nor can 
the interconnections 
among actions
The complexity of the 
system/environment 
is projected onto the 
finite, discrete set of 
concrete actors



... and for electrical engineers

For maximum energy transfer 
impedances have to match!

Cybernetic domain #1

Cybernetic domain #2

ui



Cybernetics Rules!

ybernetics Group
... But what are those rules?

Let us find it out!
http://www.control.hut.fi/cybernetics


