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Neocybernetic starting points — summary

e The details (along time axis) are abstracted away, holistic
view from the above is applied

e There exist local actions only, there are no structures of
centralized control

e Itis assumed that the underlying interactions and feedbacks
are consistent, maintaining the system integrity

e This means that one can assume stationarity and dynamic
balance in the system in varying environmental conditions

e An additional assumption: Linearity is pursued as long as it is
reasonable

Sounds simple — are there any new intuitions available?
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Modeling a neuron
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Abstraction level #1

e Triggering of neuronal pulses is stochastic

e Assume that in stationary environmental conditions the
average number of pulses in some time interval remains
constant

e Only study statistical phenomena: Abstract the time axis
away, only model average activity

X

function:
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e Perceptron: Linear summation of input signals v; + activation
m I
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and linear version :
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e The emergence idea is exploited here — deterministic activity
variables are employed to describe behaviors

e How to exploit the "first-level” neuron abstraction, how to
reach the neuron grid level of abstraction?

e Neural networks research studies this — opposite ends:

1. Feedforward perceptron networks
e Non-intuitive: Black-box model, unanalyzable
e Mathematically strong: Smooth functions can be approximated to arbitrary
accuracy
2. Kohonen’s self-organizing maps (SOM)

e Intuitive: Easily interpretable by humans (visual pattern recognition capability
exploited)

e Less mathematical: A mapping from m dimensional real-valued vectors to n

% integers
\C
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More general point of view

e Basic mystery: How can the global-level expressions be
Implemented by the local-level actors?

e Interpret static equations as dynamic equilibria: It is not only
noise that can cause deviations from the static model

e Extension gives intuition: Observed constraint is just an
emergent pattern — now study the supporting processes

e Basic assumptions:

e System’s responses reflect the environmental pressures
e Balance of tensions is caused by various counteracting phenomena
e Balances can be reached through local diffusion processes

d
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From static pattern to a dynamic one

e Assume the system reacts (linearly) to its environment:
% = 4"

e Assume that the system is restructured appropriately:
AX = Bu

e Assume the equality represents a tension equilibrium:

X Ax+BU

y dt
For such diffusion, there is a cost characterizing the system:

% —x AX— XD
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How to interpret

e Study a one-dimensional case: Spring (spring constant k)
stretched (deformation s) by an external force F

e There are external and internal stored energies in spring
(zero level = zero force):

1. Due to the external potential field
W, :—J' Fds=-Fs
0

2. Due to the internal tensions

W :j ks ds = —ks?
; 2

d
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e Generalization: There are many forces, and many points

e Spring between points s, and s, (can also be torsional, etc.)

1

Wint (31’ 32) — E k1,2

2 1 1
(31 - 32) = E k1,2312 — kl,ZslsZ + E k1,2512

e A matrix formulation is also possible:

/Sl\T
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\Sn)

W, (s, F)=—
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\Sn)
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e F;: Virtual "generalized forces” as projected along the

directions of movements — also torques, shear stresses, etc.,
all presented in the same framework (for linear structures)
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"All” complex reasonable systems are elastic!

e Now: The difference of potential energies can be expressed
as

J(s,F) :%STAS—STBF

e Here, A is matrix of elasticity, and B determines projections

e Matrix A must be symmetric, and must be positive definite to
represent stable structures sustaining external stresses

e Principle of minimum potential (deformation) energy:
Structure under pressure ends in minimum of this criterion

e Elastic systems yield when pressed, but bounce back after it

e Are there additional intuitions available?
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Goals of evolution — local scale

e Compare to gravitational field: Potential energy is
W . =mg Ah "force times deformation”

e Elastic system: Average transferred energy / power
E{xu;
e Now assume:
System tries to maximize the coupling with its environment
e Thatis:
Maximize the average product of action and reaction

e Special case: Neuronal system and Hebbian learning seem

% to implement this principle
\C
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Hebbian learning

e The Hebbian learning rule (by physician Donald O. Hebb)
dates back to mid-1900’s:

"If the neuron activity correlates with
the input signal, the corresponding
synaptic weight increases”

e Are there some goals for neurons included here? Is there
something teleological taking place?

e Bold assumptions make it possible to reach powerful models
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Traditional Hebbian learning

e Assume: Perceptron activity x; is a linear function of the input
signal v;, where the vector w;; contains the synaptic weight:

m
Xij = WyVj with =2 %
j=1
e Hebbian law applied in adaptation: Correlation between input

and neuronal activity expressed as X; v;, so that

dw,
1 . 2
at 7 XV 7wy,
assuming here, for simplicity, that m = 1.

e This learning law is unstable — the synaptic weight grows
infinitely, and so does X; !
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Enhancements

e Stabilization by the Oja’s rule (by Erkki Oja):

dw
j 2 Compare to the
e i
e Motivation: Keeps the weight vector bounded (|W;| = 1), and
average signal size E{|xi|} = 1
e Extracts the first principal component of the data

e Extension: Generalized Hebbian Algorithm (GHA): Structural
tailoring makes it possible to deflate pc’'s one at a time

e However, the new formula is nonlinear: Analysis of neuron
grids containing such elements is difficult, and extending
them is equally difficult — What to do instead?
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Level of synapses

e The neocybernetic guidelines are: Search for balance and
linearity

e Note: Nonlinearity was not included in the original Hebbian
law — it was only introduced for pragmatic reasons

Are there other ways to reach stability — in linear terms?

e Yes — one can apply negative feedback:

dw; dw
—L = --Y-V-. rin matrix form ——=y-xv' —z"'W
dt Vit A j % 0 at (0) dt V4 T

The steady-state is

_ Synaptic weights
Wzyr-E{YVT}zr-E{YVT} can be coded in a
% correlation matrix
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Level of neuron grids

Just the same principles can be applied when studying the
neuron grid level — balance and linearity

Define

_ Lx
W=(A|B) and V= FJ

so that A:F-E{WT} and B=F-E{¥uT}

To implement negative feedback, one needs to apply the
anti-Hebbian action between otherwise Hebbian neurons:

% =N—AX + Bu Model is stable!
dt Eigenvalues of A
so that the steady state becomes always real and

X=A"'Bu=E{xXX'} E{xu'ju=¢"u

non-negative
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Hebbian/anti-Hebbian system

e Explicit feedback structures
e Completely localized operation,

X=—AX+BuU

A even though centralized matrix
=olewa) | formulations applied to reach
e . mathematical compactness
» E{R%}| | -

E{xu,} < / U 1
E{xu.} <« \
) U,
Efrude
E{xu} < U 3

d
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Towards abstraction level #2

Cybernetic model = statistical model of balances x(u)

e Assume dynamics of u is essentially slower than that of x and

study the covariance properties:

E{xx" | =E{x<"} E{xu"} Efw' | E{xu"} E{xx"}"
or

E{WT}B = E{YUT} E{uuT} E{YUT }T
or

(¢TE{uuT}¢)3:¢TE{uuT}3¢ n<m

% e Balance on the statistical level = second-order balance

Cont

G
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Solution

e Expression fulfilled for ¢ = §,D, where 4, is a matrix of n of
the covariance matrix eigenvectors, and D is orthogonal

e This is because left-hand side is then

(#'E{uu"}g) =(D"G/E{u"}6,D) =(D"A,D) =D'AD
e and right-hand side is

#E{u}) =D E{u’} §,D=D"AD

e Stable solution when g, contains the most significant data
covariance matrix eigenvectors

d
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Principal subspace analysis

e Any subset of input data principal components can be
selected for ¢

e The subspace spanned by the n most significant principal
components gives a stable solution

e Conclusion:

Competitive learning (combined Hebbian and
anti-Hebbian learning) without any structural
constraints results in self-regulation (balance)
and self-organization (in terms of principal
subspace).
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Principal components

e Principal Component Analysis = Data Is projected onto the
most significant eigenvectors of the data covariance matrix

e This projection captures maximum of the variation in data
e Principal subspace = PCA basis vectors rotated somehow

® Note the difference between data
% o © modeling and system modeling!

G
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Pattern matching

e One can also formulate the cost criterion as
J(x,u) = (u #x)' E{uu"}(u-gx)

e This means that the neuron grid carries out pattern matching
of input data

e Note that the traditional maximum (log)likelihood criterion for
Gaussian data would be

J(x,u)== (u #x)' Ef{uu T}_1(u—¢x)

e Now: More emphasis on main directions; no invertibility

% problems!
\C
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Example: Hand-written digits

e There were a large body of 32x32 pixel images, representing
digits from O to 9, over 8000 samples (thanks to Jorma Laaksonen)

Examples of typical "9” Examples of less typical "9”

FETESEANGETE ) ED)

10 20 30 0 X 30 10 20 30

mmamnmm@

0 X 30
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Algorithm for Hebbian/anti-Hebbian learning ...

LOOP — i1terate for data in kxm matrix U

% Balance of latent variables
Xbar = U * (Inv(ExX)*Exu) " ;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar®"*U/k;
Exx = lambda*Exx + (1-lambda)*Xbar"*Xbar/k;

% PCA rather than PSA
Exx = tril(ones(n,n)).*Exx;

END

% Recursive algorithm can be boosted with matrix inversion lemma

d
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... resulting in Principal Components

e Parameters:

m = 1024 " '._J
10 20 30

n=16

A=05

10 20 30
"'."-".

10 20 30
r -
DEMO 1 o
digitpca.m 30 '
g p - 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
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"Elastic systems”

e New interpretation of cybernetic systems —

e "First-order cybernetic system”

e Finds balance under external pressures, pressures being compensated by
internal tensions

e Any existing (complex) interacting system that maintains its integrity!
e Implements minimum observed deformation energy

e "Second-order cybernetic system”

e Adapts the internal structures to better match the observed environmental
pressures — towards maximum experienced stiffness

e Any existing (competing) interacting system that has survived in evolution!
% e Implements minimum average observed deformation energy
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Summary this far

e Emergence in terms of self-regulation (stability) and self-
organization (principal subspace analysis) reached

e This is reached applying physiologically plausible operations
and model is linear — scalable beyond toy domains

e Learning is local — but not completely local: Need
"communication” among neurons (anti-Hebbian structures)

e Roles of signals different. How to motivate the inversion in
adaptation direction (anti-Hebbian learning)?

e Solution: Apply non-idealities — in an unorthodox way!
There exist no unidirectional causal flows in real life systems

[
e Feedback: Exploiting a signal exhausts that signal
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New schema
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e Control neither centralized nor distributed (traditional sense)
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Evolutionary balance extended

$" =qE{xu" |

X

gazbE{u_XT}

(I)T

<u@ﬁ

AU
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Simply "go for resources”

e Again: Balancing is reached by feedback, but now not
explicitly but implicitly through the environment

{Y ST

u—@X
e Also environment finds its balance

e Only exploiting locally visible quantities, implement
evolutionary adaptation symmetrically as

=
I

$' =qE{xt" |
<
¢ =b E{WT} How to characterize this
% “ “environmental balance”?
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and

so that

e Because X=qE

{

E{xu" | =qE{xu" |E{0U" |

E{xx"} =g’ E{xu" }E{

XU ' } U , one can write two covariances:

oD

d
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e Similarly, if X = QE{ }U for some (diagonal) matrix Q:
E X"} = QE{xu" }E{uu}
and
E{x" | =QE{xu" |E{mu" |E{xu"} Q" =E{xu" |E{xu"} Q'
Note: this has to be symmetric, so that
E{x" | =E{x"} =QE{xu" |E{xu"}’

Stronger formulation is reached:

o=E{xu") E{x" | Q" For non-identical g;,
% this has to become
V HELSINKI UNIVERSITY OF TECHNOLOCY dlag onal also
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Equalization of environmental variances

e Because 0'0=1, and ¢'E{ou' !0=0Q7, dconsists of the
n (most significant) eigenvectors of E{au’}, and E{uu"|

e If n = m, the variation structure becomes trivial:

__ 1
E{UUT}:alm or E{WT}ZQ_l
e Visible data variation becomes whitened by the feedback

e Relation to ICA : Assume that this whitened data is further
processed by neurons (FOBI) — but this has to be nonlinear!

e On the other hand, if g; are different, the modes become
separated in the PCA style (rather than PSA)

HELSINKI UNIVERSITY OF TECHNOLOGY Still try to avoid nonlinearity!
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.- Open-loop eigenvalues
- Sub-cybernetic system
- Marginally cybernetic
~ “Hyper-cybernetic”

1/q ®

Untouched

1/,

= Unequal stiffnesses

- . >»
Eigenvalue index

DEMO

equalvar.m
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Variance inheritance

e Further — study the relationship between X and original u:
x=(1,+abEfxa |Efxa"}") gE (x| u
=(1,+bE{"}) qE{xu"}u
Multiply from the right by transpose, and take expectations:
(1, +bE{xx" })E{xx"}(1, +b E{xx"})
E{xx 1 (1, +bE{T ) E{T

=q’E{xu" |E{uu’ |E{xu" }T
d
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(1, +bE{xx )

_q\/fE{xxT}l/2 {xu }jE{uuT}E{mT}TE{WT}'UZ\/aj

o

4

DTeT oD
Solving for the latent covariance:
1 172 1
vadll T T T ot
E {XX }_b(q D'0"E {uu” | 0D} |,

This means that the external and internal eigenvalues
(variances) are related as follows:

qi;”l -1 — There must hold
é
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Effect of feedback = add "black noise”

] Adding/subtracting - SRS
A A . white noise o White n0|_se—
5 . Constant increase
. f ﬁ . . in all directions
Ty R e "Black noise” =
e, Decrease In all
1 > directions (if poss.)
S Adding
“black noise”
Ifq; = 4;and b; =1, . ¢¢1/: R
% variances are A, — 1 e e e e e e e
1 n
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Results of orthogonal basis rotations

e Total variance
above zero level
Intact regardless
of the rotations
H e . e Total variance

1 l [ f: > above 1 changes!

Mathematical view of data A N

Cybernetic view of data ﬁ ﬁ F‘T ﬁ ﬁ F‘T m ﬁ >
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Towards differentiation of features

e A simple example of nonlinear extensions: CUT function

e If variable is positive, let it through; otherwise, filter it out —
Well in line with modeling of activity in neuronal systems:

e Frequencies cannot become negative (interpretation in terms of pulse trains)
e Concentrations cannot become negative (interpretation in terms of chemicals)

e Makes modes separated f (X) A
o Still: End result linear! !

X, when x>0

fi (X) —
0, when x <0

v X

d
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Algorithm for Hebbian feedback learning ...

LOOP — i1terate for data in kxm matrix U

% Balance of latent variables
Xbar = U * (inv(eye(n)+g*EXu*Exu”)*g*Exu) " ;

% Enhance model convergence by nonlinearity
Xbar = Xbar.*(Xbar>0);

% Balance of the environmental signals
Ubar = U - Xbar*Exu;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar"*Ubar/k;

% Maintaining system activity
Exx = Xbar**Xbar/k;
q = q + P*diag(ref - sqrt(diag(Exx)));

i@ggi END
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... resulting in Sparse Components!

e Parameters: 2
20
m = 1024 30
10 20 30 10 20 30
n=16 6 7
4=0.97
ref=1
11 12 10 20 30
10
30

P
L]
o)
o
w
<

20
30
10 20 30 10 20 30 10 20 30
EI\/I 23 24 25
digitfeat.m 10 20 30 10 20 30 10 20 30
=
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"Work load” becomes distributed

e Correlations between inputs and
neuronal activities shown below:

IIIIIITIIIIIHI

2 3 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

HiE SEEEEEEE B N B EEE
HEENEEES B SEESE "BEEm m

H BEETE N
_EEN NSNS ENEEN ENES EEN
I HENE EEEEE EEEENEEE =

max

min
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e Visual V1 cortex seems to do this kind of decomposing

Preprocessed image
(edge enhancement, high-pass filtering)

=

> (AR vee

Spatial image segment LTM features
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"Loop Invariant”

e There are two main structures that dictate the properties of

the Hebbian feedback system from different points of view:

e Hebbian learning (studied above)
e Feedback (studied now):

CI)T

Inside
e |t must be so that —
X=D'pX
X(AuU
o (Au)
CDTgo =1, .

Qutside

<«

% e This Is a harsh constraint.

AuU(X)

G
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Mapping in terms of data

e Study how the feedback mapping can be characterized.

Because
AU = gX Note:
there holds Least-squares
E{AUYT} =@ E{WT} fitting formula!
or, when manipulating, /

= foue’ e (') = o | Efor' |

e ltturns out: To obey @' =1_ feedforward mapping is

\% () =E{W} {xAu}
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The same derivations — for Au now

e Again — derive the statistical model of balances x(Au)

e Assume that dynamics of u is essentially slower than that of x
and study the covariance properties:

E{x" | =E{xx" | E{xAu"} E{Auau"} E{xAUT} E{x¢"}”

or

(0"E{AuAuT] @)3 — o EfAuad™) @ n<m

% e Same PSA properties — now for signals x and Au

G
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e The mapping matrix ® also spans the subspace determined

by ¢ ...
e Trivial result if no adaptation (however, note nonlinearity!)

e But combined with the Hebbian learning, the mapping
matrices adapt to represent the principal subspace of u

(Note that this all applies only if there holds X == 0)

e There are also more fundamental consequences ...

e Conclusion: Essentially the system is modeling its own
behavior in the environment, or mapping between X and Au

e Onecansee E{XAu,} asan atom of causal information

HELSINKI UNIVERSITY OF TECHNOLOGY
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Towards modeling of causality

e Age-old observation (Hume): One can only see correlations
In data, not causalities

e Another observation (Kant): Human still for some reason is
capable of constructring causal models

e Hebbian feedback learning:

Modeling of results of own actions in the environment
(actions being reactions to phenomena in the environment)

e Now one implicitly knows what is cause, what is effect

e Learning needs to be of "hands-on” type, otherwise learning
(applying explicit anti-Hebbian law) becomes superficial?!
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Yet another elasticity benefit

Subsystem | + 2

Subsystemi + 1 i

Subsystem |

&h Viron me*{\

e How to master subsystems?
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- Analogues rehabilitated

e When applying linearity, the number of available structures
IS rather limited — there are more systems than models!

e This idea has been applied routinely: Complicated systems
are visualized in terms of structures with the same dynamics

e In the presence of modern simulation tools, this kind of
lumped parameter simplifications seem rather outdated ...

e However, in the case of really complicated distributed
parameter systems, mechanical analogues may have
reincarnation — steel plates are still simple to visualize!

e Another class of analogues (current/voltage rather than

force/deformation) can also be constructed:

e External forces are the loads; the deformation is the voltage drop, and the
/ control action is the increased current

\ =
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For mechanical engineers ...

e Assumption: Internal
tensions compensate
e external pressures

Fae a%Nesk e The forces acting on

3 VL SR the system cannot all

be captured, nor can

e W the interconnections

‘ « - among actions

& e The complexity of the

system/environment
IS projected onto the
finite, discrete set of
concrete actors

"
I
!

2 W,
. Nl

Py TR

..1 I.! Y
. - Il .‘;.‘({\

d

HELSINKI UNIVERSITY CF TECHNOLOCY
Control Engineering Laborators

Cybemetics Group



... and for electrical engineers

Cybernetic domain #1

Cybernetic domain #2

e For maximum energy transfer
Impedances have to match!
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Cybernetics Rules!

... But what are those rules?

oot (ot

| et us find 1t out!

http://www.control .hut.fi/cybernetics
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