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What is our 
competence?



Industrial systems becoming ”metabolic cells”
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Same dilemma: How to understand  complexity? 



Contribution of systems engineering:
”Holistic understanding”, seeing complex systems in a perspective (?)
Understanding the relevance of dynamic phenomena
Conceptual tools – appropriate mathematical models and methods
Analogues to exploit

However, traditional control engineering is still extremely 
reductionistic – just as today’s biology!? 

Contents of the speech:
Find a generic, truly systemic representation of cell phenomena
Find ways to exploit that representation
... And present preliminary results



Cybernetics Rules!

ybernetics Group
... But what are those rules?

Let us find it out!
http://www.control.hut.fi/cybernetics



Neocybernetic starting points

The details are abstracted away, holistic view from the above 
is applied
There exist local actions only, there are no structures of 
centralized control
It is assumed that the underlying interactions and feedbacks 
are consistent, maintaining the system integrity
This means that one can assume stationarity and dynamic
balance in the system in varying environmental conditions
An additional assumption: Linearity is pursued as long as it is 
reasonable

What are the consequences concerning NETWORKS?



Chemical 
processes 
can be very
complex ...

Metabolic 
sub-network 
in yeast
However, not 
so simple: 
There exist 
overlapping 
sub-networks 



Chemical systems: Starting from bottom

Forget the metabolic networks for a moment –
Can one define a ”cybernetic model” for chemical systems?

Prototypical reaction

How to ”cybernetize” such models?

1 1 1 1A A B B ,N N M Ma a b b H+ + ⎯⎯→ + + ∆



Intuition #1: Problem formulation

First augment the reaction:

Here, there are all chemicals on both sides; ai and bj can be 
zeros. Reactions are assumed reversible.
Collect all chemical concentrations in a single data matrix u; 
then one can write                   where r is reaction rate, and

and
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If there are many simultaneous reactions, the changes in the 
system state can be expressed in the matrix form

This kind of approach is known as ”flux balance analysis”
(also compare to reaction invariants)
However, it is difficult to keep track of all fluxes (for example, 
to master temperatures, the system should be isolated)
Flux balance captures the stoichiometric balance = more or 
less formal balance

There is no information of whether the reactions actually take 
place or not – one needs the functional or dynamic balance

Tu r∆ = Θ



Intuition #2: Thermodynamic equilibrium

Reaction speed kf is related to probability of unit reaction is 
related to probability of the constituents to be located near 
enough each other is related to chemical concentrations
In strong liquids activities substitute concentrations 
Reaction speed is also dependent of the temperature 
(Arrhenius law) – altogether 

In dynamic (cybernetic, homeostatic) equilibrium, the speeds 
of forward and backward reactions are equal, and exists
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Intuition #3: Linearity

The function is purely multiplicative – take logarithms:

To get rid of constants and logarithms, it is also possible to 
differentiate the expression

where the variables are deviations from the nominal values, 
divided by those nominal values = relative changes
The differentiated model is only locally applicable, valid in the 
vicinity of the nominal value
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Acidity is logarithmic measure, 
and its absolute value can be 
included in data:

Non-balance compounds can be 
included in data: Assume that G
denotes the rate of change, or 
flow, into / out from the system, 
so that in balance, for example
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Intuition #4: Multiple reactions

Now, when the reaction parameters are collected in vector θ, 
there holds

This holds also if there exist simultaneous reactions, so that 
θ is a matrix
Compare to flux balance analysis: Now one only needs to 
study levels, not changes
This is essential in complex chemical systems: The levels 
can better be controlled than the individual reactions
However, the genetic system is esentially a part of the 
metabolic system, controlling it – what can be said about it?

0 T uθ=



Example of gene 
interactions
Rows: 132 query 
genes 
Columns: 1007 
array genes 
Cluster trees used 
to organize genes 
to show similarities 

Science, Vol 303, Issue 5659, 
808–813, February 6, 2004
50 authors!



Above, the gene 
connectivities shown

Below, the topology of 
the genetic network 
around three query 
genes (named SGS1, 
RAD27, and BIM1)
Clearly, such simple 
projections do not 
reveal the structure of 
the whole network

Note the 
quadratic form!



Approaches to complex networks

Graph theory
Connections between nodes are ”crisp”
However, there is a continuum of interaction effects: The connections are not 
of ”all-or-nothing” type

Bayesian networks
Strong probabilistic theory – assuming that assumptions hold ...
However, the ”nodes” in real networks are often not independent of each 
other: Loops and alternative paths exist in complex networks

Now: Neocybernetic framework
Numeric, non-crisp connections, fully connected
”Pancausality” taken as the starting point: It is assumed that, after all, all
nodes are causes and all are effects – opposite approach! 



Cybernetic intuition #1: Stationarity & statistics

Abstract away individual actions and realizations of 
interactions in the network
Assume that the stationary state has been reached
What are the statistical properties of the system?

As advertised by Albert-Laszlo Barabasi, the emergent 
phenomena in networks are characterized by power law

This dependency seems to govern all structures with fractal
and self-organized structure
This is taken as starting point here – and extended. 

Dy z=



Cybernetic intuition #2: Multivariate nature

Assume there are many variables of power law behavior:

These can be combined:

Further, there can exist various such dependencies
Variables can be rearranged; assume there are (normalized) 
variables µ available: 
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Cybernetic intuition #3: Linearity pursuit

The same dependencies can be expressed in various ways; 
the equivalent static set of equations (after taking logarithms)
is

or, in matrix form

where the logarithms are calculated elementwise
Again, the same model structure!
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Step aside

Logarithm of a quantity is a sum of many other logarithms ... 
Assume the numbers being summed are probabilistic
If they have the same distribution, the central limit theorem 
applies: Their sum has approximately normal distribution

The sum has log-normal distribution: On the log/log scale, 
the distribution of a ”multivariate fractal” quantity behaves 
quadratically rather than linearly!
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Longer ”tails”
than in normal 
distribution
Ends not so
emphasized as 
in power law 
distribution
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Cybernetic distribution 

Gaussian 
distribution 



”You See What You Expect To See”

Quadratic 
curves are
better than 
linear!

Extents of 
forest fires 
(from Science)



Logarithms are badly behaving – what kind of 
data vector augmentation to apply instead? 
A simple approximate extension is to include 
quadratic terms among data
Motivation: First step towards approximating 
arbitrary nonlinearity (Taylor expansion)
This choice also supports the notion that 
multivariate fractal distributions are quadratic 
in the log/log scale; what is more, the 
quadratic neocybernetic cost criteria can be 
globally matched against such variables
Centering / scaling needed in practice?
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As was shown, gene expression networks and metabolic 
reactions can be based on models of constraints

Here, θ is the vector of parameters; when characterizing cell 
systems, dimension is huge, meaning plenty of parameters
It is assumed that the data are somehow bound together, 
and it is this bond that captures the essence of the system
However, this constraints-approach is not the only possible 

How can a (locally linear) model be described otherwise?
Next, emergent models are studied

Models of today’s systems: Constraints

0 T uθ=



Constraints vs. ”freedoms”

Claim: The degrees of freedom are more characteristic to 
a system than the constraints are
Reason: In deeply interconnected systems, emphasis on 
freedoms is a more compact representation of the system
The model determines a line in the data space – “null 
space”, where there is no freedom among data
“Axes of freedom” = remaining subspace that is orthogonal 
to the null space = basis of a NEW MODEL STRUCTURE
The eigenvalue decomposition of the data covariance matrix 
reveals in which directions there is variation in the data and 
how much: Eigenvectors = axes of freedom, and 
eigenvalues = their relevances



”Emergent Models”

Data high-dimensional
Few constraints
Many degrees of freedom left

Data equally high-dimensional
Many constraints
Few degrees of freedom (right)
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Example

Assume that
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so that
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Now assume (assuming there is redundancy among vars)

In this case (without normalization):

and

The constraint span a two-dimensional subspace in the 
three-dimensional variable space – one degree of freedom 
remains
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”Axis of freedom”
exponential form
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vector from?)

Orthogonalization of basis θ’ (Gramm-Schmidt procedure):
”Deflation”

Prototypes



Use of the model becomes an associative pattern matching 
process against data (exponential curve in the example)
Linearity – patterns can be freely scaled and added together 
Vector z is the vector of scaling factors = latent variables 
(note that generally Φ is a matrix, containing several ”axes of 
freedom” as collected together; assume it is orthonormal)

The reconstruction where noise is filtered is given as

The more there are internal constraints (feedbacks, etc.),  
the more efficient the freedoms-oriented approach becomes

Towards pattern matching

ˆ( ) ( )u k z k= Φ ⋅

( ) ( )Tz k u k= Φ ⋅



The pattern matching problem can be expressed also using 
a cost criterion

If some of the variables are more relevant than others, the 
diagonal elements of W are non-identical (for example, one 
can select W = Var{uuT}–1 or more generally W = E{uuT}–1)
The solution is

For example, associative regression can be implemented by 
associatively filling in unknown elements ui in u: Let Wii = 0
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( ) ( )TJ u z W u z= −Φ −Φ



”Emergent Models” in practical domains 

On-going projects:

1. Biological systems: Project ”SyMbolic” in Tekes 
NeoBio program (here)

Plenty of data available, not so much understanding
Goal: Systemic models for metabolic and genetic processes
Methodology: Extend DOF-thinking to dynamic models

2. Industrial systems: Project ”Testing Manager”
in Tekes Äly program

Information of components, no understanding of the entity
Goal: Models for qualities rather than for individual signals
Methods: Extend the DOF-thinking to input/output models



Freedoms: Extension to chemical domain

It is not only ”programmed” systems where the freedoms-
based thinking applies: In chemical equilibrium systems, the 
linear constraints also apply (as shown before)
In complex systems, not all reactions are known – this does 
not matter as long as the system remains stable, one can 
concentrate on the freedoms
One ends in familiar methods, seen from another point of 
view: Le Chatelier principle states that changes in 
environment are compensated by changes in the balance
The leap is conceptual: Linear modeling of balances is not 
only data modeling but system modeling

Extending biological cybernetics to technical bioprocesses: 
The still unbounded degrees of freedom can be regulated?

”Superorganisms” constructed  
by added external feedbacks!



Cell level #1: Metabolic system

Constraints = Balance equations
DOF’s = Metabolic behaviors or functions?
Anthropocentric interpretations: Nutrient, waste product

When complexity 
cumulates, the balance 
reactions start looking 
goal-oriented, pre-
planned, and ”clever”
For example, scarcity 
of some chemical 
changes the balance 
appropriately



Cell level #2: Genetic system

Active genes determine the enzymes (proteins) available = 
the reactions actually taking place in the cell
Special enzymes act as transcription factors, activating (or 
inhibiting) other genes
The gene activation relationships constitute a causal network 
– Again: Assume ”pancausality”
In equilibrium, causal ”forces” balance each other even 
though the underlying processes are very complex
The same abstraction applies to all processes where DNA, 
mRNA, or the enzymes are pre- and postprocessed
Static model rather than a huge set of sequential, elementary 
ones



... Two cybernetic levels of cell processes

Appropriate 
abstractions:

Two successive 
process levels of 
”generalized diffusion”
Metabolic processes 
fast, genetic ones slow
In both cases, forget 
sequential nature 
Both levels – same 
approaches – can be 
combined in one!?
Emergent models 
based on latent 
(logarithmic) variables

A1

A2

B2

B1

Cell Nucleus

Genetic state
= enzyme/transcription levels

Metabolic state
= chemical levels/flows

Environment

Gene expression

Chemical 
reactions



Project ”SyMbolic”

Systemic Models
for Metabolic Dynamics and Gene Expression

Co-operating partners: Helsinki University of Technology 
(Control Engineering Laboratory, and Neural Networks 
Research Centre), Finnish IT Center for Science CSC, and 
MediCel Oy
Time span 2004 – 2005+
Funding by Tekes NeoBio Program 

Here, the starting points applied at HUT Control Engineering 
Laboratory are presented + preliminary results



Assumptions now

Study living cell rather than pathological (irrelevant?) cases 
(no kick-off experiments?) 
Balances are more characteristic than transients; steady 
states are (first) modeled
Metabolic processes are well buffered: Linear models are 
locally applicable
Rather than carrying out tests in a SISO manner, the whole 
grid of proteomics/metabolomics are studied simultaneously
Around the operating point gene expression is a part of the 
metabolic system: Gene activities included in the data vector
In principle, the same preprocessing of data applicable on 
both level data: Logarithms or relative changes



What is being done

Define the sets of metabolites, transcription factors, and 
relevant environmental conditions (temperature, pH, ...)
Carry out experiments in different conditions, collect data 
during the transient and in steady state

Find the degrees of freedom, determining the metabolic 
functions and genetic functions
Match the transient data to determine dynamic parameters: 
Subspace identification, or Maximum Entropy Pursuit
principle applied

Later – extending the analyses, proceed towards nonlinear, 
sparse-coded models?



Challenges

Data collection is typically carried out 
applying SISO-type tests:

Because of buffering (balance pursuit) huge 
dosages are needed in the single input – minor 
effects in one, and all change – or cell crippled
Single ”kick-off genes” are explicitly deactivated, 
resulting in non-natural behaviors

Practical problems:
Metabolics are difficult to measure (however, 
gene activities found applying ChIP technique)
Different formalisms, incompatible tests in data 
warehouses

Additionally: ”Extra” behaviors become 
visible in stress (transient) situations



Experiments with gene expression: 
Observed degrees of freedom in data



Dynamic open-loop experiments

n = 4 only!
dim(u) = 10 
(+ 10 nonl.)
dim(y) = 
4135 (all!)

Data from:
A. P. Gasch et al: Genomic 
Expression Programs in the 
Response of Yeast Cells to 
Environmental Changes, 
Molecular Biology of the Cell, 
Vol. 11, 4241-4257, 
December 2000
and
H. C. Causton et al: 
Remodeling of Yeast 
Genome Expression in 
Response to Environmental 
Changes, Molecular Biology 
of the Cell, Vol. 12, 323-337, 
February 2001



254 
”stress 
genes”
shown

Exp. #1 Exp. #2



Practical estimation of state and output

Discrete model construction applying subspace identification
Estimation by Kalman filter

Process

y k( )
u k( )

Model

y k( )

e k( )

x k( )
B

A
Cdelay

K
^

^

Input: Conditions 
in the environment Output: Gene activity

Simulator: Estimate

Comparison 
and correction



Conclusion

Cybernetic models have the same structure, no matter if  
they are based on networks or explicit constraints:

Locally linear reduced-dimension latent variable subspace, 
multivariate models representing dynamic equilibria

All systems can be studied in the same framework – applying 
PCA / factor analysis, etc.
Data preprocessing = augmenting the data space
High dimensionality, redundancies, noise, etc., are efficiently 
tackled with
The model is not only a data model, it is a system model, 
meaning that its predictions can be applied for design?!



”System model” vs. ”data model”

Observed dependencies among variables are not only 
correlations but causalities

State DataInput

State
= Data



Extensions ...

Genetic system implements the reservoir of prototypical 
structures to choose among
Genes are either inactive, or they are active in varying 
degrees, determining which structural alternatives are 
employed, and to what degree
Active gene combinations determine the ”basins of 
attraction”, and continuous state optimization within these 
structural constraints takes place
Genes seem to be highly redundant, making the inherently 
discontinuous coding look more continuous
Gene activity/inactivity can be modeled in the same way as 
chunk activity/inactivity in the cognitive system?

How to implement ”state-controlled”
sparsity in a mathematical model?
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CUT function

Linearity being the starting point – gives intuitions in which 
directions to extend the framework

A simple example of nonlinear extensions: CUT function
If variable is positive, let it through; otherwise, filter it out

Negative signals 
are not ”visible”
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Simulations: “Winner-Take-All”

Simulation model

C1/C2 = 0.95, and vice versa
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