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Industrial systems becoming "metabolic cells”

Same dilemma: How to understand complexity?
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e Contribution of systems engineering:

e "Holistic understanding”, seeing complex systems in a perspective (?)
e Understanding the relevance of dynamic phenomena

e Conceptual tools — appropriate mathematical models and methods

e Analogues to exploit

e However, traditional control engineering is still extremely
reductionistic — just as today’s biology!?

e Contents of the speech:

e Find a generic, truly systemic representation of cell phenomena
e Find ways to exploit that representation

% e ... And present preliminary results
\C
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Cybernetics Rules!

... But what are those rules?

oot (ot

| et us find 1t out!

http://www.control .hut.fi/cybernetics
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Neocybernetic starting points

e The details are abstracted away, holistic view from the above
IS applied

e There exist local actions only, there are no structures of
centralized control

e Itis assumed that the underlying interactions and feedbacks
are consistent, maintaining the system integrity

e This means that one can assume stationarity and dynamic
balance in the system in varying environmental conditions

e An additional assumption: Linearity is pursued as long as it is
reasonable

What are the consequences concerning NETWORKS?
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e Chemical
processes
can be very
complex ...

Metabolic
sub-network
In yeast
However, not
so simple:
There exist
overlapping

sub-networks -
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Chemical systems: Starting from bottom

e Forget the metabolic networks for a moment —
Can one define a "cybernetic model” for chemical systems?

e Prototypical reaction
aA +---+a Ay, — DbB,+:---+Db,B,, AH

e How to "cybernetize” such models?

ﬁ
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Intuition #1: Problem formulation

e First augment the reaction: /Enthalpy
Ky
aC +--+a C =2 bC+---+bC_, AH
Ky

Here, there are all chemicals on both sides; a; and b; can be
zeros. Reactions are assumed reversible.

e Collect all chemical concentrations in a single data matrix u;
then one can write Au =r ® where r is reaction rate, and

(AC, (b, —a,
AC. and © = i i

AT L o)
é

Au
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e If there are many simultaneous reactions, the changes in the
system state can be expressed in the matrix form

AU=T1"0
e This kind of approach is known as "flux balance analysis”

(also compare to reaction invariants)

e However, it is difficult to keep track of all fluxes (for example,
to master temperatures, the system should be isolated)

e Flux balance captures the stoichiometric balance = more or
less formal balance

e There is no information of whether the reactions actually take
place or not — one needs the functional or dynamic balance

\ =
HELSINKI UNIVERSITY OF TECHNOLOCY
Control Engineering Laboratory

Cybemetics Group



Intuition #2: Thermodynamic equilibrium

e Reaction speed k; is related to probability of unit reaction is
related to probability of the constituents to be located near
enough each other is related to chemical concentrations

e In strong liquids activities substitute concentrations
e Reaction speed is also dependent of the temperature
(Arrhenius law) — altogether

kf :Cf e_aT/T Clal ""'Can kb :Cb e_bT/T Clbl ""'Cbn

n

e In dynamic (cybernetic, homeostatic) equilibrium, the speeds
of forward and backward reactions are equal, and exists

—br /T by by
e Cl Cn

K =
par /T Chr.....CH
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Intuition #3: Linearity

e The function is purely multiplicative — take logarithms:
logK =(a; —b; )1/T +(b,—a,)logC, +---+ (b, —a, )log C,

e To get rid of constants and logarithms, it is also possible to
differentiate the expression

1 AC
O:(bT—aT)A(?jJr(bl—al) Gt (-2,

1 n

where the variables are deviations from the nominal values,
divided by those nominal values = relative changes

e The differentiated model is only locally applicable, valid in the
vicinity of the nominal value
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e Acidity is logarithmic measure,
and its absolute value can be
Included in data:

pH=-IgC .

e Non-balance compounds can be
Included in data: Assume that G
denotes the rate of change, or
flow, into / out from the system,
so that in balance, for example

AC, bTA( j Agl ---ernAEn
Co Cl C

n

log G,

Relative
change
in flow

Control Engineering
Cybemetics
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Intuition #4: Multiple reactions

e Now, when the reaction parameters are collected in vector 6,
there holds

0=6"u
This holds also if there exist simultaneous reactions, so that

@1s a matrix

e Compare to flux balance analysis: Now one only needs to
study levels, not changes

e This is essential in complex chemical systems: The levels
can better be controlled than the individual reactions

e However, the genetic system is esentially a part of the
metabolic system, controlling it — what can be said about it?
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e Example of gene
Interactions

e Rows: 132 query
genes

Columns: 1007
array genes

e Cluster trees used
to organize genes
to show similarities

Science, Vol 303, Issue 5659,
808-813, February 6, 2004
50 authors!
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connectivities shown — . ) .
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Approaches to complex networks

e Graph theory

e Connections between nodes are "crisp”

e However, there is a continuum of interaction effects: The connections are not
of "all-or-nothing” type

e Bayesian networks

e Strong probabilistic theory — assuming that assumptions hold ...

e However, the "nodes” in real networks are often not independent of each
other: Loops and alternative paths exist in complex networks

e Now: Neocybernetic framework

e Numeric, non-crisp connections, fully connected
e "Pancausality” taken as the starting point: It is assumed that, after all, all

% nodes are causes and all are effects — opposite approach!
\C
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. Cybernetic intuition #1: Stationarity & statistics

e Abstract away individual actions and realizations of
Interactions in the network

e Assume that the stationary state has been reached
e \What are the statistical properties of the system?

e As advertised by Albert-Laszlo Barabasi, the emergent
phenomena in networks are characterized by power law
y=2"

e This dependency seems to govern all structures with fractal
and self-organized structure

e This is taken as starting point here — and extended.
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Cybernetic intuition #2: Multivariate nature

o Assume there are many variables of power law behavior:
y :®Z <+— Parameter ¢, constant with respect to z, D, D,
Z Z
These can be combined: %_ 22
y

\

k v=©2r'?“

e Further, there can exist various such dependencies

e Variables can be rearranged; assume there are (normalized)
variables x available:

1 lulell' 91m
9
\ @
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Cybernetic intuition #3: Linearity pursuit

e The same dependencies can be expressed in various ways;
the equivalent static set of equations (after taking logarithms)
IS

(0=0,logu + --- +6,,l0g u,

\ Ozgnl |Og,Lll+ +9nm Iog:um
or, In matrix form
0=6"logu=0"u

where the logarithms are calculated elementwise
% e Again, the same model structure!

G
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Step aside

e Logarithm of a quantity is a sum of many other logarithms ...
e Assume the numbers being summed are probabilistic

e If they have the same distribution, the central limit theorem
applies: Their sum has approximately normal distribution

p(zi logy,)=c’ exp(_(Zj log 1, _77)2 /Zazj

e The sum has log-normal distribution: On the log/log scale,
the distribution of a "multivariate fractal” quantity behaves
guadratically rather than linearly!

og( (X, log y,)) < (3, loo 1, @) /263
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10 ¢

Gaussian
distribution

10 n

-3

Power law distribution

etic distribution

07
10 10

e Longer "tails”
than in normal

distribution

e Ends not so

emphasized as
In power law
distribution
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"You See What You Expect To See”
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Logarithms are badly behaving — what kind of
data vector augmentation to apply instead?

A simple approximate extension is to include
guadratic terms among data

Motivation: First step towards approximating
arbitrary nonlinearity (Taylor expansion)

This choice also supports the notion that
multivariate fractal distributions are quadratic
In the log/log scale; what is more, the
guadratic neocybernetic cost criteria can be
globally matched against such variables

Centering / scaling needed in practice?

HEI
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. Models of today’s systems: Constraints

e As was shown, gene expression networks and metabolic
reactions can be based on models of constraints

0=0"u
Here, 0 is the vector of parameters; when characterizing cell

systems, dimension is huge, meaning plenty of parameters

e Itis assumed that the data are somehow bound together,
and it is this bond that captures the essence of the system

e However, this constraints-approach is not the only possible

e How can a (locally linear) model be described otherwise?
e Next, emergent models are studied
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Constraints vs. "freedoms”

e Claim: The degrees of freedom are more characteristic to
a system than the constraints are

e Reason: In deeply interconnected systems, emphasis on
freedoms is a more compact representation of the system

e The model determines a line in the data space — “null
space”, where there is no freedom among data

e “Axes of freedom” = remaining subspace that is orthogonal
to the null space = basis of a NEW MODEL STRUCTURE

e The eigenvalue decomposition of the data covariance matrix
reveals in which directions there is variation in the data and
how much: Eigenvectors = axes of freedom, and

% eigenvalues = their relevances
\ q
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"Emergent Models”

e Data high-dimensional e Data equally high-dimensional
e Few constraints e Many constraints
e Many degrees of freedom left e Few degrees of freedom (right)

)4

tation chang

| @,

) aiy(k—i)=z buk - j) Z

The m = model structure changes

d

—i)d:i bu(k ~ |

i=0
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Example

e Assume that

y(k) =ay(k -1).

y(k) o y(k)=ay(k-1)

y(k-1)
Now >
[ a ) a
V1+a®
0 J1+a“ J y(k —1) o= ¥
-1 y(K) V+a?
\V1+a® ) . .
Normalized basis
SO that a <« 1 vectors spanning
S= (0] @)= N+ a2 ﬁha \ the whole space §:
: -1 a s\ Constraint
% 1+a% | J1+a? Axis of freedom
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e Now assume (assuming there is redundancy among vars)

{ y(k) =ay(k -1)
y(k+1) =ay(k).

In this case (without normalization):

fa 0)
f'=|-1 a
0 -1

The constraint span a two-dimensional subspace in the
three-dimensional variable space — one degree of freedom

remains

and

U=

(y(k-1)"
y(k)

LY(k+1) )
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"Deflation” N 1
1 1+a’\i 1+a*
3
a a
0 - | -1 > >
0 1+a°]il+a
(Where is this 0 \_y 0
vector from?)
a’ 1
a 2 2 4
l1+a° {1+a“+a
3
a a
— -1 2 2 4
l1+a° {1+a“+a
2
a
0 -1 —
l1+a“+a

e Orthogonalization of basis 6’ (Gramm-Schmidt procedure):

"AXis of freedom”
exponential form

(1\

a

//1+ a‘’+a’

a’,
=

Prototypes

X

Control Engineering Laboratory
Cybemetics Group
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Towards pattern matching

e Use of the model becomes an associative pattern matching
process against data (exponential curve in the example)

e Linearity — patterns can be freely scaled and added together

e Vector z is the vector of scaling factors = latent variables
(note that generally @ is a matrix, containing several "axes of
freedom” as collected together; assume it is orthonormal)

2(k) =@ -u(k)
e The reconstruction where noise is filtered is given as
G(k) = -z(k)

e The more there are internal constraints (feedbacks, etc.),

% the more efficient the freedoms-oriented approach becomes
\ 4§
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e The pattern matching problem can be expressed also using
a cost criterion

J =(U—CDZ)TW(U—(DZ)

e If some of the variables are more relevant than others, the
diagonal elements of W are non-identical (for example, one
can select W = Var{uu™}! or more generally W = E{uu™})

e The solutionis
5 = ((DTWCD)_l O'W u

e For example, associative regression can be implemented by
associatively filling in unknown elements u; in u: Let W;; =0
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"Emergent Models” in practical domains

On-going projects:

1. Biological systems: Project "SyMbolic” in Tekes
NeoBio program (here) O
e Plenty of data available, not so much understanding @

e Goal: Systemic models for metabolic and genetic processes
e Methodology: Extend DOF-thinking to dynamic models

2. Industrial systems: Project "Testing Manager”
in Tekes Aly program

e Information of components, no understanding of the entity
e Goal: Models for qualities rather than for individual signals
e Methods: Extend the DOF-thinking to input/output models

\ =
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. Freedoms: Extension to chemical domain

It is not only "programmed” systems where the freedoms-
based thinking applies: In chemical equilibrium systems, the
linear constraints also apply (as shown before)

In complex systems, not all reactions are known — this does
not matter as long as the system remains stable, one can
concentrate on the freedoms

One ends in familiar methods, seen from another point of
view: Le Chatelier principle states that changes in
environment are compensated by changes in the balance

The leap Is conceptual: Linear modeling of balances is not
only data modeling but system modeling

Extending biological cybernetics to technical bioprocesses:
The still unbounded degrees of freedom can be regulated?

HEI
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Cell level #1: Metabolic system

e Constraints = Balance equations
e DOF’s = Metabolic behaviors or functions?
e Anthropocentric interpretations: Nutrient, waste product

e When complexity e e 1
Cumqlates, the bala}nce cﬁ:ﬂi}ﬁlﬁi{l}}}}ﬁIIIIIIIIIII it IIIIIIIIIIIHIIHIHH}
reactions start looking = ﬁIHIHIHIHIHIH ittt
goal-oriented, pre- o, MO, LI & ﬁ
planned, and "clever” = S SR/ = — &
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e For example, scarcity
of some chemical
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- Cell level #2:. Genetic system

e Active genes determine the enzymes (proteins) available =
the reactions actually taking place in the cell

e Special enzymes act as transcription factors, activating (or
Inhibiting) other genes

e The gene activation relationships constitute a causal network
— Again: Assume "pancausality”

e In equilibrium, causal "forces” balance each other even
though the underlying processes are very complex

e The same abstraction applies to all processes where DNA,
MRNA, or the enzymes are pre- and postprocessed

e Static model rather than a huge set of sequential, elementary

ones
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.. Two cybernetic levels of ceII processes

¢ Approprlate ’."‘ Gene expression "x‘
abstractions: 5> B e
i : Nucleus :
e Two successive envirorinent /el A1 :
process levels of . :
"generalized diffusion” s f :
e Metabolic processes ‘
fast, genetic ones slow Genetlcat?te
= enzyme/transcription levels
e In both cases, forget e Ipt
sequential nature AR LT U
e Both levels — same : Chemical v P
approaches — can be : reactiors :
Ppro : > B > > f :
combined in one!? 3 +5_ :
e Emergent models Metabolic state"
based on latent A <« = chemical Ievels/flows
(logarithmic) variables
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Project "SyMbolic” O
- &

Systemic Models
for Metabolic Dynamics and Gene Expression

e Co-operating partners: Helsinki University of Technology
(Control Engineering Laboratory, and Neural Networks
Research Centre), Finnish IT Center for Science CSC, and
MediCel Oy

e Time span 2004 — 2005+
e Funding by Tekes NeoBio Program

e Here, the starting points applied at HUT Control Engineering
% Laboratory are presented + preliminary results
\C
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- Assumptions now

e Study living cell rather than pathological (irrelevant?) cases
(no kick-off experiments?)

e Balances are more characteristic than transients; steady
states are (first) modeled

e Metabolic processes are well buffered: Linear models are
locally applicable

e Rather than carrying out tests in a SISO manner, the whole
grid of proteomics/metabolomics are studied simultaneously

e Around the operating point gene expression is a part of the
metabolic system: Gene activities included in the data vector

e In principle, the same preprocessing of data applicable on

/ both level data: Logarithms or relative changes
q
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. What is being done

e Define the sets of metabolites, transcription factors, and
relevant environmental conditions (temperature, pH, ...)

e Carry out experiments in different conditions, collect data
during the transient and in steady state

e Find the degrees of freedom, determining the metabolic
functions and genetic functions

e Match the transient data to determine dynamic parameters:
Subspace identification, or Maximum Entropy Pursuit
principle applied

e Later — extending the analyses, proceed towards nonlinear,
sparse-coded models?

HELSINKI UNIVERSITY CF TECHNOLOCY
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Challenges

e Data collection is typically carried out
applying SISO-type tests:
e Because of buffering (balance pursuit) huge

dosages are needed in the single input — minor
effects in one, and all change — or cell crippled

e Single "kick-off genes” are explicitly deactivated,
resulting in non-natural behaviors
e Practical problems:

e Metabolics are difficult to measure (however,
gene activities found applying ChiIP technique)

e Different formalisms, incompatible tests in data
warehouses

e Additionally: "Extra” behaviors become
% visible in stress (transient) situations

G
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Dynamic open-loop experiments
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Practical estimation of state and output

e Discrete model construction applying subspace identification
e Estimation by Kalman filter

\I\/Iode Simulator: Estimate

> X(K)

y(K)

Comparison
Process 9(k) and correction

e
o

Output: Gene activity

u(k)

Input: Conditions
in the environment
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Conclusion

e Cybernetic models have the same structure, no matter if
they are based on networks or explicit constraints:

Locally linear reduced-dimension latent variable subspace,
multivariate models representing dynamic equilibria

e All systems can be studied in the same framework — applying
PCA / factor analysis, etc.

e Data preprocessing = augmenting the data space

e High dimensionality, redundancies, noise, etc., are efficiently
tackled with

e The model is not only a data model, it is a system model,
% meaning that its predictions can be applied for design?!
\C
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"System model” vs. "data model”

e Observed dependencies among variables are not only
correlations but causalities

Data

vV V

v
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Extensions ...

e Genetic system implements the reservoir of prototypical
structures to choose among

e (Genes are either inactive, or they are active in varying
degrees, determining which structural alternatives are
employed, and to what degree

e Active gene combinations determine the "basins of
attraction”, and continuous state optimization within these
structural constraints takes place

e Genes seem to be highly redundant, making the inherently
discontinuous coding look more continuous

e Gene activity/inactivity can be modeled in the same way as

% chunk activity/inactivity in the cognitive system?
\C

How to implement "state-controlled”
sparsity in a mathematical model?
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CUT function

e Linearity being the starting point — gives intuitions in which
directions to extend the framework

e A simple example of nonlinear extensions: CUT function
e If variable is positive, let it through; otherwise, filter it out

fL(x) »

X, kun x>0
f; (x) =
0, kun x <0.

\% Negative signals [

vy X
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Simulations: “Winner-Take-All”

e Simulation model

(x‘l(t)j (—7 —1j Lxcum(t)j (y 0) [xm(t))
XZ (t) -1 4 Xcut,2 (t) 0 Y Xin,2 (t)

e C,/C,=0.95, and vice versa
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