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Abstract 

 
In this paper the intuitions of the elastic systems and neocybernetics are applied to large scale indus-
trial systems. The process performance enhancement can be seen as technical evolution of the sys-
tem. The objectives of technical evolution are somewhat different from those of natural neocyber-
netic systems. The performance of the system can be characterized by means of quality measures 
and the parameters of the system can be tuned along the axes of freedoms in the parameter space 
towards values that result in better process performance. Results from a simulated case study on a 
continuous pulp digester model are presented and discussed.   
 

1   Introduction 
Traditionally, managing complexity in large-

scale industrial systems has been tackled with reduc-
tionist engineering approaches. One concentrates on 
the analysis of individual signal realizations – how-
ever, it is only different kinds of quality measures 
emerging from statistical considerations that are the 
most important from the point of view of mastering 
the process and production. The low-level structures 
are typically well-known – ideal mixers, etc. – but 
how are the properties of the high-level structures – 
networks of such mixers – related to them? 

It turns out that thinking of the complex plants as 
elastic systems helps to find the conceptual and 
practical tools to reach the level of emergent behav-
iors of such systems (Hyötyniemi, 2006). One never 
knows all relationships among variables in a com-
plex system – but in the elasticity framework this 
does not matter. It only has to be assumed that the 
underlying interactions and feedbacks manage to 
keep the system in balance in varying conditions – 
and this assumedly is a realistic assumption: Only 
realistic, successfully operating processes are stud-
ied. 

Whereas the interactions and feedbacks deter-
mine the constraints, it is the remaining freedoms 
that are more interesting. The number of degrees of 
freedom is typically much lower than the total num-
ber of system parameters is, so that when concen-
trating on the emergent functionalities, or the mani-
festations of the freedoms, low-dimensional models 
can be found. When the system is “pressed'', the 

system yields along the freedom axes – if the distur-
bances are small, one can assume that there is a lin-
ear relationship between the tensions and the corre-
sponding deformations. 

The industrial plant is very much like a biologi-
cal cell (Haavisto, 2006): It also tries to maintain its 
homeostasis, and it tries to keep up its “metabo-
lism'', or production, regardless of the external dis-
turbances. There are differences, too: “Evolution'' in 
such a system is implemented not by nature but by 
an “intelligent designer'', the human. In a natural 
system there is no predetermined direction of evolu-
tion – adaptation simply takes place in the direction 
of maximum cross-correlation among signals, in the 
sense of principal components (see Hyötyniemi, 
2006); however, in the industrial case explicit goals 
exist. There is now more structure, as the signals 
have different roles: There are the input variables, 
the qualifiers that can be affected, and then there are 
separately the output variables, or qualities. The 
process of adaptation thus becomes more sophisti-
cated: When the outputs are to be maximized, there 
exist plenty of alternative regression structures (like 
canonical correlations) that can be exploited to 
modify the directions of the freedom axes to make 
them better reflect the design goals. 

After the degrees of freedom are found, the 
qualifiers (model or control parameters, set points, 
etc.) can be gradually modified to “push'' the quali-
ties in the desired directions. This way, a “holistic'' 
way of iterative optimization of the complex system 
can be implemented.  

In this paper, a holistic Iterative Regression Tun-
ing (IRT) method applying neocybernetic ideas for 



tuning multiparameter systems is presented. Origi-
nally the IRT method and results from earlier case 
studies were presented in (Halmevaara and 
Hyötyniemi, 2004; Halmevaara and Hyötyniemi, 
2005). First, the IRT method and some practical 
instruments are introduced. After that, an applica-
tion on continuous pulp digester control system is 
presented. Finally, the results and the potential of 
the IRT method in other applications are discussed. 

2   IRT method 

Any dynamic (or static) system with multiple input 
and output variables, x = (x1 x2 …)T and y = (y1 y2 
…)T, respectively, can be described simplistically 
as, 

 ( ) ( )( ) ( );y t G x t e tθ= + , (1) 

where θ are the system parameters and e stands for 
the stochastic variations in y. The function G deter-
mines the internal structure of the system. For ex-
ample, G can stand for a large process model includ-
ing its control system in which case θ correspond to 
control parameters, setpoint values and other nu-
merical process parameters. The performance of the 
system can be evaluated by examining the values of 
the output variables with respect to the applied in-
puts. The performance can be evaluated in general 
by means of quality measures q, see Figure 1. E.g., 
robustness and accuracy are important concepts in 
describing the performance of a control system. 
Such concepts can be measured, e.g., with quality 
measures like variance and setpoint tracking ability 
of controlled variables. 

The values of the m quality measures, q = (q1 q2 
… qm)T, corresponding to certain values of n pa-
rameters, θ = (θ1 θ2 … θn)T, are calculated from a set 
of input and output signals, x and y, using some user 
defined smooth continuous functions. The signals 
can be recorded from the existing system or they can 
be produced using a simulation model of the system 
in consideration. Since the system outputs y are af-
fected by random variations the quality measures q 
are also random variables. However, it turns out that 
there exists a statistical dependency between θ and 
q, which can be modelled if enough data is avail-
able. Starting from some initial values of θ and 
varying their values randomly in a local domain, a 
set of data, (Θ,Q), is obtained. Notice that the lower 
case symbols (e.g., θ and q) are used here for the 
single samples of (multidimensional) data vectors 
and the upper case symbols (e.g., Θ and Q) are used 
for the data matrices such that Q = (q(1) q(2) … 
q(k))T and Θ = (θ(1) θ(2) … θ(k))T, where k is the 
number of data points. The data acquisition can be 

done with Markov Chain Monte Carlo simulation, 
or to minimize k, with a pseudo-random sampling of 
the parameter space (experiment design).  

If the joint distribution of Θ and Q forms a single 
multivariate Gaussian distribution, the dependency 
between θ and q is linear in the maximum likelihood 
sense (see, e.g., Pindyck and Rubinfeld, 1991),  

 Tq F θ ε∆ = ⋅ ∆ + , (2) 

or using the matrix notation, 

 Q F∆ = ∆Θ⋅ + Ε . (3) 

In equations (2) and (3), ∆ corresponds to deviation 
from the current performance ,q i.e., ,q q q∆ = − and 
ε and Ε are the residual errors of the linear model. 
Notice that in the quality measure calculation the 
time axis is abstracted away and therefore even the 
dynamic systems are now examined using static 
models. Now, θ and q can be interpreted as variables 
on the slower emergent scale, the dynamics of the 
original variables x and y being considerably faster.  

The performance of a large process and its con-
trol system requires several quality measures to be 
characterized thoroughly. Also the number of the 
parameters rises along the size of the system. Thus, 
the size of the linear equation system (2) also grows 
making the determination of the mapping matrix F 
nontrivial. If a sufficient amount of data from the 
system can be obtained the local linear model can be 
estimated using statistical multivariate methods like 
Partial Least Squares (PLS) or Canonical Correla-
tion Analysis (CCA) based regression techniques 
(Hyötyniemi, 2001). Instead of concentrating on the 
correlations among θ (Principal Component Analy-
sis) the aim is now to capture cross-correlations be-
tween θ and q. 

The tuning task of the parameters can be formu-
lated as a quadratic optimization problem, 

 TJ q Wq= , (4) 

where J is the cost function to be minimized and W 
is a diagonal weighting matrix. The problem cannot 
be solved analytically and nonlinear (numerical) 
gradient based optimization methods, such as conju-
gate gradient method (see, e.g., Gill et al., 1981), 
have to be applied. The cost function can be ap-
proximated locally as 

 ( ) ( )
ˆ ˆ ˆ

,

T

T T

J q Wq

F q W F qθ θ
=

= ∆ + ∆ +
 (5) 
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Figure 1: The statistical dependency between pa-
rameters, θ, and quality measures, q, describes the 

relevant properties of the underlying dynamic 
MIMO system, having inputs u and outputs y 

(Hyötyniemi, 2002). 

which is differentiable with respect to θ. Using the 
following update principle, the current values of the 
parameters, ,θ can be tuned iteratively, 

 ( ) ( ) ( )1K K d Kθ θ γ+ = + , (6) 

where K is the update step index, γ is the length of 
the update step and d is the search direction, which 
is determined by the chosen optimization procedure. 
E.g., in the basic gradient descent method d is calcu-
lated by differentiating (5) with respect to θ, and in 
the moment method exponential smoothing is ap-
plied to combine the successive gradients to obtain a 
more robust search direction.  

The IRT method requires reasonable initial val-
ues for θ since local optimization methods are used. 
When concentrating on control parameter tuning 
there exists a great number methods to assist in sin-
gle input single output (SISO) controller tuning (see, 
e.g., Harris et al., 1999; Thornhill and Hägglund, 
1997; Hägglund, 1999). In simulation model tuning 
the domain area expertise is used to obtain reason-
able starting values for the model parameters. The 
IRT procedure requires also some steering, e.g., 
with respect to range of the local variation of θ, ap-
propriate selection of γ, and number of data points 
suitable for obtaining the local model F. To obtain 
somewhat automated version of the same procedure 
the following enhancements are proposed. 

2.1   Gaussianity testing 

Based on domain area expertise the level of the local 
variation of θ is specified. To enhance the signal-to-
noise ratio it is desirable to increase the local varia-
tion, but on the contrary, the local linearity between 

θ and q is lost if too large area of the parameter 
space is studied in one iteration step. Therefore, 
some means for Gaussianity testing on q are re-
quired.  

When selecting an appropriate test one has to 
consider the power of the test, i.e., what is the prob-
ability that the incorrect null hypothesis on Gaussi-
anity is rejected. Second, the distribution of the test 
statistic or at least some critical points of it should 
be known. And third, the hypothesis testing can be 
done using either known or unknown distribution as 
an alternative hypothesis. If the alternative distribu-
tion (the form of non-Gaussianity) is unknown, an 
omnibus test has to be chosen (like in this case). 

First it is assumed that it is sufficient to consider 
the marginal distributions of the multinormal distri-
bution which give the necessary (but not sufficient) 
conditions for the multivariate normality. This sim-
plification can be argued with the fact that the mul-
tivariate normality tests are computationally fairly 
intensive, and their sensitivity to different types of 
departures from the multinormality vary signifi-
cantly, i.e., it has been recommended to use more 
than one test especially when the characteristics of 
the non-normality are unknown a priori (Thode, 
2002). Further, since many of the multivariate tests 
are extensions of the corresponding univariate tests, 
they require the calculation of the order statistics, 
which cannot be done explicitly in the multivariate 
case.  

Three most powerful univariate omnibus tests 
are Wilk-Shapiro, Anderson-Darling and the joint 
kurtosis-skewness tests (Thode, 2002). The Wilk-
Shapiro test is the most attractive since the distribu-
tion of the test statistic is known. Also, if the im-
provements suggested by Royston (Royston, 1982) 
are applied, the Wilk-Shapiro test is valid for sample 
sizes 7 ≤ k ≤ 2000. The test compares the observa-
tions to the theoretical order statistics of the Gaus-
sian distribution.  

The Gaussianity testing also serves as an outlier 
detection method, since the tests are typically sensi-
tive to strongly differing samples. It can also point 
out the improper quality measure definitions. 

2.2   Reliability of the local linear model 

No matter how well the linearity assumption is satis-
fied, the tuning procedure always returns some 
search direction at every iteration step. Since the 
local linearity assumption may have been violated 
severely, the reliability of the following update step 
in that direction should be somehow taken into ac-
count. One way to accomplish this is to study the 
confidence intervals of the estimated parameters F 
of the linear model which gives at the same time 
confidence intervals for the gradient vector. This 



can be done, e.g., using Bayesian analysis of the 
regression model coefficients (Gelman et al., 2004). 
The posterior joint distribution of the model parame-
ters F and the residual variance σε2, 

 ( ) ( ) ( )2 2 2, , , , ,p F q p F q p qε ε εσ θ σ θ σ θ= , (7) 

can be utilized to obtain confidence intervals for the 
estimated linear model. In (7) the first term on the 
right is the conditional posterior distribution of F, 
given σε2, and the second term is the marginal poste-
rior distribution of σε2. The confidence intervals can 
assist to define a suitable length for the update step, 
γ. If it is uncertain that the update step in the search 
direction results in an improvement, the value of γ 
should be reduced. Further, wide confidence inter-
vals suggest that more data should be applied in the 
parameter estimation to obtain more reliable predic-
tion. 

2.3   Iterative PLS regression 

In a data-based iterative tuning of θ (6) the local 
linear model (2) is used in the approximation of the 
local gradient to determine d. Usually, if n and m are 
reasonably small, it is sufficient to solve F using 
standard multilinear regression (MLR). In many 
cases, however, MLR fails due to collinearities and 
noise in the multidimensional data. These numerical 
problems can be avoided using more advanced mul-
tivariate regression methods. 

The PLS regression model can be defined using 
an eigenproblem-oriented framework (Hyötyniemi, 
2001). The resulting PLS latent basis coincides with 
the traditional algorithmic definition of PLS only 
with respect to the most significant basis vector. 
However, the method provides one with means for 
iterative PLS regression. 

The starting point in finding a good latent vari-
able basis is to maximize the correlation between 
the x and y. Assuming that the input data X is pro-
jected onto a latent basis φ, and the output data Y is 
projected onto basis φ, the objective is to find such 
bases that the correlations between the projected 
variables are maximized. To obtain a unique solu-
tion the lengths of the basis vectors have to be re-
stricted somehow. This results in a constrained op-
timization problem, 
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where the subscript i refers to a single latent basis 
vector. Using the method of Lagrangian multipliers 
to solve (8) results in a pair of eigenvalue problems, 
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where λi is the eigenvalue corresponding to the ei-
genvectors φi and φi. It is sufficient to solve one of 
the equations in (9). The eigenvalue decomposition 
of the cross covariance matrix of the projected data 
gives the complete set of latent basis vectors from 
which the N most significant can be chosen. E.g., if 
the first equation in (9) is utilized, the calculation of 
the covariance matrix can be expressed in an itera-
tive form using exponential smoothing, 

 ( ) ( ) ( )1 1 T TR K R K X YY Xµ µ+ = + − , (10) 

where µ ∈ (0, 1) is the forgetting factor and R is the 
cross covariance matrix. Using the iteratively up-
dated R in the determination of the PLS latent basis, 
one gets rid of the zigzag effects plaguing the stan-
dard gradient descent algorithm. This can be seen as 
an alternative optimization method to moment 
method for example. Now the whole covariance 
structure of the data is preserved from one iteration 
step to another instead of only the gradient vector. 

3   Pulp digester case study 

A model of a Finnish pulp mill was applied in the 
test case. The process model was constructed with 
the APROS software that is a professional simula-
tion environment for modeling combustion and nu-
clear power plants, and pulp and paper mills (see, 
e.g., Juslin and Paljakka, 1997). APROS provides 
large libraries of process and automation compo-
nents, which can be combined into rigorous models 
of industrial plants. APROS has been used success-
fully, e.g., in various training simulator and process 
analysis projects. In the following, the model of the 
pulp mill is introduced, after which the tuning tar-
gets of the case study are formulated. 

3.1   Model and problem description 

A general overview of the model is presented in 
Figure 2. First, the woodchips and the impregnation 
liquor are mixed, after which the mixture is fed into 
the impregnation vessel. The flow continues to the 
top of the digester, where the mixture is heated with 



steam to the cooking temperature. The chips were 
modelled to consist of several cellulose, carbohy-
drate and lignin components, and the liquor was 
assumed to contain sodium hydroxide and sodium 
sulphide in addition to the organic compounds dis-
solved from the woodchips. Chemical reactions dur-
ing the cooking phase were modelled according to 
(Gustafson et al. 1983). Several circulation streams 
of black liquor to the preceding parts of the process 
were modelled. The subsequent washing and bleach-
ing operations were excluded from the model.  

In the case study, the production of pulp in a 
steady state operation was considered, i.e., changes 
of neither production rate nor quality targets were 
simulated. Initially, several control loops were be-
having poorly. The level controllers in the impreg-
nation and the digester vessels were oscillating 
heavily due to their inappropriate tuning. Conse-
quently, also the washing coefficient control failed 
to meet its targets. The two model-based controllers 
were behaving even more detrimentally. The other 
one predicts the kappa number of the produced pulp 
based on the digester top temperature measurement. 
The five hour time delay in the cooking process 
makes the prediction essential for the process con-
trol. The other model calculates the setpoint value 
for the H factor based on the measured temperature 
profile of the digester, the amount of applied alkali 
and the kappa number of the produced pulp. Both 
models were giving strongly biased predictions, 
causing naturally serious problems. Due to the im-
proper controller tuning the process was producing 
continuously out of specification pulp. 

3.2   Optimization targets 

The optimization cost function was formed with six 
quality measures. The six considered variables were: 

y1: kappa number in the digester blow, 
y2: washing coefficient, 
y3: liquor level in the digester, 
y4: chip level in the digester, 
y5: chip level in the impregnation vessel, and 
y6: H factor prediction. 

The control error of the variables y1 - y5 and the pre-
diction error of y6 was tried to minimize. The tuning 
involved the parameters of seven PI controllers and 
two models that were applied in prediction and set-
point calculation, i.e., the total number of parame-
ters was n = 20. The PI controllers were responsible 
for regulation of the chip and liquor levels, washing 
coefficient, production rate, H factor, and the di-
gester steam chamber temperature.  

Here are presented the results of K = 30 iteration 
steps. The fairly great number of global steps is due 
to the applied gradient method. Also, since the ini-
tial performance was purposefully set to extremely 
poor, long tuning time was understandable. In the 
case study k = 50 data points on the average were 
simulated on each iteration step and the length of a 
simulation run was T = 8h. Simulations were run 
about 25 times faster than real time. 

 

 

 

Figure 2: The model of the pulp mill: The chip feed screw conveyor (left), the impregnation vessel (in the mid-
dle), and the pulp digester (right). 
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Figure 3: The quality measure values, qi, i = 1…6, 
in iterative optimization steps, K = 1…30. 
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Figure 4: Distributions of q values projected to the 
plane spanned by the two major principal compo-

nents, K = 18 (left) and K = 30 (right). 
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Figure 5: The values of the cost function, J, in the 
iterative optimization, K = 30. 

The IRT method succeeded in improving the 
process performance regarding the six quality meas-
ures (see Figure 3). E.g., the kappa number devia-
tion from the setpoint, q1, diminished from about 6 
to 4 units, and the absolute value of the H factor 

prediction error, q6, was reduced from about 1000 to 
200 units. For softwood pulp the kappa number is 
typically tried to keep within ±2-3 units range from 
the target. In that sense the control is not yet satis-
factory but the tuning succeeded to improve its per-
formance notably. The values of q include some 
stochastic variation and therefore the trends are not 
monotonically descending. Also occasional “out-
liers” can be perceived in the values of the quality 
measures in the global iteration steps 15-20. The 
convenient linear model was justified with the as-
sumption of Gaussian data. The distributions of the 
quality measure data in global steps K = 18 and K = 
30 are shown in Figure 4. Obviously the distribution 
in the left figure does not fulfil the Gaussianity as-
sumption, which explains the outliers in Figure 3. 
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Figure 6: Simulation results with initial and tuned 
parameters, K = 1 (dotted) and K = 30 (solid). 



The success of the optimization can be followed 
also from the values of J (see Figure 5). It can be 
seen how the conflicting targets finally started to 
slow down the tuning procedure. If the objectives 
are not met at the end, one has to reconsider the 
weighting of qi. It is the only way to continue the 
optimization among Pareto optimal solutions. Alter-
natively, reformulation of the quality measures may 
yield in better results. Examples of the improved 
performance are presented in Figure 6. The fluctua-
tion of the kappa number has stopped, variance of 
the digester liquor level has diminished and the H 
factor prediction has improved tremendously. 

4   Conclusions 

The IRT method offers a holistic approach to man-
age large complex systems, like control systems of 
industrial processes. Dimensional complexity in 
systems becomes manageable by using statistical 
multivariate methods. The IRT method opens up 
new possibilities for control engineering: Different 
control structures can be tuned to their maximum 
performance and compared with each others before 
implementation.  

The stochastic nature of the optimization prob-
lem advocates the use of methods that diminish the 
effects of noise. In that sense IRT as a local optimi-
zation method using linear regression to approxi-
mate the cost function locally seems to be a more 
tempting approach than, e.g., genetic algorithms. 

The development work on IRT method contin-
ues. One object of concern is the minimization of 
the cost function evaluations during the tuning pro-
cedure, since one function evaluation of (6) requires 
reasonably long time series data from the system. 
This increases the time and computational power 
needed for the tuning procedure. One way to mini-
mize the amount of data is to involve a pseudo-
random parameter space sampling in the data acqui-
sition instead of completely random variation. 

Future research will also include studies on 
simulation model tuning. The objective is to tune the 
model parameters to give the best output prediction 
possible with the chosen model structure. An exam-
ple of the model parameter tuning is given by Hal-
mevaara and Hyötyniemi (2006). 

The goals of evolution in technical systems dif-
fer from those of natural neocybernetic systems. The 
emergy transfer maximization does not result in 
performance that satisfies the ever-tightening stan-
dards of profitability in process industry. Instead, 
maximization of the environment with the intended 
system functionalities gives practically applicable 
working practices for control engineering. The tun-
ing of environmental variables towards better sys-
tem performance along the axes of freedoms (de-

termined by the PLS latent basis) in the parameter 
space can be seen as a directed technical evolution 
of the system. 
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