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Heikki Hyötyniemi†
†Helsinki University of Technology

Control Engineering Laboratory,
P.O.Box 5500, FIN-02015 TKK, Finland
heikki.hyotyniemi@tkk.fi

Abstract

A biological cell forms an extremely complex system with a complicated metabolic reaction network.
The functionality of the cell is controlled by the genome consisting of thousands of individual genes.
Novel measurement technologies provide us with huge amounts of biological data in a quantitative
form, but the suitable modeling methods to deal with the high dimensionality and large systems are
still missing. In this article, a novel approach for complex system analysis, neocybernetics, is applied
to modeling a biological cell. It is shown that under certain assumptions both the metabolic network
and the gene expression network can be interpreted as a combined linear system. The analysis of this
system from the neocybernetic starting points is then elaborated. As an example, the dynamics of yeast
gene expression network are modeled according to the presented principles.

1 Introduction

The challenge of complex system analysis is the high
number of internal variables and complexity of the
connections between them. In the following, we con-
centrate on a special case of complex systems des-
ignated as elastic systems (Hyötyniemi, 2006a). A
characteristic property of these systems is their ability
to adapt to and compensate external disturbances by
modifying their internal state. For example, an elas-
tic plate can be deformed by applying external forces
to it, and when the forces disappear, the original state
of the plate is recovered. It is also assumed that vari-
ables in elastic systems are highly connected to each
other and there exist internal feedback loops which
stabilize the behaviour.

Elastic systems can be analysed using the neocy-
bernetic approach proposed in (Hyötyniemi, 2006b),
which emphasizes steady states or balances of the
system instead of the transients leading to these
states. It is proposed here that complexity of sys-
tems should be attacked by leaving the dynamical
transients aside and concentrating on their tendency
to remain stable and reach a steady state. Data-based
multivariate methods should be utilized to reveal the
degrees of freedom of the system variables rather than
sticking to the numerous constraints which connect
the variables together.

In complex chemical systems elasticity is also
manifested: If there are pressures, the system yields.
This phenomenon is known as Le Chatelier princi-

ple: If the environment changes, a new chemical bal-
ance is found so that the environmental changes are
compensated, at least to some degree. Specially in
biochemical systems, this behavior is very dominant,
all processes being strongly buffered.

In this article, the vast field of systems biology is
attacked from a truly systemic viewpoint. Biological
cells are interpreted as elastic systems and the usage
of neocybernetic modeling principles to model their
properties is elaborated. First, a short introduction
to cell biology is presented. Then the modeling ap-
proach is discussed and a mathematical framework
for it is derived. Finally, as an example case, a study
of modeling the yeast gene expression dynamics is
introduced.

2 Biological cell

The biological cell is the principal unit of all living
organisms. Seen from outside, an individual cell can
be analyzed as a system that is capable of transfer-
ring molecules in and out through its cell membrane.
Inside the cell the raw materials are transformed into
energy or cell components by a complex machinery
involving metabolic pathways, which are strictly con-
trolled by the genetic regulatory network.

Structurally cells can be divided into two main
classes, procaryotes and eucaryotes. Procaryotic
cells are typically simpler than eucaryotic ones, since
they do not contain membrane separated nucleus and



have less intercellular organelles and structures. The
cells of one-cellular organisms are usually procary-
otic (e.g. bacteria), whereas the multicellular organ-
isms like animals and plants consist of eucaryotic
cells.

In the following analysis we are mainly focusing
on the properties and functionalities of eucaryotic
cells. More specifically, as probably the simplest case
of an eucaryotic cell and a typical model organism the
brewer’s and baker’s yeast Saccharomyces cerevisiae
is considered.

2.1 Genetic regulatory network

Hereditary material of cells is stored in genes, which
are parts of the deoxyribonucleic acid (DNA) of the
chromosomes located in the nucleus. Together all the
genes form the genome of the organism. A rough es-
timate of the complexity of an organism is the number
of its genes: Simple one-cellular organisms typically
contain a few thousand genes, whereas invertebrates
have over 10000 and mammals about 30000 genes
(see Table 1).

Genes control the cell functions by regulating the
amount of proteins inside the cell. When activated, a
gene is able to transfer the code it contains into a pro-
tein in the process called gene expression, which has
two parts: transcription and translation. In transcrip-
tion, the information stored in the sequence of the
nucletides of the gene are read to a ribonucleic acid
(RNA) molecule, which then moves from the nucleus
to the cell organelles called ribosomes. There trans-
lation takes place: According to the sequence of the
RNA molecule, an amino acid chain is constructed.
As the chain folds to a stable three dimensional struc-
ture, it forms the ready functional protein.

Expression of an individual gene is controlled dur-
ing all the steps of the expression process. To begin
with, transcription is activated only if a correct com-
bination of proteins is attached to the DNA strand.
Additionally, by binding to the DNA strand certain
gene specific protein complexes called activators and
repressors can either increase or decrease the rate of
transcription, respectively. Also the density of the
DNA packing, that is, the amount of folding of the
DNA double helix affects how easily the gene can
be read. After translation, the RNA molecule goes
through a series of controlled processes which deter-
mine e.g. the final nucleotide sequence and the life-
time of the ready RNA chain. The longer the RNA
molecule lasts, the more times it can be used in trans-
lation to create proteins. Finally, even the protein
folding is a controlled process which determines the

usage of the ready protein molecule.
Generally the proteins that control gene expression

by binding to the DNA strand are referred to as tran-
scription factors and they themselves can be products
of other genes. Thus the whole genome forms a con-
nected regulation network with strong feedbacks. As
the number of genes is typically high and each tran-
scription factor may affect more than one gene, this
network is very complex and hard to analyse.

2.2 Metabolism
The purpose of cell metabolism is to process nu-
trients, produce energy and keep the cell alive and
growing. The complete metabolism of a cell can
be divided into many individual and well controlled
metabolic pathways, which in turn consist of series
of metabolic reactions. These reactions are typically
catalysed by enzymes, a group of proteins produced
in gene expression. When a certain gene is activated,
more catalysing enzymes for a certain reaction are
produced and the rate of the reaction increases result-
ing to higher concentrations of the corresponding end
products. This in turn may affect the activity of some
other gene, thus creating a feedback connection be-
tween the gene regulation network and the network
of metabolic reactions of the cell.

An example of a typical metabolic pathway is
shown in Figure 1. In the figure, only the main re-
actions and metabolites are shown. Each reaction is
catalysed by one or more enzymes, shown as boxes
with numbers.

Figure 1: Yeast fructose and mannose metabolism.
Each arrow represents a metabolic reaction or a set
of reactions catalyzed by an enzyme. Original image
from KEGG (www.genome.jp/kegg/)



Table 1: The number of genes of some organisms (Ewing and Green, 2000; Mouse Genome Sequencing Consor-
tium, 2002)

Organism Group #genes
Escherichia coli bacteria 4300
Saccharomyces cerevisiae (yeast) one-cellular eucaryote 6000
Drosophila melanogaster (fruit fly) invertebrate 13600
Caenorhabditis elegans (roundworm) ” 19000
mouse mammal 30000
human ” 35000

For more detailed information on cell biology, see
for example the book by Alberts et al. (2002).

3 Modeling approach
Traditionally, investigating the connections and func-
tions in the cells has been concentrated on studying
individual genes or chemical reactions for example
by disabling a certain gene in some cell cultivation.
Behaviour of this cultivation has then be compared to
cells having a normal genome. However, using this
kind of reductionistic approach leads to difficulties
when the combined behaviour of all the small partial
reactions and connections should be analyzed, espe-
cially as the dimensionality of the problem is large.
On the other hand, when using the neocybernetic ap-
proach where only the net effects of the whole system
are analysed, one is able to form a more holistic pic-
ture of the system.

3.1 Dynamics vs. balances
The neocybernetic modeling approach is based on the
concept of dynamical balance; it is assumed that the
system remains stable and that the system variables
are stationary, meaning that their statistical properties
remain constant. A biological cell can easily be seen
as an neocybernetic system, at least when it is living
in a relatively constant environment and remaining
healthy and fully functional. In such a case the cell
is able to compensate (minor) external disturbances
introduced in the form of temperature, pH or chemi-
cal concentration variations. When reacting to an ex-
ternal disturbance, the internal state of the cell may
change, i.e. balances of the chemical reactions may
shift a little and some genes may activate more and
some less than before. This means that the cell can
adapt to the new environmental situation by changing
its internal state and carry on the processes it requires
to survive.

The idea of the neocybernetic model is to describe
the set of dynamical balances, i.e. the final states of
the dynamic system in different homeostatic environ-
ments. It is assumed that the inputs of the system (e.g.
environmental conditions) are changing slowly when
compared with the speed of the internal dynamics of
the system. Thus the system state reaches quickly
a new balance as the inputs change, and the system
mostly stays in balance.

Strictly speaking, biological systems are not in
the state of homeostasis, as the living cells continu-
ously exhaust nutrients and produce metabolic prod-
ucts. Here it is assumed that the balanced variables
also contain rates of change, so that the dissipative
processes can also be modeled: It is assumed that in
certain conditions the chemical conversion rates re-
main constant. Inclusion of such derivatives does not
ruin the linearity of the model.

3.2 Constraints vs. degrees of freedom

When dealing with dynamical systems containing a
large number of variables, the traditional modeling
approaches have been based on the constraints which
determine the relations of the system variables. For
example, differential equations are a typical choice
when modeling the dynamics: Each individual equa-
tion covers one relation or constraint between the in-
vestigated variables. To unambiguously describe the
whole system, as many differential equations are re-
quired as there are system variables. However, even
in the case of a “simple” biological cell like yeast, for
example the gene regulation network includes a huge
number of genes (over 6000) which can be connected
to each others. Even though the gene regulation net-
works are typically assumed to be sparse instead of
being completely connected, this means that a large
number of constraints is required to define the system
dynamics. When the system dimension is high, this
approach is not feasible anymore.



The opposite way to analyse a multivariable sys-
tem is to collect data from the system and use them to
find out the main directions of variation or degrees of
freedom present in the system. If the system variables
are highly connected and the dynamics are restricted
by many constraints, the actual number of meaning-
ful degrees of freedom remains low. Accordingly, it
may turn out that the dynamics can be described with
a much lower number of variables. That is because
each individual constraint reduces the number of pos-
sible variation directions by one, thus hopefully re-
sulting to a low dimensional space of degrees of free-
dom.

3.3 Linearity

Linearity is a strong assumption which is usually not
globally valid for real world systems. However, if the
analysis is restricted to a small region in the vicinity
of a nominal operating point, it may be possible to
describe the system behaviour using a linear model.
After all, every smooth nonlinearity can be locally
approximated to be linear.

There are clear advantages when sticking to linear
models: the analyzability and scalability of the mod-
els can be preserved even when the model dimension
is increased, and there exists a well justified theory
for linear systems. On the other hand, if even a mi-
nor nonlinearity is allowed, the theoretical analyses
become much harder and no general theory exists.

4 Modeling framework

The common factor for different modeling applica-
tions in the neocybernetic approach is the assumption
of a underlying network structure. Indeed, in both
gene expression and metabolism it seems natural to
use a network structure as a starting point. In the
first case, genes are the nodes of the net, whereas in
the latter case the individual molecule concentrations
together with environmental factors like temperature
and pH value form the nodes. Traditionally when net-
work models are created, e.g. graph theory is used
and in order to reduce the complexity of the model,
the connectivity of the network is limited. When
applying the neocybernetic approach, however, the
model is simpler if the network is assumed to be fully
connected or pancausal. This is because instead of
concentrating on the individual connections and their
strengths, the aim is to detect the few emerging de-
grees of freedom.

A linear model structure with multiple variables

and parameters can be presented in the form

0 = ΓT z, (1)

where column vector z contains the system variables
and matrix Γ the parameters. For example, the or-
dinary d’th order single input, single output (SISO)
dynamic system with input u and output y

y(k) =
d∑

i=1

aiy(k − i) +
d∑

j=0

bju(k − j), (2)

can be defined as

Γ =




−1
a1

...
ad

b0

b1

...
bd




and z(k) =




y(k)
y(k − 1)

...
y(k − d)

u(k)
u(k − 1)

...
u(k − d)




. (3)

If there exist more than one constraint between the
variables, more columns can be added to matrix Γ and
the same structure still remains valid.

In the following it is shown that under certain
assumptions both the gene regulation network and
the metabolic system of a cell can be written in the
form (1).

4.1 Gene regulation network

It has been suggested (Bunde and Havlin, 1994;
Barabasi, 2002) that many distributions in self-
organized complex networks statistically follow the
power law

zj = czD
i , (4)

where zi is the free variable, zj is some emergent phe-
nomenon related to the probability distribution of zi

and c and D are constants. The law (4) can e.g. be
applied to relate the popularity of Internet web pages;
if zi is the ”ranking of an Internet page” and zj is the
”number of visits per time instant”, the dependency
of these variables follows the power law.

The single-variable formula (4) can be augmented
to include multiple variables:

1 = c′zD1
1 · · · · · zDµ

µ , (5)

where µ is the number of variables. Assuming further
that there are multiple dependency structures, the fol-



lowing set of equations is obtained:




1 = c1z
D11
1 · · · · · zD1µ

µ

...
1 = cνzDν1

1 · · · · · zDνµ
µ ,

(6)

where ν is the number of dependency structures con-
necting the variables. Taking a logarithm on both
sides of the equations the multiplicative expressions
can be transformed to linear structures:




0 = log c1 + D11 log z1 + · · ·+ D1µ log zµ

...
0 = log cν + Dν1 log z1 + · · ·+ Dνµ log zµ.

(7)
Even simpler model structure can be obtained by

differentiating the equations around the nominal val-
ues z̄i:





0 = D11
∆z1
z̄1

+ · · ·+ D1µ
∆zµ

z̄µ

...
0 = Dν1

∆z1
z̄1

+ · · ·+ Dνµ
∆zµ

z̄µ
,

(8)

where variables ∆zi

z̄i
are relative deviations from the

nominal state. Since the original system (7) is nonlin-
ear with respect to the original variables, the differen-
tiated version (8) is only valid locally. However, if we
assume only small changes near the nominal values,
this model is accurate enough and it is easy to see that
it actually is of the form (1).

4.2 Metabolism
The metabolic system of a cell can be characterized
as a group of metabolic reactions as explained in Sec-
tion 2.2. Let us now write one of these equations in
the form

a1A1+ · · ·+aαAα
kB⇔
kA

b1B1+ · · ·+bβBβ , ∆H, (9)

where there are α reactants Ai and β products Bj .
Additionally, kA is the reaction speed in forward di-
rection and kB in backward direction and ∆H is the
change in enthalpy as the reaction proceeds. For each
molecule concentration, the rate equation defining the
rate of concentration change can be written (see e.g.
Atkins (1997)):

dCA1

dt
= −kBCa1

A1
· · ·Caα

Aα
+kACb1

B1
· · ·Cbβ

Bβ
. (10)

In thermodynamical equilibrium all the concentra-
tions remain constant, so that the derivatives are equal

to zero. Thus it holds

K =
kB

kA
=

Cb1
B1
· · ·Cbβ

Bβ

Ca1
A1
· · ·Caα

Aα

. (11)

This equation connects all the system variables to-
gether in a multiplicative way. As in the case of gene
expression network, the structure can be transformed
into a linear one by taking logarithms:

log K ′ = b1 log CB1 + bβ log CBβ

− a1 log CA1 − aα log CAα .
(12)

When dealing with local changes in the close vicinity
of the nominal operating point C̄Bi

and C̄Aj
, one can

further derive the differentiated linear model:

0 = b1
∆CB1

C̄B1

+ · · ·+ bβ

∆CBβ

C̄Bβ

− a1
∆CA1

C̄A1

+ · · ·+ aα
∆CAα

C̄Aα

.

(13)

In the case of a complete set of metabolic reac-
tions, each reaction leads to its own equation of the
form (13). By collecting all the system metabolites
into the vector z and adding a column for each re-
action in the matrix Γ (having zero coefficients for
the metabolites not involved in the reaction), one is
able to express the complete metabolic system in the
form (1).

4.3 Combining gene expression and
metabolism

We have shown that both gene regulation network
and metabolic system of a cell can be assumed lo-
cally linear phenomena and described using the same
framework. Whereas the metabolic reactions pro-
ceed quite fast, the gene regulation network has much
slower dynamics; it has been estimated that it takes
about 15 min for an activated gene to produce enough
transcription factors to activate another (target) gene.
However, assuming that we only are interested on the
steady state behaviour of the system where the tran-
sient dynamics have died away, it is possible to com-
bine the two networks. One can simply collect all the
gene activation values with the metabolite concen-
trations and environmental conditions (temperature,
pH) into a high-dimensional state vector, and apply
multivariate tools to reveal the low-dimensional la-
tent structure containing the degrees of freedom.



4.4 Interpretations of the model struc-
ture

When analysing cell functionality it becomes evident
that individual components and reactions are not re-
sponsible for separate tasks. Instead, each cell func-
tion involves multiple reactions and require activity
changes in several genes. This means that the be-
haviour is redundant but also robust; if one gene or
metabolic reaction is disabled, in many cases the cell
can overcome the problem and use alternative ways
to complete the task. This makes the traditional SISO
analysis hard, because strong changes in one variable
are required until the effects are seen. However, when
analysing all the variables in a neocybernetic man-
ner, the robustness only justifies the assumption of
the highly connected network of variables with strong
feedbacks.

When the data of the cell are analyzed, some intu-
itions can be proposed. For example, the degrees of
freedom found by multivariate analysis can be inter-
preted as ”functional modes” or cellular functionali-
ties. Each steady state can be described as a linear
combination of these directions; some functionalities
are going on more than others. It is also possible to
analyse the nature of these functional modes; some
metabolites and genes are heavily involved in some
degree of freedom, thus forming a group of variables
connected to that functionality.

5 Example case
As a test case, the gene regulation network of yeast
Saccharomyces cerevisiae was analysed (for a more
technical description of the work, see Haavisto et al.
(2006)). The yeast is a common model organism and
widely studied because it is easy to cultivate and as an
eucaryote contains many functional similarities with
more advanced organisms. However, the complex-
ity of the metabolic and genetic systems of yeast is
very high, and the cells are capable of exploiting mul-
tiple different nutrients and live in varying environ-
ments (Walker, 2000).

There are two main types of yeast genome time
series experiments available, namely stress experi-
ments and cell cycle measurements. In this study we
focused on the former type, where the environmen-
tal conditions of a non-synchronized yeast cultivation
are disturbed, and a time series of the activities of the
genes is measured after the shock. Since there are a
large number of cells in the cultivation, other genomic
activities like cell cycle are averaged away, and in the
data only the effects of the shock are seen. These se-

ries are also referred to as stress experiments.
It was assumed in the analysis that the stress reac-

tion of yeast cultivation proceeds as follows. Origi-
nally, the cultivation is grown in a static environment,
so that it reaches some density and the average of the
cell internal states remains in the nominal level. At
the time instant zero, the environmental conditions
are suddenly changed, for example the temperature
of the cultivation medium is increased from 25◦C to
30◦C. As a response to this, the activities of several
genes are either increased or decreased as the cells
are trying to adapt to the new situation. This tran-
sient phase ends when the gene activities stabilize to
a new steady state, where the levels of the activities
typically differ from the nominal state. In this case, it
could be defined that only the transient phase is actu-
ally ’stress’, whereas the steady states are interpreted
as normal function states of the cultivation.

5.1 Data
The gene activities of an organism with known
genome can be measured using the microarray tech-
nology (see e.g. Schena (2003)), which gives a ”snap-
shot” of the activities of all the genes at a certain
moment. This rather new technology provides huge
amounts of biological data and has made possible
the data-based analysis of biological cells using the
increased computational capacity and data mining
tools. However, to model the dynamic behaviour of
the genome still remains a nontrivial task, since a typ-
ical time series of gene activities contains about 10
time points. As the system dimension e.g. in the case
of yeast is over 6000, the problem is highly underde-
termined.

In this study two publicly available data sets were
utilized, which originally are published by Gasch
et al. (2000) and Causton et al. (2001). These stress
response experiments both include responses to tem-
perature and pH changes as well as addition of some
chemicals (e.g. salt, sorbitol, etc.). Each time series
contains measurements of the transient phase, and it
is assumed that in the end of the series new balance is
reached. There were altogether 21 time series with a
total of 152 measurement points. After preprocessing
the data and discarding the incomplete genes, there
remained about 4000 genes.

5.2 Modeling
As discussed in (Hyötyniemi, 2006b), the framework
of elastic systems makes it possible to make hypothe-
ses concerning goals of evolution. It can be as-
sumed that individual actors try to maximize their



coupling with the environment, simultaneously max-
imizing the intake of resources. If this is the case in
the real cell, and if there has been enough time for the
evolutionary mechanisms to find the optimum, strong
mathematical intuitions and tools are available. It is
not whatever degrees of freedom that are manifested
in data, they are axes of principal components (see
e.g. Basilevsky (1994)). And when such principal
component analysis is carried out for the observa-
tion data, it is not just some data analysis; it can be
claimed that it is system analysis, the mathematical
structures corresponding to real physiological struc-
tures.

Instead of modeling only the degrees of freedom
present in the final steady states of the time series,
also the dynamics of the genome were included in the
model. This violates the assumption of steady states
with stationary statistical properties, since during the
transient phase additional degrees of freedom activate
and thus the latent dimension of the system state may
remain high. However, the results obtained also con-
tain the initial and final states where the assumptions
hold.

For creating a dynamic model of gene regula-
tion network we utilized a fairly new modeling
method, subspace identification (Van Overschee and
De Moor, 1996). The method is especially suitable
for multidimensional system analysis. However, due
to the small number of available data points and their
high dimensionality, some modifications to the steps
of the basic algorithm had to be made. The method
produced a discrete state space model with the en-
vironmental conditions (pH, temperature and cultiva-
tion medium molecule concentrations) as inputs and
gene activity levels as outputs. This kind of model
is suitable for example in development of a Kalman
filter, which can optimally estimate the system state
(see e.g. Grewal and Andrews (1993)).

In the modeling phase, the system internal dimen-
sion was selected to be four based on the singular
value inspection during the subspace identification al-
gorithm calculation. As a result, a drastic model com-
plexity reduction takes place when compared to the
original number of genes. This means that all the rel-
evant functional modes present in the stress responses
can be coded using these four degrees of freedom,
and even some of the transient phase variations are
allowed.

5.3 Results

The obtained dynamical model could be used to es-
timate or simulate the yeast gene expression when

an environmental change is introduced. To test the
quality of the model, responses to the environmen-
tal changes present in the original data were simu-
lated by the model, and the results were compared
to the measured values. Generally the modeling re-
sults were good; the correlation coefficient between
the measured and simulated values for individual ex-
periments varied mainly around the value 0.8, even
though a couple of lower values were also detected.

Figure 2 shows the measured and simulated re-
sponses of the yeast genome to a step addition of salt.
On the left, the measured values are shown, whereas
on the right are the simulations. Each row of the fig-
ure corresponds to one gene, and each column rep-
resents one time point. White color corresponds to
high and dark color to low activity values. The num-
ber of genes was limited for visualization reasons to
the group of 255 stress-related genes. However, the
model was able to simulate the activities of all the
4000 original genes.

Measurements (min)

15 30 45 60 75 90 105 120

−AYMR261CYMR284WYNL032WYNL036WYNL082WYNL091WYNL099CYNL102WYNL160WYNL178WYNL190WYNL250WYNL259CYNL262WYNL271CYNL281WYNL283CYNL290WYNL307CYNL312WYNL330CYNR031CYNR074CYOL004WYOL034WYOL043CYOL064CYOL089CYOL090WYOL094CYOL109WYOL128CYOL151WYOR008CYOR010CYOR028CYOR033CYOR039WYOR043WYOR047CYOR061WYOR120WYOR122CYOR217WYOR346WYPL004CYPL022WYPL046CYPL059WYPL087WYPL091WYPL122CYPL152WYPL154CYPL188WYPL196WYPL202CYPL204WYPL240CYPL242CYPR135W

Estimates (min)

15 30 45 60 75 90 105 120

Salt (C)

Figure 2: Yeast gene expression response to salt ad-
dition, measured and simulated values

When analysing the figure, it can be noted that even
though there may be differences between the mea-
sured and simulated values on the transient phase, the
steady states are modeled quite well. This is because
the original neocybernetic assumption of dynamical



balance holds only in the steady state, whereas dur-
ing the transient phase more complex dynamics and
additional degrees of freedom are present in the data.

Because of the lack of data, it was not possible to
use a proper validation data set. However, since the
model dimensionality is strongly reduced when com-
pared with the original system, it can be assumed that
the generalization capability of the model should be
quite good. That is, the model is actually able to catch
some properties of the real phenomena that produced
the data instead of just modeling the given data set.

6 Conclusions
A neocybernetic approach for modeling complex sys-
tems was discussed in this article. It was shown that
both gene expression network and metabolism of a
cell can be approximated to follow the proposed lin-
ear structure. Utilizing this, data-based principles for
analysing the behaviour of cell cultivations were elab-
orated and a case study of modeling the dynamics of
yeast gene expression was presented. The results of
the case study encourage the usage of the presented
approach for gene expression modeling at least at the
high abstraction level.
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