
Data-Based Modeling of Electroless Nickel Plating

Hans-Christian Pfisterer?

?Control Engineering Laboratory
PL 5500

02015 TKK
Finland

h.pfisterer@gmx.de

Heikki Hyötyniemi†
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Abstract

This work connects the neocybernetic theory of elastic systems to modeling of a complex industrial
process. It turns out that using simple mathematics combined with multilinear tools leads to linear
models that can be used for monitoring and control. As an application example, electroless nickel
plating is studied.

1 Introduction
What has artificial intelligence to do with modeling of
chemical processes? It seems that such a very techni-
cal application domain would have little in common
with the AI approaches. Still, in all complex systems
the challenges are similar. One would need to under-
stand emergence to escape from the individual low-
level behaviors to the level of relevant functionalities.

In the work at hand the industrial process of elec-
troless nickel plating is studied. This chemical system
is very complex since many chemicals are involved
and the process has a lot of variables being observed
and controlled in order to reach good plating results.
What is more, for commercial reasons not all com-
pounds and reactions have been disclosed. It is very
difficult also for a domain expert to understand the
behavior of the system.

In this paper, a very simple, data-based model for
control purposes of the nickel alloy thickness and its
phosphorus content is presented. This model was
achieved using basic ideas and mathematical tools
based on the theory of neocybernetics.

2 Neocybernetics
Since models of industrial systems and observed nat-
ural systems get more and more complex and very
complicated to understand the traditional way of
mathematical modeling with dynamic nonlinear dif-
ferential equations and constraints leads to an unman-
ageable mess of functions and equations. Further-
more, one has to be a domain expert to understand the
interconnections between variables in order to write

the mathematical equations for the description of the
behaviors in the first place.

Neocybernetics, introduced by H. Hyötyniemi
(2006), offers a new approach to get reasonable sys-
tem models and helpful system understanding when
looking at a system from a different angle. Since in-
dustrial systems are monitored extensively the data
can be used to find connections among the variables
and possibly associate some variables with others.
The system structure is hidden in this data and it will
emerge when manipulated in an appropriate way. Us-
ing the right mathematical tools and a holistic view of
the system this modeling machinery is also available
for non-experts of the particular domain. Here infor-
mation about the behavior of the system is retrieved
directly from the measurement data.

2.1 Key points

To see a system through neocybernetic eyeglasses
some assumptions about the system have to be made.
There are some basic principles (see H. Hyötyniemi
(2006) and H.-C. Pfisterer (2006)):

• Emergence: Some unanticipated functionality
can appear after the cumulation of some simple
operations.

• Dynamic Balance: The emphasis is on systems
in some kind of balance rather than on the pro-
cess itself.

• Linearity pursuit: The system behavior is con-
sidered to be linear as long as nonlinearity is not
absolutely necessary.



• Environment: Neoybernetic systems are as-
sumed to be oriented towards their environment,
they reflect and mirror their environment.

All these principles and assumptions are reasonable
and in many natural and industrial systems they can
be fulfilled. The linearity assumption needs a further
explanation (see Section 5), especially when model-
ing chemical systems.

2.2 Elasticity
The system is assumed to be in thermodynamic bal-
ance. The changes in the environment are seen as dis-
turbances causing tensions in the system, pushing the
system away from the balance. According to the Le
Chatelier principle (H. Hyötyniemi, 2006), the sys-
tem yields, but after the pressure vanishes, the origi-
nal balance is restored. In a sense, the neocybernetic
ideas are a functionalization of the intuitions concern-
ing complex homeostatic systems.

2.3 Degrees of freedom
As mentioned above the hidden structure of the sys-
tem will emerge when the modeling concentrates on
the remaining degrees of freedom in behaviors rather
than on constraints and restrictions. For simple sys-
tems this is not reasonable — for very complex sys-
tems where many variables are strongly connected
and many constraints have to be considered this ap-
proach helps to avoid an unmanageable mess of equa-
tions. When concentrating on the non-constrained
degrees of freedom, the emphasis is on phenomena
that are not explicitly seen in any formulas; one could
speak of emergent models.

Now the system is kept in dynamic balance and
one searches for the structure of covariation that is
still left in the variable space. A model based on the
degrees of freedom approach is as useful as a tradi-
tional one but has the advantage of being simple and
understandable. With this “inverse thinking” not all
constraints and chemicals and reactions need to be
known, as long as it can be assumed that the internal
interactions and feedbacks always manage to keep the
system in balance. More information about degree
of freedom modeling can be found in H. Hyötyniemi
(2006) and H.-C. Pfisterer (2006).

3 Multivariate tools
Using the above mentioned key points and utilizing
strong mathematical tools a practical modeling ma-
chinery can be set up. After applying the modeling

tools a black box between known variables and un-
known ones to be estimated can be filled with life.
For these purposes the known data (column vectors
of data samples) is collected in a matrix X and the
unknown variables in a target space formed by the
matrix Y . Here, it is assumed the k sample vectors of
length n and m are stored as rows in the matrices X
and Y , respectively.

Principal Component Analysis (PCA)

The information in terms of covariations in the data
is captured in the (unscaled) correlation matrix

R = XTX.

A lot of hidden information can be revealed by eigen-
values λi of this matrix, and by their correspond-
ing eigenvectors θi as can be read in H. Hyötyniemi
(2001). The eigenvectors are orthogonal and point
in the direction of maximum variation in the origi-
nal dataset. The amount of variety of each particular
direction is given by the corresponding eigenvalue.
Directions of most variety are assumed to carry most
information about the system and it is reasonable to
take these into account in the model; hence the model
is built on the degrees of freedoms found in the cor-
relation structure of the data.

Large eigenvalues stand for directions of essential
information, small eigenvalues stand for directions
which most probably contain redundant information
or only measurement noise. When the data is pro-
jected onto the subspace Z of dimension N ≤ n
by the mapping matrix F1, redundancy and measure-
ment noise in the data can be reduced.

Multilinear Regression (MLR)

To find the connection to the target space Y a regres-
sion is applied. In order to achieve good results the
base of the starting space should be orthogonal and
no redundancy should be there. Using the dataspace
Z these prerequisites are fulfilled and the MLR algo-
rithm can find a mapping F2 from Z to Y . Hence
a combination of both procedures, now called Prin-
cipal Component Regression (PCR), can explain the
behavior in Y by the information already given in X .
This is illustrated in Figure 1.

X Z Y

F1 F2

Figure 1: Data spaces and projections with PCR



Partial Least Squares (PLS)

This algorithm includes a view into the target space Y
already while building the mapping F1. Not only the
dataspace X is scanned for the essential information
(collected in Z1) but also in Y the key information is
extracted (to Z2) and only then an overall mapping is
obtained which now bridges input and output. This
steps and transformations are illustrated in Figure 2.

X Z1 Z2

F1 F2

Y

F3

Figure 2: Data spaces and projections with PLS

After introducing the industrial process and some
specific variables these tools will be applied and their
results shown in Section 6.

4 Electroless nickel plating
The process of electroless nickel plating is a step of
surface finishing. Printed wiring boards (PWBs) con-
sist of a epoxy laminate base and a copper layer in
which electric circuits are etched. Witout protection
the copper would oxidize very fast, especially when
coming in contact with humidity. In order to enhance
the lifetime of the PWB and to improve its mechani-
cal properties the PWB is coated with a gold layer of
about 0.01µm. But since the copper would diffuse in
the gold and form again an oxidizeable compound the
two layers are separated by a nickel layer of around
4µm. Figure 3 shows a cut through a plated PWB and
explains the layers in detail; since the gold layer is so
thin it can not be seen here.
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Figure 3: Cut through a plated substrate. Layers: (a) a
metallic fastener and (b) a piece of conductive plastic
to fix the sample, (c) Ni-P layer, (d) copper layer, (e)
the base of PWB (epoxy laminate) (K. Kantola, 2004)

The use of the word “electroless” is misleading; it
emphasizes the difference between the method where
an external power supply is connected to the substrate
which is to be plated and the approach of an active
substrate that deposits nickel atoms from ions on its
surface. Here nickel is provided in form of ions in an
aqueous solution, beside the reducer hypophosphite
that provides the necessary electrons for the transfor-
mation from nickel ions to real atoms. Due to the
used reducer the alloy has a phosphorus content of
up to 15 weight percent. The catalytically activated
substrate is immersed into the bath and an alloy of
nickel atoms and some phosphorus can be built, be-
cause nickel itself is also catalytically active itself.
There are electric currents in the bath caused by the
conversion of ions to atoms, so the process is not re-
ally electroless.

The bath consists of many more chemicals which
help to keep the bath stable and in a desired sta-
tus. The composition of these chemicals is either not
exactly known or a well kept industry secret which
makes the traditional modeling of the bath behavior
very difficult or even impossible. Furthermore one
has to be a chemical domain expert to understand the
connection between the chemicals and their behavior
especially when connected to the substrate and its ex-
panding nickel alloy.

The characteristics of the bath are observed con-
tinuously and as many variables as possible are mea-
sured. Hence online measurements of the current
bath nickel concentration, bath temperature and pH
value are available and with good controllers kept
along desired values to keep the bath constitution
constant. The substrate and its characteristics are
measured in a laboratory when the plating is finished.
Summarizing the dataspaces X and Y (Section 3) ba-
sically contain the following information:

X: Nickel concentration, pH value, ammonia con-
centration, ammonia and nickel sulfate pump-
ing, plating area and temperature.

Y : Alloy thickness, phosphorus content, hypophos-
phite concentration and orthophosphite concen-
tration.

The original dataset X is further prepared and ex-
panded as explained in the following section. The
information about hypophosphite and orthophosphite
is not really a plate characteristic and for that reason
not further studied here.



5 Linearity
The system is in a state of thermodynamic balance.
This state is kept constant by a very strong and ac-
curate control mechanism provided by the bath sur-
rounding. Balance also is one of the neocybernetic
key points and so is very important to this approach.
The thermodynamic equilibrium can be described by
the constant

K =
Cb1

B1
. . . C

bβ
Bβ

Ca1

A1
. . . Caα

Aα

.

This constant is highly nonlinear dependent on the
concentrations of the different chemicals in the so-
lution. But applying a logarithm on both sides and
differentiating the expression leads to

0 = b1
∆CB1

C̄B1

+ · · ·+ bβ
∆CBβ

C̄Bβ

−a1
∆CA1

C̄A1

+ · · · − aα
∆CAα
C̄Aα

,

where ∆Ci/C̄i are deviations from nominal values,
divided by those nominal values, meaning that it is
relative changes that are of interest. For more infor-
mation about this equations see H.-C. Pfisterer (2006)
and H. Hyötyniemi (2006).

Even more the whole system can be represented
in a linear way when using variables in a proper
way. Nonlinearity can by avoided by appropriate
preprocessing of the variables (by employing relative
changes among the data). What is more, the dynamic
nature can be put in the static form when the variables
are selected in a clever way. The following points ex-
plain how to use information in order to stay in the
linear domain even if the real system is nonlinear and
can also be found in H. Hyötyniemi (2006):

• Temperature: According to the Arrhenius for-
mula, reaction rates k are functions of the tem-
perature, so that k ∝ exp(c/T ). When this is
substituted, the model remains linear if one aug-
ments the data vector and defines an additional
variable zT = ∆T/T̄ 2.

• Acidity: The pH value of a solution is defined
as pH = − log cH+ . Because this is a logarithm
of a concentration variable, one can directly in-
clude the changes in the pH value among the
variables as zpH = ∆pH.

• Voltage: In electrochemical reactions one may
characterize the “concentration of electrons”. It
turns out that according to the Butler-Volmer
theory the amount of free electrons is exponen-
tially proportional to the voltage. Hence, after

taking logarithms, the “electron pressure” can be
characterized by ze− = ∆U .

• Physical phenomena: It is evident that phe-
nomena that are originally linear like diffusion
can directly be integrated in the model, assum-
ing that appropriate variables (deviations from a
nominal state) are included among the variables.

In practice, some reactions are not in balance;
rather, there can be a constant flux of some chemi-
cal exiting from the reacting solution. The above bal-
ance expressions can be written also for such “dissi-
pative” reactions, and linear models are again appli-
cable around the equilibrium flux. This means that
also the rates of change need to be included among
the variables that characterize the dynamic state of
the process.

Some of the variables to be included in the regres-
sion model are integrals over time — for example, in
the coating process, the layer thickness is the integral
of the nickel reduction rate. Because of the model
linearity, such integrals can be transferred from the
model output to the input — meaning that the layer
thickness can be modeled as the integrals of the vari-
ables are included among the variable values them-
selves among the data.

Hence apart from the plain data also some features
can be included in the dataset X . Since the measure-
ment sample is only taken at the precise time when
the plate is taken out of the bath it makes sense to
include more information about the whole time the
plate is immersed. A weighted integral over the plat-
ing time solves this problem, hence the dataset X is
extended with integrals of the plain variables which
doubles the dimension of X . The mentioned connec-
tion between layer thickness and nickel reduction rate
is another reason for using integrals in the input struc-
ture. Furthermore an old set of data can be included
by weighting the old data differently in comparison to
the recent information. This smoothing of data again
adds featured data to X .

A schematic view and a summary of all the men-
tioned variables in the input structure can be seen in
Figure 4.

6 Modeling the plating process
When using the described setup the first step is PCR
(Section 3). Figure 5 shows the eigenvalues λi of the
correlation matrix of X in descending order. Since
the dimension of the used dataspace is n = 18 there
are as many eigenvalues, each one representing the
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Figure 4: Schematic view of input data set along the
timeline of the plating process

amount of information kept in the corresponding di-
rection θi. It can be seen clearly that the last direc-
tions do not carry any information; that shows the
redundancy in the data. Since the noise is assumed
to be uncorrelated it is evenly distributed in all direc-
tions, hence some directions carry mostly noise and
no real information. In the end it is reasonable to use
only the first 7 directions for a new dataspace Z from
which a final mapping to Y should be obtained. This
first N = 7 vectors carry already 91% of the full in-
formation.

The alloy thickness and its phosphorus content can
be accurately estimated with these 7 vectors. Using
PLS as an data preparing algorithm the dataspace can
even be reduced to a dimension of N = 2 and ob-
tain an even better estimate. The results of the model
gained by PLS analysis are presented here. For more
results and discussions see H.-C. Pfisterer (2006).

Figure 6 shows the process data of the alloy thick-
ness divided in three parts. The first one was used for
model estimation along the above described way. The
other two parts are validation sets. Blue information
is the real data, measured in the laboratory and stored
by a data acquisition system. Green data is a model
estimation, obtained with a traditional complex elec-
trochemical model by K. Kantola (2004) and used as
a comparison to validate the linear model at hand. In
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Figure 5: Latent variables θi (PCA) and the numer-
ical values of the corresponding eigenvalues (equals
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Figure 6: Alloy thickness: measured data and two
compared estimates

red color the data estimation for the alloy thickness
by the linear model can be seen and compared to real
data and the other model estimation.

The same setup of data was used to estimate the
phosphorus content of the nickel alloy (Figure 7).
In red color again the result of the linear model at
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Figure 7: Alloy phosphorus content: measured data
and two compared estimates

hand along with real data (blue) and results of another
model (green).

The linear model provides a very accurate estima-
tion of the alloy thickness and an accurate estimation
of its phosphorus content. This is no surprise in the
first parts of either dataset, since they were used to
build the model and the model is tailored by the algo-
rithm especially for them. But the correct estimates in
the other parts confirm and validate the good perfor-
mance of the linear model. The power and the correct
combination of strong mathematical tools produced
a very accurate result which can keep up and even
beat complicated and inscrutable models. Since this
model is a linear combination of measured data it is
also possible to see the importance of each measured
variable for the characteristic of each output variable.

It is interesting to see that if the estimate of the lin-
ear model is wrong also the estimate of the complex
model is wrong. This is a hint for missing informa-
tion that is not available for the modeling machinery
in either case or some mistakes in the measurements,
hence no fault of the linear model. Further it should
be pointed out that there is an improvement when us-
ing PLS instead of PCR and also when including in-

tegrals in the input data vector. However, smoothed
old data can not improve the results.

The overall result combined with the simplicity of
its design leads a way to a good control machinery
for nickel plating processes. The model can easily
be used and adjusted by process workers and it can
provide the necessary information for a controller in
form of an observer for the plate characteristics. The
information about these characteristics is already hid-
den in the anyway measured bath variables and it was
just necessary to reveal it and make it emerge.
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