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Abstract

This paper presents a framework for modeling and understanding real-life scale complex systems.
Neocybernetics is generalized to all domains where one can recognize generalized diffusion, meaning
that the emergent model structures with their degrees of freedom become a universal basis for under-
standing Nature.

1 Introduction
What is there beyond everything that exists? Are
there some common principles underlying all of those
forms that we can recognize? — It seems that, in-
deed, metaphysics can perhaps someday change into
a science.

In prior publications, neocybernetics has already
been studied extensively [1]. The universality of this
approach has been hypothesized, but there have been
more or less severe holes in the reasonings. Here,
those discussions are put in a consistent framework,
starting from very basic assumptions; perhaps it is
already possible to sketch the converged guidelines
through the jungle of complexity. Now these guide-
lines for thinking about complex systems are pre-
sented in the form of SAMPO mills1.

In cybernetic systems one always employs the idea
of feedback — there is a self-referential loop blurring
the causality chains and making it challenging to ap-
ply traditional analyses. In the neocybernetic frame-
work this dynamical, cyclic structure is taken to its
logical conclusion: feedback signals take a loop af-
ter another indefinitely, the signal flows finally find-
ing some equilibrium levels — this must happen in
all physically meaningful systems. The qualitative
notion of feedback is changed to quantitative anal-
ysis. Thus, the “whirls” constitute stable attractors in
a phenosphere (see Fig. 1).

Tensions between the system and its environment
cause flows. Here we let the flows loose, letting
them follow their natural dynamics, trusting that the
underlying structures implement self-regulation, and

1Short for “Stable Attractors Maintaining Proper Ontologies”,
or “Self-Adapting Machinery Processing Observations”, or “Sim-
ple Autogenous Mappings Producing Order”, etc. — interpretation
depending on the point of view
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Figure 1: What is special to (this interpretation of)
neocybernetics — the loop structure is taken to its
logical extreme applying system theoretical tools

the system can finally reach stability. Individuals are
“drowned” into the flows, and only the relevant net
effects remain visible. When all feedbacks are taken
into account, the system becomes pancausal, all parts
of the system affecting the others. Counterintuitively,
in this final dynamic balance, after all conflicting
pressures have become compensated, detailed analy-
ses become simpler: the behaviors in equilibrium are
typically smooth and linear, and mathematical tools
can efficiently be applied.

How do the whirls originate to begin with? It
seems that some minor fluctuations get boosted be-
cause of the properties of the environment, they be-
come amplified, and soon they characterize the whole
system. Further, the turbulence around the whirls is
like a “cooker” of new candidate whirls ... This all is
closely related to evolution in its simplest form. As
the whirls continuously change form, expand or con-
tract, etc., their essence somehow remains, whereas



in some directions there can exist faster development
and change of form. It turns out that SAMPO mills
may help in understanding development of systems
in general terms. — Indeed, the etymological stud-
ies have shown that the word evolution comes from
Latin “evolutio”, meaning unrolling — or opening up
the whirls!

— Do you feel uneasy about counting so much on
the intuitive appeal? But when facing truly complex
systems, intuition must have the key role. In math-
ematics there is too much freedom, too many open
ends — one must have additional guidelines for se-
lecting the direction where to proceed. Justification
for manipulations has to be found from nature, and it
is intuition that helps us here: human cognition ma-
chinery has always been tackling with the complex
world, and one can utilize the magnificent human pat-
tern recognition capacity for detecting what is truly
essential. One can recognize the essence even though
one cannot explicitly define it.

2 Assumptions and terminology
It has been claimed that neocybernetics does not
study all mathematically possible systems, but only
the really existing, the physically relevant ones. What
then are the characteristics of physical relevance?
Which are the appropriate concepts to discuss them?
— Next, to approach such issues, things are seen from
the nature’s viewpoint. Let us see what happens when
we try to be such empathetic (the prefix “em” becom-
ing familiar later).

2.1 Extreme naturalism
The basics of the “streamlined” approach to neocy-
bernetics can perhaps best be crystallized in the terms
complete subjugation, generalized diffusion, and uni-
versal evolution. Now, we start from very physical-
sounding considerations; however, the principles are
general, and later these discussions can be extended
to non-physical domains.

Here, “complete subjugation” means that the sys-
tems are at the mercy of their environments: no in-
ternal “will” of the systems needs to be assumed nor
taken into account. The system consists of “stupid”
(or “humble”) actors that know nothing about the big
picture, they just follow the very local nudges. From
the point of view of an individual actor, also neigh-
boring actors belong to its local environment. To as-
sure the humbleness, the system is divided in small
enough (ϵ-sized) elements so that a lumped param-
eter representation applies to sufficient degree; it is

assumed that everything that is relevant, all proper-
ties of the system can finally be expressed in terms
of some (sets of) elementary scalar variables. Thus,
there is a huge number of variables to start with.

This environment-orientedness means extreme
trust on observations (when using system-centric ter-
minology) and the emphasis can be concentrated on
quantifiable global-level phenomena. — In retro-
spect, it is this inversion of emphasis, or concentra-
tion on the environment rather than on the system
itself that makes it possible to anticipate the behav-
iors of systems in general terms and create models for
them: everything relevant is in the data if that data is
collected appropriately.

The low-level actions are stochastic and beyond
any reasonable analysis. Only in the statistical per-
spective, when a large number of actors is considered,
something “coordinated-looking” or consistent be-
haviors can emerge as a net effect: the random walks
on the low level generally result in diffusion. Here,
generalized diffusion means extension from strictly
physical to other domains, too: whenever there are
density differences, whatever are their interpretations
and units (not only concentrations or temperatures),
they tend to smoothen out — where there is more,
there will be less, and vice versa, or, as it is some-
times said, “nature abhors a gradient”.

As this generalized diffusion (or “generalized en-
tropy (or emtropy) growth principle”) is the only
action-reaction mechanism assumed, behaviors are
totally distributed and there is no need for central
control. As seen from the higher level, the diffu-
sion process can be interpreted as gross flow between
potentials, or specially high (or low) densities. In a
still wider perspective one can see “forces” driving
the process; but these forces are purely virtual. Even
so, it seems that such causality-based interpretations
are natural and unavoidable for the human perception
machinery. Specially, when looking at more complex
systems, one easily sees something teleological tak-
ing place, as actors are seemingly active, “pulling”
resources from their environment — but, again, it is
the environment pushing its excess, the system pas-
sively just having to absorb it.

The third issue to be discussed here is universal
evolution (or perhaps emolution to avoid the biology-
bound connotations). Expanding the idea of Theodo-
sius Dobzhansky, one could say that nothing in com-
plex systems makes sense except in the light of emolu-
tion. The claim here is that even physics is evolution-
ary: we only can see net effects that have survived
in the competition of behaviors. If there is no con-
sistent boost for emerging complexity, the atoms of



order get drowned in the chaos. In physical systems
there is natural selection in its crudest form, but, of
course, the mechanisms for implementing the emolu-
tion and for storing the evolved information are very
different as compared to the mechanisms of biolog-
ical evolution. For example, as there is no genetic
code, the emerged structure can be stored in internal
inertias (as illustrated in Sec. 5.1).

The surviving species (or behaviors) are assumedly
the best possible; optimality can be seen as a general
modeling principle. But what behavior is optimal —
this is not always clear (see Sec. 2.3). As the criteria
vary, there is not necessarily only one winner in an
ecosystem.

Emolution is to be understood here not only in the
wide but also in the narrow scale. It is not only the
biological species-level that evolves; there are devel-
opmental processes taking place at all levels of sys-
tems, biological and physical. To reach the quali-
tative developments, instantiation of huge numbers
of subprocesses has to be carried out in an orches-
trated manner; such evolutionary processes cannot be
“extremely improbable”. The “blind watchmaker”
metaphor is simply too incredible. Somehow the ben-
eficial behaviors become magnified, outperform other
behaviors, and finally become visible. There must be
some structure behind the developments, it cannot be
just randomness, and in the neocybernetic perspective
the key point is the existence of dynamic attractors as
determined by the environment.

It should be recognized that universal emolution
can be thought of as being a (very) special case of
(very) generalized diffusion. In such an abstract pro-
cess, fitness that can be seen (see semiosis in Sec. 2.3)
as the key quantity determining behaviors, spreading
(and increasing) in the space of life forms (life being
defined as is done in neocybernetics). This interpreta-
tion helps to understand that in emolution there is not
pulling but pushing towards arenas of no life yet. Na-
ture does not know where it is aiming at, life just ex-
pands; understanding the current state and constraints
can tell us something about the future and how this
future is approached.

2.2 Weak emergence

As observed above, individual events cannot be
traced reasonably — but it does not matter really: if
something is hardly recognizable, it cannot make a
difference. Nature is slow, it cannot respond imme-
diately. Something that better characterizes the over-
all behaviors has to emerge and become visible. In-
deed, all visible phenomena emerge of some lower-

level ones, and one should be speaking of layers of
emergence. What is characteristic to all observables,
then?

Formalization of the abstraction over individuals,
to “see the forest for the trees”, can easiest be ac-
complished through concentrating on average behav-
iors, statistical net effects over a large number of time
points or over a large number of actors. Such coars-
ening, or reducing the number of variables, is tradi-
tionally seen as the key to a higher-level view. But
the claim here is that averaging, or just filtering out
the assumed noise, is not yet real emergence.

The other key intuition concerning true emergence
is interaction. On the most fundamental level, one
can only observe interactions, and the same applies
also to nature. However, real “co-operation” can
hardly be quantified, and it is only the possibility
of interaction that is elaborated on here; that is, co-
existence will only be studied. Assuming that there
are two variables ξ and ζ, the “atom of interaction”
can be based on the product ξζ, and, when com-
bined with the above idea of averaging, this changes
to (uncentered and unnormalized) correlation, mean-
ing that weak emergence in this context is defined as

E(ξ, ζ) = limT→∞

{
1

t−T
∫ t
−T ξζ dτ

}
≈ E {ξζ} ,

where t is the current time (time indices of variables
are dropped for brevity). Thus, the emergence oper-
ator changes to expectation, as interpreted in a some-
what loose sense: for example, rather than extending
to infinity, the integration typically takes place only
within the “visibility horizon”. The definition above
should not be interpreted in a rigid formal sense, the
key idea being an integral over elementary interac-
tions; thus, in some cases, one can also define the set
of involved variables not temporally but spatially for
some volume element V as

E ′(ξ, ζ) = 1

V

∫
V

ξζ dV.

Such “emergent coupling between variables” is now
called emformation. It is evident that mutual emfor-
mations can be captured in (unscaled) covariances or
covariance matrices, so that there is strong connection
to Fisher information and corresponding information
matrices. However, term emformation rather than in-
formation is here used to avoid inappropriate infor-
mation theoretical connotations. For example, very
unlikely sample is now not important; in this con-
text, statistical relevance rather than novelty is em-
phasized.



It is constructs of such emformation that are the
elementary basis of the system memory, offering the
framework for changes in structures, or emolution.
Later it is shown how the cumulated emformation
structures act as filters affecting the further emforma-
tion cumulation, so that the past determines the fu-
ture.

This definition of emergence means that, even
though averages of actors (particles, molecules, ants,
humans, etc.) only are concentrated on, so that the
temporal (or spatial) axis is collapsed and “summa-
rized”, the number of emerged variables increases
rather than decreases. By some means the chaos of
signals has to become simplified to become man-
ageable. It turns out that emformation carries rele-
vance only among special variables. How emolution
finds those atoms of interaction that are the “atoms of
meaning”?

2.3 System semiosis

It is generally accepted that man-made models are
not unique but their structures have to reflect their in-
tended usage, that is, model construction is directed
by some kind of meaning or semantic considerations.
But this simple observation can be inverted in the
spirit of the adopted extreme naturalism: also na-
ture needs some reason to do something. Indeed,
nature first had to motivate itself why there should
be something instead of nothing! In practice, these
“reasons” for complexification are assumedly very
down-to-earth, being focused on emolutionary bene-
fit, but the human-centric retrospective interpretation
about nature’s “intentions”, its quest for relevance
and meaning, turns out to carry the appropriate con-
notations here2. Without emphasis on natural seman-
tics, mathematical analyses become too hollow to be
able to “emulate” relevant behaviors. The searched-
for emantics needs not be something as fancy and in-
tractable as it is when speaking of cognitive models
and human’s intentions; again, on the lowest level
everything is based on direct observations and their
properties.

There exists a pragmatic branch of semantics that
exactly fulfills our needs, or pragmatism. It turns out
that there relevance is seen as a more useful starting
point than the unaccessible truth itself. In pragma-
tism, semantics is determined by functioning, an ac-
tor’s relevance being determined by its role among
other actors. Truly, this all could even be called cy-

2Later, indeed, it turns out that in the neocybernetic perspective,
nature can also be seen as searching for a “model” for its “obser-
vations” to implement “control” in a distributed manner

bernetic semantics, as cybernetics traditionally stud-
ies “differences that make difference”, actions that af-
fect the world. In concrete terms, in neocybernetics
one concentrates on variations that give rise to fur-
ther variations. This means that semantics cannot be
subjective, but it has to be shared among others, be-
coming a concrete system-level concept.

It needs to be remembered that the seemingly goal-
directed behavior is an illusion, an anthropomorphic
interpretation when looking the emolutionary pro-
cesses from above. Specially, the emerging structure
of causality (actors acting, environment adapting) is
virtual: it is the environment rather than the actors
that is the primus motor causing all behaviors.

The appropriate formal framework for discussing
system semantics is offered by semiotics. Semiotics
in general studies signs, “something that stands for
something”, being discrete units of some meaning.
Whereas semiotic signs are traditionally studied in
human life, where signs are used for information
communication between human minds, there are sub-
fields, like biosemiotics, where the role of external
signals is studied in biological organisms in general.
Still more generally, one could speak of system semi-
otics (or perhaps emiotics) when studying how a sys-
tem sees its environment.

It is this emiosis that makes all the difference: the
variables have differing roles, and only some of their
emformation is relevant. The chaos of signals be-
comes structured, as the emiosis defines the interior
and the exterior, or some kind of a kernel and its envi-
ronment. The external variables, or actual signs, are
now seen as some kind of a resources, and the in-
ternal variables are some kind of activities caused by
the resources. In some domains they can be seen, for
example, as concrete pressures and yields, or gener-
ally as actions and reactions, or causes and effects.
From now on those ξ and ζ variables in the previ-
ous section that are interpreted as resources are de-
noted as ūj , where 1 ≤ j ≤ m, and variables that
are interpreted as activities are denoted as x̄i, where
1 ≤ i ≤ n. Typically, as the chaotic environment is
more complex than the assumedly more organized in-
terior, there holds n < m. Of course, also flows can
cause accumulation of potential: distinction between
causes and effects depends on the point of view. —
Again, it needs to be observed that these distinctions
can be validated only in retrospect: there are many
interpretations, but successful emiosis becomes re-
warded, resulting behaviors having emolutionary ad-
vantage, and finally determining the dominant behav-
iors in the environment.

Emiosis determines how the external world is seen.
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Figure 2: The neocybernetic model structures can be interpreted in terms of semiotics

As it will turn out, selection of the signs, or variables
in the vector ū and their weighting considerably af-
fects the outcomes of emolutionary processes. That
is why, it is reasonable to define the entities that will
be concentrated on:

(Emiotic) system = set of activities x̄ that
share the same view ū of the world.

This can be interpreted so that “system is a measure
of its subjective world”. It seems that the most appro-
priate connotations about the “measurement units”,
or the activities x̄i, get captured in the framework
of monads, as discussed originally by Gottfried Wil-
helm Leibniz. Monads are granules of existence, dy-
namic atomary entities that form the basis of every-
thing that can be seen. However, as comparing to
traditional monads, it turns out that there exist now
many differences. For example, monads are not eter-
nal, they emerge from non-existence but only in a cor-
rect environment. Their manifestation is determined
by the environment, so that their outlook varies; only
their functioning remains invariant, looking always
the same (see Sec.4.3). Monads are now not indepen-
dent but under a constant competition that modifies
them. They are irreducible what comes to the current
level of abstraction as they are the basis of basic con-
structs or “emergent concepts” at that level; indeed,
they implement the coupling among levels.

As seen in the semiotics framework, Fig. 2 summa-
rizes the loop structure of the neocybernetic model
being discussed later (see Sec. 3). Following Jakob
von Uexküll’s notations, one can distinguish between
innenwelt and umwelt of a system. Further, a “forage
profile” determines the mapping between the signs
and a monad, if adopting another appropriate concept
this time from ecology.

Generally, monads are attractors capturing the do-

main field dynamics, and, as it turns out, this ap-
plies also to the ideasphere. All fields of science and
philosophy tackle with complex systems, so it is no
wonder that beyond the differing paradigms there are
similarities and overlaps. Concepts employed within
paradigms are “probes” that try to capture the appro-
priate monads. To locate and anchor neocybernetic
ideas appropriately in the mental domain, it is some-
times reasonable not only to refine established con-
cepts but to employ fresh ones3. Here, various pro-
visional concept candidates (like “emformation” and
“emiosis”) have been proposed; one of such ideas that
probably deserves a term of its own is emergy.

2.4 Emergy concept — the key forward
Combining the above discussions, emergy is emfor-
mation among relevant variables, that is, it emerges
(as defined in Sec. 2.2) from variables that are seen as
“resources” and “activities”. Emformation in general
is expectation of the product of variables, but emergy
connects this with semantics. The meaning of this
definition can be understood through the following
analogy, where the intuition of mechanical concepts
is extended now to emergy:

energy = deformation × force (tension) causing it
power = flow × potential giving raise to that flow
↓

emergy = activity× resource inducing the activity.

That is, variables ξ and ζ in the emergence formula
are selected so that one has E(x̄i, ūj) = E {x̄iūj}.

3The same applies also to the name “neocybernetics” itself:
how the term is used here differs much from the today’s discus-
sions on new cybernetics, still carrying the key idea of multi-level
cybernetic system interconnections. Perhaps some new name, like
“uuscybernetics”, would be in place



Also emformation among two activity variables can
be relevant, and the same holds for a combination of
two resource variables. Specially, self-emergy, or “lo-
calized” emformation within an individual variable,
is the simplest form of emergy. Perhaps it is because
of this extreme simplicity that self-emergy has typi-
cally even some global-level interpretation. For ex-
ample, if the induced variable x̄i (or ūj) is some ve-
locity, then E

{
x̄2i

}
(or E{ū2j}) is proportional to av-

erage kinetic energy; if the variable is some deforma-
tion, its self-emergy can be proportional to average
potential energy (as in springs), and if the variable is
electric current (or voltage), then the self-emergy is
proportional to the average electric power, etc. How-
ever, emergies and self-emergies do NOT generally
have some physically meaningful energy dimension;
for example, in a cognitive system emformations are
just some kind of information pushing the develop-
ments.

The claim here is that emergy is the key concept
that makes it possible to build a bridge between sig-
nals and the corresponding emergent-level constructs.
Because of its upfront visibility, self-emergy has a
pivotal role: again, nature can only see those phe-
nomena that can make a difference, and self-emergy
seems to be the power, the necessary fuel, that is
needed to make these differences. The emolutionary
relevance of a “resource” and an “activity” is mea-
sured in emergy units. It is as it is with Lagrangian
mechanics as compared to Newtonian mechanics: as
movements of individual mass bodies are abstracted
to summable energies, a higher-level view of the sys-
tem is reached.

In all observations-based environments, the warn-
ing due to David Hume applies: one cannot observe
causalities, only correlations. But this applies only
to external observers, not to the subjects and objects
themselves — they directly experience the turmoil.

It turns out that the emolutionary objective is max-
imum average emergy transfer between the envi-
ronment and the system, or maximum emergy dis-
sipation, x̄iūj being the momentary “throughput”
of the monad. This all resembles Ilya Prigogine’s
ideas of far-from-equilibrium systems that can pro-
duce a higher degree of order (note that in this con-
text such constant flow, however rapid, is still con-
sidered homeostatic when variables are selected ap-
propriately, including time derivatives among them).
The more there is emergy available, the more the
system structure can further be modified to enhance
emergy capture from the environment (see next sec-
tion). Even though everything is based on com-
petition among dissipation modes, finalistic argu-

ments seem to become quite appropriate, as seen from
above: will of systems is a useful abstraction. What
is this emergy flow then — assumedly it is élan vital!

The emergy pursuit principle makes it possible to
make predictions concerning emolution, too. The
eternal search for fresh emformation helps to under-
stand also qualitative enhancements: for example,
one can introduce new input variables, and hopefully
new emergy, by augmenting the space of signs —
that is, by employing new sensors or senses. The
appropriate system structure can also change: new
x̄i’s can be found when closer analysis is applied
(tighter coupling); new ūj’s enter when new “inno-
vations” are made; an external ūj changes to x̄i when
a wider scale analysis is done, external signals form-
ing higher-level feedbacks; existing x̄i can vanish, if
the coupling becomes too weak (see later), etc.

Concentrating on the energy variables and flow
variables is a standard approach to modeling of dy-
namic systems, being exploited, for example, under
the name bond graphs. Now, too, as the structures
converge and find their balance, it turns out that the
monads change to models, mirror images of the envi-
ronment, as shown below.

3 Functionalization of ideas
Given the above starting points, the systems start
rolling autonomously. The detailed theory of neocy-
bernetics [1] is not repeated here, it is only shown
how the old discussions fit the current more general
framework.

3.1 Trying to prosper — feedforward
All system emergy and activity comes from outside,
the environment is the “master” and the system is the
“slave”. The nice thing about the assumed activa-
tion spreading mechanism, or diffusion, is that it is
a strictly linear phenomenon. So, if ūj is some re-
source (potential, or excess of actors) and x̄i is some
activity (net flow, or spreading of actors), in “abstract
diffusion” they are coupled as

x̄ij = aij ūj , (1)

for the indices ranging between 1 ≤ i ≤ n and
1 ≤ j ≤ m. Here, aij is some kind of diffusion co-
efficient, determining the level of interaction between
the system and its environment. As compared to tra-
ditional diffusion, this generalized diffusion must be
thought in a wider perspective. Whenever one can
write some mass balance (or heat balance, etc.), the



above formulation applies (the left-hand-side variable
often being some derivative of another quantity; see
Sec. 6.3). Also, the behaviors need not be of first-
order type (exponential); oscillatory transients also
belong to this category when complex numbers are
employed (see Sec. 6.5).

But there are typically many resources that con-
tribute to an internal phenomenon. Because of the
simple scalar nature of the activity variable, the con-
tributions can be added together, so that

x̄i = ai1ū1 + · · ·+ aimūm =
m∑
j=1

aij ūj . (2)

It does not matter if the resources uj have different di-
mensions or interpretations, or if the mechanisms dif-
fer, as long as they are reflected internally in the same
way, increasing (or possibly decreasing) the monad
activity.

To understand the emolutionary success of the
monad x̄i, its self-emergy needs to be analyzed. Mul-
tiplying both sides in (2) by x̄i and taking expectation
gives

E
{
x̄2i

}
=

m∑
j=1

aij E {x̄iūj} . (3)

This should assumedly be maximized. How is the
possibility of optimization, or emolution (in its basic
form) reflected in the formulas, what are the struc-
tural changes that can take place here? — It has to
be assumed that the coefficients aij can vary; in prac-
tice, it is best to think of aij as reflecting some kind
of proximity between the sign ūj and the monad x̄i.
The system can (more or less knowingly!) move itself
nearer to those resources that seem like most promis-
ing ones; the lucky strategies outperform the inferior
ones, becoming rewarded in emolution.

To define a sound emergy optimization task, one
needs to assume that there is some cost for increasing
the parameters aij , because otherwise a bounded so-
lution does not exist. It is reasonable to assume that to
maintain proximity and better coupling, emergy has
to be invested. How many units of emergy is needed
for one unit of proximity, then?!

To approach this dilemma, one can recognize that
by raising both sides in (1) to second power and ap-
plying expectation, one has

E
{
x̄2ij

}
= a2ij E

{
ū2j

}
. (4)

That is, if all (or certain proportion) of the acquired
emergy is invested in increasing proximities, it is the
squares of the aij parameters that should be com-
pared to evaluate the investment. If one knows the

total emergy available for maintaining proximity, this
emergy equals the sum of squares of aij’s.

The optimization problem now becomes: given
the constraints, reach towards the maximum dissipa-
tion. The weighting factors aij should be selected so
that the internal emergy E

{
x̄2i

}
becomes maximized

when the “length” of the ai parameter vector (square
root of available emergy) is some constant bi, so that
a2i1 + · · ·+ a2im = b2i :

Maximize
∑m
j=1 aij E {x̄iūj}

when
∑m
j=1 a

2
ij = b2i .

(5)

This constrained optimization problem can be solved
applying the method of Lagrange multipliers, so that
one can write

max
ai1,...,aim


m∑
j=1

aij E {x̄iūj}+ λi

b2i − m∑
j=1

a2ij

 ,

with maximization to be carried out for each aij .
Now, these are unconstrained problems and, having
a unique maximum, it can be optimized for each aij
separately by setting the partial derivative to zero —
this means, for example, that

d (· · ·)
daij

= E {x̄iūj} − 2λi(bi) aij = 0.

Here the notation λi(bi) means that the Lagrange
multiplier, if it were solved, would be dependent of
bi. When all derivatives are set to zero and aij’s are
solved, one has

ai1 = 1
2λi(bi)

E {x̄iū1} = qi E {x̄iū1}
...

aim = 1
2λi(bi)

E {x̄iūm} = qi E {x̄iūm} ,

where a new constant parameter qi is employed.
Thus, from (2) it can be seen that if the monad is opti-
mally coupled to its environment, for some coupling
factor qi, there holds

x̄i = qi

m∑
j=1

E {x̄iūj} ūj . (6)

This is the local principle for a local entity between
ūj and x̄i to reach for in emolution, whatever is the
physical implementation of the coupling mechanism.
The same reasoning applies to all available monads in
the system, so that the set of n similar equations (6)



can be expressed as x̄1
...
x̄n

 =

 q1E {x̄1ū1} · · · q1E {x̄1ūm}
...

. . .
...

qnE {x̄nū1} · · · qnE {x̄nūm}


 ū1

...
ūm


or in a compact matrix form as

x̄ = QE
{
x̄ūT

}
ū, (7)

where the vectors x̄ and ū contain the variables x̄i
and ūj , respectively, and the diagonal matrix Q con-
tains the individual qi’s on its diagonal. The mapping
matrix E

{
x̄ūT

}
is the covariance matrix, but with-

out the traditional mean-centering or normalization.
It needs to be remembered that even though the ma-
trix representation is employed, all the operations in
the system are still completely local. The system can
be truly distributed and ubiquitous.

This formula (7) was the starting point when study-
ing the Hebbian neural networks in [1] — but in the
emergy framework this all can be extended to very
different domains.

3.2 Paying the toll — feedback
It is hard to believe that something interesting could
come out from emergy capture alone, and, indeed, to
see this, closer analysis of matter flow is needed. The
key point is to observe that there is negative feedback
as exploitation means exhaustion: emergy that is in-
vested in some specific monad, is no more available
to others. This feedback is an implicit consequence
of the nonideality of the world, there are no pure in-
formation flows. The feedback signal does not have a
physical channel of its own, even though it is shown
as a separate path in an information flow graphs (as in
Fig. 2). Seen from above, this feedback means com-
petition among monads, resulting in self-regulation
and self-organization.

Monads are distinct dissipation structures, and this
structure is determined by the environment (for con-
crete examples on what this means in practice, see
Sec. 5.1). Once the monad activity has been started,
it is the proximity structure that determines the in-
teraction probabilities, dictating where the needed re-
sources are fetched from. When following the learned
structure, the monad seems to be selective and active,
sucking the resources it wants. In this sense, the sys-
temic diffusion is not simple dispersion of resources,
but there exists intricate structure in the flows.

When the monad i has activity x̄i, it sucks from
resource j such an amount of emergy that is propor-
tional to the proximity αij or qiE{x̄iūj}. This means
that the change in the resource j because of the mon-
ads can be written as

∆uj = c1a1j x̄1 + · · ·+ cnanj x̄n

=
∑n
i=1 ciaij x̄i

=
∑n
i=1 ciqiE {x̄iūj} x̄i.

(8)

The factors ci > 0 are some proportionality factors.
For the whole grid of resources one can write

∆u

=

 c1q1E {x̄1ū1} · · · cnqnE {x̄nū1}
...

. . .
...

c1q1E {x̄1ūm} · · · cnqnE {x̄nūm}

x̄

=

 E {x̄1ū1} · · · E {x̄nū1}
...

. . .
...

E {x̄1ūm} · · · E {x̄nūm}


·

 c1q1 0
. . .

0 cnqn

 x̄

= E
{
x̄ūT

}T
QT C x̄,

where matrices Q and C both are diagonal, C con-
taining the parameters ci on its diagonal. This expres-
sion can still be simplified. Because one can multiply
x̄ with an arbitrary C, so that

Cx̄ = CQE
{
x̄ūT

}
ū = QE

{
Cx̄ūT

}
ū,

the expression (7) must hold also for the linearly
transformed system where x̄ has been substituted
with Cx̄ as well. One can also alter the system
state vector without essentially changing the system
properties; thus, without loss of generality, from now
on assume that “unit conversions” and scalings have
been carried out beforehand so that this vector has
been modified as

x ←− Cx, (9)

giving the feedback mapping in the simple form that
is the transpose of that in (7):

∆u = E
{
x̄ūT

}T
QT x̄. (10)

According to the above discussion, either x or u can
have arbitrary scaling, but thereafter the scaling of
the other is fixed — this makes it possible to won-
der whether there are some natural unit systems in
nature.
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Figure 3: The basic monad structure

Further, assume that systems are interconnected
subsystems, or there are trophic layers, so that the
acquired emergy gets shared. If the loss is pro-
portional to the activity, what remains of x̄ is only
x̄′ = x̄−Ax̄′, whereA represents the loss. It is this x̄′

only that remains visible; if it is this effective x̄′ that
the system uses also for proximity adaptation, vari-
able x can be ignored altogether, when one formally
writes x̄′ = QE{x̄′ūT }ū. Also in feedback: only the
actualized activity x̄′ affects the environment. Substi-
tuting now x̄ for x̄′ in all formulas, everything in the
derivations remains unchanged, even though the con-
vergence to the balance in the deeply nested system
may take a longer time.

There are some more words that need to be said
about the internal convergent processes and signal
visibility. Above, symbols like ū and x̄ have been
used; they are the final, effective, visible variables,
dynamic balance values that result after underlying
interactions have converged. The original undis-
turbed resource vector u is invisible for the local ac-
tors, because in reality it is disturbed by the systems
(this can be called here, too, observer effect). Only
visible values can make a difference; only outcomes
remain, as one cannot trace the underlying details.
When the feedback is taken into account, one has

ũ = u−∆u, (11)

as illustrated in Fig. 3. After convergence (the feed-
back loop is always asymptotically stable) the re-
maining visible resource level becomes

ū = lim
t→∞

ũ. (12)

This ū could thus be characterized as the remaining
error, or residual, representing what is left of the orig-
inal resource u. Similarly, final x̄ is available only af-
ter the signal-level convergence of x = QE{x̄ūT }ũ.
In practice, one only needs to wait until a time has

elapsed that is considerably longer than what are the
time constants in the loop, so that the virtually sta-
tionary value has been reached. Indeed, there are var-
ious different time scales and “different infinities”. In
the Heraclitean spirit, everything changes, only time
scales differ. To capture the “momentary nature” of
these changings, one has to concentrate on the fol-
lowing scales separately:

• Fastest, system’s internal time scale: relevant to
momentary signals like x

• Moderate, environmental time scale: relevant to
signals like u, ū and x̄

• Slowest, “ecosystem scale”: models of emergy,
for example E{ūūT }, E{x̄x̄T }, and E{x̄ūT }.

In the environmental time scale, for example, the sys-
tem state can be seen as a static function of its in-
puts, its dynamics being too fast to be observed, and
when studying the time scales relevant to the system
state, the environment remains practically constant,
being too slow to change considerably during the sys-
tem’s time constant. This means that when concen-
trating on a specific time scale, signals from other
scales look like constants. The co-existence of var-
ious time scales reflects the structure of nature: there
are emergent layers everywhere, and the hierarchy of
such layers does not always remain detached.

3.3 Putting the system on wheels

Signals traverse through the system, “feed-in” and
“feed-out” looping between the system and its en-
vironment, searching for equilibrium that would sat-
isfy the constraints. The underlying dynamics sup-
plies the machinery to reach and maintain the asymp-
totic dynamic balance. When seen in the mathemat-
ical perspective, finding equilibrium corresponds to
“solving” an algebraic structure of constraint expres-
sions through implicit iteration (see also Sec. 6.3).

There is always the trivial solution x̄ ≡ 0; to find
a non-trivial solution, emergy needs to be invested.
When studying the feedback structure (see [1]), it
turns out that the environmental “resource modes”
become separated so that one distinct monad repre-
sents each of the most relevant correlation structures
among the signs; some emergy is lost in this feedback
process, so that one can write a formula for inheri-
tance of emformation (also see Fig. 19):

E
{
x̄2i

}
=

√
λj
qi
− 1

qi
. (13)



Here j represents the index of the input data mode
with variance λj that has been coupled with the
monad i.

Self-emergy must always have a positive value.
Thus, as seen in the formula (13), activity in a monad
does not necessarily start at all. There is “static fric-
tion” that is not caused by physical non-idealities,
but by the sophisticated structure of the feedback
loop itself, emerging (astonishingly) in a strictly lin-
ear structure. There is a threshold to get the “mills
running”, or a tipping point where “the momentum
for change becomes unstoppable”, a monad chang-
ing from not-being into existence (one can also speak
of the “hundredth-monkey effect”). In very concrete
terms, quantitative changes to qualitative when the
bifurcation point is reached and the coupling param-
eter fulfills

qi >
1

λj
. (14)

Otherwise what is potential never becomes actual.
— Later it turns out that the system is forced to
detect some patterns in the input data by match-
ing the data against learned features. The monad
model does not exactly match the observed world;
when the system is put “face to face” with the en-
vironment, bargaining can be started, matching the
views about the “merchandise” (the offered pattern)
between the “buyer” (the system) and the “seller” (the
environment). When the pressure (coupling) is strong
enough, a compromise is always found.

Such strong coupling has so special effects on the
environment that one could perhaps introduce yet an-
other term, or emmersion. When all monads are ac-
tive and have the same coupling q, equalization in the
environment takes place, so that λ̄j = 1/q for all i,
that is, variation in the visible environment after feed-
back effects becomes suppressed, its variances in all
directions becoming constant4. There is a nice para-
dox here: even though the seemingly invariant envi-
ronment as seen by the local actors (in the time scale
of the system) is volatile in the wider scale, after cou-
pling, the environment (in a certain sense) becomes
invariant (for more paradoxes, see Sec. 6.6). Because
of the structured diffusion, system moulds its visible
environment, or the vectors ū: it is not only so that the
system (the observer) would reflect its environment,
but the environment (the observed) is also modified
by the system. The system and its environment es-
sentially become one.

4In practice, when all variances in the system become equal
then, modes can get blurred, because, if one selects Qopt, one has
Q = q I , and there holds QE{x̄x̄T } = E{x̄x̄T }QT also for
non-diagonal E{x̄x̄T } — to learn why, see [1]

There is now one free parameter qi for each monad
that effectively determines the faith of that monad.
Assumedly there have to exist some external mech-
anisms to automatically adjust those control param-
eters: the goal is that there would exist no parame-
ters to be tuned whatsoever, because only when the
subsystems are truly autonomous real scalability can
be achieved. In practice, an adaptive selection of the
coupling parameters as

qi =
1

E {x̄2i }
(15)

can do the trick, effectively implementing variance
compensation of the monad activation. This selection
makes that monad emerge for any complex enough
data, pushing the coupling so tight that even the
weakest resources become visible. Such adaptation
is completely local and can be implemented in each
monad separately. There are other ways to motivate
this choice, too:

• It promises fast and robust (second-order) con-
vergence of signals and models (see Sec. 6.3)

• There is also maximum system excitation,
meaning emolutionary advantage (see Fig. 19)

• Additionally, symmetry between the system and
its environment is reached (see below)

• Last but not least: such activity adaptation has
been observed in neuron systems where active
neurons become less sensitive.

The term symmetry (or “emmetry”?) that was used
above means here that the system and the visible en-
vironment become balanced, meaning that E{x̄2i } =
λ̄j , that is, their variation levels become equalized.
Indeed, one can write a simple formula that connects
the standard deviations of the system activation, visi-
ble input, and the original input:√

E {x̄2i }max
=

√
λ̄j =

√
λj

2
. (16)

This means that in optimum only one fourth of the
resource is exploited, and maximum emergy transfer
is reached even before that (see Fig. 19).

Thus, to reach the emolutionary optimality, the ma-
trix Qopt implementing the maximum system emergy
as defined as the objective in Sec. 3.1 should be se-
lected as q1 0

. . .
0 qn

 =


1

E{x̄2
1}

0

. . .
0 1

E{x̄2
n}

 .



In practice, however, strict optimality in couplings is
not always desirable: equalization of variances tends
to make modes harder distinguishable, and the emer-
gence of clusters can suffer.

In practice, when emulating monads, in some cases
there can emerge convergence problems, and some
nonlinearity can help. It turns out that the cut-form
nonlinearity or rectification has some practical and
theoretical benefits; that is, during iteration apply for
all monads

xi = fcut

(
qiE{x̄iūT } ũ

)
, (17)

where

fcut(xi) =

{
xi, if xi > 0,
0, otherwise, (18)

so that the activity value can only be non-negative. It
needs to be recognized that the model linearity is not
completely lost: the inactive modes are temporarily
pruned out from the model as they cannot have any
effect whatsoever, and the model with the remaining
ones is linear. In some cases, it may also be reason-
able to restrict ũ to have only non-negative values.

The world of stable monad attractors must be
started from the bottom, always assuring the next
layer of monads only contains convergent processes,
so that the emerging complexity, or the bundles of
activity manage to stick together maintaining their
integrity. From here on, the story continues as pre-
sented in [1]5 — only the main results (and fresh in-
terpretations!) are summarized below.

4 Analyses and interpretations
Here, the resulting view from above is briefly pre-
sented — how the monads contribute to the model.

4.1 Summary: mathematical properties
Even though everything in complex systems is based
on elementary operations, the system properties can
best be understood in terms of multivariate linear the-
ory and as mappings between spaces. Interactions
between a system and its environment are mappings
between the space of signs and the space of monad
activities, and resources are just input data. When
the dynamic equilibrium is found not only on the sig-
nal level but also on the statistical level, the emergy-
maximizing mapping from the signs to monads is

ϕT = Q E
{
x̄ūT

}
, (19)

5Specially, check the paper “Hebbian-Style Feature Extraction
– From Neural Systems to Neocybernetics” (2008) in Publications
section therein

according to (7), presenting the explicit operation of
the underlying actors, as studied above, in a compact
form. This means that the feedback (10) can be ex-
pressed as ∆u = ϕx̄. Further, when the effective
mapping from the original, undisturbed u to the sys-
tem state x̄ is solved, one has the following formula-
tion for this implicit mapping

φT =
(
E
{
x̄x̄T

}
+Q−1

)−1
E
{
x̄ūT

}
, (20)

exploiting the “sparse linearity” of the loop structure
(x̄ perhaps containing only a subset of the all n vari-
ables, only the active ones), so that x̄ = φTu. The
two mappings are related so that

φT =
(
In +QE

{
x̄x̄T

})−1
ϕT . (21)

It needs to be recognized that the formula for φ in
(20), or the implicit feedback mapping (φT )T = φ,
coincides with the well-known formulation of ridge
regression from the lower-dimensional x̄ to the es-
timate of the higher-dimensional ū. Similarly, as it
turns out, the explicit feedback mapping ϕ, when it is
appropriately transformed by solving ū in terms of u,
implements ridge regression from x̄ back to the orig-
inal resource vector u, giving out its estimate û; this
means that there holds ∆u = û. Thus, the negative
feedback, or u − ∆u, maximally exhausts the input.
Note, however, that as ridge regression gives robust
and rather conservative estimates, the input elimina-
tion is still far from complete: if the modes have been
separated, so that E{x̄x̄T } is diagonal, the estimates
are half of what they theoretically should be6.

This all can be presented as shown in Fig. 4. In-
tuitively, the emergent strange dual symmetry as de-
picted in the figure cannot be a coincidence — it is a
“proof” that we are heading in the right direction!7

Local level maximization results in global level
modeling — these issues deserve emphasis here. In
the sense of emergy (emformation) representation,
the neocybernetic model is the best possible:

• The feedforward implements optimal (robust)
modeling of the input data in terms of variance
preservation.

• The feedback implements optimal (robust) esti-
mation (or “generative modeling”) of the input
data in terms of variance preservation.

6But doing right things is more important than doing them ex-
actly right — this “sloppy” exploitation, not exhausting all of the
available resources, is perhaps one key to the sustainability of nat-
ural systems?

7Another, perhaps more plausible, but still debatable “proof”:
Applying the neocybernetic approach, one achieves maximum
number of consequences with minimum number of assumptions



• Thus, the closed loop with negative feedback
implements optimal (robust) “statistical level
control” of the input.

Here, optimality in estimation is to be interpreted in
the linear regression framework, and in modeling it
means principal component (subspace) analysis per-
spective, so that the orthonormal basis axes spanning
the subspace of maximum emergy in the environmen-
tal data are the rows in the matrix

θT =
√
Q

√
E {x̄x̄T }−1

E
{
x̄ūT

}
. (22)

If the system covariance E{x̄x̄T } becomes diago-
nal, and if one uses Qopt, the orthonormal axes of
the “system subspace” are determined directly by
the forage profiles or vectors ϕi, implementing “re-
concentration” of distributed emformation in data.

On the other hand, robustness in regression means
reduced sensitivity to colinearity of variables. In tra-
ditional regression, one has to invert the data covari-
ance matrix E{x̄x̄T }, and if this is singular, estimates
become badly behaving. Now, however, as Q is pos-
itive definite, the matrix to be inverted, for example,
in (20) always has full rank. Specially, if the coupling
factors are selected as in (15), this matrix becomes

E
{
x̄x̄T

}
+ diag

(
E
{
x̄x̄T

})
. (23)

that is, the diagonal elements of the covariance matrix
are doubled. This matrix is always invertible, assum-
ing that the environment is complex enough, that is,
if there exist at least n behavioral modes in the data.

In the modeling part, robustness means sparse cod-
ing. Because of (13), as the losses try to suffocate the
monad activity, system has to struggle; this becomes
manifested as rotation of the subspace basis axes as
determined by the profile vectors in E{x̄ūT }T . The
most beneficial directions in the resource space are
sparse components within the principal subspace: the
goal is to make the monads that are active at a certain
moment maximally active, “winners” surpassing the
threshold, simultaneously damping the “loser mon-
ads”. Thus, a feature representation of the environ-
mental data becomes implemented, where a pattern is
decomposed into a low number of clearly distinguish-
able features that have different degrees of relevance,
revealed by the corresponding monad activities.

The cut-form nonlinearity further enhances spar-
sity, putting some activities explicitly to zero: this
means the simultaneously active monad combina-
tions define different “subworlds” in the same model,
or in the “cybernetic multiverse” (there are maximally
2n − 1 submodels). Within each subworld linear-
ity applies. The subworlds “communicate” with each
other only through the shared features.

Figure 4: Ouroboros eating its own tail: exploitation
means exhaustion, and good modeling results eventu-
ally in starvation. As the “snake” infinitely loops be-
tween the system and its environment, searching for
balance, it simultaneously defines the behaviorally
relevant axis between the opposite extremes

According to the above discussion, it is not only
humans that do modeling: nature tries to detect its
own model. As seen from outside, it seems that na-
ture tries to compress the chaos by employing all its
“submodels”, like different species, etc. When natu-
ral processes are seen in such modeling perspective,
new horizons open up: for example, one can speak of
interobjectivity, or the possibility of sharing the com-
mon world view with nature (see Sec. 6.1).

As seen in the mathematical perspective, it is the
cost criterion that determines the nature of the sys-
tem in the most compact form. It turns out that in
the neocybernetic framework the criterion to be min-
imized is

J(x) =
1

2
xT

(
E
{
x̄x̄T

}
+Q−1

)
x−xTE

{
x̄ūT

}
u.

This criterion also connects the time scales: it can be
used for determining x̄ (when minimizing J(x)), and
for determining the model itself (when minimizing
E{J(x)}). The criterion can be decomposed as J =
Jint + Jext, with the internal emergy and the external
emergy flow being defined as

Jint(x̄) = 1
2 x̄

T
(
E
{
x̄x̄T

}
+Q−1

)
x̄

Jext(x̄) = −x̄TE
{
x̄ūT

}
u.



It turns out that for a given data the model size nopt can
be found when E{J(x)} becomes minimized. This
makes it perhaps posssible to get rid of the final global
control parameter. For some reason it seems that of-
ten this nopt is found in the vicinity of the magical
number 7± 2.

In the spirit of deformation energy in mechanics,
the neocybernetic criterion could be seen to define
emformation energy, the system trying to minimize
it. — Such compact mathematical patterns help to
see connections, as shown below.

4.2 Step aside: Hopfield nets, etc.
The above cost criterion can be expressed in different
ways. After some manipulations, it can be written,
for example, as

J(x) = −1
2 x

T
(
E
{
x̄x̄T

}
−Q−1

)
x

− uTE
{
x̄ūT

}T (
In +QE

{
x̄x̄T

})−1
x.

As it turns out, such formulation is familiar from
Hopfield networks — maximum of emergy can be
seen as minimum of pattern representation effort8.

A Hopfield net is a form of recurrent artificial neu-
ral networks proposed by John Hopfield. Hopfield
nets serve as content-addressable memory systems;
the main application of a Hopfield net is the storage
and recognition of patterns. It consists of a set of neu-
rons xi, where 1 ≤ i ≤ n. Each neuron is connected
to each other neuron (not to itself), and reciprocal
connections have identical weights. This means that
the coupling matrix (weight matrix)W has to be sym-
metric, so that Wij =Wji, and its diagonal has to be
zero. The Hopfield net has traditionally no inputs: it
is the steady-state pattern of x values that is searched
for starting from some initial state (the disturbed pat-
tern) x[0], hoping that this associative search process
converges to some preprogrammed attractor pattern.
The state adaptation towards the balance takes place
as

x[k + 1] = f (Wx[k] + V ) ,

where some kind of bias values are collected in the
vector V , and f is some nonlinearity, typically giving
out only binary values. What is special about Hop-
field nets is that they are based on explicit energy con-
siderations, so that their behaviors can be understood

8There are other neural network structures that could be men-
tioned, too — for example, the neocybernetic model works like
a distributed version of Kohonen’s self-organizing maps, when the
matrix Q is used as a non-diagonal (but still symmetric) “neighbor-
hood matrix”, so that there is some interaction among neighboring
nodes. This interpretation gives a clue of how the set of n model
elements could be automatically organized

in the top-down perspective, too. It is the Lyapunov
function that captures the total energy:

E = −1

2
xTWx− V Tx.

Comparing this to the neocybernetic criterion, it turns
out that J(x) can be seen as a Lyapunov function, be-
cause for a fixed input u one can define the vector
V = (In+QoptE{x̄x̄T })−1E{x̄ūT }u and the matrix
W = E{x̄x̄T } − Q−1

opt . Indeed, the weight matrix
W with this selection of Q is now symmetric and its
diagonal is zero. This means that there are many con-
nections between these differing approaches.

There exists a plenty of analysis directly available
for Hopfield nets, and this material can be employed
for gaining intuition on the properties of neocyber-
netic models, too.

First, the Hopfield net experience promises that
very strong nonlinearities can be introduced in the
system and there still is convergence to (local) mini-
mum. It is not only the proposed cut-form nonlinear-
ity, but, for example, upper bounds can also be intro-
duced. Even an extreme nonlinearity, binary “on/off”
thresholding is evidently possible.

Another intuition gained for free is that in the non-
linear system there can coexist various stable attrac-
tors in the data space (different stored patterns in the
Hopfield net), so that the final state x̄ is dependent of
the initial state. There is “memory” not only in the
structures, but also in the system state; so, assuming
that the state is not reset between runs, continuums
among successive data can be modeled. Location of
the attractors is not only dependent of the environ-
ment but also of the system dynamics. Not having to
reset the state between the input vectors also makes
convergence faster if the successive inputs are corre-
lated; what is more, omission of such higher level ini-
tialization and synchronization makes the approach
still more plausible.

In the Hopfield net, explicit “programming”, or
off-line storing of patterns is needed. If the vectors
si, where η < n, are the samples to be stored, the
weight matrix is, in principle, defined as

W = s1s
T
1 + · · ·+ sηs

T
η ,

with the diagonal being additionally zeroed (and
some further modifications perhaps being carried
out). In the neocybernetic case, too, the eigenvec-
tors of the covariance matrix assumedly carry some
information of the “natural patterns” of the system?
— It needs to be remembered that in the Hopfield
net with the state vector x simultaneously being the
“input”, no abstraction or actual model construction



takes place. The system is just an associative pattern
memory there, whereas in the neocybernetic model
the system is a storage for associative features, com-
ponents for constructing the actual patterns. For ex-
ample, visual patterns (like handwritten digits) are
decomposed into strokes. One can assume that now
there exist less spurious stable points as the system
dimension n is much lower than the pattern size m.

Looking once more at the signals, it is the error be-
tween the environment and its estimate, ū = u − û,
that is used as the effective input for modeling. If the
vector u already can be represented, then ū = 0, and
it does not have effect. Refine the boundary region
between the model and the input patterns, concentrat-
ing on the key points — intuitively, this makes learn-
ing more efficient. Such low-level “attention con-
trol”, or emphasis on the hardest cases, resembles the
operation of yet another approach that is studied in
the field of neural networks, namely support vector
machines.

As discussed by Geoffrey Hinton, many unsuper-
vised layers can work conditioning the patterns: it-
erative modification of the observed “virtual world”
or “reality-directed phantasy” can enhance the adap-
tation process. Now all layers are collapsed onto
a single recurrent layer. Relevant features are first
extracted, and only after their relevance is assessed,
they are adapted in appropriate directions. The fea-
tures are the common structures in the whole multi-
verse, becoming updated much more often than the
subworlds themselves, making the model adaptation
a feasible task.

The Hopfield nets, however, turned out to have
their own deficiencies. Later, the similar ideas were
polished in Boltzmann machines, where a simple lo-
cal learning principle was proposed. Still further
on, in restricted Boltzmann machines there was feed-
back only through the environment, and real variables
were employed instead of binary. Active develop-
ment work is still taking place — one could almost
say that the stochastic emolution is getting nearer to-
wards the neocybernetic model!

4.3 “Whirls” made concrete

The basic monad structure, or the elementary loop, is
similar in all environments. But according to Leib-
niz’s monadology, monads go in all scales. Now we
have been studying monads only on the most elemen-
tary level — how to widen our views? What are the
common characteristics beyond the ever-changing re-
ality? Have we learnt something this far?

The key characteristic in neocybernetics is feed-

Figure 5: An example of more complex monads: the
metabolic citric acid cycle (or Krebs cycle), a series
of enzyme-catalysed chemical reactions, which is of
central importance in all living cells that use oxygen
as part of cellular respiration

forward and feedback that together constitute a loop
whose outlook is determined by the underlying realm.
The above discussions were necessary to understand
how the seeds of order emerge from chaos, but, here-
after, when stability has been reached, it is easy to
see why the models and controls become more so-
phisticated: more efficient control of resources means
emolutionary advantage. As the loops become more
complex, implicit controls become more and more
explicit, and the structures of circular causality be-
come visible. And, in the neocybernetic spirit, it is a
control loop if it helps to maximize dissipation. For
example, in metabolic systems the behaviors are gov-
erned by a multitude of general chemical laws — but
only those reactions turn out to be relevant that con-
stitute a proper functional chain (see Fig. 5). There
are homeostatic control loops within a cell, and more
complicated ones like the cell cycle.

As Stuart Kauffman argues, loops of auto-catalysis
emerge in complex enough chemical mixtures. His
claim is that such self-organization (together with
evolution) would be enough for life to emerge in
the primordial sea. However, mindless loops can-
not accomplish very much — as discussed above, it
is the self-regulation that is the third key ingredient,
boosting and modifying the appropriate autocatalytic
loops. All of this can be understood only in terms of
dynamic balances using mathematical tools.

Because of the system pancausality (see [1]), all
variables are interconnected, and the system is as-



sumedly full of loops. Each independent cycle de-
fines a new monad (if loops are locked together, there
is just one degree of freedom). The same intuition and
methodology still applies: covarying variables along
the longer cycles are collapsed into the one freedom-
oriented variable x̄ when aplying the principal com-
ponents based methodologies, either implicitly or ex-
plicitly. This degree of freedom on top of the con-
straints, or the mathematical construct, can easily be
made intuitive: the monad activity is the “loop rate”
or “rotation speed” in the loop. Applying the intuition
from physics, one could say that when the constraints
are written down, the remaining freedom points out
in a new direction (note that in abstract loops, as
in Fig. 5, the “right hand rule” becomes obsolete).
Of course, the loop radius can also be infinite in the
case of pure forward flows, when one has too narrow
scope, or when feedbacks have not yet been imple-
mented. The data-oriented analysis methodology can
still model such partial structures — a subset of vari-
ables are missing, but probably the key covariations
are still visible in the remaining ones. In more com-
plex systems, the loops can be allogenous rather than
autogenous (see Sec. 5).

For physical reasons, often the loops cannot be run
in reverse direction, so that the minimum speed is
zero, whereas there is no theoretical limitation from
above. When emulating such irreversible processes,
the cut-form nonlinearity is again well motivated.

Monads emerge as “pathways” through the under-
lying jungle of constraints, defining degrees of free-
dom. They compress the overall effects of the under-
lying realm, thus offering new abstracted ways to see
the world to a system. Finding such new views can
be called low-level creativity. As it has been said, the
universe is characterized by a “persistent creativity”
operating on all scales and in all contexts, but espe-
cially where there is life. Finding degrees of freedom
can be seen as exploration — thereafter, when the en-
hanced view of the world is applied for implementing
further controls, there is exploitation of the freedoms.
Quantitative adaptations change to qualitative steps in
development as new monads pass the threshold.

Depending on the situation, a monad can be char-
acterized in different ways. The monads are the sys-
tem freedoms; simultaneously they are the basic ac-
tivity patterns. Or, putting it in a more intuitive way:
monads are the mills producing order and structure.

In the dynamic setting, when systems are seen as
processes (see process philosophy in the following
section) the surface patterns and the deep patterns be-
come equal. Indeed, one is getting nearer and nearer
to the Heraclitean vision: panta rhei, and it is a river

Figure 6: The “red spot” on Jupiter has been there for
hundreds of years

that can be used as a metaphor to describe the na-
ture of all things. One can propose a river analogue:
there are flow patterns, whirls and eddies that are de-
termined by the environmental constraints, they may
disappear but re-emerge when the time is right. Such
river is filled with élan vital, constituting the flow of
life! — Self-sustaining whirls can perhaps tell some-
thing about the underlying realm (see Fig. 6). Simi-
larly, “fluid analogies” have been coined by Douglas
Hofstadter to describe cognition.

Everything is patterns, and the cybernetic pattern
structure can be assumed to be always the same. This
is a very deep philosophical claim — and there are
other philosophically oriented consequences, too.

4.4 Consilience of philosophies?

Edward Wilson’s idea of consilience, or the unity of
all knowledge, is not restricted only to the “two cul-
tures”, or to natural sciences and human sciences. All
branches of human knowing are also natural systems,
following the same principles of emolution, and, in-
deed, this applies to all branches of human living.
In Fig. 7, the neocybernetic perspective is applied to
natural philosophy, but the same structure can be ex-
tended to the metaphysical basis of all philosophies.
It is mathematics that offers the language for discus-
sions; the domain area offers their semiosis and se-
mantics — and the narrative, or the story outline,
with the initial rise and eventual downfall, is offered
by the engineering experience concerning adaptive
control systems (see [1]). Everything can then be seen
as branches of “abstract physics”.

It is interesting to study how the neocybernetic
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Figure 7: The hierarchy of scientific endeavors being put upside down

“mental attractors” are related to concepts in tradi-
tional philosophies. One key idea with dozens of
reincarnations is that of dialectics, or the study of op-
posing tensions forming some kind of patterns in their
dynamic balance. In Eastern philosophy they have
yin and yang, Heraclitus speaks of the unity of oppo-
sites, and, later, in the writings of Hegel and Marx,
dialectics again has a central role, being recycled in
the form of thesis and antithesis by Kuhn. Now, in
the neocybernetic setting, a monad defines an axis,
simultaneously making the opposite directions along
that axis visible. There are new nuances, though: now
there is continuity between the extremes, as x̄i is real-
valued. The traditional Aristotelian thinking claims
that there cannot exist an intermediate between con-
tradictories; only recently the fuzzy logics, etc., have
shown that continuity can be possible and benefi-
cial. Neocybernetics uses calculus rather than logics
to evaluate the balances along the continuums.

However, things are not so straightforward. Neo-
cybernetic models also propose need for discontinu-
ity in world models: granularity there emerges in the
form of sparsity. Convergent continuous processes
(monads) determine discrete constructs. Further, di-
chotomies in those models emerge on the most fun-
damental level when structuring the world; one could
even speak of new dualism: it is reasonable to distin-
guish between information and matter, and the mod-
els implement the coupling between this information
(as stored in the emergent structures, or expressions
of emergy E{x̄ūT }) and matter (as manifested in the
actual signals u and x). It seems that there is new
hope — when trying to understand the world, per-
haps it is not only about structureless energy and its
Hamiltonians (see also Fig. 20).

Yet another key to combining neocybernetics with

today’s paradigms is through process philosophy, or
the “ontology of becoming”. Truly, this branch of
philosophy promotes the Heraclitean spirit: what ex-
ists is result of processes, the metaphysical basis be-
ing dynamic rather than static.

On the other hand, the general framework of
neocybernetic emulations can be seen as a branch
of computationalism, implementing the application
and functionalization of the process philosophical
framework. It operates more through synthesis than
through analysis, always starting from the bottom.
One tries to understand the existing life forms by cre-
ating new ones. Properties of the world emerge from
low-level computations. To reach a view of “univer-
sal life”, it cannot be whatever iterations: the neo-
cybernetics reveals (so is claimed here) how to im-
plement semantics and emulate emolution in terms
of convergent (computer) processes, capturing the
essence of natural systems.

Returning to consilience: it is usually assumed
that the “equalization” among sciences means down-
grading, as scientific communities, too, are vulner-
able to societal randomness, and the domination of
paradigms perverts the neutral scientific progress.
Now, however, when there is the computational com-
mon basis for all sciences, natural and humanistic
alike, the level can be upgraded. To be regarded as
a science, there must be repeatability, and, thus, pos-
sibility of verification or falsification of claims. A sci-
ence cannot be based on unique successions of behav-
iors, because then one cannot determine whether the
observed developments are just extremely improba-
ble coincidences, or whether there does exist some
general rule, or pattern of attractors. For example,
evolution cannot be “proven” as the history cannot
be repeated and verified in the classical sense. Now,



neocybernetic computationalism (or “emputational-
ism”?) starts from hermeneutic/cybernetic semiosis,
the valuation of signs (of course) remaining debat-
able, semantics being grounded in converging iter-
ations. When the mills are grinding, fresh monads
emerge, producing new data material, or spectra of
alternative scenarios. Rather than having a case with
chaotic divergence, one finds stable attractors where
the activity concentrates. When there are many case
samples available, relevant models can be found by
cleverly abstracting over individual details.

The classical starting point of new cybernetics, or
“radical constructivism”, seems to be outdated. Rel-
ativism has to give way to relevance, meaning that
things are no more negotiable but they have to be
based on real attractors in their domains. This means
that even ethics can someday become a subject of the-
oretical study.

Having “in silico” data on alternative scenarios, the
Hegelian Geist can perhaps be captured in social sci-
ences and in history. And biology can change from
studying taxonomies towards understanding general
principles of “abstract biology”. Indeed, there per-
haps emerge higher categories over the contempo-
rary paradigms; one will have abstract philosophy or
metaphilosophy, and there will be metascience. —
But how to detect and recognize the appropriate signs
and monads in practice? This will be studied next.

5 Examples of monads
In this section, real systems are seen through “neocy-
bernetic eye-glasses”, actively putting things in that
framework, showing how the assumptions can be mo-
tivated in different domains, and what the “low-level
monads” can look like. The examples are unpolished,
and, in some sense, this cavalcade is more like a “re-
ality show and tell”.

5.1 Physical systems
When facing a mindless system, like systems in basic
physics, there are challenges when applying the pre-
sented framework: what is the “memory” there, or the
assumed model where emergy is stacked; how does it
adapt, and how can this memory act as a signal filter?

In elementary level mechanical systems, the mem-
ory is implemented through mass inertia, so that there
is emergy storage in the system dynamics. How the
filtering through such memory becomes implemented
is dependent of the physical domain — below, two
cases are studied, namely, that of surface waves, and
that of Bénard cells.

l

l/2

h
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waves

Figure 8: Surface waves are emolutionary, too

The surface waves in the sea are manifestations of
the interaction between wind and water. In this case,
water is the “system” that tries to get coupled to the
wind to capture some of its emergy (or, in this case,
mere energy). This situation is illustrated in Fig. 8.

The molecules within a wave are in a circu-
lar movement; there is no net translation of the
molecules, the propagation of the wave front being
an emergent phenomenon. The molecules are the ac-
tors doing random walk, turbulence providing “inno-
vations” in their realm, some of the paths become
magnified, resonating with other similar behaviors,
constituting the visible effects. All this is difficult to
quantify. When everything is abstracted to global en-
ergies (emergies), as in Lagrange mechanics, assum-
ing that the emolutionarily successful system maxi-
mizes the “throughput”, one can apply the top-down
view and ignore the details.

The wind energy is assumedly present in its kinetic
energy, average energy density being proportional to
the wind speed squared, or E{v2}, and the average
energy density of surface waves is proportional to the
wave height squared, or E{h2}, according to linear
wave theory. Now, assuming that it is the interplay
between these self-emergies only, one can write the
(scalar) resource as u = v and the (scalar) system
state or activity as x = h. Assumedly the coupling
between the wind and the waves is then proportional
to E{xu} = E{hv}. How can this be interpreted?

It is the wave height that summarizes the experi-
enced wind, being the manifestation of the system
memory E{hv}, kinetic energy becoming in this way
visible and effective. It is this wave height that de-
termines the degree of coupling: when the wave is
higher, the wind blow is resisted more by the wave,
and the energy capture from the wind is more effec-
tive. This kind of analyses can give new ways to reach
qualitative understanding — for quantitative results,
different kinds of losses, etc., should also be taken
care of in analyses.

Another example of simple physical systems with
emergent behaviors is the case of Bénard cells. As-
sume that there is a layer of liquid that is heated from



below. When the temperature is not high enough, one
can only detect thermal conduction, or diffusion of
heat through the liquid; but when a threshold temper-
ature gradient is reached, a qualitative change in the
system takes place, and convection cells emerge, that
is, there is an organized-looking structure of flows up-
ward and downward in the system (see Fig. 9). If the
temperature is further increased, chaos takes over.

Again, this organized behavior is difficult to under-
stand within the traditional theories. When one ob-
serves that in the case of structured convection, there
is maximum dissipation, or transfer of heat through
the liquid layer, one is again approaching the key
point: the system tries to exhaust the available re-
source, or heat difference, as efficiently as possible.

In principle, there are (at least) two alternatives
when system semiosis is studied:

1. If one selects u = ∆1/T and x = dW/dt, or
if the system sees the difference of inverted tem-
peratures as the resource and the heat flow as the
activity (Case 1 in Fig. 10), the “cross-emergy”
is

E {xu} = E
{
dW

dt

(
1

T2
− 1

T1

)}
,

so that it is the average entropy growth that be-
comes maximized in emolution.

2. If one selects u = ∆T and x = dV/dt, or if the
system sees the temperature difference as the re-
source and the volume (mass) flow as the activity
(Case 2), on the other hand, one has

E {xu} = E
{
dV

dt
(T1 − T2)

}
,

so that it is the average heat transfer that be-
comes maximized.

It is questionable whether entropy per se would be
the explicit maximization goal; on the other hand, it
is easy to assume that heat (power) maximization of-
fers emolutionary benefit. The principle of maximum
entropy production is probably too simple: entropy
production qualifies as a Lyapunov function for the
system, yes, but it is not the most efficient of the al-
ternatives. Also the resource dimensions raise ques-
tions:

1. In the former case, the “inverted temperature”,
indeed, can in special cases be seen as a natural
system input. Assume that a system of chemi-
cal balance reactions is modeled by first taking
logarithms (see [1]); then, what one has from the
Arrhenius equation is exactly this 1/T .

HOT

COLD

Figure 9: Structure of Bénard cells
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Figure 10: Two possibilities for “system semiosis”

2. In the latter case, T 2 should be proportional to
some energy quantity; however, heat content in
objects is only proportional to their tempera-
ture T . Perhaps one just has to remember that
emergy is not always energy, not even in physi-
cal systems!

It is clear that the wave system and the Bénard cell
system are nonlinear, thus conflicting the ideal neocy-
bernetic starting points; however, qualitatively, there
is perhaps something to learn. Does the neocyber-
netic starting point offer some fresh intuitions for
analyses? The claim here is that there is no other
theory that can explain the sudden qualitative transi-
tions. In the wave system, there is a threshold wind
speed that only is enough to actuate the wave forma-
tion, and in the Bénard cell case, there is a threshold
temperature difference that is needed to change heat
transfer from conductive to convective.

Why do such wave systems, etc., never emolve
further, producing more complex structures, or even
some kind of “ecosystems”? One key point seems
to be that there are no appropriate side effects now.
Compare to a system of electrons in neocybernetic
orbitals [1]: as the electrons find their “electronical
lockers”, they simultaneously give raise to charge
vibrations in the molecular system. These vibra-
tions interact, making it possible to have coordination
among separate molecules in solids and in tissues, so
that on the higher level new round of cybernetic mod-



eling can take place with new rules of the game (see
Sec. 6.5).

Or more complex structures can emerge also if
there is somebody making the qualitative difference.

5.2 Allocybernetic systems

Here, allocybernetic means a system where the ac-
tors are not themselves part of the system. In autocy-
bernetic systems, as in the physical examples above,
the memory is in the actors; now, actors are outside
the “memory” that is getting constructed. Of course,
memory alone is dead, and the actors are needed to
see the signs there.

Here, two very different allocybernetic cases are
studied: from the bottom, we take ants, and from the
top, we take humans.

First, study the case of ant paths. The actors, or
the ants, have no understanding of the big picture;
their role is that of signal carriers only (Fig. 11).
Still, the outcomes of their uncoordinated local op-
eration look marvelous in the global scale. How can
they accomplish this?

In an ant hill, assume that there are n different
types of “workers” or actors, differentiated by the
pheromone they use for communication (as has been
shown, it is the pheromones that attract ants to follow
other’s footsteps). Further, assume that an ant of type
i, where 1 ≤ i ≤ n, behaves so that when it has found
a food resource j, where 1 ≤ j ≤ m, it secretes its
pheromone; the amount of pheromone is higher if that
resource is specially good (uj denoting the value of
the resource). If xi is the number of type i ants that
have passed a certain location along a path from a re-
source j, then the total amount of pheromone along
the path is proportional to xiuj .

It turns out that, as seen from above, it is the ex-
pression E{xiuj} that “tries” to become maximized
in each location because of the ants’ mindless ac-
tions. And there is negative feedback, or exhaus-
tion of resources, so that each spatial location seems
to compete for pheromones. This all means that
the neocybernetic model applies, and one can di-
rectly jump to conclusions: there emerge “eigen-
paths”, or “highways” between the ant hill and the
resources. The “wisdom” of the ants is distributed in
their pheromone map.

Furthermore, of course, there should hold xij =
qiE{xiuj}uj , or the number of ants should be lin-
early proportional to the pheromone amount on the
path. The bilinearity, or simultaneous dependency of
E{xiuj} and the resource value uj is not such a chal-
lenge if the resource remains constant as is normally

Figure 11: The signal carrier

the case.
Ants wander randomly, but if there is a strong

pheromone scent along some path, that path becomes
selected more probably. This randomness means that
there is emolution: shortcuts become employed when
they are found, and paths become optimized. Pop-
ular routes tend to become even more popular, and
“sparsity” of ant paths emerges. As the pheromones
evaporate, old model gets gradually forgotten, and the
model adapts continuously. — Similar ideas could be
applied also for design of human-scale roads.

It is interesting to note a similarity: as the pho-
tons (or gravitons) that have travelled the distance r
get distributed on an area r2 in the three-dimensional
space, the pheromone at radius r gets distributed
on an area that is proportional to r2 in the planar
case. This means that one can apply an electrostatical
analogy and visualization: resources define a force
field around them, the “charge” being proportional to
E{u2j}. In this case, the force field is distorted by the
roughness of the terrain.

Yet another similarity, again related to photons, de-
serves to be mentioned: the operation of the opti-
mizing agents, the ants, resembles the operation of
individual photons, yet in a very different temporal
and spatial scale. There seems to be some kind of
general “sparsity pursuit” what comes to their inter-
action with observers (or other systems). While the
effects of such systems are only relevant on the emer-
gent level (as studied statistically), snapshots collapse
the “wave function”, and only samples of the under-
lying probability distribution remain to be seen (spar-
sity pursuit visible here, too). Always when you look
at the ant colony, you do not see the flow of food into
the nest, the relevant thing, you only see the random-
walking individual ants!

What comes to systems of humans, both of the
two alternatives are possible: the systems can be ei-
ther autocybernetic or they can be allocybernetic.

Autocybernetic human systems are the object of
social sciences: human is seen as a member of its
group only. In a society of humans, too, there are
the “ecological lockers” or niches, determined by
the resource variation structure in the environment.



The human semiosis is not very complex thing re-
ally, indeed, it seems to be simpler than among an-
imals: at least for some people, money or the prices
of things is the valid measure for everything, together
with fashions. Of course, some stubborn people still
value the respect or cumulating social appreciation
and gratefulness that can be earned through seem-
ingly irrational action (as seen from the utility theory
point of view). As the resources in different sources
are limited, there is competition and negative feed-
back (everybody just cannot be fashionable!), and
self-organization emerges in the form of “eigenbe-
haviors”. Of course, one could claim that humans
do not behave in such a trivial way — but note that
the human motivation works, at least quantitatively,
as presented in Sec. 3.1: one is even encouraged to
go where one is good at and where there are avail-
able possibilities, this activity amplification resulting
in neocybernetic adaptation. The “free will” is excep-
tional, and usually it does not affect the statistically
relevant big picture, but it is needed to bring variation
in behaviors, making emolution possible.

But humans are more than animals: culture in
general consists of a variety of allocybernetic sys-
tems, with humans acting as the signal-carrying ac-
tors, taking care of their construction, development,
and maintenance.

The memetic systems are most characteristic to hu-
mans: more and more complex concept networks be-
come constructed. Perhaps the most (neo)cybernetic
of all human systems is science, as claimed by the sci-
entific community itself: The unique goal of science
is the absolute “goodness” of theories what comes to
their match with reality. All assumptions should be
transparent to make them debatable, thus enabling
fast emolution (however, the cybernetic thresholds
are immense in today’s highly coupled science). If
xi is the number of researchers within a community i,
and uj is the potential of the paradigm j, it seems that
the system efficiently follows the assumed changes
in those potentials. Potential here means the possi-
bility of reaching a breakthrough; that is why, there
is a negative feedback effect when some paradigms
become too popular. The “paradigm semiosis” in
the abstract ideasphere, or the evaluation of the po-
tential, can become rather random, for example in
hermeneutic social sciences, where the contact with
the real world has become somewhat faint — and also
in natural sciences, the choice of what is interesting,
how the evidence should be weighted and what is to
be ignored altogether (!), is determined in far-from-
optimal ways.

When studying allocybernetic systems with hu-

mans as actors, it is advantageous to invert the point
of view now: Human-made systems must be seen
as the active entities, whereas humans with differ-
ing capabilities supply for their resources. Rather
than being anything concrete, resources are now the
functionalities and capabilities available among peo-
ple. And it is the society that tries to lubricate the
wheels for the systems, educating people and enhanc-
ing their mobility, so that there would be maximum
transparency and resource availability. Of course,
the society itself, or the highest-level system, does
this to utilize the sub-cultures as its own resources
to reach prosperity, or self-emergy. Long and inter-
twined monad loops here, too!

As seen from the perspective of average individ-
ual humans, or the allocybernetic actors, it is again
the money (and respect) that keeps them active. Ar-
rogant humans can even think they have the control
over their systems — but this is just an illusion caused
by the missing understanding of the big picture: sys-
tems follow their own dynamics, and humans had bet-
ter comply with it. The role of us is to go round
and round in the monadic squirrel-wheels, keeping
the loops in motion.

In practice, there are always competing objectives
and limited possibilities. Different goals compete for
both human resources and economical resources. The
needs, desires, and potential benefits are opposed by
physical and economical constraints, and when the
tensions get balanced, the compressed space of “de-
sign freedoms” becomes instantiated.

A good example of humans-powered allocyber-
netic emolutionary iterations is the on-going devel-
opment of the Internet system.

5.3 Case study: Internet

Information retrieval has experienced tremendous
quantitative and also qualitative emolution in a very
short time: not so long time ago, it was the physi-
cal structure that was the key issue, or the actual lo-
cation of the library collections; then, in early Inter-
net, it was the logical structure, meaning that you just
needed to find the address or follow the links. Af-
ter that, enhancements have proceeded to capture se-
mantics: the search engines try to find relevant pages.
There is still plenty to do, as one is here facing the
age-old challenges of artificial intelligence.

How could our understanding of systems in general
be applied for enhancing the existing search strate-
gies? And, specially, can we anticipate the direction
of emolution? What can we say about the “semantics
capture” in Internet?
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Figure 12: Regression structure mapping between two spaces u and y through latent variables x. The case a above
shows how the regression can be implemented if the latent structure is determined by the variables in u alone,
searching for common features among all patterns; when a is alternated with b, the latent structure is balanced
between the patterns in both input and output, assumedly trying to detect distinguishing features

Just a few years ago, the World Wide Web seemed
incredible; later, the operation of the modern search
engines was amazing. There is always a threshold:
only after the infrastructure has developed enough, it
is possible to start thinking of yet higher-level plat-
forms. Similarly, now, as the possibilities of the con-
temporary systems have been seen, it is perhaps the
time for new leaps.

To understand where the today’s avant-garde in
the field is, one has to know what there is behind
the success of the Google search engine. Beyond all
the surface-level sophistication, the key factor there is
the PageRank algorithm that evaluates the candidate
pages in the web. The algorithm works as follows:
first, the traffic among pages in the whole web is sim-
ulated, assuming that outlinks to the accessible “next
pages” on any individual page are selected equally
probably; the resulting Markov chain (see Sec. 6.5)
can be used to analyze the steady state probability dis-
tribution among the pages, because (ignoring the dan-
gling nodes,, etc.) it is the most significant of the link
matrix eigenvectors whose elements reveal the “rele-
vance” of each page. This means that a huge off-line
iteration to find “the $25,000,000,000 eigenvector” is
needed in the m dimensional space, m here denoting
the total number of web pages.

Again, speaking of eigenvectors rings a bell. In-
deed, the neocybernetic model can be used to stream-
line and extend the PageRank approach. There are
now various alternative eigenvectors, assumedly rep-
resenting different compressed “traffic features” for
different cases, and the whole latent model is avail-

able for matching the data against them. What is
more, there is a more sophisticated model structure
available, and it is not only the determination of the
relevance vectors but the whole search process that
can be compactly implemented in this framework.

First, note that the neocybernetic regression is not
only capable of estimating the input, as shown in
Sec. 4.1, but a complete regression chain from input
space to output space through a latent basis can be
written as shown in Fig. 12. In this case, u is the vec-
tor of search words, and y is the vector of web pages,
mu being the number of search words and my being
the number of pages. Both of these vector dimen-
sions are huge, but the latent structure dimension n
can have a reasonable size, so that on-line iterations
are feasible. Each query can then be matched against
the “web eigenstructure”, so that a form of collabo-
rative filtering becomes implemented.

This was the top-down view — but the key point
in neocybernetics is emergence. How can the global
effects be motivated in terms of local actions now?
There are no physical energies, but “web semiosis”
for some reason dictates that each node tries to max-
imize incoming traffic. If xi is the activity on one’s
own page i, then self-emergy is E{x2i } (for the prob-
ability interpretation, see Sec. 6.5). If uj is the traf-
fic on some external page j, one tries to persuade
this traffic to the page i if the traffics are correlated,
that is, if there is common interest. Thus, the page
owner’s urge to increase connection is assumedly
proportional to E{xiuj} again, this proportion being
invested to persuasiveness. The increase in activity



can be assumed to be the product of page activity and
link temptation, or xij = qiE{xiuj}uj . The rest is
straightforward as the attractor is there (because each
page is others’ possible resource, the variables u and
x need to be restructured as shown above). Negative
feedback is caused by the fact that successful cou-
pling decreases the activity flow to competing pages.
As a page cannot affect its inlinks, its only tool for
increasing the coupling is through being somehow at-
tractive.

In practice, behaviors predicted by the neocyber-
netic model have truly been observed: there is sparse
coding, pages getting more and more specialized (and
some portals specializing in generality!). Assumedly
the web would finally automatically evolve towards
being more and more structured, the chaos of pages
giving way to order, but without specialized tools
such emolution process would be extremely slow.

When trying to match user’s intentions ever bet-
ter, one has to study semantics. Google is based on
strictly formal contextual semantics, studying merely
the link structure9. The proposed neocybernetic
model is based on the observed traffic, on the func-
tioning of the web as a reaction of user needs — that
is, one can speak of pragmatic semantics. Of course,
it is the user satisfaction that should be used as a cri-
terion rather than the number of hits; how to monitor
this satisfaction is an open question (use some voting
mechanism, or observe how long a visit lasts, etc.?).

When trying to capture semantics even better, one
can propose true cybernetic semantics; this could also
be called Heraclitean semantics or equilibrium se-
mantics. The idea here is to capture the balances
in the domain: when there are no more tensions or
tendencies, one has found the “hermeneutic mean-
ing”. In the case of search processes this means that
when the query has converged to the final balance, or
when the user is satisfied and the search process is
interrupted, the user’s intent is captured. The “flow
of search” towards (assumedly) more accurate search
words is buried in the search derivatives within the
query session, that is, in the difference between suc-
cessive searches. These derivatives can be included
among the data in different ways — a promising ap-
proach is to employ phase shifts in terms of complex
variables (see Sec. 6.5).

The future Internet is a nice example of how a truly
complex system looks like when seen from above.
Everything is seen through an intermediate level, or,
in this case, through the search engine. As individ-

9Semantic webs with static, hand-written ontologies are also ex-
amples of contextual semantics only, reflecting one person’s view
of the world

uals themselves are invisible, there is an illusion of
co-operation, the whole net acting as one entity. As
the “net effect”, one could say that there is a transi-
tion from a traditional net to a “safety net”: loads are
distributed in the net, and disturbances extend over
the whole system. Equalization means homogeneity:
whatever is the pattern of disturbances (queries), their
average “penetration” into the system (or the average
search path length, or “search emergy”) is minimized.
The system yields along the degrees of freedom that
could be called “web features”. And as this interface
to information reaches maturity, it will be included in
other yet higher-level systems, finally becoming truly
ubiquitous, offering the platform for yet higher-level
information systems to emerge.

6 “Ways up and down the same”
Ontology is the study of what there exists in the
world; the “opposite” of this is epistemology, making
hypotheses about what we can know about it, concen-
trating on the mental domain. In a way, epistemology
is the “ontology of knowing”: the key question again
is how the concept attractors emerge in the mind, or
epistemogenesis. — What Heraclitus once observed
is that “the way up and the way down are the one and
the same”, and, indeed, ontology and epistemology
are perhaps both based on the same dynamic princi-
ples — as discussed in what follows.

6.1 Reconstructing the world
The motivation for the development of the cognitive
system is again emolutionary, and it has the same ori-
gin as other (neo)cybernetic systems. The objective
is to acquire more resources, and this is accomplished
through neurons acting as actors. Resources are ex-
ploited through controlling the environment more or
less knowingly. The fine structure of the loop can
be very complicated, but the control is always there:
one tries to put the world into the “reference state”,
or reach the goal. To make differences, world is an
essential part in the mental monads, closing the main
loops (see Fig. 13). As Ross Ashby has observed:
mind is not mainly a thinking machine, it is an acting
machine.

As compared to earlier control structures, the men-
tal system is more complicated, because it has to
implement explicit controls for all kinds of environ-
ments with all kinds of real-life complexities. First,
separate observation and actuation is often needed;
then, because of the delays, one has to anticipate to
“emplement” control in real time, so that memory is
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Figure 13: When seen in a wide enough perspective,
the cognitive machinery is part of a loop, too, thus
helping to determine the goals of cognitive faculties

needed; higher level pattern recognition is necessary
to detect the “big picture”, etc. There are different
levels of world views that are needed to reach differ-
ent performance levels:

1. Implicit control for a “simple world”: the neocy-
bernetic basic strategy of selfish actors suffices

2. Explicit control to tackle with the real world de-
pendencies: separate muscles, etc., are needed

3. Prediction to handle dynamicity and delays in
the world: it is necessary to estimate the future

4. Scenarios because of the world uncertainty: Al-
ternative possibilities need to be observed

5. Imagination to fully exploit the “inner world”:
turn the analysis machinery into a synthesis en-
gine, construct a view of the better world!

Of course, to change one’s subjective world, there are
various strategies. If the environment cannot be af-
fected, it is enough to change one’s view of it: for
example, the easiest way to change the immediate re-
sources u offered by the environment is to move to
another environment.

The claim here is that it is the same motivation for
complexification of mental systems as it is with other
natural systems. Why cognition seems so special
is perhaps only because of its such a deeply nested
structure — and because it is the “seat of soul”, our
most intimate essence. As loops and subloops be-
come intertwined, there being no limit for the num-
ber of loops, some emergent limit becomes surpassed.
Each loop can be seen to consist of a controller and
a model; thus, successive layers of loops implement

some kind of higher-level models. Indeed, the system
starts modeling its own models: in this sense, there
is a succession of homunculi, and, in the limit, it can
be claimed that consciousness emerges. Higher-level
models distinguishing between actual world models
and “model-models” detached from the direct world
data can witness the emergence of self. What about
feelings and qualia: such “concepts” are not only
connected to the hermeneutic closure, but also to
chemical levels, like adrenaline, etc. Intelligence is
just another name for the versatility of the machin-
ery, reflecting the many-faceted challenges of the real
world. Understanding is the way to better resource
management. Even arts may help in world mastery
— new viewpoints, or new models perhaps give raise
to further control loops, or new cognitive monads.

Everything is based on good models. Specially,
deep-level associative understanding (without the
need of explicit “thinking”) means that essentially the
same attractors get implemented in the mental do-
main as in the outside domain. How is this possible,
as (in the Humean spirit) one can only observe the in-
teractions of systems, or data, never the system itself?
— Here, one has to remember that it is the system it-
self, too, that is a “slave” obeying the environmental
pressures as becoming visible in data. Then it can be
the same data that drives the emolution of the natu-
ral system and the mental model, and, as a result of
co-emolution, interobjectivity among domains can be
reached. Attractors must be instantiated one by one
in both cases. Remember that neither system, the ex-
periencing one or the observing one, has direct access
to the actual uj , both only see ūj , so that the system
state and the perception can, in principle, both con-
tain the identical x̄i variables10.

Here it is assumed that it is the Hebbian neurons
that are the building blocks in the cognitive systems,
all physical phenomena, etc., being emulated in terms
of neuronal activities. Neuron nets can be combined,
so that previous level emergy is valid resource for
successive neuron layers — but what is the added
value when various layers of neurons are connected?

Assume that all senses are logarithmic, so that not
the observed values are used as input signals but their
logarithms (at least visual and auditory channels seem
to work this way). Sums of logarithms corresponds
to multiplication of the original variables. The op-
eration of the net becomes then clearer if the vari-
ables have probability interpretation, or, more appro-
priately, some kind of relevance interpretation: the

10However, the observing system outside the arena cannot ex-
perience the actual tensions: to really “käsittää” (to understand in
Finnish) something, one needs to have a grip of it with one’s hand
(“käsi” in Finnish)
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Figure 14: Various layers of neuron grids — making
it possible to have multiple interacting mental mon-
ads, each refining a concept from below and from
above. Here, the visual components for perceiving
a table are illustrated (all coordination of the spatial
structure among constructs is ignored)

sum of variables does not need to sum up to one, and,
to make the system adaptible, the probabilities are
raised to some power (after taking the logarithms, this
corresponds to linear scaling carried out by the synap-
tic weights). Because the adaptation mechanism tries
to make the variables uncorrelated, one can see the
value x̄ as “and” operation being carried out to the
inputs. On the other hand, the alternative submodels
in the sparse model can be seen as an “or” — this all
means that layers of neural nets constitute an and/or
graph that can implement descriptions of complex
objects. The key point here is that each sub-loop is
a self-organizing and self-regulating entity, so that
increased number of loops does not increase system
complexity. In Fig. 14 it is shown how a visual con-
cept is based on lower-level concepts and higher-level
concepts, inaccurate evidence being shuffled in the
loops in the two-way connections, finally converging
to produce the most probable interpretation (an an-
other kind of probability network is studied Sec. 6.5).

Still, a succession of neural layers is only a data
filter; intuitively, to explain the cognitive function-
alities, this is not enough. Hebbian neurons consti-
tute a universal medium capable of simulating inter-
connected monads, but is there possibility of some-
how escaping the neuronal associative realm, to reach
something more? Indeed, there are new functionali-
ties and new physical domains available; for exam-
ple, below, two extensions to the basic view perhaps
offering at least partial answers are presented:

• New nonlinear functionality can be reached
through the collapse of emergent levels and
through sequentiality (see Sec. 6.2)

• Higher-level interaction among constructs can
be reached through exploitation of phase infor-
mation (see Sec. 6.4).

6.2 Back towards logics?
The presented neocybernetic model can be used to
explain the quantitative and associative representa-
tions and functionalities in the brain, but how about
the non-associative ones, the traditional field of hu-
man intelligence and thinking? How to integrate brit-
tle logic with fluid computation — are additional
functionalities necessary? Or, what kind of addi-
tional functionalities can be proposed in the presented
framework?

When one searches for min{J}, it is the variables,
or x̄, that become determined; when one searches for
min{E{J}}, on the other hand, it is the model on the
emergent level that gets determined. In both cases,
it is the same vectors that are being optimized on —
somehow the state changes to model when seen in the
higher-level perspective. Let us assume here that in a
wide neural net there is no coordination or any stan-
dardized clock, and the time scales can get blurred.
The emergent level time scale in some loops can be
the signal time scale in some others, meaning that
some subsystem’s x̄i is included in some other sub-
system’s profile vector.

How does it look like when the models are “col-
lapsed” in such way? Instead of being linear, the filter
becomes bilinear. The system can be seen as a con-
trollable switching circuit with dynamically change-
able information flow structures, higher-level catego-
rizations redirecting lower-level analyses, signals be-
ing “modulated” by other signals. One could speak of
“pattern-based transistor”; such emristor could be the
basic element in “em(e)tronics”. Thus, the computer
metaphor can be applied again, so that universality is
achieved in such systems: all computable functions
can be implemented on such a platform (and uni-
versality seems to be such a common phenomenon
among nonlinear systems that some other extension
could also be proposed, if those “emristors” do not
exist in the brain).

Building a complex computer program starting
from transistors — this is an impossible task. To im-
plement high-level program-like functionalities, one
needs conceptual tools to master the complexity, or,
indeed, one needs a programming language. But
this time there are very special demands what comes
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Figure 15: General principle of neocybernetic divi-
sion of labor, searching for “task patterns”, no matter
how complex the internal functions are in the blocks

to such language to comply with the underlying
realm: particularly, how this higher-level formalism
could inherit the key property, self-organized self-
regulating self-learning based on observations?

First of all, the new formalism framework has to
support the monads, as everything has to be based on
dynamically balanced loops. And to facilitate learn-
ing, there has to be continuity of representations. The
programmer is not to explicitly predestinate the at-
tractors, but all monads need to automatically get in-
stantiated from non-existence. Then, how to control
emergence in synthetic domains, and how to control
sparsity so that the relevant concepts only emerge?
The key point to recognize is that systems are de-
termined by their environments. Monads and sys-
tems emerge in a correct environment with appropri-
ate semiosis. The environment has to be defined, to-
gether with the appropriate viewpoint so that the ob-
ject world can be emulated; after that, truly ubiqui-
tous processing, ultimate distribution of control, can
take place. Debugging takes place on the high level:
does the behavior of the estimate correspond to that of
the observed real world? Amusingly, this all resem-
bles Douglas Adams’ view of Earth as a simulator for
completing a huge computation.

Individual attractors need not be unique (see be-
low), and only the top level behavior, or the capabil-
ity of reproducing the inputs, is relevant. To select
one of the alternatives, the wire frame of the solution
can be preprogrammed. The inner structure of com-
putations can be altered, for example, by using pre-
defined subprograms that determine monads of their
own, so that all emulation need not continue always to
the very basics. In Fig. 15, ready-to-use modules, or
encapsulated “(sub)pattern recognition units”, to be

included in emulations, supplying for special func-
tionalities, compete for input. Coordination of such
agents is trivial, based on exhaustion of the input;
agents emolve to still better match the local data, self-
organizing and finding their niches, or “functional
features”. Here object-orientation is taken to extreme,
the system being agents-based, operation being con-
trolled by the modules themselves.

To implement the above scheme, tasks to be car-
ried out must be quantifiable and decomposable. In-
deed, mathematical algorithms manipulate numbers,
and many of them are even, at least to some degree,
parallelizable. What is more, they naturally consist of
monads, or of convergent iteration loops (even though
there is typically just a single program counter). Spe-
cially interesting algorithms are those that are de-
signed for optimization. It seems that many real-life
problems, too, can be seen in the optimization per-
spective, so that perhaps optimization could offer the
underlying basic machinery for the general program-
ming language, to exploit computationalistic emula-
tion also outside basic physics.

It is optimization what the neocybernetic monads
do. In addition to those observations that were shown
in Sec. 4.1, one can say more: at each level neocyber-
netic networks implement fastest possible optimiza-
tion (in the second-order sense).

6.3 Example: “emergent algorithms”
Monads are not unique: there can be the same sur-
face pattern even if there are different underlying at-
tractors. To match a real world pattern, some combi-
nation of monads can be more efficient than others.
It is interesting to study whether natural emolution
has found the best solutions. The end result is that
in some cases algorithms can be not only solution
quadratures but emulations of reality.

Because neocybernetic systems are characterized
by tensions, one can assume that the role of a basic
monad is that of finding solution to differential equa-
tions. For example, one possibility for finding the
steady state x̄ (in addition to the trivial iteration of
(7)) is by following the negative gradient of J(x)

dJ

dx
(x) =

(
E
{
x̄x̄T

}
+Q−1

)
x− E

{
x̄ūT

}
u,

so that the corresponding iteration loop implements
the steepest descent algorithm. However, there are
different ways to make this iteration faster by intro-
ducing more loops: for example, as the steady state
of the iteration can (in linear case) be expressed ex-
plicitly using matrix inverses, one can invest the loops
there, implementing a matrix inversion algorithm.



If there are nonlinearities in the loop, the matrix in-
version approach is not available, and one would need
another efficient approach. Here, study another iter-
ative optimization scheme. Assume that one wants
to find x so that J would be minimized for given u
and ϕ; applying convergent iterations, x should fi-
nally converge in x̄. To reach such an algorithm, first
observe that

d2J

dxdxT
(x) = E

{
x̄x̄T

}
+Q−1.

Now, the familiar Newton’s method for optimization
assuring quadratic convergence, being faster in the
vicinity of the optimum than the steepest descent al-
gorithm, can be written (with κ being the iteration
index) as

x[κ+ 1] = x[κ]−
(

d2J

dxdxT
(x[κ])

)−1
dJ

dx
(x[κ]),

giving in this case

x[κ+ 1]

= x[κ] +
(
E
{
x̄x̄T

}
+Q−1

)−1 ·(
E
{
x̄ūT

}
u−

(
E
{
x̄x̄T

}
+Q−1

)
x[κ]

)
= x[κ] +

(
E
{
x̄x̄T

}
+Q−1

)−1
E
{
x̄ūT

}
·(

u− E
{
x̄ūT

}T
QTE

{
x̄x̄T

}−1 ·(
E
{
x̄x̄T

}
+Q−1

)
x[κ]

)
because In = E{x̄ūT }E{x̄ūT }TQTE{x̄x̄T }−1, as
shown in [1]. Further, when one usesQopt so that there
holds E{x̄x̄T }+Q−1

opt ≈ 2Q−1
opt (because the activity

covariance is diagonally dominant), the final update
rule can be written as

x[κ+ 1] = x[κ] +
1

2
ϕT (u− 2ϕx[k])

or, when defining x′ = 2x,

x′[κ+ 1] = x′[κ] + ϕT (u− ϕx′[k]) ,

giving the familiar form of mappings (however, re-
member that it is x that is the variable to be used
in other circumstances). One can select the initial
guess as x[0] = 0, or x[0] = x̄ of the previous iter-
ation run if the initialization is omitted, as discussed
in Sec. 4.2. The above algorithm is very fast: for the
quadratic cost criterion, it is, in principle, a “one-step
algorithm”, jumping immediately to the (linear) op-
timum (remember the properties of quadratic conver-
gence). However, the nonlinear cases are more chal-
lenging, and convergence can be enhanced by tuning
down the adaptation rate in the above update law.

The algorithm changes the cumulated value of x′

in each step, so that what one effectively has is an in-
tegrator. It is interesting to note that here the static
definition (7) has changed to dynamic, asymptotic
expression where the right-hand-side is essentially
identical. Thus, in a way, the mapping formula com-
bines the asymptotic and the immediate time scales.

To get rid of the final external control structures,
to avoid sampling, etc., one can express the discrete-
time integrator in continuous time without affecting
the final outcome. Regardless of anything that hap-
pens outside, the following dynamics governs the be-
havior of the local monad:

dx′

dt
=

1

τx
ϕT (u(t)− ϕx′(t)) ,

where the parameter τx is (proportional to) the time
constant of the system dynamics. The accurate
(matrix-form) time constant, or the time it takes for
the step response to reach 1 − 1/e ≈ 63.2% of its
final value, would then be

τx
(
ϕTϕ

)−1
= τx

(
QoptE

{
x̄x̄T

})−1
.

Linearity assumption was used above; yet, the
cut-form nonlinearity can be applied, preventing x
from becoming negative (case of limited integra-
tion). However, because x̄i are now always positive,
E{x̄x̄T } cannot become diagonal!

Similarly, on the higher level, there is another op-
timization problem. Above, the challenge was that
of fitting the observed pattern against existing fea-
tures, to find the state; next, there is the challenge
of fitting the features against all observed patterns, to
find the model. The former task is deterministic as
the model is given and new “samples” are computed,
but the latter task is nondeterministic, iteration steps
being dependent of the stochastic flow of measure-
ments. Indeed, what one is here facing, is an identifi-
cation problem.

Now the matrix ϕ is seen as an estimator; to put this
into the standard identification framework, the model
has to be studied vector by vector. So, assume that
there should hold uj = (ϕT )Tj x̄, where x̄ is seen as
the regressor data and uj as the scalar output, and
(ϕT )j is the j’th column of ϕT , and optimize the
parameters applying the traditional methods, having
fixed sequences of x̄ and uj data available.

For minimization of the squared reconstruction er-
ror 1

2 ū
T
j ūj , with errors ūj = uj−ûj = uj−(ϕT )Tj x̄,

one can first find the gradient dJj/d(ϕ
T )j =

−x̄(uj − (ϕT )Tj x̄), and from this one can write the



stochastic gradient algorithm as

(ϕT )j [k] = (ϕT )j [k − 1]
+ γ x̄[k](uj [k]− ûj [k])

= (ϕT )j [k − 1] + γ x̄[k]ūj [k],

now having k as the time index in the discrete-time
parameter update process. Parameter γ is the step size
factor determining the length of the update step.

Similarly as in the previous case, one can proceed
from the steepest descent approach to second order
stochastic Newton algorithm, when the inverse of the
approximated Hessian E{x̄x̄T } is included in front
of the gradient. Again, a more robust approach is
reached if only the diagonal elements are included,
meaning that one can add Qopt instead, resulting in
the adaptation law

ϕT [k] = ϕT [k − 1] + γ′Qopt[k]x̄[k]ū
T [k].

Here, it has been observed that the m separate up-
date rules can be combined because of the common
structures, so that one has a matrix-form adaptation
formula. This is an integrator again.

It is interesting to note that the straightforward
covariance update, with the monad sensitivity taken
into account, again assures the best possible (in the
quadratic sense) convergence of parameters: in prin-
ciple, the nearer you get to the optimum, the faster
the convergence is (however, remember that the na-
ture of the problem is stochastic). Parameter adapta-
tion is “lazier” if the monad is more active, so that it is
not only the signal-level activity adaptation that gets
slower; in general, one could say that more activity
means slower clocks.

As in the case of signal-level adaptation, one can
get rid of the final part of global control, or that of
maintaining the coordination of update campaigns in
the actors: the adaptation can take place in a con-
tinuous fashion without upper-level synchronization.
Assuming that τx ≪ τu ≪ τϕ, the intermediate τu
being the “environmental time constant”, so that one
does not need to explicitly wait for signal conver-
gence, one can write the model update formulas as

dÊ{x2
1}

dt = 1
τϕ

(
x21(t)− Ê{x21}

)
...

dÊ{x2
n}

dt = 1
τϕ

(
x2n(t)− Ê{x2n}

)

dϕ̂T

dt = 1
τϕ

Q̂opt(t)︷ ︸︸ ︷
1

Ê{x2
1
}(t)

. . .
1

Ê{x2
n}(t)

x(t)ũT (t).

Inclusion of integration also results in fastest con-
vergence of signals and fastest convergence of mod-
els, meaning fastest overall follow-up of the environ-
ment — assumedly resulting in best exploitation of
resources, and emolutionary benefit. Is it not rea-
sonable to assume that nature, too, has detected such
strategies? As seen from above, can we interpret this
all so that nature has implemented its models using
the best possible computational tools?

6.4 Further analogies and intuitions

The above section already returned from mental
spheres back to the physical realms: indeed, there is
again a loop, now from ontology to epistemology and
back, each nourishing the other. In some sense, ratio-
nalism is back — or one can use what one knows for
making hypotheses about what exists. For example,
one can make an assumption that there is an integrator
in the loop: the goal, implementing the static expres-
sion (7), is done through integration. What are the
consequences, then?

The key point is that one gets from static models
back to dynamic ones, from the asymptotic behaviors
to the ever-changing (truly Heraclitean) reality. And
it is only through dynamics that the magnificent tran-
sient structure of the real world can be captured, mak-
ing it possible to understand the interactions among
systems.

As observed in Sec. 3.2, systems can be chained,
so that the former system variable is the resource of
the latter one, and, when coupling is complete, in-
put and state variances become equalized. All system
variables xi can be interpreted simultaneously as re-
source variables ui, resources and activities having
the same dimension, so that mere redistribution of
potential takes place. There is a symmetry between
systems, either of them can be the emergy donor.

An interesting special case is a long chain of iden-
tically behaving systems that constitute a medium
where signals can traverse from system to system per-
haps long distances. Finally, as all stiffnesses have
been equalized, there is the same coupling through
the whole sequence. Such chain of successive inte-
grators can best be understood through an electrical
RC circuit analogy (see Fig. 16, with capacitors act-
ing as integrators; “empedances” in the system can be
based on selecting R = (QoptE{xxT })−1, being the
inverse of conductance, and C = τx In). Here, the
succession of internal variable vectors x has changed
to external vectors ux, with each ux having the di-
mension n; variable x is used as a spatial coordinate
only. It has to be remembered that these u’s are now
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essentially internal, or coupled variables. Note that
it is the voltage differences over the resistors that are
the driving forces in the electronic systems; this cor-
responds to ũ that drives the neocybernetic model.

The presented lumped parameter model can be
made ever more accurate by introducing smaller
and smaller elements, so that the “system width”
dx becomes smaller; at the limit, when dx → 0,
one reaches continuum with a distributed parameter
model that can be described using a partial differen-
tial equations (PDE). In this case, as shown in circuit
theory, the dynamics of the chain of (damped) inte-
grators can be expressed in the parabolic PDE form

∂u(t, x)

∂t
= D

∂2u(t, x)

∂x2

that corresponds to standard diffusion equation with
diffusion coefficient D (compare to the “abstract dif-
fusion” in Sec. 3.1!). This expression holds in each
location x along the continuum of subsystems. Look-
ing at this formula, it seems that a higher-level view
at the systems, ignoring the actual loop structure of
the underlying signal paths, is again neocybernetic,
with the integration added, now with different semio-
sis: physically, the driving force (or “resource”) is the
spatial imbalance what comes to the distribution of
some quantity u, and the local activity is the temporal
change of that quantity. The new differential formula-
tion of general diffusion is more natural when repre-
senting activity, making it possible to attack “system
systems”.

The “heat equation” above offers a top-down view
to highly coupled systems. The internal variables
are no more of interest; key point is how the sys-
tem of systems as a whole responds to incoming sig-
nals, and, specially, how emergy in the systems be-

comes conveyed. For example, when some distur-
bance enters the system, or when some variation be-
comes coupled, so that ūx gets disturbed from its bal-
ance, there is spreading of activation that gets atten-
uated in a somewhat “sluggish” way, never overre-
acting, the neighbors (somewhat reluctantly) sharing
the load. The temporary deviations get “swallowed”
and “digested” in the net. — Of course, the diffusion
analogy can be extended from the one-dimensional
case to higher dimensions, when the spatial second
derivative is substituted with the Laplacian operator
∇2.

The diffusion equation motivates other analogies,
too. If one assumes that there is double integration in
the nested systems, so that the structure can be pre-
sented as in Fig. 17, it is the following PDE that ap-
plies:

∂u2(t, x)

∂t2
= v2

∂2u(t, x)

∂x2
.

This is the wave equation that characterizes an unat-
tenuated relaying succession of disturbances in ei-
ther direction, with v being the speed of the wave.
Again, for electrically oriented, this can best be seen
as a transmission line analogy. If one again selects
L = (QoptE{xxT })−1 and C = τx In, one has the
following matrix expressions for the characteristic
empedance and the wave velocity, respectively: Z0 =

√
L
C

now
=

√
1
τx

(QoptE {xxT })−1

v = 1√
LC

now
=

√
1
τx
QoptE {xxT }.

The transmission line analogy gives intuition about
the nature of coupled systems: only if there is
matched load, empedances being equal, the emergy
transfer among systems can be carried out loss-
lessly, without reflections (or “ringing”), as shown
in Fig. 18. Again, one can apply the principle of
emolutionary benefit — one can assume that sys-
tems try to become better and better matched, or, as
seen from above, the platform for signals tries to be-
come more and more homogeneous to maximize the
emergy throughput.

The above two analogies visualize the two extreme
behavioral modes in “pancausal” neocybernetic nets.
The other end with the transmission line type behav-
ior is like a trampoline, a vibrating membrane, and
the other end with pure diffusive behavior is like a
quagmire with no sturdiness. In between, different
levels of attenuation are possible between the strictly
imaginary and strictly real transfer function poles.

Whereas the diffusion analogy is reasonable in
“normal” cases, in some systems double integration
is motivated. For example, if a change in some field



Figure 18: Perfect matching of subsystems

gives raise to another field, and the change of this
field causes the other field, two alternating fields push
each other, as in the case of electromagnetic waves.
Indeed, the neocybernetic model offers an interest-
ing interpretation of photons as wave fronts in aether,
effects traveling as disturbances in a cell-structured
universe.

The neocybernetic model may offer the key to ex-
plaining the coupling between the quantum world
and the classical realm: the observing system has
to couple to the observed system, resulting in quan-
tum decoherence or collapse of wave function. And,
again, remember the role of neocybernetic-like eigen-
problems, etc., in modern quantum mechanics! Fur-
ther, those string theories and their “collapsed di-
mensions” are well compatible with the monadic res-
onators and their more or less controlled degrees of
freedom. The equalization of empedances, or uni-
form “stiffening” of the observed environment, fi-
nally results in the whole universe becoming coupled;
perhaps this gives a mechanism how the global can
affect the local, so that the mystical Mach’s principle
can also be addressed.

What are natural constants? Natural constants
connect quantities together, so that when signal in-
teracts with matter, they couple the numeric values of
the cause and the effect. Now, it can be proposed
that the couplings between signals and matter take
place in the neocybernetic setting, and the coupling
factors, or the natural constants reflect empedances.
This would mean that the constants change when the
world changes; for example, can it be assumed that
the speed of light changes when the universe expands
and the system stiffness increases?

The nature of phonons have been studied in

the neocybernetic framework, observing that the
molecules can act as antennas, emitting differing vi-
bration patterns in different directions [1]. The trans-
mission line analogy further extends this view: crys-
tals (and solids in general) are characterized by stand-
ing waves, directed vibration fields, where individ-
ual atoms match and further amplify the pattern. The
vibration patterns determine the emergent forms and
the macroscale properties of the substance.

6.5 Complexity — reflected in numbers!

When differential equations are integrated as an inte-
gral part in the neocybernetic model, it seems that the
possibility of simple static calculations is lost. How-
ever, this is not the case, when one steps up to fre-
quency domain, where it is assumed that individual
signals are, again, irrelevant, and it is the resultant
group behaviors or wave fronts that are relevant; in
steady state, then, it is frequencies and their phases
that count — this all matching again well with the
monadic loop rates as manifestations of activity.

The mathematical tool to manipulate and ana-
lyze systems with linear differential equations is the
Laplace transform. Applying this transformation,
differential equations change back to static algebraic
equations, but the signal-domain variables become
substituted with frequency-domain ones. In a way,
a separate model is constructed for each frequency,
and signals are thought to be superpositions of those
frequencies. After the system has been solved in
frequency-domain, the dynamic trajectories in time-
domain can be solved (if this is needed) applying the
inverse Laplace transform. But vibration patterns can
best be studied directly in Laplace domain. In a spe-
cial sense, the steel plate analogy in [1] has a reincar-
nation when studying systems on yet higher levels:
as there are differing tensions, the vibration modes
are modified, skipping the analyses to the auditory
realm; and, similarly, the river analogy can be re-
employed, as the whirls become manifested in the au-
ditory world as noise of rapids.

In Laplace domain, systems look different (again,
see Fig. 16). Resistances R look the same for each
frequency, but capacitor C acts like an integrator, and
its impedance is 1/sC where s is the Laplace-domain
variable s = i 2πf , where f is the signal frequency.
The interpretation of this is that the impedance is
frequency-dependent: the higher the frequency is, the
more of it gets through, whereas for direct current,
with f → 0, the impedance becomes infinite. Addi-
tionally, symbol i is the imaginary unit. Indeed, com-
plex numbers become crucial in frequency-domain;



for example, the step input from zero to level A is
A/s = A/i 2πf in Laplace domain, being purely
imaginary. In complex domain, different kinds of
nonlinearities can thus be proposed instead of the
cut-form one: it seems that limiting variables to be
strictly imaginary (or strictly real), for example, can
efficiently direct the convergence process.

Complex numbers can readily be used in the neo-
cybernetic models11. However, there is one essential
change: all transposed expressions are substituted
with Hermitean ones, that is, formulas like E{xuT }
change to E{xuH}, etc. In Hermitean matrices, in
addition to transposition, all complex values of the
form x + yi (or r eiψ) are changed to complex con-
jugates x − yi (or r e−iψ). This change in formulas
can be motivated so that the symbol ψ in r eiψ repre-
sents the phase difference; if the mapping ϕ conveys
some phase-lead, it is only natural that in the match-
ing balance the backward mapping ϕH conveys the
corresponding phase-lag.

Exploitation of such phase information between
neural subsystems can be the key to get onto the
next-level neural models. At least, it has been ob-
served that there are some kind of rhythmic interac-
tions between brain regions, and in some situations
their momentary synchronizations take place. The
frequency-domain models are necessary tools to un-
derstand such phenomena. Similarly, the phase-based
approach can be a key towards implementing some
kind of Heraclitean semantics (compare to Sec. 5.3):
the difference between successive patterns can be
coded as the complex component in inputs without
introducing excessive variables.

When studying the case of complex molecules with
neocybernetic orbitals (see [1]), it seems that model-
ing of solids changes to frequency pattern recogni-
tion, that is, the “resources” are the frequency bands
with orbitals-determined emergies.

How can the observations in the previous section
be now expressed in this more concrete frequencies-
oriented way of thinking? — For example, study
the coupling between different kinds of systems,
where the characteristic empedances must match to
reach maximum emergy flow. As a concrete exam-
ple of this, study a higher-level intuition concern-
ing complex industrial systems: one should not di-
rectly combine “fast” and “slow” subsystems with
higher-frequency vs. lower-frequency internal (con-
trol) loops (or monads). Otherwise there will be un-
necessary control activity and emergy/energy loss, or

11Emulations with complexified algorithms have been carried
out by Mr. Petri Lievonen, showing that convergence typically be-
comes faster and more robust in complex domain

“ringing”, between the subsystems.
Another vision that can be boosted by the introduc-

tion of complex variables is the probability interpre-
tation of the effective variables.

As it was assumed (in Sec. 2.2), the underlying
behaviors are assumed to be intractable — pushing
this interpretation still further, it can be assumed that
the actual signals are truly unreal (or imaginary!), as
only the emergent variables are relevant for the ob-
server. According to what has been said before, these
self-emergies are always non-negative, their sum is
fixed (scalable to 1), and the structure of their relative
relevance is optimized in the neocybernetic modeling
process. In other words, the relevant variables are of
the form E{xHi xi} = E{|xi|2}, and the goal of the
system is maximization of these E{xHi xi} when the
total

∑
i E{xHi xi} is some fixed constant. The vari-

ables E{xHi xi}/
∑
i E{xHi xi} can be seen as having

a probability interpretation; these probabilities com-
pete in some environment, resulting in a neocybernet-
ically self-organized probability structure.

Looking at the essence of neocybernetic adapta-
tions, or the cost criterion J , one can see that it can be
written in the following form, too, using the system’s
internal variables alone (now taking the complexity
of the variables and their time scales into account):

J = −1

2
xH

(
E
{
xxH

}
+Q−1

)
x.

There are present only square forms xHMx, where
matrixM is symmetric, never the signals themselves,
and it is essentially the fourth powers that are empha-
sized in model construction — or “squares” of proba-
bilities. Thus, analyses can be carried out for a system
of probabilities, ignoring the underlying machinery
that maintains those probability structures.

The theoretical framework for studying dynamic
probability distributions is that of Markov chains.
Given the individual transition probabilities, one can
resolve the long-term average, or balance among
probabilities (or “probability of probabilities”), by
finding the eigenvector of the link matrix correspond-
ing to the most significant eigenvalue. Assuming pan-
causality, this is exactly what the neocybernetic ap-
proach tries to model — with a few extensions: note
that now there are various eigenvector candidates, and
a sparse structure among them, whatever this means!

Probabilities-based models can naturally be used in
the ant systems (see Sec. 5.2), and also the PageRank
algorithm in Sec. 5.3 is based on the analysis of
Markov chains. But specially relevant such emergent
probabilities become in elementary quantum systems
where the “signal carriers” are modeled as truly com-
plex. Remember the Feynman’s path integrals: the



probability for an event is given by the squared length
of a complex number called the probability ampli-
tude.

Another branch of research where probabilities are
heavily studied is game theory. This field is full
of paradoxical examples: for example, the game
theoretic solution to the prisoner’s dilemma (“you
should always deceive”) is clearly against common
sense. Indeed, only when studying iterated prisoner’s
dilemma, correct answers are found. This is the neo-
cybernetic approach, truly: as the time axis is col-
lapsed, when individual “games” are of no interest
and the long-term survival is concentrated on, one
can explain altruism, etc. — It seems that when look-
ing things from the new perspective, some paradoxes
vanish, but new ones emerge.

6.6 Emerging paradoxes

Applying (generalized) diffusion of information, and
eternal increase in the coupling factor qi, one would
assume that it is only the heat death with infinitely
stiff structures that would result from such neocyber-
netic evolutionary processes continued ad infinitum
— or, putting it poetically: finally there would only
stand deserted ruins in the fiendish dark space. How-
ever, things need not be so simple. Here, study exam-
ples that oppose the straightforward reasoning.

1. Keeping stability means loss of balance. Ever
better adaptive control finally loses the neces-
sary excitation, resulting in some kind of col-
lapse at some stage.

2. Diffusion results in extreme gradients. Whereas
diffusion (as studied above) apparently tries to
reach a situation where emformation is dis-
tributed equally, the reality is very different.

3. Increasing coupling means decreasing emergy.
It would seem that more efficient emergy capture
would be a winning strategy, but after a certain
point things change.

The item 1 above, or the problems with simultaneous
estimation and control, has been studied already in
[1], but items 2 and 3 are discussed below.

The above case 2, or emergence of extreme di-
chotomies, is based on the neocybernetic sparse cod-
ing and differentiation of monads on each level.
The most developed systems suck information from
other systems; when this continues across a multitude
of emergent levels, the resulting “information land-
scape” can become extremely rugged.

Sparse coding is truly universal. The general spar-
sity pursuit is illustrated by the emerging granular-
ity and structure in the universe. Why structures
emerge from continuum — this, however, cannot be
explained merely in terms of local dynamic attractors;
indeed, a higher-level view is again appropriate. One
could say that emergent structures facilitate maxi-
mum emformation dispersal in terms of best knowl-
edge. For example, applying the river analogy again:
first the obstacles are being eliminated to reach unre-
stricted flow in rapids, but, after all this smoothening
of water flow, a dam will be erected, where the energy
of the flow is maximally concentrated, all potential
drops being collected in one huge gradient. This con-
centrated emergy can then be exploited to smoothen
flows elsewhere, in some other systems, increasing
emformation diffusion in the global scale.

And this sparsity-oriented thinking can be brought
to still higher levels: one could even say that when
trying to explain nature in its simplest terms, one
should proceed from the Heraclitean pantheism to-
wards “sparse-coded deity”. And, specially, then
the emolutionary avantgarde is assumedly directed by
some conscious and creative mastermind!

The claim 3 in the above list, or optimization
turning to suffering, can to some extent be explained
so that neocybernetic competition among actors al-
ways finds the balance where nobody is fully satis-
fied. But there is still more fundamental issue that
deserves to be mentioned: even the winner with no
competition that could do what it likes is bound to
suffer. When the actors are clever enough, special in-
ternal mechanisms come to play. Indeed, one could
say that this is a deeply human tragedy: if you are
clever enough to reach for better, and if you are ar-
rogant enough to do it, you and your society will be
punished.

As studied in Sec. 3.3, there is a threshold: before
a monad can emerge, its coupling to the environment
must be strong enough — but this is not the whole
story. In Fig. 19, the whole behavior of the formula
(13) is illustrated: in addition to the era of “non-
existence”, there is the era of “unlimited growth”
and after that the rest is miserable decay. What is
this emolution running the coupling factor qi to ever
higher values, or cybernetization?

In systems involving humans, closer coupling
comes from better understanding; the increasing
knowledge is applied to increasing efficiency in mea-
surement and in control. This is unavoidable, this is
what humans always do, stagnation seems like no-
body’s benefit. The dilemma here is that system
emolution is based on individual actions: improve-
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Figure 19: Illustration of the behavior of the formula (13), and its interpretation

ments are always beneficial to the individual, assur-
ing higher share of the available emergy (see formula
(6)), but as the winning strategies finally penetrate
through the whole society (we are interested in the
steady states), the whole system moves forward: ev-
erybody is to follow the better strategy, but nobody
can benefit of it any more. This inevitable emolu-
tion goes first beyond the ecosystem optimum where
the transferred emergy is maximized, and then be-
yond the system optimum where the system’s share
of the available emergy would be maximum (value
qi,opt = 1/E{x̄2i }max with the peak in Fig. 19), towards
a situation where stiffness and system rigidity is im-
mense. There is nothing that an individual human
could do to resist this, everybody suffering after the
“hill top”. Only catastrophes can reduce the system
back to an ecologically sustainable level.

There are direct applications of the above view —
serving also as examples of how difficult it is to be
reasonable. For example, study the taxation system,
where government (the higher level) collects money
from the individual people (the lower level). That is,
u variables are the money available in differing in-
come classes, and x variables are the money collected
(see Fig. 20). Because the total sum of money is
fixed, it is reasonable to interpret the money-variables
as being squares of some more elementary factors
(as in the case of the probability interpretation in
Sec. 6.5). Ignoring the details, one can claim that it is
the 1/4 = 25% taxation level that is optimum when
one wants to maximize the collected money; but if
one wants to reach the “econosystem optimum”, the
tax level should be only 3/16 = 18.75% (compare to
Laffer curve and Hauser’s law). What is more, from

the model one can also directly observe that there is
a threshold: there should be zero tax for low enough
income! In a too low-level society, a (self-sustained)
government cannot exist.

Of course, the above mechanism of increasing
the coupling is only one possibility of implementing
emolution. It is the straightforward approach: invest-
ing more effort, developments in this way can always
be reached. More qualitative emolution steps are dif-
ficult, because it takes a “wider view”. Indeed, find-
ing structurally new perspectives means new semiosis
— typically one can introduce new resources, where
there are fresh degrees of freedom available. Such
innovation can perhaps start a new Golden Age. For
example, when looking at the family trees of living
species, one can observe such steps, and between the
steps there are minor modifications of structures; this
is called saltationistic evolution.

As the neocybernetic approach can perhaps serve
as a basis of the “new science” of complex systems,
something more is still needed: to understand emo-
lution, the processes of innovation have to be elabo-
rated on. What are the general properties of the free-
doms in abstract domains, and how the loops deter-
mined by the constraints can be escaped? More thor-
ough understanding of self-reference, or, more ambi-
tiously, general study of self is needed.

Further, to understand the nature of emolution, and
the élan vital that perpetually drives it, one should
also address the high-level general driving princi-
ples beneath the emolutionary processes in scientific
terms. It is not the entropy growth principle that qual-
ifies here alone: first, entropy is too much limited to
the physical realm, but there are other problems, too.
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Entropy is too much associated with structureless de-
cay and information loss; however, as was studied
above, it is about restructuring of emformation, or
sparse coding that takes place. There are different
“containers” of emformation, the other containers be-
ing exploited and further enhanced to better evacuate
emformation from some other containers. The idea of
entropy should be expanded in the direction of “ab-
stract control” and coding of emformation.

Paradoxes and other counterintuitive observations
are nourishment to imagination and they give a pos-
sibility of escaping the constrained thinking patterns
of established scientific paradigms. As Pablo Picasso
has said: “In arts and in humor the same laws apply
— only the unexpected makes you laugh.”

7 Conclusion

What does this all have to do with artificial intel-
ligence? — In the cybernetic spirit, complex sys-
tems cannot be studied one subfield at a time, and
this certainly applies to the cognitive system, too.
Sometimes it is easier to attack a wider-ranging prob-
lem than a specific problem case. To escape the
human-centered view, to reach wider perspectives of
what universal intelligence truly is, understanding the
world is the key also to knowing. Or, rather than
knowing something, it is about knowing something.

As artificial intelligence is a subfield in artificial
life, real intelligence can only be understood through
real life. Intelligence and life both are emergent-level
phenomena, and it is this emergence that deserves
main emphasis. Fundamentally, emergence does not
make sense without reference to semantics, and the
grounding of semantics is supplied here by the mills
grinding of everything that exists.

Neocybernetics implements the Heraclitean spirit:

everything flows, everything affects everything else,
etc. The famous aporias provide nourishment to
imagination — but in addition to Heraclitus, there are
other mythical recitations to learn from, too.

In the Finnish national epic Kalevala the heroes
have complete mastery of any system as these wise
men are capable of presiding over the births of those
systems (that is, they know their emergence). Further,
this might culminated in their construction of Sampo,
a magic mill where all this wisdom was automated.
The Sampo mill indefinitely produced “syötäviä ja
myötäviä”, or things to eat and things to sell.

In the case of SAMPO mills, the things to eat are
nourishment for intellect, turning into understanding
and imagination, innovation and application, finally
producing things to sell.

Kalevala tells us further that in a certain fight,
Sampo was accidentally dropped from a boat, and it
was a wave (“Aalto” in Finnish) that billowed over, so
that Sampo was lost forever, leaving only some whirls
(assumedly!) on the surface. — On the other hand,
the faith of SAMPO could be different. The idea of
SAMPO mills, the ubiquitous information refineries,
is today still in our hands. I hope the new SAMPO is
recognized before it is lost again.
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