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Chapter 1

Introduction

Generally cybernetics is no good way to avoid complexity in live.
But anyway a lot of efforts are driven to find the simplest way as
possible to handle complex systems. Despite of all efforts however
the world still offers plenty of amazing systems which are still too
complex to control them. In this thesis a theory is utilized which at-
tacks complexity which very simple ideas. The method is completely
data based and acts locally (single signal) in that way that global
structure (whole system) is found. In this sense it has got a bottom
up perspective. This theory is called neocybernetics.
The neocybernetics theory then is tested on realistic linear models
of a cage induction electrical machine. Different kind of SISO and
MIMO controllers are applied, simulated and their results are pre-
sented. It is shown how the theory works for this concrete case.
Finally all important problems are discussed and explained.
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Chapter 2

About neocybernetics

Neocybernetics is a new approach to handle complexity. Therefore
it uses well known mathematical tools (mainly linear algebra and
Principal Component Analysis), but it is the way of thinking and
interpreting complex systems which makes the difference.

While cybernetics generally tries to find abstract descriptions of com-
plex systems one can say that neocybernetics tries to describe the
emergence of new cybernetic structure. This means that it aims to
describe what happens when changing to another level of abstraction
(e.g. small scale view on molecules - large scale view on pressure,
temperature). On this kind of border new structure appeares, which
is called emergence in a neocybernetic context.

A whole overview to the neocybernetic theory and detailed exploita-
tion of the neocybernetic ideas are given in [1].

2.1. Basic ideas

To have a closer look at the basic principles of neocybernetic mod-
eling, there are three areas that have to be discussed: the dynamic
balances in systems, the high-dimensionality and the linearity pursuit
of modeling.
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6 2 About neocybernetics

2.1.1. Balances

In the process of modeling emergence one is mainly interested in the
final balance of a system rather than the process which leads to that
balance. Therefore it is assumed that the systems are stable. Real
systems are always stable in this sense that they reach a final balance.
If they were not stable, they would consume infinite energy which can
only happen in theory. (That does not mean that the reached bal-
ance is optimal or good.) This stability is caused by feedbacks. The
feedback structure is not interesting as long as it maintains stability.

Therefore we can assume stability and study the emerging pattern
which are formed when reaching the steady state.

2.1.2. High dimensionality

In order to deal with complexity one is automatically faced with
high dimensionality. In neocybernetic models environment data is
captured in high dimensional data vectors. In this context one acts
on the assumption that environment data is highly redundant. This
has to be kept in mind when evaluating neocybernetics, because the
assumption does not hold for the system presented in this thesis. The
actuator rotor system as considered here is rather low dimensional
(not more than order 20) and the inputs (environment) are nearly
independend of each other - no redundance. But it is an example how
the method works, and one should notice that the applied principles
would also work in high dimensional problems which are typical e.g.
in biological systems [1].

2.1.3. Distributedness

Distributedness is another kind of complexity. Most cybernetic ap-
proaches use concentrated models assuming that the whole informa-
tion can be handled in one central unit. Neocybernetics uses the
idea of many distributed agents (subsystems) which are connected
but act locally in the sense that they use only locally available data
(outputs of directly connected subsystems). Global structure is seen
as a result which will emerge if the agents act in an appropriate way.
All methods presented implement this idea. This kind of emergent
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pattern can be seen for example in 2.3.2.

2.1.4. Linearity

Neocybernetic systems are entirely linear. In the current trend of
emphasizing nonlinear methods this looks like a too severe restriction.
But there are good reasons for choosing linear models:
As neocybernetics searches for the essence of a system, passing dif-
ferent levels of abstraction, one is interested in scalability. This can
only be offered by linear systems. Furthermore, considering only the
balances of a system relaxes the assumption of linear systems, be-
cause even nonlinear systems can have a linear input-output relation
in steady state.
And of course, there exist powerfull tools to deal with high dimen-
sionality as mentioned above. Some more aspects are given in [1].
It turns out that linear models are the preferred choice to handle
neocybernetic systems. Therefore in this thesis only linear tools and
models are used.

2.2. Properties and assumptions of

neocybernetic systems

In this section the basic discussed above are formulated in a more
concrete way. It is actually a summary of Sec. 3.1 of [1].

2.2.1. Input output pattern / existence of balance

Assume a linear system with a n-dimensional state x and some input
vector w is given by

dx

dt
= −Ax + Bw (2.1)

As the system is assumed to be stable (A positive definite) it will
reach a steady state ẋ = 0 (for t → ∞)

0 = −Ax + Bw (2.2)

⇔ Ax = Bw (2.3)
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Note that (2.1) can also be seen as a reduced model of an originally
higher order one. In this case the state x is just the output x =
yext = Cextxext of the higher order system ẋext = Aextxext + Bextw.
In this sense x can be the state or the output of a system. For the
sake of constistent notation in this thesis x is always used to denote
the currently available part of the state.
Now a symmetric A is assumed. If it is not symmetric one can con-
tinue by multiplying (2.3) with AT . If (2.3) is integrated by x

J (x, u) =
1

2
xT Ax − xT Bw (2.4)

is obtained. This equation can be intepreted as a cost criterion which
is minimized by the system. This leads to an interesting observation
when it is compared to the next section.

2.2.2. Elasticity of systems

All neocybernetic systems are identical to (or even can be defined by)
elastical systems. To explain this an example is used: Study a spring
which is streched by a length s using an external force F . For this
spring internally and externally stored (positively defined) energies
are given as:

• Due to the potential field:

Wext =

s
∫

0

Fds = Fs

• Due to the internal tensions:

Wint =

s
∫

0

ksds =
1

2
ks2

(k denotes the spring constant).

If this example is now extended to a set of n springs affected by m

forces, a closed matrix formulation for the potential energies can be
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found. Therefore all interaction factors can be collected in matrices
A and B. Then the potential energies for the whole system look like

Wint(s) =
1

2







s1

...
sn







T

A







s1

...
sn






(2.5)

and

Wext(s, F ) =







s1

...
sn







T

B







F1

...
Fm






(2.6)

Note that A must be symmetric and positive definite ro represent
stable structures sustaining external stresses. If the forces are seen
as inputs and if the distances are seen as states the cost crition (2.4)
becomes the difference of the given energies. Hence the set of springs
seen as a damped dynamic system like (2.1) ends up in the minimum
of the difference of potential energies. This aligns with the Principle
of minimum potential (deformation) energy [6]. This idea of elas-
tic mechanical systems is generalized for neocybernetic systems: No
matter what a model physically represents its inputs are considered
as gerneralized forces u causing some deformation x. And if the exter-
nal stress is removed the system will go back to orginial states. This
leads to a general assumption which is assumed for all neocybernetic
system:

If the input of a system increases the value of the state de-
creases.

Hence an applied negative feedback to this kind of system always
remains stable.

2.3. Neocybernetic control

In this section it is shown how a controller can be introduced to the
system defined in (2.1). Neocybernetics always considers closed loop
systems because real systems are always connected to the environe-
ment, and thus the environment always implements a feedback (See
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Sec. 3.2.1 in [1]). Following this idea the system (2.1), assumed sta-
ble, can be thought to be stabilized through an environmental feed-
back. Hence the system is seen as a result of an underlying structure
which consists of an open loop system

dx

dt
= −Ãx + B̃u (2.7)

whose m-dimensional input is given by the state feedback

u = ϕ(x − w) (2.8)

If (2.8) is substituted in (2.7) we obtain

dx

dt
= −(Ã − B̃ϕ)x − B̃ϕw (2.9)

One can easily verify that this result is equal to (2.1) if the simplifi-
cations A = Ã − B̃ϕ and B = −B̃ϕ are used.
Obviously w is the reference value which x is compared to. This
input is of minor importance to the basic result if it is slow com-
pared to the system dynamics. As it is always zero in the systems
used for simulations (meaning that vibrations are controlled to zero)
it is generally assumed to be zero later on. From the neocybernetic
perspective the open loop system (2.7) never exists separateley. But
for the sake of applying the neocybernetic ideas to technical systems,
which are typically open loop (like (2.7)) until an controller is applied
(like in (2.9)), system and controller is formulated seperately now.

2.3.1. Adaptive controller

Neocybernetic controllers are a kind of mirror image of the steady
state of the system which is to be controlled. Therefore the mappings
ϕ and φT (inverse mapping of ϕ) are iteratively designed to control
the system. The controller is introduced here rather intuitivly but in
Sec. 2.3.2 it is shown which interesting results it leads to.
In (2.8) ϕ is introduced as just any state feedback which controls the
(sub-) system (2.7). The following equation shows how this feedback
is constructed:

ϕ := B · E{uxT } (2.10)



2.3 Neocybernetic control 11

u and x are measurement data. Therefore the expectation operator
E{·} in a neocybnetic context is defined as the mean value of any
stationary, periodic funktion f(t) for a certain time intervall T .

E{f(t)} =
1

T

t0+T
∫

t0

f(t)dt (2.11)

Of course x and u are not generally periodic. E{uxT } mean that the
periodic part of x and u (after reaching a stationary state) is used.
It might be better to write E{ūx̄T } but in accordance to [1] the bars
are left out.
(2.10) constructs a statical model depending on measurement data.
If desired the other direction (a mapping from u to x − w) can be
modelled, too.

(x − w) = φT u (2.12)

where
φT := Q · E{xuT} (2.13)

Here B and Q are diagonal matrices whose diagonal elements bi and
qi are arbitrary parameters. Both definitions hold only for the closed
loop system. Therefore it does not make any sense to use both defi-
nitions at the same time: It would be an algebraic loop unrelated to
the system.
Note that these formulars cannot be calculated explicitly: To deter-
mine the expectation values, x and u for a time period are needed,
but to measure them (in closed loop), ϕ or φT is needed. The whole
learning process is highly iterative. This means an adaptation pro-
cedure has to be run. The implementation of the adaptation law is
shown in Sec. 4.1.1.

How can these definitions be motivated?

To give some intuition, have a closer look at E{uxT }: The more
an input uj correlates with an output xi the larger will be their
corresponding feedback factor in ϕ. Note that an elastic system is
assumed now. Hence the higher (negative) feedback leads to a lower
state. Therefore it is evident that a balance of the adaptation is
reached.
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Furthermore note that the adaptation is a generalization of the Heb-
bian Learning Method [5] which is used for adapting neural networks.
This method is also discussed in a neocybernetic background (see
[2]).

How about stability of the proposed adaptation law?

As shown before there is positive feedback in the adaptation law work-
ing against the (assumed) negative feedback of the controlled system.
Hence it is nontrivial to assume that the adaptation converges. Now
simulations (see Ch. 4) show that the adaptation at least for the sys-
tems used in this thesis behave well under certain conditions. Thus
it is probable that there exist a generell proof for the convergence of
this adaptation process, but it has not been discovered yet.

2.3.2. Principal subspace

If convergence is assumed some properties of the proposed adaptation
can be derived to give motivation to this method. Using (2.10) and
(2.8) (w = 0) the adaptation law can be formulated as

ϕ(n+1) = B · E{uxT } = Bϕ(n) · E{xxT } (2.14)

After adaptation there must hold ϕ(n+1) = ϕ(n) =: ϕ therefore (2.14)
becomes

ϕ = Bϕ · E{xxT }

⇔ B−1ϕ = ϕE{xxT } (2.15)

where symmetry of E{xxT } = E{xxT }T was used. Now one can
see that in a fully adapted system the non-zero elements bi of the
diagonal matrix B are the eigenvalues of the output covariance matrix
E{xxT }. Furthermore the rows of the resulting feedback matrix ϕ are
some eigenvectors of E{xxT }. In [1] Sec. 3.2. and in [5] it is proven
that these eigenvectors are even the most significant eigenvectors in
that sense that the corresponding eigenvalues bi are the m largest
ones of E{xxT }.
This means, that the introduced adaptation algorithm implements
PCA in that sense that the feedback ϕ selects the m most significant
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principal components from the output. This result will also be proven
by simulations later on.
Of course this is trivial for m ≥ n. For this case, (2.13) can be used
as adaptation law

(φT )(n+1) = Q · E{xuT } = Q(φT )(n) · E{uuT} (2.16)

A fully adapted system leads to (φT )(n+1) = (φT )(n) =: φT .

φT = QφT · E{uuT}

⇔ Q−1φT = φT E{uuT} (2.17)

Thus it can be seen that an identical result than in (2.15) can be
obtained for the mapping φT which is constituted by the eigenvectors
of E{uuT}. And Q−1 includes the eigenvalues of E{uuT}. As the
system considered in this thesis always has less inputs than outputs
(n ≥ m) this result was only presented for the sake of completeness.
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Chapter 3

Introduction to the system

The system, which is considered in this thesis, describes a force ac-
tuator in a cage induction electrical machine. We are faced with the
problem that unbalanced mass excitation forces cause radial rotor vi-
brations. These vibrations lead to such problems as noise, increased
bearing wear or rotordynamic instability. There is a running project
at the Conrol Engineering Laboratoy of Helsinki University of Tech-
nology whose main goal is to damp these low frequency vibrations
with higher harmonic components. For a project description, see [9]
or [3].

3.1. Configuration overview of the real

system

The test machine, which is being contructed to the laboratory con-
stists of an industrial motor whose resonance frequency is intention-
ally reduced to about 50Hz. A schematic view of the motor is given in
Fig. 3.1. The rotor shaft was extended and displacement sensors and
extra bearings were installed. The original bearings of the machine
are used only as safety bearings.

In the rotor three additional actuator windings are mounted. They
can be used to apply radial forces on the rotor constituting the input
signal which is produced by the vibration controller.

15



16 3 Introduction to the system

Figure 3.1.: Schematic view of the test machine. (1) bearing, (2)
displacement sensor, (3) main winding supply, (4) control
winding supply, (5) rotor shaft, (6) safety bearing, (7)
stator core, (8) rotor core

3.2. Models

Several mathematical models were developed for the process. A sim-
plified one is shown in (3.2) and (3.2) constisting of two parts: An
electrical part (state i) and a mechanical part (states ξ and η). The
electrical part describes a three dimensional first order connection be-
tween the actuator input voltages (one for each winding) and the re-
sulting forces on the rotor. The mechanical part is a high dimensional
second order oscillation equality, described by modal coordinates η on
given actuator forces. Each coordinate describes the excitation of one
real mode shape. Not all modes can be seen by the two measurment
points, whereby not all elements of η are visible at the output (see
description of Φµ below). Please refer to [3] for a detailed derivation
of the model and a listing of the used assumptions.
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ξ

η
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−2ΩΞ −Ω2 ΦT
r cCem

I 0 0
0 0 Aem









ξ

η

i



 (3.1)

+





0
0

Bem



U +





ΦT
r c

0
0



 fex

u =
[

0 Φµ 0
]





ξ

η

i



 (3.2)

where Aem and Bem describe the dynamics of the actuator (electri-
cal part). Φµ and Φrc denote the submatrices of Φ containing the
transversal displacement degrees of fredom at the rotor displacement
sensor locations (see Fig. 3.1) and rotor center, respectively. The
other matrices are given by

Ξ = diag
{

ζ1 ... ζn

}

(3.3)

Ω = 2π · diag
{

f1 ... fn

}

(3.4)

Φ =
{

φ(1) ... φ(n)
}

(3.5)

where fk denotes the k’th eigenfrequency of the machine, φ(k) the
corrsponding mass-normalized mode shape and ζk the equivalent vis-
cous damping coefficient.

3.3. Comments about the models in the
neocybernetic context

The model presented in this chapter is one of the most complex ones
developed for the system. It was implemented in Comsol Multiphysics R©

(see [8]) and constitutes the standard model, which all other mod-
els are compared to. The problem with the Comsol Multiphysics R©

model is the simulation speed. It takes hours of time to simulate a few
seconds of working machine. Neocybernetics was already presented
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as a highly iterative method, which needs hundreds of simulations.
Therefore very fast models are needed. There are several linear mod-
els provided for control engineering issues. They have been identified
from the origianl model. Following linear models have been used to
abtain the results of this thesis:

• SISO 6 states model. This model considers vibration in x di-
rection and provides only one input for the same direction. 2
states are used to model the disturbance force (sine wave close
to the rotor resonance frequency), actuator and rotor are mod-
elled as one PT1 system each. Input is actuator voltage and
output is the displacement.

• MIMO 10 states model. For this model just the states of actua-
tor and rotor have been doubled. Two actuator voltages control
two displacements in x and y directions. There are still 2 states
used to model the disturbance.

• MIMO 18 states model. Final model also used for developing
the traditional controllers (LQR, pole placement, convergent
control). 4 states represent the disturbance forces in x and y
direction, 10 states are used for the actuator and 4 for the rotor
(still two PT1 systems).

All models can be (and were) simulated in Matlab Simulink R©. Sat-
isfactory accurancy is only provided by the third (18 states) model,
but since accurancy is not of fundamental importance for showing
the principles of neocybernetics, most calculations have been done
with the first two models due to speed and stiffness problems with
the third one.



Chapter 4

Neocybernetic first level

control

4.1. Simulation Description

For all simulations and calculations the Matlab/Simulink environ-
ment was used. The models are given as linear state space models in
Matlab.

4.1.1. Typical Simulation Procedure

In order to run an adaptation an initial guess for the controller has
to be made. This initial value is very arbitrative. Of course it must
not destabilize the system but it also decides if there is a solution for
the adaptation as the controller cannot change signs arbitrarily (see
next sections). The probability of success increases the closer the
inital controller is to the final one. E.g. for a series of adaptations
the resulting controller of an adaptation was used as inital controller
for the next adaptation respectively.

Another important parameter for successful adaptation is the filter
factor F shown in Fig. 4.1. This is a low pass filter which slows down
the change of ϕ to avoid an overshoot of the feedback, which could
lead to instable system behaviour (see 4.3)

Now, if the desired output eigenvalues are given in B one can start

19
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simulating
stationary
input output
data

scalinglearningfiltering

changed
output / state
feedback 

scaled
data

current
feedback
guess

Figure 4.1.: Structure of first level adaptation process.

the simulation which continues until a stationary state is reached.
As shown in Fig. 4.1 the data is scaled by some diagonal matrix N

to obtain comparable values of all outputs. Now the learning step
is taken and the resulting guess for the output feedback is filtered
according to filter factor F (F ∈ [0; 1]). The new feedback is applied
to the simulator and the next simulation run can be started. The
adaptation ends when the elements of ϕ do not change more than a
small limit value rlim. Hence, after adaptation it holds:

‖ϕ − B · EuxT ‖ < rterm (4.1)

Note that this terminating condition doesn’t nessecarily mean that ϕ

and B implement PCA. It just means that the adaption has become
very slow. This can happen for example if the system is out of control
(subcybernetic case) because of too small values of B or if there
is no solution for the adaptation. In the following sections those
possibilities are considered.

4.1.2. Implementation

The whole adaptation process was implemented with three nested
scripts as shown in Fig. 4.2. The inner script runs the Simulink
model with a given Controller K and calculates the input output
covariances E

{

uxT
}

and E
{

xxT
}

. See A for an example of the
simulink file.
In a second step, the middle script implements the adaptation loop.
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Figure 4.2.: Illustration of implemented Matlab scripts

This means that after calling the simulation script a learning step is
performed and the new estimation for the feedback ϕ is determined.
The outer script is used to perform series of adaptions. E.g. a series
of different signal eigenvalue matrices B (see 2.3.2) whose results can
be seen later on e.g. in Fig 4.4. The script just start the middle script
and stores the adaptation results.

4.2. Simulation results

During the project several different feedback structures were tested.

4.2.1. SISO P Controller

In the first phase only the SISO system as described in Sec. 3.3 is
used. The simulator is configured for a constant feedback u = KP · x
and a initial guess of a stable KP is set. Now the proposed learning
law is applied. That means:

KP = ϕ = B · E
{

uxT
}

(4.2)

Fig. 4.3 shows a typical adaptation process: The feedback mapping
ϕ = B · E

{

uxT
}

, which is used as controller in (4.2), converges de-
pending on B. Consequently the control error converges, too. Thus,
a stable behavior of the adaptation algorithm can be achieved. The
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Figure 4.3.: A typical adaption process. In this case B = 4000 and a
weak initial controller were selected.

resulting controller reduces vibration to
√

1
B = 15.8µm (RMS). That

is 15.65% of the open loop value (101µm RMS). But is there a better
P controller? Can the best P controller be found?

Therefore you should have a look at the matrix B. As shown in Sec.
2.3.2 B−1 contains the eigenvalues of E

{

xxT
}

. In order to achieve
better control results the overall variation of the output x should be
reduced. Therefore higher values for B should be applied. Thus a
series of adaptations was started with increasing values for B.

The result is shown in Fig. 4.4 and Fig. 4.5. Clearly one can observe
a decreasing control error (which is the same as E

{

xxT
}

for the SISO
case) when B grows. To understand why, just have a look at Fig. 4.5.
Using the control law introduced in (4.2) it is easy to verify that KP

constantly grows (note the scaling). Thus a better control result in
the SISO case is applied just by increasing the feedback factor.

Even more can be seen from Fig. 4.5. E
{

uxT
}

obviously seems
to “jump” at a specific value of B. Before that the input output
covariance is (nearly) zero and the output covariance is constantly
high. This point is the lower limit of B at which the system gets out
of control as the required signal eigenvalue B−1 is higher than that of
the open loop system (λ−1 = 97.7196). Because of (2.14) the sign of
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Figure 4.4.: SISO adaptation series showing the control error against
B.

0 1000 2000 3000 4000 5000 6000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Output eigenvalue matrix B (1x1)

C
ov

ar
ia

nc
e 

m
at

rix
 E

{u
x

 T
} 

(1
x1

)

Figure 4.5.: SISO Adaptation series showing E{uxT} against B.

ϕ cannot change during SISO adaptation which would lead to higher
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output than in open loop. Thus the adaption algorithm can only
try to raise the output variance by minimizing the feedback. Only
because of numerical reasons there are values of E

{

uxT
}

which are
visibly greater than zero in that interval.
The right end of Fig. 4.5 was not selected by chance. Actually it is
the upper limit of B, which could not be exceeded without obtaining a
unstable system behaviour during adaptation. This issue is discussed
further in Sec. 4.3.

4.2.2. MIMO P Controller

After successfully controlling the SISO system, the second step was
taken: The SISO model was exchanged by the more realistic MIMO
model. For this experiment the 10 states model as described in Sec.
3.3 was used. As it is a two in two out model a simple proportional
output feedback is given by:

u = Kx =

[

k11 k12

k21 k22

]

x (4.3)

The same adaptation law than given in (4.2) K = ϕ = BE
{

uxT
}

was used whereby B = b ·I was always choosen such that its diagonal
elements are (approximately) the same. They never should be equal
because if there are equal bi, (2.15) can hold without determining
all eigenvalues of E

{

xxT
}

. In this case all equal bi could determine
one eigenvalue together. The corresponding eigenvectors given by ϕ

would become linearly dependent and the rest of the eigenvalues of
E

{

xxT
}

would be totally free. Thus in general it is not possible to
drive two or more output eigenvalues to exactly the same value. They
always have to be slightly different. In this case a difference of 2 was
seleceted but for simlification it is treated as one value b later on.

Fig. 4.6 shows the results of the MIMO controller. Obviously there is
also a lower limit of b. But actually there are two areas of dramatical
changes. This can be explained by different output eigenvalues of
the open loop system. As described in the foregoing section these
open loop eigenvectors determine the borders at which the adaptation
starts to take control of the output signal’s eivenvalues. In this case
λ1 = 5.96 · 10−5 and λ2 = 5.05 · 10−3 are the numerically calculated
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Figure 4.6.: MIMO Adaptation series showing E{uxT} against B.

eigenvalues of E
{

xxT
}

in the open loop system. The corresponding

bi are λ−1
1 = 1.68 · 104 and λ−1

2 = 1.98 · 102. Hence the transistions
in Fig. 4.6 happen when the first eigenvalue can be controlled (left
transition at λ−1

2 ) and when both eigenvalues can be controlled. (The
second transistion is not at λ−1

1 because it is no open loop system at
this point any more). Furthermore in MIMO case the non diagonal
elements of ϕ can even change sign, which can lead to higher outputs
than in open loop and to smoother transisition than in the first order
case (see also B).

On the right side of Fig. 4.6 the same stability probelm occours than
in the SISO case. The calculation stopped at this upper unstable
location because a further increase of b failed: The system always
became unstable during adaptation. See section 4.3 below for a dis-
cussion of that problem.

4.2.3. State feedback

In the same way as in the foregoing section a MIMO state feed-
back was tested. Regarding the disturbance as input, 8 states of the
10 states model were feedbacked trying to control 2 eigenvalues of
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E{xxT }. The rows of ϕ sucessfully adapted close to the most sig-
nificant eigenvectors. So PCA could be shown. But the adaptation
never really converged. It just got slowly instead and finally lead to
an unstable system. The problem is the same as described in Sec.
4.3.4.

4.3. Stability and adaptation problems

As seen in the foregoing section there exist upper bounds of the ma-
trix B which the neocybernetic theory doesn’t explain. And there
are more problems during adaptation which need to be investigated
in order to offer a reliable framework. Actually there occurred three
types of limitations during the simulation of first level control.

4.3.1. Controller overshoot

The first type of limitation which is also the easiest to explain is
the already mentioned upper bound of B. B contains the (inverted)
requested eigenvalues of E{xxT }. If B increases the controller has
to reduce the output signal. In SISO case this can only happen by
increasing the gain of the controller. But naturally the system is not
stable for all feeback gains.

4.7 shows root locus diagrams for an applied negative (left) and

Figure 4.7.: Sections of root locus diagrams of the system considered
in Sec. 4.2.1. On the left side negative feedback, on the
right side positive feedback were used

positive (right) feedback. For both cases the limit gain is shown at
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which the first system eigenvalue crosses the imaginary axis. Hence
the adaptation just touches the stability border of the P controller.
The given positive maximum gain is the one reached in 4.5 (ϕ =
B · E{uxT } = 5331 · 3.202 · 10−3 = 17.07).
Basically the same thing happens in MIMO case or for state feedback
controllers. When the expectations given in B become too high the
adaptation leaves smoothly the stable area in parameter space. The
adaptation law proposes controllers which demonstrably destabilize
the system.
Remark: Compared to the SISO case there is one difference. The
adaptively found P controller is usually unique, and thus it is the
best P controller obtaining the requested control result. In the other
cases there are plenty of possible controllers which lead to the desired
signal eivenvalues. Hence if the neocybernetic adaptation creates a
controller overshoot, it means only that there exists no stable struc-
tured controller in the sense of neocybernetic PCA structure. As
shown in Sec. 4.3.4 stable controllers may exist even when the adap-
tation algorithm does not find a solution.

4.3.2. Instability caused by adaptation

This problem occured mainly when operating close to the stability
border of the system but also when the initial values and filter factor
were not selected properly. What happens is that adaptation fails
although there exists a neocybernetic solution for the given control
problem. These failures are caused by the undefined way in control
parameter space the adaptation takes while searching for the solu-
tion. As the adaptation does not take stability issues into account
the unstable areas can be touched during adaptation.
This problem could always be solved by reducing the adaptation
speed (increasing of the filter factor F , see Fig. 4.1) or by select-
ing inital controllers closer to the searched one. For example, in Fig.
4.4, Fig. 4.5 and Fig. 4.6 all adaptations were started by taking the
previous result as the inital value.
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4.3.3. Highly differing output eigenvalues

Up to now all signal eigenvalues which were supposed to be controlled
(if there was more than one) were in the same range. The presented
MIMO system has got very symmetrical scalings for the two outputs
(x and y displacements). Furthermore they are quite independent
and thus E{xxT } is close to diagonal form and has two eigenvalues
close to each other. Consequently B always contained values in the
same range. Then problems with highly differing state eigenvalues
occured during second level control simulations (see Ch. 5). Because
equal output eigenvalues are a special case, this problem is presented
here.
For this experiment one output signal was scaled differently. Then B

and the inital controller were scaled appropriately and the adaptation
was started. Nearly all experiments led to unstable systems. Even
when taking the rescaled results of an adaptation (which nessecarily
already start close to the expected result) the problem remained.
Only initial controllers fullfilling the adaptation law with very high
precision (5 decimal powers and more) could successfully adapt. The
problem already occurred with eigenvalues differing by only 1 decimal
power.
Without changes on the system or the control structure itself the
adaptation failed. What actually happens is that both vectors of ϕ

adapt to the same most significant eigenvector and then the higher
bi (which should correspond with the lower eigenvalue) controls the
higher eigenvalue. This lead to an controller overshoot and the system
collapses.
This problem is discussed in more detail in Ch. 6.

4.3.4. Accuracy problem

A general problem of the MIMO simulations was the accuracy of the
solution. All results presented in Sec. 4.2.2 were obtained by using a
relatively high limit values rlim (see (4.1)). Adaptation with higher
accuracy could not be finished sucessfully.
Fig. 4.8 shows the typical behaviour of ϕ for an appropriate but arbi-
trary initial feedback and a small rlim. After a quick adaptation close
to the principial output components the feedback changes slowly but
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continously until the system gets unstable. Note that the control re-
sult (output eigenvalues) is achieved pretty fast as the corresponding
control error diagram Fig. 4.9 shows.
The changes in Fig. 4.8 are normally so slow and it takes so many
iterations until the system gets unstable that the problem at first was
not found. But the effect could be increased by applying a slightly
different feedback structure:
At first the adaptation was run as described in Sec. 4.2.2. Then a
matrix operation was applied at the input of the system such that
there holds

u = Mû (4.4)

M is an invertible m×m matrix which mixes the inputs ûi in similar
parts. For example:

M =

(

0.6 0.4
0.45 0.55

)

(4.5)

To find a feeback matrix ϕ̂ which produces same results than the
(fully adapted) feedback ϕ there must hold

u = ϕx = Mϕ̂x (4.6)

⇒ ϕ̂ = M−1ϕ (4.7)

The new feedback was applied and sucessfully tested. But when
the adaptation was started with this new structure and ϕ̂ as initial
feedback it failed even with the normally used rlim. The process ran
for this initial feedback and all other tested initial feedbacks into the
unstable area of feedback parameter space. Fig. 4.8 and Fig 4.9 show
simulation results of this mixed input structure.
Finally with the results of Ch. 6 this behaviour could be shown for

all MIMO simulations of this chapter.
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Figure 4.8.: Feedback ϕ̂ during adaptation using the mixed input
structure.
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Figure 4.9.: Control error diagram corresponding to 4.8. It also rep-
resents the inverted output signal eigenvalues because
E{xxT } is close to diagonal form



Chapter 5

Second level control

Up to now neocybernetics was used to directly create a controller
out of simulation data. No system knowledge was used, and thus
a complete model-free controller could be obtained by this method
if real measurement data was used instead of simulations. But the
controller structures are still very simple, and consequently the ob-
tained controllers have always been of very limited quality. Now one
possible solution to this problem is tested. The idea is to combine
neocybernetic modelling with a traditional controller. The goal of
model-free working is abandoned by using a complete state feedback
obtained from a LQ controller design. Neocybernetics is used to cal-
culate the Q and R matrices of the LQ controller in order to gain
a more structured method for tuning it and to attack the general
robustness problem of LQ control (see for example [7]).

5.1. Adaptation process

The adaptation procedure presented in Sec. 4.1.1 is now being changed.
Still the system output is used as data source. But now the Q and R

matrices are seen as the “input” of the simulated system. In Fig. 5.1
one can see that the filter output now is a vector ~q which represents
the diagonal elements of the Q matrix.

While the normalization step remains the same the learning step and
the filter look different now. That is explained in the next section.

31
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simulating
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R matrices
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controller

LQ solver

Figure 5.1.: Structure of second level adaptation process.

After new values for Q have been found a traditional LQ control de-
sign is performed using the matlab lqr solver. The resulting controller
C is applied to the system and the adaptation can go on until the
terminating condition

‖~q − ~qcur‖ < rterm (5.1)

holds.

5.2. Latent subspace

Reduction to significant information

For this adaptation the whole state of the system is used. Depending
on the system structure several different states might be highly corre-
lated. This leads to very dominant principal components of E{xxT }
which mean large differences between the eigenvalues. Hence it is
reasonable to use only few principal components. Therefore a so
called latent vector l (see pg. 52 in [1]) representing the level of the
used principal components is introduced here. Its dimension s can
be chosen between 1 and n. The adaptation law becomes

ϕ = B · E{lxT } (5.2)

where ϕ is a s×n matrix now, mapping from x-space to latent l-space.
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Taking control of parameter space

But there are still n elements in ~q which are supposed to be deter-
minend by l. Another mapping “back” to n dimensions is needed.
Therefor ϕT is proposed to form this mapping from s-dimensional
latent space to the n-dimensional LQ parameter space always follow-
ing the intution: The higher a state xi the higher its corresponding
qi (negative feedback of the system assumed).

One is faced another problem when searching for an appropriate map-
ping: In the first level case the output u of the controller was time
depending. Thus the mapping ϕ (in second level case it would be
ϕT ϕ) could be directly applied to the system. Now the learning step
must result in some time independent, non-negative ~q. First idea was
to use RMS values x̄ instead of x. But then E{xxT } = x̄x̄T would
always have only one non-zero eigenvalue, because

x̄x̄T =







x̄1x̄
T

...
x̄nx̄T







constists of n linearly dependent row vectors. Hence the information
loss would be to big.

To fix this problem the whole learning step is calculated with time
depending variables. Just before the results are used for Q the ex-
pectation values are taken. As this still can lead to negative elements
of ~q the exponential function is used to map negative values to small
(positive) ones.

Now the whole learning step using (5.2) can be summarized to

l = ϕx (5.3)

~qcur = E{lϕT } (5.4)

The current guess ~qcur is low pass filtered like in first level control
and the filtered parameter vector mapped to a diagonal matric Q:

~q = F~q + (1 − F )~qcur (5.5)

Q = diag
{

e~q
}

(5.6)
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Alternative learning step

The above presented learning step is of course not compulsory. For
example we can choose φ directly for ~qcur:

~qcur =

s
∑

i=0

~ϕi (5.7)

where ~ϕi are the row vectors of ϕ. The idea is the same than before:
The higher x correlates with some latent variable l, the higher gets
their connection ϕ, and in consequence the corresponding element of
Q increases which leads to an negative feedback.
This method gets rid of the problem of time independence of Q.
Furthermore if ϕ = BϕE{xxT } is used instead of (5.2) l never has to
be calculated explicitely and no postdata of the previous step is used
for the next step. This increases the stability of the algoritm.
Both presented methods were tested successfully.

5.3. Simulation results

For simulation speed and stability reasons the LQR simulations were
done on the 6 states SISO system. As 2 states only model the distur-
bance force only 4 states and the corresponding subsystem were used
for the LQ design. The implementation is identical to 4.2 whereas of
course the second level control formulas has been implemented in the
scripts.

5.3.1. One dimensional latent subspace

Beginning with an one dimensional subspace (s = 1) the second level
adaptations were tested. A typical adaptation process is shown in
Fig. 5.2. Q stabilizes at a reasonable value controlling the most
significant output eigenvalue to the given B. The range of B is also
(very) limited: There is a lower limit determined by the output eigen-
value on a completely zeroed Q. The upper bound of B is reached if
the values of Q and R differ too much and the optimization problem
cannot be solved any more. In the next section it is explained why
this upper bound is reached quite quickly for s = 1. Of course there
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is also the technical limitation like for example an input saturation
which does not allow arbitraily high inputs. In this context it is also
very import to see that the neocybernetic controller only searches for
the PCA structure which does generally not optimize for the technical
limitations.
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Figure 5.2.: Adaptation of Q matrix using a one dimensional latent
subspace. Only the displacement (x2) is emphasized, all
other qi are close to zero

5.3.2. Problems of second level control

When having a second look how Q(ϕ) is calculated in the foregoing
section it is easy to see that diag{Q} is basically a linear combination
of ~ϕi which are the eigenvectors of E{xxT }. In the case of a one
dimensonal latent subspace it is only one scaled eigenvector. All
simulations revealed that the eigenvectors keep pretty much the same
if Q is only scaled. Thus the ratios between the entries of Q are
somehow fixed. If the output is too high just the whole Q is raised.
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But a higher Q just emphasizes all states more than the inputs. This
has got a very little effect on the output but demands high efforts on
the inputs. As a result Q gets easily too high and adaptation fails
even without good controller results.
To move the entries of Q in a clearly different way one needs a higher
dimensional latent subspace. But as it turns out in the next chapter
(Thm. 6.2) there is no way for the 6 states model to increase s. All
simulations confirmed this: When trying a two dimensional latent
subspace all ~ϕi always adapted only to the most significant eigenvec-
tor. When they were forced to adapt to the first two eigenvectors
still one ~ϕi converged to zero and lost any kind of control.



Chapter 6

Further theoretical

considerations

In the last chapters it turned out that the presented controller struc-
ture (Sec. 2.3) can be successfully, used but still there remain plenty
of unexplained problems. Therefore some further theoretical steps
are presented in this chapter to give intuition or even provable expla-
nation to most of the problems.

6.1. Convergence of adaptation law

It was noted in Sec. 2.3 that the adaptation law used has no proven
properties concerning stability and the existence of solutions. Now
some intuition is given how this adaptation law finds a balance for
the output eigenvalues and how it implements PCA.
At first it is only assumed that there exists a feeback ϕ such that
(2.8) holds:

u = ϕx (6.1)

So the adaptation law (2.10) can be reformulated like in (2.14). For
one row vector ϕi of the matrix ϕ this looks like

ϕ
(n+1)
i = bi · E{uxT} = biϕ

(n)
i · E{xxT } (6.2)

37
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As E{xxT } is symmetric it can be diagonalized and the diagonaliza-
tion

E{xxT } = V DV T =
[

v1 . . . vn

]

diag
{

δ1 . . . δn

}







vT
1
...

vT
n






(6.3)

is defined. Using (6.3) and reformulating (6.2) we obtain

ϕ
(n+1)
i = bi(ϕ

(n)
i V )(DV T ) (6.4)

Another reformulation according to the brackets used in (6.4) shows
that the adaptation law (2.10) can be seen as linear combination of
the eigenvectors of E{xxT } for each feedback vector ϕi.

ϕ
(n+1)
i =

n
∑

k=1

< ϕ
(n)
i , vk > biδkvT

k (6.5)

This formulation now gives intuition how the adaptation law gener-
ally works:

1. At each iteration step each ϕi is newly constructed as a linear
combination of the orthogonal vk. For all ϕi the same rule is
used and there is only indirect influence of the other ϕi.

2. The vk are emphasized by three factors. At first this vk which is

closest to ϕi gets hightest priority through < ϕ
(n)
i , vk >. Thus

ϕi adaptes very quickly to one of the vk whereby the others are
multiplied with 0 (because of orthogonality of vk). If vk has
equal direction to ϕi the sclar product results exactly in the
length of ϕi because vk is normalized.

3. Furthermore each vk is multiplied by biδk. After adapting to
one vk this is only interesting for this found eigenvector. biδk

will stretch ϕi if δk is greater than 1
bi

. The longer ϕi leads
to an higher input u and the negative feedback of the system
hopefully abates the output and δk will go down. The inverse
dynamic will happen if δk is less than 1

bi
. Hence the adaptation

stabilize at δk = 1
bi

.
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This result allows a refinement of the assumption for the adapta-
tion formulated in Ch. 2. For a successfull adaptation process the
following assumptions must hold:

• Negative feedback : The considered system must implement a
negative feedback behaviour for a feedback ϕi ∝ vk and its
corresponding output eigenvalue δk

• Sufficient good initial feedback : The initial guess ϕ(0) of the

feedback matrix must contain rows ϕ
(0)
i which are close enough

to one vk respectively. Identical ϕ
(0)
i for example adapt together

to the most significant vk.

• Different bi or δk: bi and δk must not differ too much. If they
do lower significant ϕi will leave their eigendirection and adapt
to a higer significant eigenvector because biδk becomes to high
for the higher significant terms. The upper bound depends on

– Accuracy of ϕ(0) (Second assumption)

– Length of ϕi

– Iteration speed (Filter Faktor F , See 4.1.1)

– Measurement noise of E{xxT }

6.2. Existence of solutions

In this section one first step on the way to a general proof of conver-
gence and existence of the neocybernetic adaptation is done for the
special case of a linear homogenous system. All models used for this
thesis are of this kind and so this special case will be enough to ex-
plain problems which appeared during the simulations presented in
the last chapters.

Lemma 6.1 Consider a linear time invariant homogen system

ẋ = Ax (6.6)

whose eigenvalues λi 6= 0 statisfy ℜ(λi) ≤ 0. Let the first k eigenval-
ues be purely imaginary (ℜ(λi) = 0) and let vi be the corresponding
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eigenvectors to λi. All vi are assumed to be linearly independent.
The general solution of the system can be written like

x(t) = xosc + xasym =

k
∑

i=1

cie
λitvi + xasym(t) (6.7)

where ci are determined by the initial value problem x(0) = x0.
Then the system state covariance matrix E{xxT } has maximum k

nonzero eigenvalues and they are pairwise dependent. Furthermore
E{xxT } is given by

E{xxT } =

k−1
∑

i=1,3,..

cic(i+1)viv
T
(i+1) (6.8)

Proof: The system is only considered in steady state. Therefore all
transients are vanished (xasym = 0). Let us assume that the steady
state is reached at time t1. Then the stationary solution looks like

x̄ = xosc =

k
∑

i=1

cie
λitvi (6.9)

Reformulated in real numbers and token into account that ℜ(λi) = 0
we obtain

x̄ =
k−1
∑

i=1,3,..

2di(cosβitai − sinβitbi)− 2ei(sin βitai + cosβitbi) (6.10)

where di ± iei = ci/i+1, αi ± iβi = λi/i+1 and ai ± ibi = vi/i+1.

E{xxT } can now be calculated as mean value for a time intervall T :

E{xxT } =
1

T

t1+T
∫

t1

x(t)x(t)T dt (6.11)
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If (6.10) is substituted in (6.11) all resulting integrals are of the fol-
lowing types:

∫

sin2 βidt = − 1
2βi

sin βi cosβi + 1
2 t (6.12)

∫

cos2 βidt = 1
2βi

sin βi cosβi + 1
2 t (6.13)

∫

sin βi cosβidt = − 1
2βi

cos2 βit (6.14)

∫

sin βi cosβjdt = − βi

β2

i
−β2

j

(cos βit cosβjt +
βj

βi
sin βit sin βjt)

(6.15)
∫

sin βi sin βjdt = βi

β2

i
−β2

j

(− cosβit sin βjt +
βj

βi
sinβit cosβjt)

(6.16)
∫

cosβi cosβjdt = βi

β2

i
−β2

j

(sin βit cosβjt −
βj

βi
cosβit sin βjt)

(6.17)

i, j ∈ {1, 3, . . . , k − 1}, i 6= j

All sine and cosine terms change highly by small changes of T (if T

is selected properly high). And as t1 and T are selected freely these
terms constitute the measurement noise of E{xxT }. But as they are
bounded for all t this noise will vanish for high T . Here a sufficiently
high T is assumed and all sine and cosine terms are left out.
Then only the two linear terms in (6.12) and (6.13) remain and (6.11)
looks like

E{x̄x̄T } =
1

T

k−1
∑

i=1,3,..

1

2
T

[(

(2di)
2 + (−2ei)

2
)

(aia
T
i + bib

T
i )

]

(6.18)

From this equation it can be seen, that E{x̄x̄T } consists of a com-
bination of k matrices each of them constituted by a squared vec-
tor. This can be reformulated as a singular value decomposition
which shows that E{x̄x̄T } can never have more eigenvalues than k.
Furthermore the matrices are pairwise multiplied by the same value
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1
2

(

(2di)
2 + (−2ei)

2
)

. As ai and bi are dependend because of

‖ci‖
2 = ‖ai‖

2 + ‖bi‖
2 (6.19)

only k
2 eigenvalues can change freely.

Now T is cancled out and the equation is reformulated using the
definitinos of di,ei,ai and bi

E{x̄x̄T } =

(
∑

i=1,3,..

k − 1)cic(i+1)viv
T
(i+1) (6.20)

is obtained which is identical to (6.8) if the bars are left out like it
has generally been done earlier also.

�

Lemma 6.1 has got direct consequences for first and second level con-
trol. Only nonzero output eigenvalues can be controlled by the neocy-
bernetic adaptation. Thus the lemma limits the dimension of latent
subspace which can be used to s ≤ k

2 . This statement is included
in the following two theorems which concern the general existence of
neocybernetic solutions for the considered systems.

Theorem 6.1 Given a linear closed loop system ẋ = Ax+bu with the
feedback u = ϕx and initial value x0 under the assumptions of Lemma
6.1. Let the k purely imaginary eigenvalues be not controllable.
Then the neocybernetic first level adaptation law ϕ = B ·E{uxT } has
got a solution if and only if the following equation system has got a
solution

(A + bϕ)vi = λivi i ∈ [1, k] (6.21)
k

∑

i=1

civi + xasym(0) = x0 (6.22)

Bϕ

k
∑

i=1,3,..

cic(i+1)viv
T
(i+1) = ϕ (6.23)

If this equation system only results in destabilizing ϕ’s than the real
adaptation does not have a solution.
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Proof: (6.23) is the adaptation law itself using the result of Lemma
6.1: (6.21) denotes the eigenvector equation of the closed loop system
and (6.22) denotes the initival value problem of the general solution.

�

In the same way a theorem for the second level control can be for-
mulated by including the Matrix Riccati Equation to the system. By
this theorem the “alternative method” for second level adaptation
like it is presented in Sec. 5.2 is used.

Theorem 6.2 Given a linear system ẋ = Ax + bu with the feedback
u = −R−1bT Px and initial value x0 under the assumptions of Lemma
6.1. Let the k purely imaginary eigenvalues be not controllable.
Furthermore let R be the given m×m input weighting matrix. And let
there be a s× n matrix ϕ which determines the LQ weighting matrix
Q such that

Q(ϕ) = diag

{

exp(
s

∑

i=0
~ϕi)

}

(6.24)

and

ϕ =







~ϕ1

...
~ϕs






(6.25)

Then the neocybernetic second level adaptation law ϕ = B ·ϕE{xxT }
has got a solution if and only if the following equation system has got
a solution

(A − bR−1bT P )vi = λivi i ∈ [1, k] (6.26)
k

∑

i=1

civi + xasym(0) = x0 (6.27)

Bϕ

k
∑

i=1,3,..

cic(i+1)viv
T
(i+1) = ϕ (6.28)

−PA − AT P + PbR−1bT P = Q(ϕ) (6.29)

Proof: (6.28) is the adaptation law itself using the result of Lemma
6.1: (6.26) denotes the eigenvector equation of the closed loop system
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and (6.27) denotes the initival value problem of the general solution.
(6.29) is the algebraic Riccati equation solving the linear quadratic
optimization problem for the controller.

�

The theorems above consider only the homogenous case, which is im-
portant for the models of this thesis. If inhomogenous systems are
used which are fed by external signals the situation can change com-
pletely. Test simulations showed that the output covariance matrix
of an asymptotically stable linear system can have two linearly inde-
pend eigenvectors for each sine wave which is included in the input.
This allows full rank output covariances even for SIMO systems. But
the input has to be fast enough as the next lemma shows.

Lemma 6.2 Consider an asymptotically stable linear system of di-
mension n with an periodic m-dimensional input u (m < n).

ẋ = Ax + Bu (6.30)

Let A be invertible and let the asymptotical dynamics of A be so fast
(ℜ(λi) << 0) that transient dynamics are neglectable. Therefore the
system is always in steady state.

0 = Ax + Bu (6.31)

Then the state covariance matrix is given by

E{xxT } = A−1B · E{uuT} · (A−1B)T (6.32)

Hence E{xxT } has maximum rank m.

Proof: As (6.31) holds and as A is invertible there holds

x = −A−1Bu (6.33)

E{xxT } is defined as the mean value of xxT .

E{xxT } =
1

T

t1+T
∫

t1

x(t)x(t)T dt (6.34)
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Substituting (6.33) into (6.34) gives

E{xxT } = 1
T

t1+T
∫

t1

A−1BuuT (A−1B)T dt

= A−1B · 1
T

t1+T
∫

t1

uuT dt · (A−1B)T

= A−1B · E{uuT} · (A−1B)T (6.35)

Because of m < n, E{uuT} limits the rank of E{xxT }.

�

Consequences of the presented theorems

Theorem 6.1 explains the problems which appeared during MIMO
adaptations in Sec. 4.2.2. There the 10 states MIMO model was
used. This model has only one pair of purely imaginary eigenvalues
modeling the disturbance. Hence only one eigenvalue can be con-
trolled freely and no final solution could be found. After a quite fast
adaptation the iteration became very slow (explained in Sec. 4.3.4).
Using Lemma 6.1 the simulator could be replaced by eigenvector cal-
culations increasing the simulations speed enormously. It turned out
that the slow changes describe an oscillation as shown in Fig. 6.1.
When the 18 states model including 4 purely imaginary states was
used 2 output eigenvalues could be controlled successfully.
It also needs to be mentioned that the equation system (6.21) - (6.23)
can also be solved using for example any kind of Newton solver in-
stead of the adaptation law. In the case shown in Fig. 6.1 the New-
ton solver just failed to solve the problem which gives some better
information about the situation. In the solveable case both solver
found the same solution whereby the neocybernetic adaptation law
was faster. So it has not been figured out yet which way of solving the
problem works better but in any case Thms. 6.1 and 6.2 reduce the
highly iterative adaptation using simulations to a completely offline
optimization process.
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Figure 6.1.: Feedback ϕ̂ during adaptation using the mixed input
structure and Lemma 6.1 for determining E{xxT }. For
most parts of the diagram the system is unstable.



Chapter 7

Discussion and Evaluation

7.1. Summary

The thesis in hand describes one “theoretical iteration step” for the
so called neocybernetic theory.
At first the new way of thinking is introduced. Regarding natural
systems stability is no longer the main goal but the general assump-
tion because natural systems are (almost) always stable. From this
perspective complex, distributed, high order systems are tackled by
one very simple idea: Connect each input independently of other in-
puts with the outputs dependening on its correlation to them. Then
it is shown that these simple local connections lead to global struc-
ture (PCA).
In the next chapters these ideas are applied to a typical technical sys-
tem. It is shown that the basic principles work and simple (adaptive)
controllers can be found. Because of very evident limitations of P
controllers the method is then extended to second level control: The
system itself is controlled by a traditional LQR but the LQR is con-
trolled with neocybernetic principles. Although this idea seems to fit
perfectly to the basic assumption of negative feedback the situation
turned out to be even more difficult.
So the last chapter tries to provide the desire for explanations. The
adaptation law and the considered type of system are examinend in
a mathematical way and some restrictions are found and proven.
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7.2. Critical view of neocybernetics

Neocybernetic controllers have got several properties which can cause
problems to technical applications. Most of the properties are directly
connected to the basic assumptions and to the properties of neocy-
bernetics. Hence it is not fair to critisize the whole theory because
of these problems. But they are mentioned here as weak points of
neocybernetics in a technical context.

unhandled stability: Stability is generally assumed for neocybernetic
systems and thus all stablity issues are ignored by the adapta-
tion and by the resulting controllers. But stability is a very
basic question for technical systems. Natural systems are truly
always stable (in a global perspective), technical systems may
not be stable (or the stablelizing effect is neglected), and in-
stablities sometimes mean the bad malfunction of the system.
Of course all adaptation runs can be done savely in the sim-
ulator, but this weak point remains as adaptation can lead to
instablities even if there exists a stable controller with the same
controller structure.

unneeded structure: Neocybertetic controllers always implement a
PCA structure. It forces the controller to use the principal
components. This limitation reduces the solution space dra-
matically, although it is not necessarily important. Especially
if stablity gets lost the price is too high.

ignored transient dynamics: Neocybernetics per definition ignores
alle transient dynamics. It does not care about how long it
takes to reach the steady state. This means that very basic
questions about controller perfomance are left open, so that
neocybernetics can be used only if these questions do not mat-
ter.

lack of information: The last problem also depends on the previous
one: If only the stationary state is considerd a lot of informa-
tion about the system is not used. As shown in this thesis
a homogenous linear system has got only as many output co-
variance eigenvalues than system eigenvalues on the imaginary
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axis. An asymptotic stable linear homogenous system even has
no nonzero output eigenvalues. Thus the neocybernetic control
suffers from a lack of information which constricts the varia-
tion. This can be seen at second level control: In the example
here it was either a 1 dimensional latent subspace controlling 6
(n + m − k) free parameters or a 2 dimensional subspace con-
trolling 16 free parameter. Not that this situation can change
completely if external signals feed the system (inhomogenous
case).

7.3. Outlook

Although there appeared more problems and limitations than pros-
perities for the vibration control of the considered electrical machines
or homogenous linear systems in general it also confirms that the basic
neocybernetic principals do work. It seems that neocybernetic con-
trollers are obviously not very suitable for linear homogenous techni-
cal problems but where do they fit better to? All mentioned critical
points can vanish if a naturally (e.g. nonlinear) stable system is con-
sidered whose transients are out of interest and which contains a lot
of redundant statistical information. It was already mentioned that
inhomogenous linear systems can have a full rank output covariance
matrix depending on the inputs. [1] introduces neocybernetics on a
biological background. Also commercial, social or networked systems
are conceivable.
The basic feature of local acting and global emergent structure was
not needed for this thesis. How about systems which are to complex
for centralized analyses?
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Appendix A

Implementations in Matlab
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Matlab script: Runs adaptation series. Implementation of
“Parameter Loop” in Fig. 4.2

% CalcBSeries
% Calculates a series of adaptions with different B
% author: Heiko Patz

% initial values
saveB = 0; % array of all used B
saveEux=0; % array of all Eux
saveExx=0; % array of all Exx
saveCE=0; % array of all control errors

step = 2; % Stepsize between adaptations
BVerified = saveB(length(saveB));
B = 0;

while (step > 1e-3),
B=BVerified+step;
disp(sprintf(’Trying B=%f’,B));

saveK=K; % Backup of K
RunAdaptation; % Call Adaptation script

% Did system converge?
if (phi==phi old), % ’no’

step=0.5*step;
K=saveK;
disp(sprintf(’adaption failed. Trying step size= %f’,step));

else % ’yes’
saveExx=[saveExx;xx mean];
saveEux=[saveEux;covUX];
saveCE=[saveCE;ControlError];
saveB=[saveB;B];
BVerified=B;
disp(sprintf(’adaptation finished. B verified at %f’,B));

end
end %of while
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Matlab script: Runs an adaptation loop. Implementation of
“Adaptation Loop” in Fig. 4.2

% Iteration program for adaptation of controller to the vibration model
% author: Heiko Patz

% Find input output dimensions:
[n in] = size(StateSpaceSystem.b);
[out n] = size(OutputMatrix);

% Set initial values
% ****************************************************************
if (InitialRun==1)

% set a stable Initial Controller:
K=[1.719291e+001,-2.028678e+000;4.203311e+000,2.391040e+001];
phi = K;
virgin = 0; % equals one in first run for initialisation
forget=0.8; % Filter factor F
% Initialize array for adaptation diagrams
phis = zeros(200000,numel(K)+2+in);
IterationCount = 1; % counter reset

end
% ****************************************************************

phi old = 24*K; % just different from phi!
% Mapping matrix phi conferged ??
while sum(sum(abs((phi-phi old)))) > 5e-3,

% run the simulationen
SimulateVibrationModel;

% Was system stable?
if (StabInd > -1)

phi old = phi;
phi = forget*phi+ (1-forget) * B*CurCovUX;

%unstable system -> abort adaptation
else

display(’Instable system behaviour detected...’);
K=0;
% stop emergin loop:
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break;
end

if (DisplayOn==1)
% How good does phi fit to EV(CurCovXX) ?
[V D]=eigs(xx mean);
V=[V(:,2)’;V(:,1)’];
% Calculate Minium squared Error between phi and V
F=diag([ (phi(1,:)*phi(1,:)’)∧-1*phi(1,:)*V(1,:)’,

(phi(2,:)*phi(2,:)’)∧-1*phi(2,:)*V(2,:)’ ]);
phi err=diag((F*phi-V)*(F*phi-V)’);
display(sprintf(’phi = [%s]’,sprintf(’%e,’,phi’)));
msg=sprintf(’B =%f ControlErr = [%s] phi err = [%s] D = [%f %f]’,B(1,1),

sprintf(’%f ’,ControlError),sprintf(’%f ’,phi err),D(1,1),D(2,2));
% If simulation is replaced by calculation stability is indicated here
if (StabInd==1)

msg=sprintf(’%s (stable)’,msg);
end
if (StabInd==0)

msg=sprintf(’%s (unstable)’,msg);
end

end
disp(sprintf(’%s Iteration: %d’,msg,IterationCount)); end
% Save adaptation parameters
phis(IterationCount,:) = [K(1,:),K(2,:),ControlError,D(1,1),D(2,2)];
IterationCount=IterationCount+1;

end % of while
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Matlab script: Runs the Simulator or calculates the simulation
results. Implementation of “Simulator” in Fig. 4.2 for the 10
states MIMO model

% SimulateVibrationModel.m:
% runs the simulation and calculates covariance matrices of x and u
% author: Heiko Patz

% Model parameters
% Select two states out of 10
OutputMatrix = [[0,3.686801955454,0,0;0,0,0,3.738608167152],zeros(2,6)];
buffer = 20000; % number of values to be kept from last

% values of x and u
OmegaN = 49.5; % nominal frequency of machine in rad/s

% Apply new feedback faktor
K = phi;

if (ReplaceSimulator==1)
% Calculate Simulation result
[V D] =eig(StateSpaceSystem.a+StateSpaceSystem.b*K*OutputMatrix);
%Initial values for 10 state model: x0=[0,0,0,0,0,0,0,0,42,0];
c=V∧-1*[0,0,0,0,0,0,0,0,42,0]’;
CurCovXX=(c(9)*c(10)*(V(:,9)*V(:,10).’+V(:,10)*V(:,9).’));
% Eliminate imaginary numerical leftovers:
CurCovXX=real(CurCovXX);
CurCovXX=OutputMatrix*CurCovXX*OutputMatrix’;
CurCovUX=phi*CurCovXX;
if (real(D)<=0)

StabInd=ones(1,10); % stable system
else

StabInd=zeros(1,10); % unstable system
end

else
% Simulate until steady state
sim (’VibrationModel2D’); % run Simulink model
x=x*OutputMatrix’;
% Calculate some kind of derivative between first half of x and second
% one:
StabInd = sum(x(1:0.5*buffer,:).*x(1:0.5*buffer,:));
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StabInd = StabInd - sum(x(0.5*buffer:buffer,:).*x(0.5*buffer:buffer,:));
% Calculate means of uxT and xxT products for steady state period
CurCovUX = 1/length(x) * u’*x;
CurCovXX = 1/length(x) * x’*x;

end

% Calculate squared err of displacement
ControlError=sqrt([CurCovXX(2,2),CurCovXX(4,4)]);
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Figure A.1.: Implementation sample for a 2-dimensional MIMO
model in Simulink
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Appendix B

Additional figures
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