
Tekoälyn uudet suunnat
New Directions in Artificial Intelligence

Voi. 1: Esitelmät - Conference Papers

Finnish Artificial Intelligence Conference
Suomen Tekoälytutkimuksen Päivät STeP-92
Teknillinen korkeakoulu, 9-11.6.1992, Otaniemi, Finland

Toimittajat - Editors

Eero Hyvönen, Jouko Seppänen ja Markku Syrjänen

C o re W ars:
A T e s tb e n c h fo r A rtif ic ia l Life?

Heikki Hyötyniemi
Helsinki Univ. of Technology, Control Eng. Laboratory

Otakaari 5 A, 02150 Espoo

Abstract
In the game of Core Wars two or more computer programs are run simultaneously

by a hyphotetical processor in an imaginary core memory. The purpose of these
programs is to locate the enemy processes and destroy them.

In this paper, the rules of Core Wars are repeated, some examples of simple pro
grams are given, and the behavior of these programs is simulated. The possibilities of
the Core Wars environment as a workbench for studies of Artificial Life are discussed.

1 In tro d u c tio n
Articicial Life research is the study of the universal properties of living organisms. The
research mainly consists of computer simulations. In a computer it is easy to write
programs whose behavior strangely resembles that of living organisms. Programs may be
designed to act in a characteristic way, to copy and defend themselves against attacks. It
would be nice to have an environment for simulating and analyzing properties of Artificial
Life ideas.

In Core Wars game, a framework is defined for creating ’genetic codes’ and simulating
their behavior as they interact. Is Core Wars just a computer game among hundreds of
others, or should it deserve more attention?

2 W h a t is ’A rtific ia l L ife’?
It is not easy to define Artificial Life. The fundamental, more or less philosophical question
is, what is Life—another deep question is, what is Artificial! Perhaps it is best to leave
these questions unanswered, as no consensus has been reached. In many respects, there
are parallels with Artificial Intelligence research: these fields share an intuitively appealing
problem statement. Unfortunately, in Artificial Life, the problem statement is also just
as intuitively defined.

Our experiences exclusively with carbon based life make it difficult to distinguish be
tween the properties of down-to-earth life forms and the universal qualities of all living
structures. The organisms that we are familiar with are all subordinate to the constraints
of physics and chemistry. The target of Artificial Life research is to augment our under
standing of life-as-we-know-it with life-as-it-could-be. ’Silicon life’ need not be bound by
the real world restrictions, and that is why computer is the basic tool in experiments.

In contrast to biological sciences that try to analyze existing life forms, in Artificial
Life, new life forms are synthesized.

It should not be a surprise that there is no exact theory for Artificial Life. In practice,
the research is based on simulation studies and building analogies, the experiments being
more or less convincing. Plenty of simulation programs for Artificial Life have been
written, each program concentrating on some specific aspect of behavior.

3 R e la tio n to som e o th e r fields
The imitation of biological processes has a longer history than the name of Artificial Life.
For example, in the early seventies the game of LIFE was introduced by John Conway—it
was a cellular automaton with surprisingly simple locally controlled rules that were able
to create highly complex and fascinating behavior. After that, cellular automata have
been applied to many tasks of physical systems modeling.

As the name suggests, the study of genetic algorithms has also borrowed its principles
from biology. The notion that populations of living organisms have adapted optimally
in their environment as a result of stochastic mutations and simple deformations of the
genetic code, has encouraged scientists in applying the same idea of optimization in more
technical tasks. If compared to the Artificial Life approach, the difference is that when
using genetic algorithms for optimization, the result of the computation is the most impor
tant thing, whereas in Artificial Life applications, the dynamics of the ongoing processes
plays the major part.

It goes without saying that Artificial Life research is a near relative of Artificial Intelli
gence. The same enthusiasm can be seen in the Artificial Life research community today
as there used to be among AI researchers a few decades ago. However, the development
of this field is not likely to be as turbulent as it was in the sixties. The researchers do
not even claim that their study would be of any use—it is basic research for clarifying
the fundamental issues that have only academic interest. No short-sighted projects or
massive financing are likely to upset the general public. At least up to now, Artificial Life
research has been a branch of interested individuals’ spare time activity.

Recalling the ever lasting Artificial Intelligence debate, Artificial Life is not likely to
give rise to such vigorous arguments. This time, people seem to be more tolerant about
the methodologies and the results. The property of being alive is not such a monopoly of
humans as being intelligent is.

There is a growing interest in complex dynamic systems— chaos theory, fractals, and
complex nonlinear systems are explored extensively. Very simple rules, when applied a
plenty of times, result in strange emergent behavior that could not be foreseen by looking
merely at the rules themselves. Results are also sensitive to changes in the initial values, so
that minor changes may result in totally differing large scale dynamics. This astonishing
correspondence between simple structures and complex behavior is encouraging. Maybe
this works both ways—perhaps the complexity of living things is generated by some basic
set of simple rules?

However, a feature that is common to all of these fields, is the need of massive comput
ing capacity. It is easy to understand that none of these paradigms could flourish without
the modern hardware and software tools.

- 264 -

4 C o re W ars as a n A rtif ic ia l L ife e x a m p le

In the Core Wars game, a set of simple machine code instructions is used to write battle
programs. In the game, two or more programs run simultaneously, trying to stay alive
and trying to eliminate the other programs at the same time. There does not exist real
hardware for executing the instructions, but running the programs can be simulated.

Core Wars can be analyzed as an environment for simulating competition for resources
between different species. The program code defines the genotype that is reflected in
the phenotype or the visual behavior of the process. However well defined the effects of
individual instructions of the code are, the outcome of interactions between processes is
unpredictable.

Core Wars programs are easy to write and debug. Could Core Wars program syntax
be used as a universal programming language for fast implementation of Artificial Life
ideas?

Is Core Wars a good environment for studying Artificial Life? One feature all Artificial
Life programs share is that whatever they do and however they do it, the dynamics of the
processes is fascinating to look at. In this respect, at least, Core Wars game fulfills the
Artificial Life requirements excellently.

5 T h e REDCODE la n g u a g e
The language for writing Core Wars programs is called REDCODE. REDCODE only includes
the most important instructions for arithmetic, testing, copying, branching, and spawning
new processes. The instructions that are available in Core Wars are given below:

M n e m o n ic
DAT A
MOV A B
ADD A B
SUB A B
CMP A B
SPL A
JMP A
JMZ A B
JMN A B
DJN A B

Explanation
A nonexecutable data value A
Move contents of eff(A) to eff(B)
Add contents of eff(A) to eff(B)
Subtract contents of eff(A) from eff(B)
If contents of eff(A) and eff(B) are equal, skip the next instruction
Split execution between the next instruction and eff(A)
Transfer control to eff(A)
jump to eff(A), if contents of eff(B) is zero
jump to eff(A), if contents of eff(B) is not zero
Subtract 1 from contents of eff(B) and jump to cff(A),
if result is not zero.

Above, eff(A) is used to denote the effective address of A. The contents of the effective
address eff(A) is found as follows:

Syntax Value
#A Immediate addressing: the number A
A Direct addressing: the contents of the memory location A
®A Indirect addressing: the contents of memory location A

is taken as the address to the final
memory location, calculated starting from A
Like @A, but contSits of A is first decremented.<A

Addressing is relative to the memory cell that is currently being read, positive values
referring forward and negative backwards in memory. The core memory is circular so
that no boundary effects need to be taken into account.

Even if REDCODE is a very low level language, no binary digit manipulation is needed.
Numbers can be any size, but all calculation is done using mod A arithmetic, where N is
the amount of memory cells in the circular core. The REDCODE compiler is an assembler
that allows one to use symbolic names for memory locations, converting the references to
relative addresses. When a program is run, the first instruction to be executed is labeled
START. After that, the program counter normally steps forward one instruction at a time,
if no branching instruction is executed. If a nonexecutable statement is encountered, the
process is killed.

When Core Wars simulation is run as a battle game, competing programs are loaded
to arbitrary memory addresses. During a competition, each program is given the same
amount of processor time, so that if some program has spawned multiple processes, the
execution of that program becomes slower.

Perhaps the simplest interesting Core Wars program is IMP, where the only action
is to copy its only instruction one step forward, waiting there for the program counter
to proceed to that memory location. Effectively, IMP traverses through the memory
destroying everything it touches.

START MOV START n ex t
n e x t

This IMP is also a good example of programs that are prone to ’steal the soul’ of other
running programs: if another program counter jumps to code tha t has been overwritten
by IMP, it will start repeating IMP behavior forever.

6 P ro g ra m e x am p le s
Some REDCODE programs that differ much from each other are given below as examples.
The first one has proven to be a kind of a standard exemplar for reproducing programs:

MICE
p t r DAT #0
START MOV #12 p t r
lo o p MOV © ptr C next

DJN lo o p
SPL ©next
ADD #653
JMZ START p t r

n e x t DAT 833

This MICE, by Chip Wendell from Floral Park, New York, is a very aggressive piece
of program code. It repeats to copy itself as fast as it can spawning new processes that
reproduce again. Because of its fast spreading, it is usually difficult to destroy. However,
it gets slower and slower as the amount of processes grows.

The second example illustrates a brute force approach to destroying enemy processes.
This program tries to ’wipe out’ all other processes:

Copy program code tail first

Start the child process

Redo the copying to yet another place.

-266-

— “ -

c a n » —- oatBxco

UUWfi8flffl.ll.IBCD

©
ccOBxtiOOOoo OOQOOO

CCCÖXCCCCCQ3

cocooom

1 ... 1

Figure 1. Typical MICE behavior after 500 and after 10000 steps. The square represents
a core of 2500 memory cells, with those cells that have been manipulated by the process
being encircled. Lighter circles denote data area, and darker ones represent cells that
have been pointed to by a program counter.

FOOL
b u ff DAT #1
f o o l JMP fo o l
START MOV f o o l O ptr

ADD #1 p t r
JMN START b u ff
MOV #3 p t r
MOV #1 b u ff
DJN START c t r
MOV k i l l f o o l
JMP START

p t r DAT #3
c t r DAT #5
k i l l DAT #0

Trap command being used as a bomb
Send the bomb

If own code starts becoming corrupted,
save it by skipping next memory cells

Bomb with JMP trap five times,
thereafter kill with DAT.

Figure 2. Typical FOOL behavior after 500 and after 10000 steps

This code is due to Fredrik Wilhelmsen from Trondheim, Norway, and it was specially
designed to beat MICE. The whole memory is filled repetitively with JMP 0 traps, that
efficiently freeze all program counters that happen to execute these commands. The
finishing blow is done by killing the frozen processes using data bombs. Because no copies
of the code are produced, the survival of FOOL is dependent of its ability to hide in the

memory. The larger the core is, the easier it is to hide, but going through the memory
takes a longer time, on the other hand. It is interesting to note that even if FOOL is
immune against its own bomb attacks, it has no means to defend itself against another
FOOL running simultaneously.

Next, a relatively long piece of code that is ’unsinkable’. In principle, continuous
validity checking facilitates self-repair:

BIGBROTHER
sum DAT #0 Counters
ctrl DAT #0 .
ctr2 DAT #0 .
bomb DAT #97 Pointer to the target to be destroyed
START ADD datal bomb

MOV #39 ctrl
MOV #38 ctr2
ADD datal ctr2

comp CMP <ctrl <ctr2 Compare own code with the child process code
JMP error
CMP #3 ctrl
JMP comp

shoot MOV bomb <8bomb No problems—send data bomb and return
JMP START

error MOV data5 sum Some difference was detected
MOV #42 ctr2

calc ADD <ctr2 sum Calculate the check sum for own code
CMP #2 ctr2
JMP calc
JMZ other sum
MOV bomb other Own code is corrupted—commit suicide

other MOV #37 ctrl
MOV #38 ctr2
ADD datal ctr2

kill MOV bomb <ctr2 Kill the child process
DJN kill ctrl

copy MOV datal dataN Replace child process code with own code:
MOV #45 ctrl .
MOV #43 ctr2
ADD datal ctr2 .

addr MOV <ctrl <ctr2 First, rotate addresses
CMP #40 ctrl .
JMP addr .
SUB #1 ctrl .

rest MOV <ctrl <ctr2 Second, copy the rest of the code tail first
JMN rest ctrl
ADD #3 ctr2
SPL 0ctr2 Restart the child process
JMP START

check DAT #506 Check sum value for correct code
datal DAT #511 Addresses of the other processes
data2 DAT #253 .

d a ta 3 DAT # -1 0 2 3
d a ta 4 DAT #2047
d a ta 5 DAT # -1 7 8 8 T h e la s t one p o in ts back to th e first process.
d a ta N DAT #0

Figure 3. Typical BIGBROTHER behavior after 5000 and after 100000 steps

Among these examples, BIGBROTHER is the most sophisticated program. It continuously
compares its own code to code tha t is found in some other place in the memory. If the
contents of the corresponding memory locations is not equal, the check sum is calculated.
If own code is corrupted, the process silently terminates execution, otherwise it copies
itself to the other place and creates a subprocess that starts executing the new code. This
way, arbitrary amount of copies of the same code (five in the program above) check each
other, correcting each other’s errors.

7 C o r e W a r s b a t t l e s

When letting two or more programs run simultaneously in the core, the game is a kind
of an struggle of life between various species. Two programs are planted randomly in the
memory, and the code to survive the most of the duels wins.

Competitions between Core Wars battle programs have been organized—during the
first tournament that was held in Boston in 1987, incidentally, MICE, shown above, ap
peared to be the most tough-lived. The fast breeding of the code was its key to victory.

According to the tournament rules, a program is said to have survived the battle if
any of the program counters is still active after a fixed amount of cycles, no m atter what
instructions it executes. This criterion is not very good—some emphasis should be put on
the robustness of the code, or how probably the initial code is still active and behaving
as it was designed. MICE is actually self-destructive, and it could not stay alive for a very
long time, not executing its initial code anyhow.

W riting the ultim ate winning code seems not to be possible. For memory size 4000,
for example, FOOL usually beats MICE, MICE beats BIGBROTHER, but. BIGBROTHER beats
FOOL. In the table on the next page, quantitative duel statistics arc displayed for various
memory sizes. The percentages illustrate the winning probability of a program against
another program—in a large memory, programs may coexist for a long time, and the sum
of figures may not be 100. The normal reason for a draw was that both programs had
ended in a cycle of trivial commands.

C o re size MICE vs. FOOL FOOL vs. BIGBROTHER BIGBROTHER vs. MICE
1000 71 % 18% « 100 % % 0 % « 0 % « 100 %
2000 67 % 27% 67 % 33 % * 0 % 88 %
4000 33 % 57 % « 0 % « 100 % ~ 0 % 70 %
10000 50 % 43 % « 0 % « 100 % « 0 % 69 %
20000 50 % 42 % « 0 % « 100 % « 0 % 40 %

D a ta bom bs that are sent in order to hit the enemy code are the most common way
to attack. As compared to DAT instructions, fragments of executable code that are sent,
as bombs can be very efficient as the enemy program may be not only killed but trapped
to execute something else. This kind of dead code fragments are like viruses, that are
activated only when they have landed in a living process. For example, FOOL is a ’virus
generator’ that tries to infect competing programs making them execute a trivial branch
ing command for ever.

8 A rtif ic ia l L ife a sp e c ts
Even one of the simplest REDCODE programs, the one-line IMP that was given earlier, can
’reproduce’ and ’move’. As a battle program, it is likely to survive if the core is small
enough. More complex codes can accomplish more complex schemes. It should seem
likely that REDCODE is a good substrate for Artificial Life.

In principle, Core Wars can be interpreted as a testbench for experimenting the idea
of ’the survival of the fittest’. Programs may not only survive, but new hybrid codes
may emerge as copied programs overlap. Interesting mutations and mixing of code often
happens in the course of the game, and visual surprises are common. However, there are
some problems.

Finding a good set of basic operations is one of the main difficulties in Artificial Life
programs. The results are highly dependent of the rules—in Core Wars, very easily a
simple degenerated winning strategy emerges and more complex life forms vanish. The
problems with Core Wars viruses illustrate well the problems of finding good rules assuring
interesting behavior. For example, remember that there are no mechanisms to control or
keep track of all program counters a process has created. Consider the following virus
bomb:

bomb SPL bomb

If a process happens to execute the above instruction, it will spawn infinite amount of new
processes. If the newest process is the next one in the row of processes to be run, nothing
else will ever be done by that program. Each step it will only spawn a new process.

The contemporary rules encourage wild, uncontrolled duplication of processes. In
addition to this, there exist trivial winning strategies, like sending pathological virus
bombs as the one above. It is funny to see how difficult it is to predict large scale
processes even if the lowest level is thoroughly known: the creators of the game have
been complementing the rules many times after it was first introduced, and still there are
loopholes.

The instructions of REDCODE are perhaps too simple. Long programs needed to achieve
interesting behavior are fragile and prone to get fragmented and void. A minor change
in the code probably causes self-destruction. It could be useful to define more powerful

parameterized commands—being able to copy a segment of memory in one cycle would
usually make programs much shorter, for instance.

One problem with the contemporary Core Wars standard is its lack of internal control:
there are no means to resolve the amount of running processes or the location of program
counters or the age of processes. It is impossible to write a program that would always
be able to control its state.

According to the experiments, the most probable outcome at the moment is the gradual
degeneration of the genetic code during simulations. The evolution of complexity that
should be characteristic to Artificial Life processes, is never achieved. Following this line
of reasoning, Core Wars cannot be a useful Artificial Life simulation environment.

9 C onclusions
Usually, programs simulating Artificial Life generate new, more complex life forms. In this
respect, Core Wars is not a good environment for Artificial Life experiments—applying
the contemporary rules, living is merely sustaining the inevitable degeneration. Rather
than resembling Artificial Life, nowadays Core Wars processes simulate artificial death!

After some changes to the REDCODE language the evolution might become positive, not
negative—but what kind of enhancements to the rules are needed?

A cknow ledgem en t
The initial version of mars simulation program that was used here was written by Fredrik
Wilhelmsen at the Norwegian Institute of Technology, Division of Engineering Cybernet
ics, in Trondheim, Norway.

R eferences
Different aspects of Artificial Life have been discussed, for instance, in ”Artificial Life”,
edited by Christopher G. Langton (Addison-Wesley, 1989). This book is a collection of
papers presented during the Interdisciplinary Workshop on the Synthesis and Simulation
of Living Systems that was held in Los Alamos, New Mexico, in September 1987.

Core Wars has been discussed by A.K. Dewdney in the ’’Computer Recreations” column
of Scientific American:

• A Core War bestiary of viruses, worms and other threats to computer memories, in
March 1985 issue, pages 14-19,

• A program called MICE nibbles its way to victory at the first Core War tournament,
in January 1987 issue, pages 8-11, and

• Of worms, viruses and Core War, in March 1989 issue, pages 90-93.

