
Tutorial Proposal for ICANN 2011
(June 14–17, 2011, in Espoo, Finland)

—
Cybernetics of Neuron Systems

Heikki Hyötyniemi
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Abstract

In this tutorial, a concise theory of the cybernetic neuron system is presented. Starting
from very elementary local actions, powerful global level functionalities are found. For
example, it turns out that a cybernetic neuron population implements sparse subspace
coding of data in its principal subspace. Because the information presentation in the
cybernetic model is optimal, further hypotheses can also be drawn: this novel approach
may span the whole continuum from the elementary actions to the high-level cognitive
functionalities, giving new intuitions on how emergence in complex systems in general
can be attacked. As the theme of ICANN 2011 is “machine learning re-inspired by
brain and cognition” this topic could be an inspiring contribution at the Conference;
and, as Geoffrey Hinton will give a plenary talk, there would be synergy of approaches.
— In the final presentation, there will be detailed case studies on how the methodology
can be used to efficiently implement practical pattern recognition and regression tasks.

During the tutorial, the theoretical observations will be presented by docent Heikki
Hyötyniemi and simulations and practical experiments will be presented by Mr. Petri
Lievonen, both from Aalto University.
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1 Introduction
Artificial neural networks are usually studied in a static setting — input patterns being trans-
formed into some outputs or inner states. However, in reality such static mappings are just
superficial reflections of the underlying dynamic phenomena. Concentrating on the observed
surface patterns, or looking at the system only from above, cannot easily be changed afterwards;
to attack the true essence of the neuronal systems, one has to convert the top-down approach
to a bottom-up view right in the beginning. The connection between the two views is supplied
through dynamic feedback loops, and the study of such structures is the field of cybernetics.

This changing of viewpoint is important if one truly wants to mimic natural phenomena
or understand them. What is the nature of emergent functional structures, how can they come
out from the original nothing? The claim here is that functionalities are based on dynamical,
self-sustained attractors, and only as seen from outside, in the slower time scale, there are fixed-
looking functionalities. In appropriate environments there is convergence rather than divergence
at all levels, the higher levels being crucially dependent on the existence of the lower-level
balances. The view of ever increasing complexity and chaos can be substituted with principles of
self-organization and self-regulation when applying such “inverted” view of a complex system.

But, once more, why there is something instead of nothing, what are the original driving
forces? In the domain of neural networks, one can start from the principle of neuronal activity
pursuit: a neuron wants to receive activation, and there is a large number of such hungry neurons.
After that, functionalities and properties start stacking on top of each other, one by one, from
bottom to the very top, as shown in this presentation.

Of course, there are always many ways to proceed, and some guidelines are needed. The
first principle to follow here is to study what are the constraints and what can be implemented
using the already available functionalities; second, as there are no central controls, all operations
have to be strictly local. The third guideline — the most challenging one — is the demand of
scalability. Otherwise the studies can never be extended beyond laboratory-scale toy worlds.

This scalability claim means, for example, that there should be minimum number of adjustable
parameters; tuning a hierarchy of interacting parameters soon becomes an unmanageable problem.
The other principle related to scalability may sound astonishing: to understand qualitatively what
happens in a large-scale system, to be able to copy simpler substructures, they must be essentially
linear. At least in this presentation, all approaches are basically strictly linear. — Truly, it seems
that there still are fresh problem settings in linear theory, starting from the fact that stability in
dynamic structures can be achieved also in linear terms using negative feedback. The structural
complexity, or the traditional nonlinearity, is thus changed to dynamic complexity; but we are
not afraid of that, as our working hypothesis is that everything is dynamics.

And, after all, the strongest guiding principle in discussions is intuition. Reality is respected,
and nature’s ways to implement its amazing functionalities are appreciated. Perhaps surprisingly,
our trained sense of beauty suggests if a specific path is worth following; this aesthetics cannot
be formalized, but it is based on a deep look at mathematical patterns. This key role of intuition
as a basis of the “new science” will be studied closer in the end of the presentation.
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The cybernetic approach to neuron systems is related to various other established neural network
paradigms:

• The adopted starting point results in Hebbian neurons, and, as there are the negative
feedbacks, the anti-Hebbian algorithms with sparse coding property are closely related.

• Being based on linear matrix structures, subspace methods and principal component
networks are discussed, the system acting as an auto-encoder, finding codes for patterns.

• As a long sequence of neuron layers becomes “collapsed”, a simplified version of error
back-propagation can be implemented.

• An energy function being iteratively minimized, there is a connection to Hopfield nets, and
as the input is also iteratively tailored, it is near (restricted) Boltzmann machines.

• If one allows some crosstalk among neighboring neurons, the network can be seen as a
(distributed) extension of Kohonen’s self-organizing map.

• Finally, as the overall system can be studied also in terms of frequencies and vibration
fields, there is perhaps even a connection to holographic memories and the like.

2 Properties of the information flow
A complex system is typically characterized by a fractal hierarchy of emergent levels. Here,
we take (in a rather traditional manner) the level of neuronal activations as the starting point
(however, we go beyond this assumption in 7.3).

2.1 Neurons — just trying to prosper
Available activation sources are denoted here as ūj , where 1 ≤ j ≤ m, and neuronal activities
are denoted as x̄i, where 1 ≤ i ≤ n. Typically, there holds n� m. Interpreting the spread of
activation as being a result of some kind of generalized diffusion, it is assumed that the synapse
aij , or the connection between ūj and x̄i is linear; then, the total neuronal activation becomes

x̄i = ai1ū1 + · · ·+ aimūm =
m∑
j=1

aij ūj. (1)

The measure for neuronal success is the average variation level or (uncentered) variance E {x̄2
i }.

This variance can be interpreted as (Fisher) information. An expression for variance can be
found, for example, by multiplying both sides in (1) by x̄i, and taking expectation:

E
{
x̄2
i

}
=

m∑
j=1

aij E {x̄iūj} . (2)
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The neuron’s goal is to maximize this quantity by altering the synaptic weights. To define a
sound optimization task, one needs to assume that there is some cost for keeping up the synaptic
couplings aij . A practical way to assess the costs is to interpret aij as characterizing the relative
proximity between the input and the neuron, and each input can be seen as defining a separate
orthogonal dimension in the input space. Assuming that at any specific time instant, the “synaptic
weight vector” is fixed, so that a2

i1 + · · ·+ a2
im has some constant value; then one can write

Maximize
∑m
j=1 aij E {x̄iūj}

when
∑m
j=1 a

2
ij = constant.

(3)

This constrained optimization problem can be solved applying the method of Lagrange multipli-
ers, giving

ai1 = qi E {x̄iū1}
...

aim = qi E {x̄iūm} ,
(4)

where a new constant parameter qi is introduced. Thus, from (1) it can be seen that if the neuron
is optimally coupled to its environment, for some coupling factor qi, there holds

x̄i = qi
m∑
j=1

E {x̄iūj} ūj. (5)

The same reasoning applies to all neurons in the system, so that the set of n similar equations (5)
can be expressed in a compact matrix form as

x̄ = QE
{
x̄ūT

}
ū, (6)

where the vectors x̄ and ū contain the variables x̄i and ūj , respectively, and the diagonal matrix
Q contains the individual qi’s on its diagonal. The matrix E{x̄ūT} is the covariance matrix,
but without the traditional mean-centering or normalization. One needs to remember that even
though the matrix representation is employed, all operations in the system are completely local.

Essentially, (6) is a compact formulation for the Hebbian learning principle that has tradi-
tionally been studied in neural networks research: synaptic connection between the input and the
neuron increases if they correlate. However, this matrix formulation seems to offer fresh views
to the functionalities of the neuron population. What is more, now this principle can be extended:
note that, in 7.2, the expression E{x̄iHx̄i} still reveals the real neuronal benefit.

2.2 Engineering of emergence
After all, modeling of neuron systems is such an ambitious task that one cannot only discuss the
technical details — a wider perspective is needed. During the first reading, these issues can be
skipped: learning, too, is a constructivistic process consisting of cybernetic convergent loops!
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As an example of the challenges, study the distinction between data and information. In-
formation is a higher level concept; intuitively, there must be some kind of emergence taking
place between them. Indeed, in this context, intuition is seen as a resource that can make it easier
to understand complex issues, and the mathematical constructs here just happen to carry the
appropriate connotations, as shown below; to maintain the intuitive plausibility of the following
discussions, a lengthy motivation is justified.

Here, we are defining weak emergence in strictly mathematical terms. This is accomplished
through the expectation operation that captures the memory of the prior behaviors, abstracting
individual sample details away. Now this operation determines how information cumulates as
given by E{x̄ūT}, thus emerging from the lower-level data x̄ and ū. The formulation (6) couples
the two levels, filtering new data; indeed, one could even speak of knowledge in a very narrow
sense, as this formula determines the operational structure for applying information for data
manipulation. These observations can only contain the kernels of the complex ideas, at best, but
if they manage to carry their essence, less trivial results can perhaps emerge when the essence
cumulates.

Emergence is a holistic concept, whereas engineering is, by definition, purely reductionistic,
and, intuitively, there is an infinity between them. So, the shortest route from the other to the
other is through the infinity, in the spirit of Greek apeiron. Here it is simply assumed that when
there is an infinite number of elementary operations applied as the expectation is calculated, in
the limit, when the details cannot any more be detected, the quantitative changes to qualitative.

As compared to the infinite philosophical discussions concerning emergence, the nice thing
about the current simple definition of weak emergence is that there are efficient mathematical
tools to operate on the infinities.

Still, as the concepts that are being exploited here are so semantically loaded, there are more
objections against the simplistic definitions: for example, there needs to be some direction in
the underlying aspirations to capture the everyday intuition about emergence, otherwise the
summations within the underlying chaos are somehow meaningless and nothing meaningful can
come out of them. The key challenge is, really, how to capture meaning in the formal expressions,
or how to capture the domain area semantics. — In our situation, however, things become easy:
what is relevant in the environment is determined simply through the resources it can supply —
and, in this case, the resource that everybody assumedly agrees with is the available information
that is being competed for. Information is now the Aristotelian energeia, or the new idea of
emergy, beyond the neuronal survival strategies. Understanding the “desires” of underlying
subsystems makes it possible to master the emergence in the large even though the individual
neuronal solutions remain out of supervision.

Of course, as modeling of complex systems is so important, the problems of emergence have
been attacked before, and there are many approaches to “emergence engineering”. There is
little consensus about the general principles, but everybody seems to emphasize the role of self-
organization in such systems, meaning that new structures have to come out from computations.
Now, when applying the cybernetic approach, it is more like self-reorganization that takes
place: first, there is self-simplification of prior structures, and then there is self-complexification,
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or construction of new ones. The former process, or the compression of data into its inner
structure, is studied in Section 3, and the latter process, or reshuffling the data kernels towards
new structures, is studied in Section 4.

From the practical point of view, it is reasonable to make a concrete distinction between the
expectation operator E and a special emergence operator E (an operator that makes things emerge
from a tiny epsilon ε!). Whereas expectation is a mathematical abstraction, never available for
real observation data, the new operator that is based on practical measurements, pragmatic or
sample expectation, or experience, really, can be defined, for example, as

d Eτ{x̄ūT}
dt/τ

(t) = x̄(t)ū(t)T − Eτ{x̄ūT}(t), (7)

assuming that at the τ time scale the signals are always available, that is, the convergence of
the internal signals is fast enough. The above formula defines a low-pass filter, the “visibility
horizon” exponentially receding towards the past. — Later on, explicit time variables and scale
subscripts will be omitted in formulas, and, at the appropriate time scale, the emergence operator
E works virtually like the expectation operator E. For example, the formula (6) becomes

x̄ = Q E
{
x̄ūT

}
ū. (8)

Again, facing the reality and its non-idealities (here, admitting that the mathematical expectation
is never available) makes it possible to see the beauty in the fractal nuances of the time scales
(see also 3.1 and 7.2).

2.3 Interplay among emergent levels
To exploit the mathematical machinery, one has to connect the level of signals and their emergent
counterparts. This can be accomplished by concentrating on their common statistical properties:
in practice, a still longer time scale τ can be selected so that the data and the information
are together seen in that wider perspective. Now, the statistical properties are captured in the
covariance matrices.

One can find many expressions governing the covariances. When multiplying (8) from the
right by x̄T and applying the emergence operator, one has the following expression:

E
{
x̄x̄T

}
= Q E

{
x̄ūT

}
E
{
ūx̄T

}
= Q E

{
x̄ūT

}
E
{
x̄ūT

}
T. (9)

This comes from the fact that the operator is linear and it traverses through constant expres-
sions just as the expectation operator does. The transpose of this gives yet another expression
(remember that QT = Q):

E
{
x̄x̄T

}
= E

{
x̄ūT

}
E
{
x̄ūT

}
T Q. (10)

Multiplying the former expression by Q from the right and the latter from the left, it becomes
evident that there must hold

Q E
{
x̄x̄T

}
= E

{
x̄x̄T

}
Q, (11)
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so that also

f (Q) g
(
E
{
x̄x̄T

})
= g

(
E
{
x̄x̄T

})
f (Q) , (12)

where f and g are any functions that can be defined in terms of matrix power series. This com-
mutativity property means that many mathematical manipulations of the matrix data structures
become very much like scalar algebra in later analyses. In principle, there are two classes of
solutions fulfilling (11): if the factors qi are distinct, E{x̄x̄T} must become diagonal, but if there
holds qi = q for all i, then there are no constraints for the covariance. These cases are studied
closer in 3.3.

Further, assuming invertibility of E{x̄x̄T}, and noting (12), from (9) or (10) one has

In = Q1/2E
{
x̄x̄T

}−1/2
E
{
x̄ūT

}
E
{
x̄ūT

}
TE

{
x̄x̄T

}−1/2
Q1/2. (13)

When defining

θT = Q1/2E
{
x̄x̄T

}−1/2
E
{
x̄ūT

}
, (14)

one has

In = θT θ. (15)

The columns in this new matrix θ are thus orthonormal. In 3.3 the role of the matrices like θ are
studied closer; here, let us just show some alternative formulations for it:

θT =
(
QE

{
x̄x̄T

})−1/2
QE

{
x̄ūT

}
=
(
E
{
x̄ūT

}
E
{
x̄ūT

}
T
)−1/2

E
{
x̄ūT

}
. (16)

Further, by multiplying (8) from the right this time by ūT and applying the emergence operator,
one has

E
{
x̄ūT

}
= Q E

{
x̄ūT

}
E
{
ūūT

}
. (17)

Substituting this in (10), there holds

E
{
x̄x̄T

}
= Q E

{
x̄ūT

}
E
{
ūūT

}
E
{
x̄ūT

}
T Q. (18)

Again assuming invertibility of E{x̄x̄T}, and noting (12), this can be changed to read

Q−1 = Q1/2E
{
x̄x̄T

}−1/2
E
{
x̄ūT

}
E
{
ūūT

}
E
{
x̄ūT

}
TE

{
x̄x̄T

}−1/2
Q1/2, (19)

so that we get

Q−1 = θT E
{
ūūT

}
θ. (20)

This means that if ever the basic assumption (8) is fulfilled, the statistical properties of the input
ū are fixed to the selected Q. As will be shown later, the coupling parameters qi in Q can be seen
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as determining the “stiffnesses” of the coupled neurons. Especially, as it turns out in 3.3, the
visible data ū becomes diagonalized by the system, and if all qi are equal, data gets whitened.
This modification of the environment can be seen as a manifestation of a more general observer
effect. How can the system dictate the properties of its environment — this is studied next.

The above analyses apply if such a mapping matrix really exists as proposed in (8). How
to make signals stationary and the formulas meaningful? How to avoid the excessive growth
(explosion) of x̄ and the resulting instability of adaptation? Indeed, this instability problem is the
traditional curse of all Hebbian-based approaches. How to supply the “integrated intelligence” to
assure the balance on the “edge between order and chaos”, and, specially, how to reach that in
linear terms? In the cybernetic spirit, of course, dynamics and feedback is here proposed.

3 Facing the reality and exploiting it
There are no pure information flows in nature: exploitation of signals also means exhaustion of
them. When this implicit effect is included in the signal flow diagrams, it turns out that there is
negative feedback from x̄ back to ū: activation consumed by a neuron is not available to others.
This feedback stabilizes the closed loop.

3.1 Feedback through environment
When the neuron i has been put running, and it has activity x̄i, it sucks from resource j such an
amount of resource that is proportional to the synaptic strength aij or qiE{x̄iūj}. This means
that the change in the input activation j because of the neurons can be written as

∆ūj = a1jx̄1 + · · ·+ anjx̄n =
n∑
i=1

qiE {x̄iūj} x̄i. (21)

For the whole population of inputs one can write in matrix form

∆ū = E
{
x̄ūT

}
TQ x̄. (22)

The key point in (22) is that the neuron is thought to be an active entity: after being launched, it
ruthlessly pulls the activity it needs to itself. The above formula, together with (8), determines
the connection between the internal and external realms, and there can be some scaling effects
taking place in the “conversions” between ū and x̄. If x̄ alone is not strong enough to “make a
difference that makes a difference” in the environment. or implement the feedback, one has to
scale up its elements. So, assume that it is some x̄′ = Cx̄ for some diagonal C that would only
implement the necessary balancing effect. Study what happens if the variable x̄′ is used instead:

x̄′ = Cx̄ = C QE
{
x̄ūT

}
ū = QCE

{
x̄ūT

}
ū = QE

{
Cx̄ūT

}
ū = QE

{
x̄′ūT

}
ū. (23)

This means that all references to the old variable have vanished. One can also employ the new
variable x̄′ and the discussions above are still valid; however, from now on, assume that such
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Figure 1: Cybernetic loop structure and signals therein

necessary data scalings have been carried out for the variable x̄ itself (that is, instead of using x̄′

in the subsequent discussions, it is the familiar x̄ that is used). How to scale the elements of x̄ to
make it somehow compatible with the environment — this is discussed in 4.2.

Above, symbols like ū and x̄ have been used all the time; they are the final, effective, visible
variables, dynamic balance values that result after underlying interactions have converged in
the equilibrium of tensions. The original undisturbed resource vector u is invisible for the local
actors, because in reality it is disturbed by the systems (this can be called the observer effect).
The actual signal structure is shown in Fig. 1. For the disturbed input, or residual, there holds

ũ(t) = u−∆u(t), (24)

and the asymptotic values are defined (in a somewhat sloppy way) as

ū = lim
t→∞

{ũ(t)} (25)

and, correspondingly, x̄ can be found only after convergence:

x̄ = lim
t→∞

{x(t)} = lim
t→∞

{
QE

{
x̄ūT

}
ũ(t)

}
. (26)

In the asymptotic case, when the balance has been found, the situation looks like that shown in
(8). Here it is assumed that one only studies some kind of “local infinities” at the local time scale
that is relevant to the dynamics of x. Indeed, to capture the “momentary nature” of behaviors in
the system, one has to concentrate on the following scales separately (when concentrating on a
specific time scale, signals from other scales look like constants):

• Fastest, the internal time scale in the neurons: relevant to momentary signals like x

• Moderate, environmental time scale: applies to signals like u, ū and x̄

• Slowest, “system scale”: models of (co)variation, for example E
{
x̄x̄T

}
, and E

{
x̄ūT

}
.
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When the above expressions concerning the feedback are combined, one has

ū = u− E
{
x̄ūT

}
TQ x̄, (27)

and, further, for x̄

x̄ = Q E
{
x̄ūT

}
ū = Q E

{
x̄ūT

}
u−Q E

{
x̄ūT

}
E
{
x̄ūT

}
TQ x̄, (28)

or, when solved,

x̄ =
(
In +QE

{
x̄ūT

}
E
{
x̄ūT

}
TQ

)−1
QE

{
x̄ūT

}
u. (29)

Using (10), one has

x̄ =
(
In +QE

{
x̄x̄T

})−1
QE

{
x̄ūT

}
u, (30)

and, simplifying further, one has an expression for x̄ directly in terms of u:

x̄ =
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄ūT

}
u. (31)

Using corresponding manipulations, by setting (27) in the other location (within the emergence
operator) in (8), one can also derive, for example,

x̄ =
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄uT

}
ū. (32)

3.2 Maximum of variance inherited!
In the formula (31) there is a discrepancy: the input is u but the covariances are given in terms of
ū. This can be resolved by manipulating the expression:

E
{
x̄ūT

}
= E

{
x̄
(
u− E

{
x̄ūT

}
TQx̄

)
T
}

= E
{
x̄uT

}
− E

{
x̄x̄T

}
QE

{
x̄ūT

}
.

(33)

Solving this for E{x̄ūT}, one has

E
{
x̄ūT

}
=

(
In + E

{
x̄x̄T

}
Q
)−1
E
{
x̄uT

}
=

(
Q−1 + E

{
x̄x̄T

})−1
Q−1E

{
x̄uT

}
.

(34)

Combining (31) and (34):

x̄ =
(
Q−1 + E

{
x̄x̄T

})−2
Q−1︸ ︷︷ ︸

M1

E
{
x̄uT

}
︸ ︷︷ ︸

M2

u. (35)

Using this expression, one can study the connection between the undisturbed u and x̄. If the
statistical properties of the input data u are assumed to remain intact, one has
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Theorem.
If data is rich enough (non-zero variation dimensions in data d ≥ n), and if each mode remains
cybernetic or alive (see 4.1), after convergence the neuronal mapping from u to x̄ spans the
principal subspace of data variation in u, corresponding to the n most significant eigenvector
directions of the data covariance matrix E{uuT}.

Proof.
Rather than studying the adaptation process as a continuous process, the time axis is here assumed
to be divided in long enough subparts; these subparts are indexed below using superscript numbers
in parentheses. The expectations, when calculated as sample averages within each interval, are
already assumed to be accurate enough. If one starts from some arbitrary mapping matrices M (0)

1

and M (0)
2 , the step-by-step covariance adaptation, iterating (35), proceeds as

x̄(0) = M
(0)
1 M

(0)
2 u

x̄(1) = M
(1)
1 E

{
x̄(0)uT

}
u = M

(1)
1 E

{
M

(0)
1 M

(0)
2 uuT

}
u

= M
(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}
u

x̄(2) = M
(2)
1 E

{
x̄(1)uT

}
u = M

(2)
1 E

{
M

(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}
uuT

}
u

= M
(2)
1 M

(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}2
u

...

x̄(k) = M
(k)
1 M

(k)
2 u =

(
k∏
i=0

M
(k−i)
1

)
M

(0)
2 E

{
uuT

}k
u.

(36)

The former part M (k)
1 =

∏k
i=0M

(k−i)
1 is a scaling matrix of dimension n × n and it does not

affect the subspace being spanned by the mapping. On the other hand, M (k)
2 deserves more

attention. Assume that the eigenvalue decomposition of the data covariance (see 3.3) is written
as

E
{
uuT

}
= Θ Λ ΘT. (37)

The resulting mapping matrix M (k)
2 becomes

M
(k)
2 = M

(0)
2 E

{
uuT

}k
=
(
M

(0)
2 Θ

)
ΛkΘT. (38)

This means that in the mapping matrix the relevance of the principal component direction j
is weighted by λkj . At each iteration, the eigenvectors become better aligned with the most
significant eigenvectors. Because the variables x̄i are linearly independent, it is the n most
significant covariance matrix eigenvectors that determine the mapping after adaptation (assuming
that in an ordered list of decreasing eigenvalues, there holds λn > λn+1). These eigenvectors
define the same subspace as in the case of x̄ vs. ū (but the eigenvalues differ; see below). 2
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3.3 Relation between principal subspaces
To understand the properties of the Hebbian neuron populations, the structure of input data needs
to be studied closer. For stationary input data, one can always write the eigenvalue decomposition
for the covariance matrix E{uuT} as

E
{
uuT

}
= Θ Λ Θ−1, (39)

where the m×m matrix Θ contains the eigenvectors of the covariance matrix of u as its columns,
and the diagonal matrix Λ contains the corresponding eigenvalues on its diagonal. Because of the
structure of the covariance matrix, all of its eigenvalues are real and non-negative, and they can
be ordered in the order of descending significance, revealing the proportion of variation that is
distributed in that eigenvector direction. Because of the symmetricity of the covariance matrix, all
eigenvectors are normal to each other, so that when they are normalized, there holds ΘTΘ = Im,
or Θ−1 = ΘT. When data is projected onto the basis determined by the covariance matrix
eigenvectors, so that z = ΘT u, the new latent variables z are known as principal components.

The same kind of eigenvalue decomposition as in (39) can be carried out also for the modified
data ū, and one has now

E
{
ūūT

}
= Θ̄ Λ̄ Θ̄−1. (40)

According to (15) and (20), n of the m eigenvectors in Θ̄ (collected as columns) are present in
the matrix θ:

θ = Θ̄[n]D. (41)

Here, notation Θ̄[n] means that only n of the constructs are selected; D is some orthogonal
n × n matrix shuffling these vectors. It is the matrix E{x̄ūT} that spans the n dimensional
subspace of θ, so that this mapping is characterized by the eigenvectors of Θ̄; but, according to
(31), the same E{x̄ūT} spans a subspace in Θ, too, and because of the Theorem in 3.2, it must
even be the most relevant of the subspaces for data u. This all means that Θ and Θ̄ are closely
related. However, there is an essential difference between the above eigenvalue decompositions:
whereas eigenvectors are the same, the eigenvalues are not, or Λ 6= Λ̄. The relevance ordering of
eigenvectors can change. It may even be so that the n most significant eigenvectors are not the
most significant ones after the system coupling; this is because the most visible data dimensions
are suppressed by the special structure of the feedback control (this case of excessive coupling
could be called “hyper-cybernetic”). The modification of the data variance structure caused by
the cybernetic coupling between the system and its environment is illustrated in Fig. 2.

What comes to the coupling between the environment and the system, the above discussion
is not yet the whole story. When looking at the final latent variables, or the vector x̄, there are
the following two essentially opposite possibilities of interest:

1. If all qi in Q are distinct, according to (20), the original data eigenvalues λj change to
λ̄j = 1/qi (assuming that neuron i has become coupled to mode j); further, for (11) to
hold, E{x̄x̄T} must become diagonal, and from (14) it is evident that there is no shuffling
of basis vectors — the system implements principal component analysis.
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Figure 2: Eigenvalues in the coupled system

2. If all qi inQ are equal, on the other hand, so thatQ = q In, all eigenvalues are equalized, all
λ̄j equalling 1/q, no matter what the original λj > 1/q are; now there are no limitations for
E{x̄x̄T} because of (11), so that the system implements only principal subspace analysis
with rotatable basis vectors.

In practice, in the case of distinct qi there must hold D = P , P being a permutation matrix,
otherwise there are no formal limitations for D in addition to orthogonality. The latter case is
the more interesting, and it is reasonable to study how the internal feedback structures rotate
the basis axes. — It deserves to be recognized that “whitening” of the effective data in ū has
been automatically accomplished without any preprocessing (centering or scaling) of the original
data in the coupling process (compare to independent component analysis, etc.). Now the latent
variables are not orthogonal, or E{x̄x̄T} is not diagonal, and φi are not orthogonal. There is still
a tendency towards independence of variables (at least if there are nonlinearities in the model,
see 5.3): remember that signals are shuffled in the loops, and the system tries to eliminate all
correlations between the generated functions.

4 Emergence of new structures
Despite the analyses above, there are two classes of solutions to (8). In addition to the case
that was discussed in Sec. 3, the trivial solution x̄ ≡ 0 for all inputs, or x̄i ≡ 0 for a subset of
them, also satisfies the assumed constraint, the corresponding mappings vanishing, E{x̄iū} ≡ 0.
To understand the faith of the neuron i, whether it fades away or stays “alive”, depends on the
corresponding coupling to the environment.
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4.1 Details of the neuronal mapping
From (31) one can write yet another expression for the covariance by multiplying the expression
by its transpose, and applying the emergence operator:

E
{
x̄x̄T

}
=
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄ūT

}
E
{
uuT

}
E
{
x̄ūT

}
T
(
Q−1 + E

{
x̄x̄T

})−1
.

Eliminate the matrix inverses by multiplication, so that(
Q−1 + E

{
x̄x̄T

})
E
{
x̄x̄T

} (
Q−1 + E

{
x̄x̄T

})
= E

{
x̄ūT

}
E
{
uuT

}
E
{
x̄ūT

}
T,

and observe the commutativity of the matrices:(
Q−1 + E

{
x̄x̄T

})2

= Q−1/2Q1/2E
{
x̄x̄T

}−1/2
E
{
x̄ūT

}
E
{
uuT

}
E
{
x̄ūT

}
TE

{
x̄x̄T

}−1/2
Q1/2Q−1/2

= Q−1/2 θT E
{
uuT

}
θ Q−1/2.

Further, because of the orthogonality of θ,

Q−1 + E
{
x̄x̄T

}
= Q−1/4 θT E

{
uuT

}1/2
θ Q−1/4, (42)

or

E
{
x̄x̄T

}
= Q−1/4 θT E

{
uuT

}1/2
θ Q−1/4 −Q−1. (43)

If the coupling factors qi are distinct for all i, the θ mapping has a diagonalizing property, and

E
{
x̄x̄T

}
= Q−1/4 PTΛ

1/2
[n] P Q−1/4 −Q−1, (44)

where Λ[n] is a diagonal n× n matrix containing the most significant eigenvalues of the original
data u, and P is a permutation matrix. Assuming that the eigenvalue λj in the data has become
coupled with variable xi, one can write

E
{
x̄2
i

}
=

√
λj
qi
− 1

qi
. (45)

The behavior of this as a function of qi is shown in Fig. 3. Incidentally, the square root form
of activity inheritance is also motivated by the Penrose’s voting rule that gives equal weight to
all “individuals” beyond the emergent-level activities. Additionally, there is now the threshold
term −1/qi. Because the variances always must be non-negative, meaning that variations in each
direction must have real values, one can see that the non-trivial solutions are only possible if
the variation level in the input data is high enough, so that the additional factor −Q−1 in (44)
becomes fully compensated. To keep the neuron functional, there must hold

qi >
1

λj
. (46)
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Figure 3: System activation as a function of the coupling parameter

This assures that the studies in the previous sections are relevant; this also assures that the matrix
E{x̄x̄T} remains invertible. — Strange structures emerging in the strictly linear model!

Where is this activation lost, where does the “static friction” come from? This loss can
perhaps be seen as some kind of minimum dissipation that is needed to keep the mills rolling.
It is the loop-based iteration that essentially solves a set of linear equations when finding the
equilibrium in the algebraic loop, providing data whitening, and only using enough pressure
(strong enough coupling qi), this can be accomplished.

On the other hand, if the incoming activation flow is strong and if there are limitations for
individual neurons, so that a single neuron cannot exhaust all available activation as revealed
by (45), additional neurons can start sharing the modal load; this means that the variable E{x̄2

i }
represents their total energy.

4.2 Adding “inverse noise”
Thus, not to introduce the burden of adjustable parameters in the system, it has to be assumed
that there is some local mechanism assuring that the neuron i remains “alive” (or “cybernetic”)
by increasing the value of qi if the activity in the neuron i seems to be vanishing altogether. A
clever choice to reach such adaptive sensitivity seems to be to define

qi = b
1

E {x̄2
i }
, (47)

with b > 0 being some scaling factor, so that, assuming that there is similar local compensation
in all neurons,

Q =


b

E{x̄21}
. . .

b
E{x̄2n}

 = b Var {x̄}−1, (48)
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where Var {x̄} is a diagonal matrix containing the (uncentered) variances of variables x̄i on its
diagonal, variances being defined in the familiar τ scale.

There are various technical motivations for selecting Q in such a way. First, neurons with
such compensation are always stable, so that the system as a whole remains stable even if the
negative feedback through the environment would fail. Concerning the exact structure of (48),
the best motivation is perhaps given by the convergence considerations: the adaptation process of
the mapping matrix φ (see 5.1) now becomes a data-based identification routine when applying a
“robustified” stochastic Newton method. — From the plausibility point of view, such additional
activity control is not as disturbing as it seems, because it is strictly local; what is more, also
natural neurons turn out to implement similar activity-based controls.

Variance compensation keeps the activity in the neuron constant even if there were some
additional activity losses in neurons; for example, the neurons can be exploited by further
neurons as inputs, so that one can have a sequence of neuron populations without changing their
theoretical properties.

The “exaggerated variance compensation” against the growth of variables means that activity
is aggressively pushed to other neurons; as the total variance still remains to be shared, the
neurons finally end in having the same variance load. This means that, as the variances are then
equal, also qi are, and, according to (20), eigenvalues λ̄i get equalized and variance structure in
E{x̄x̄T} gets blurred, becoming non-diagonal. Rotations can then be introduced, but only so that
this equality among the latent variable variances remains intact: the D matrix has to supply for
such weighted combinations of eigenvalues that the sums are equal. With this special selection
of Q, equation (43) can be studied closer:

E
{
x̄x̄T

}
=

1√
b

Var {x̄}1/4 θT E
{
uuT

}1/2
θVar {x̄}1/4 − 1

b
Var {x̄}, (49)

and multiplying this by Var {x̄}−1/2 from the left and by Var {x̄}−1/2 from the right one has

Corr{x̄}︷ ︸︸ ︷
E
{

Var {x̄}−1/2x̄ x̄TVar {x̄}−1/2
}

= 1√
b

Var {x̄}−1/4DT Λ
1/2
[n] DVar {x̄}−1/4 − 1

b
In.

(50)

The left-hand side of this expression is the (uncentered) correlation matrix, all diagonal elements
being 1. The right hand side is some rotation and scaling of the principal subspace data covariance
matrix; what is more interesting, however, is the additional term, or −1

b
In, in the end of the

expression. To understand its role, remember that normally adding (or subtracting) noise can
only increase the variation level, and, specially, adding white uncorrelated noise only increases
the diagonal elements in the covariance matrix (or suppresses the non-diagonal ones in the
correlation matrix). Now, on the other hand, the diagonal elements are being artificially reduced;
an intuitively appropriate name for such effect is black noise.

Applying such active noise suppression, variation in the n most significant data directions
becomes attenuated, reducing uncorrelated information (or noise) that is only visible on the
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diagonal of the covariance matrix. The qualitative net effect is perhaps not sparse coding with
maximally distinct codes in the traditional sense; rather, one could speak of some kind of
“companion coding” that tries to find groupings, emphasizing non-diagonal correlations. Perhaps
this could be characterized as resulting in a mixture model among sparse subspaces.

Another interpretation concerning the threshold term in the formula (49) is also possible.
In theory, variation among the activations in the system can be freely distributed, and the sum
of variances still remains the same. However, when there is now the threshold, all variance
contributions below the threshold are zeroed; to reach maximum of the effective variation, it
is better to concentrate the activity in a few neurons, while letting the others (those remaining
under the threshold anyway) “voluntarily” have little activity. This kind of activity redistribution
based on “variance difference maximization” is carried out also in factor analysis, and, in its
extreme, this interpretation results in sparsity pursuit.

4.3 Analysis of the inherited variance
As all variances E{x̄2

i } become equal with the selection (48), one can easily apply the matrix
trace to (50), and one has for all i and j a formula for the variances:

E
{
x̄2
i

}
=

b

qi
= b λ̄j =

 ∑n
ι=1

√
λι

n
(√

b+ 1√
b

)
2

. (51)

When one selects b = 1, there is an intuitively appealing balance between the internal and
external variances, so that the value of E{x̄2

i } = λ̄j =
(∑n

ι=1

√
λι
)

2/4n2 is the same for all i
and j. Following the terminology of Geoffrey Hinton, variables become “equivariant capsules”.

It is interesting to note that the square roots of the data covariance matrix, or the numbers√
λj , are directly the singular values of the data matrix; and the expression

∑n
j=1

√
λj for ordered

λj is called the Ky Fan n-norm of the data matrix.
Now we can return to the discussion in (3.1): the above formula applies only for such x̄ that

make the loops in the system balanced so that the signals are compatible in the system and in its
environment (so that the formula (21) really has its intended effect). It is reasonable to scale the
elements of x̄ explicitly by selecting the diagonal elements of the scaling matrix C in (23) as

ci =

∑n
ι=1

√
λι

n
(√

b+ 1√
b

) · 1√
E {x̄2

i }
, (52)

where E{x̄2
i } is the current variance level. When implementing the algorithms outside the brain,

this scaling can be applied after each state update (until, hopefully, this correction is no more
needed).

One can even propose a system size optimization scheme based on the formula (51): for the
coupling to take place, there must hold λ̄j < λj for each j ≤ n within the system; now, then,
select n so that the maximum number of modes gets captured without violating this eigenvalue
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criterion. Assuming that the eigenvalues λj are ordered in descending order, for the last j = n to
be included there should still hold

λn >

( ∑n−1
ι=1

√
λι

n(b+ 1)− 1

)2

, (53)

or, approximately for large n, and for b = 1,

√
λn >

1

2

∑n−1
ι=1

√
λι

n− 1
, (54)

so that the new singular value to be included must be at least half of the average of the previous
ones. This test can be used for all n ≥ 2 (there are never coupling problems for the model size
n = 1). The maximum n is dictated by the properties of the original data, or by the outlook
of the λj eigenvalue envelope. The criterion can be relaxed using data preprocessing, that
is, by making the distribution range of the eigenvalues narrower, and, in the extreme case, if
eigenvalues are made equal, there are no theoretical limitations for the system size. Such a
formal criterion, model size being determined without closer data analysis, suggests that the
feature representations cannot be unique.

If n is selected below the maximum, the system can become “hyper-cybernetic” with twisted
eigenvalue structure: in the visible residual data, it seems that the most significant of the
eigenvalues are left outside the model, the modes that are included in the model being over-
compensated. Values of n beyond the optimum result in redundancy, neurons sharing each others’
activity patterns, meaning that E{x̄x̄T} becomes singular. No matter how high n is, variation
beyond the “visibility horizon” cannot be seen by the system; depending on the parameter b,
or the level of added virtual noise, this information will automatically be regarded as somehow
suspicious. Because of the regularization term Q−1 in the regularized regression formula (see
5.1), the extra variables do not collapse the numerical behavior of the system, however, and
the abundance of nodes (even beyond m) makes it possible to emulate special “lossy” neural
network structures (see 5.3).

In principle, application of the criterion (53) makes the final free parameter n in the cybernetic
model fixed. In practice, when implementing neuromimetic algorithms, such fact would be very
nice, as the traditionally decisive role of parameter tunings in neural network algorithms would
be thus eliminated.

5 Neuron systems as models
So, it seems that the neuron population implements a special kind of representation of the
properties of the incoming data — but why does it do that? It turns out that the constructed model
of the environment makes it possible to implement model-based control to maximally exhaust
information from the environment, and, as seen from the neuronal point of view, this makes it
possible to maximally exploit the available resources.

19



5.1 Controlling of information
Even though everything in neural populations is based on elementary operations, the systemic
properties can best be understood in terms of multivariate linear theory and as mappings between
spaces. Interactions between a system and its environment are mappings between the space of
inputs and the space of neuron activities. When the dynamic equilibrium is found not only on the
signal level but also on the statistical level, the relation between the inputs and the linear neurons
is captured by the explicit mapping

φT = Q E
{
x̄ūT

}
=
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄uT

}
, (55)

according to formulas (8) and (32). This means that the feedforward mapping can be expressed
as x̄ = φTū and the feedback as ∆ū = φx̄. Further, when the effective mapping from the
original, undisturbed u to the system state x̄ is solved, so that x̄ = ϕTu, one has the following
formulation for this implicit mapping, according to (31),

ϕT =
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄ūT

}
. (56)

Using these notations, one can find new formulations; for example, as in (16), one can express
the eigenvector matrix as an “orthogonalization” of the mappings:

θT =
(
φTφ

)−1/2
φT =

(
ϕTϕ

)−1/2
ϕT. (57)

However, to truly understand what takes place in the cybernetic loop of neurons, one needs to
take a wider perspective.

Assume that there is some data ξ(k) of dimension n, and there is some other related
data ζ(k) of higher dimension m, with 1 ≤ k ≤ K. One would like to find the best
possible (approximate) mapping from the space of ξ to the space of ζ so that the
average of the squared reconstruction error, or ‖ζ(k)− ζ̂(k)‖2

2, would be minimized
(note that now one would like to find the optimal mapping from the lower to the
higher dimension, whereas in principal component analysis the direction is opposite).
The standard solution to this problem is provided by the least-squares method, giving
the multilinear regression estimate

ζ̂(k) =
(

E
{
ξξT

}−1
E
{
ξζT

})T

ξ(k). (58)

However, this estimate is typically not robust for high-dimensional data, as colinear-
ities can cause the covariance matrix E{ξξT} to become practically non-invertible.
A simple fix to this problem is to add uncorrelated white noise to the data ξ; then
the eigenvalues of the covariance matrix get farther from zero (this is closely related
to regularization in the neural network algorithms). Thus, if the added white noise
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has covariance C, diagonal matrix with all positive entries, having always full rank,
one has the (somewhat conservative) ridge regression formula

ζ̂(k) =
((
C + E

{
ξξT

})−1
E
{
ξζT

})T

ξ(k). (59)

When one selects C = Q−1, ξ = x̄, and ζ = u (or ζ = ū) in (59), and when E is identified
with E , one can see the connection to formulas (55) and (56). Indeed, one can summarize the
mappings in the following form with intriguing dual symmetry:

x̄ = φT ū
x̄ = ϕT u
û = φ x̄
ˆ̄u = ϕ x̄,

(60)

where the residual error is

ū = u− û. (61)

This all means that local level maximizations result in global level modeling. In the sense of
information capture, the cybernetic model is the best possible:

• The feedforward section implements optimal (robust) modeling of the input data in terms
of variance (information) preservation.

• The feedback implements optimal (robust) estimation (or “generative modeling”) of the
input data in terms of variance preservation.

• Thus, the closed loop with negative feedback implements optimal (robust) “statistical level
control” of the input, or elimination of excitation from the environment.

Here, optimality in estimation is to be interpreted in the linear regression framework, and in
modeling it means principal component (subspace) analysis perspective, in both cases meaning
optimality in the statistical second moment sense. On the other hand, robustness in regression
means reducing sensitivity to colinearity of variables; in the modeling part this robustness means
pre-matching against candidate constructs, thus filtering noise. Briefly, as regression is enhanced
through introduction of white noise, modeling is facilitated by introduction of black noise.

5.2 Interpretation of mathematical patterns
To summarize: the end result of running the cybernetic neuron system is also a model of the
input data, where the constant features, or columns φi, together explain the changing patterns in
u. The features are weighted by the variables x̄i so that their sum maximally reconstructs each
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individual input pattern; each variable x̄i defines a degree of freedom of its own along its feature
axis. The matching process between the patterns and the weightings of features is an iteration
where a “balance” between the pattern and its reconstruction is searched for. As an extension
of principal component analysis, this approach could perhaps be called emergent component
analysis (ECA, or ECA).

The learning in the structures can be fast, as it is the reconstruction error ū only that is used
for training, meaning that it is the difficulties in matching that are especially concentrated on.
And, as Geoffrey Hinton has observed, many filter layers make the learning easier; now there are
virtually an infinite number of layers, but, because of the signal recirculation, the filter is always
the same! Regarding the simultaneous generative nature of the cybernetic network, another of
his sayings is that to recognize shapes, first learn to generate images.

In other words, now this generation of “mental images” is based on models of sparse
subspaces in the space of observations. The basis vectors spanning the subspaces are the features,
summable prototypes, being the rotated eigenvectors of the data covariance matrix. With these,
the original observation pattern is decomposed into a (low-level) perception. Indeed, this view
matches well with the studies on eigenbehaviors and eigenfaces, etc., that have successfully
been used for compressing complex phenomena. And, as experimentally demonstrated by Tom
Mitchell, low-dimensional linear basis is enough to distinguish between linguistic concepts.

Patterns are assumed to be linear sums of features, and everything is linear. This is not only a
pragmatic simplification: it turns out that the linear models are optimal in the cybernetic frame-
work. When it is assumed that everything of interest is based on information, and information
content is based on correlations, the theoretically best models for capturing this information are
linear. Even though the natural computing elements may be non-ideal, evolution tries to make
the models linear!

One more issue deserves to be mentioned about the modeling property of the cybernetic
neuron population: as seen from above, the behaviors in the network can be explained and
analyzed also in terms of an energy function

J(x) =
1

2
xT
(
Q−1 + E

{
x̄x̄T

})
x− xTE

{
x̄ūT

}
u, (62)

where there are terms for the internal energy and for the external energy; following the intuition
from mechanics, this expression could be called the deformation energy of the system, measuring
how appropriately the stiffness axes match the directions of external pressures.

The criterion (62) also connects the time scales: it can be used for determining x̄ (when
minimizing J(x)), and, on the higher level, for determining the model itself (when minimizing
E{J(x̄)}). Indeed, also the model structure (the model size n) can be included in the criterion:
it is E{J(x̄, n)} that is to be minimized with respect to all variables to find the best model in
the cybernetic setting. The first claim is easy to see as (31) characterizes the fixed point of the
gradient descent implemented for the given criterion, giving J(x̄) as its minimum; the latter
claims deserve closer study. Again, assume that one selects Q−1 = Var {x̄}; it turns out that the
minimum is reached when the average system activation is maximum (µ̄i being the eigenvalues
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of E{x̄x̄T}):

Tr {E {J(x̄)}} = Tr
{
E
{

1
2
x̄T
(
Var {x̄}+ E

{
x̄x̄T

})
x̄− x̄TE

{
x̄ūT

}
u
}}

= E
{

Tr
{
−1

2
x̄T
(
Var {x̄}+ E

{
x̄x̄T

})
x̄
}}

= Tr
{
E
{
−1

2

(
Var {x̄}+ E

{
x̄x̄T

})
x̄x̄T

}}
= −1

2
Tr
{ (

Var {x̄}+ E
{
x̄x̄T

})
E
{
x̄x̄T

}}
= −1

2
Tr
{

Var {x̄}E
{
x̄x̄T

}
+ E

{
x̄x̄T

}
2
}

= −1
2

Tr
{

Var {x̄}E
{
x̄x̄T

}}
− 1

2
Tr
{
E
{
x̄x̄T

}
2
}

= −E {x̄2
1}

2 − · · · − E {x̄2
n}

2
= −∑n

i=1 µ̄
2
i

= −n
(∑n

ι=1

√
λι

2n

)4

.

(63)

This minimum can be reached only if the appropriate subspace with the maximal singular values
is spanned by the model; what comes to the model size determination as given by (53), it seems
that the above expression is (approximately, for large n) minimized for the optimum n.

The expression (62) evidently gives “negative energies”, and perhaps it is better to apply the
following “shifted” energy formulation

J ′(x) = J(x) + n

(∑n
ι=1

√
λι

2n

)4

. (64)

However, note that this criterion only measures how well the model matches the principal
subspace, not how good rotations have been found; this means that simpler criteria for evaluating
this aspect of model convergence can be used in practice.

The energy function defines a “landscape” in the data space, characterizing the surveyed
properties of the environment; the model is a “map” of that terrain, and x̄i are the “coordinates”.
As the matching process is iterative, and as there are many local minima (in the nonlinear case),
typically the models remain suboptimal. Indeed, the cybernetic approach represents a model of a
multitude of local minima rather than a single model of the global minimum; characterization of
the landscape is more interesting than knowing the single optimum point. A pool of moderate
non-unique solutions better characterizes the complex system, as nature, too, only finds sets
of suboptimal solutions — and, if those evolutionary processes would be repeated, the results
would never be the same, only their nature remains (remember the Heraclitean metaphors: “you
cannot step in the same river twice”).

5.3 “Metamodels” of neuron systems?
A wider view and fresh associations can help to get rid of outdated intuitions concerning neural
networks. For example, what is the role of data inflation, central control, preprogrammed
structure, and nonlinearity in neural network models? Normally, such ideas are never questioned.
Let us study them here.
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First, take the expansion of data, or introduction of a multitude of more or less hidden
variables. As the goal of traditional modeling is compression, or reduction of data, it seems
that the modeling principles are not applicable here. However, in the case of sparse coding,
augmentation of the variable basis is well-founded, and optimization among some kind of
kernel functions can be based on traditional minimization schemes. Second, central control
of operations (or some kind of positive feedback) is seen as necessary to reach emergence of
structures; however, as shown by the cybernetic approach, what if self-regulation and purely
negative feedback makes it possible to reach non-trivial results in a truly distributed setting? Each
neuron is independent, other neurons being visible only through their effects in the environment.

As an example of the above two intuitions, study a distributed version of the self-organizing
map, also known as SOM. There one has a high number of candidate nodes representing the input
pattern, and one has to implement the selection of the winner node; the winner and its neighbors
are dragged towards that input pattern, resulting in a map getting formed. The key point is the
definition of topology among the nodes x̄i, that is, determination of the neighborhoods among
them. In the cybernetic model, the matrix Q can be made initially non-diagonal, thus facilitating
crosstalk among neighboring neurons: this has the role of the neighborhood matrix. Because of
the distribution of activity, now there are various winners that together represent the input pattern.
This approach is applied in 6.2, so that similar-looking features are ordered near each other.

The two latter intuitions, the need for structural complexity and functional complexity, are
discussed next — and, again, it turns out that there is something more that can be said about
them in the cybernetic setting.

Because it is the reconstruction error ũ that is driving the signal adaptation, and the asymptotic
error ū that is driving the model adaptation, smooth and (strictly) monotonous nonlinearities do
not essentially change the big picture: in the steady state, as the fluctuations in error cancel each
other, the feedback mapping constructs an estimate of the input, and, as a whole, the system
constitutes a lower-dimensional model of the environment (the nonlinearity f(x) is included
also in the model as E{f(x)uT}). When the nonlinearity is added in such a late phase, the basic
functionality of the neuron system is not jeopardized, the neuron population still constructing a
model maximally trying to capture the input variation, even though the variables are “crippled”.
For example, the sparse nature of coding can further be emphasized by adding a nonlinearity in
the loop. Cutting negative x element values to zero, so that f(x) = cut(x), one can implement
“symmetry breaking” to reach non-negative sparse coding. Search for positive features can be
further emphasized by selecting f(x) = |x|; here, if strictly positive features are found, the
model still behaves in a linear way. Even more complicated nonlinearities can be proposed: for
example, introducing the sigmoid function in the loop, one gets nearer to binary representation,
that is, towards the traditional on/off style sparsity.

But there is more: the cybernetic version of a sigmoid neuron population can be seen as a
“collapsed” multi-layer perceptron net. Rather than employing various independent layers, now
one has a single iterated layer, all hidden neuron activities being collected in the vector x. The
“subpatterns” reside in the grid side by side, and further “layers” select from these their inputs;
because of the nonlinearity, n can exceed m, or the signal space can get inflated. The forward

24



signal in the structure, or ū = u−∆u can be seen as an error signal (see 5.1) — compare this to
the backpropagation algorithm: now it is the same signal that traverses forward and backwards!
There is no need for separate training phases or inverted flows, as all information that is needed
is present all the time. And there are no such limitations for the number of variables now: as
there are no hidden layers, all effects being directly visible, training the parameters in the net
is much more straightforward. The hierarchy of functional structures emerges if it is justified
by the data properties, inputs for each layer being selected among the already available kernel
functions defined by the “prior layers”. What is more, the role of the “hidden nodes” can also be
studied in the input space now, and they can even be “preprogrammed”. — If the nonlinearity is
applied in each neuron, the internal mappings are all nonlinear, but the output mapping is linear
— just as one usually selects also in the standard perceptron nets.

There exists plenty of literature for understanding the behaviors in multilayer perceptron
networks, and this pool of knowledge can thus be applied also for understanding the behaviors in
nonlinear cybernetic networks, and for enhancing the convergence of the parameters. But there
is contribution also in the inverse direction: there are now new fruitful interpretations available.
What is more, most of the objections against the physical plausibility of the backpropagation
algorithm seem to vanish in the cybernetic setting.

As the presented cybernetic model structure makes it possible to support and adapt distributed
kernel functions in a self-organized manner, many different kinds of neural network approaches
can be emulated within the cybernetic neuron system framework in a compact fashion.

6 Step aside: an example application
The above discussions are next illustrated using a simple case example. During the tutorial
presentation, more experiments will be carried out and presented by Mr. Petri Lievonen.

6.1 Implementation of the algorithm
In Fig. 4, following the mathematics above, the cybernetics-inspired regression algorithm is
presented in its basic form. In the Matlab style pseudocode, U is the dim(u) × k matrix of
k input vectors u, Y is the dim(y) × k matrix of k output vectors y, and Xbar is the n × k
matrix of neuronal activities. The matrices representing the covariances are denoted Exx, Exu,
and Exy. In addition to n and q, there are additional parameters for affecting the adaptation:
taux is the time constant for the state adaptation, and tau is the time constant for the model
adaptation (note that the discrete-time integrator does not exactly match the continuous one;
furthermore, within one step the whole data is employed). The model matrices are initialized to
random values, and the algorithm is iterated for the data until convergence is reached.

The algorithm is for batch data, assuming that all data is immediately available, so that matrix
operations can be applied, whole data material being operated on in one step. This also means
that the statistical properties of u (like singular values) are available.
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% Initializations
Exu = eps*randn(n,dimU);
Exy = eps*randn(n,dimY);
q = (cumsum(svd(U))./(2*[1:dimU]’)).̂ -2;

ITERATE until models in Exu and Exy converge

Xbar = zeros(n,k);
ITERATE until states in Xbar converge

% Residual of the environmental signals
Ubar = U - Exu’*q(n)*Xbar;

% Balance of latent variables
Xbar = (1-1/taux)*Xbar + (1/taux)*q(n)*Exu*Ubar;

% Enhance model by nonlinearity?
if nonlinear

Xbar = Xbar.*(Xbar>0); % Simple "cut"

% Explicit scaling to the "natural scale"?
Xbar = scaletovariance(Xbar,1/q(n));

% Estimate of the output
Yhat = Exy’*q(n)*Xbar;

% Model adaptations
Exu = (1-1/tau)*Exu + (1/tau)*Xbar*Ubar’/k;
Exy = (1-1/tau)*Exu + (1/tau)*Xbar*(Y-Yhat)’/k;

END

Figure 4: Algorithm. Pseudocode for cybernetic feature extraction
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Figure 5: Averages of number classes

Because of the outlook of the regression formula (59), after the de-correlation of the x̄i
variables, the final regression can be accomplished not only back to u but to any variable by
substituting the E{x̄ūT} by some E{x̄ȳT}. Then one can implement regression from u to y
through the latent variable x̄. Projecting the data through the intermediate latent variables can
filter out noise from the data, if the selection of the lower-dimensional latent basis has been
carried out in a clever way. Thus, data has been divided here in two parts, in input (containing
the observation data) and output (containing the classification information). The reason for this
is that only the input data may affect the determination of the internal representation (the system
state), because only this data is available during model application. For the output data, zero
error is forwarded to the system (even though the appropriate reconstruction error is applied
for model adaptation). Because the output is not used for determination of x̄ and its model, the
output mapping could be constructed separately afterwards.

To minimize free parameters, it is assumed that b = 1; and to have one less adaptation
processes to manage, qi are kept constant rather than updating them online. Their final value
is calculated directly using the known singular values (note that q in the algorithm is a vector
of optimal values for different values of n), and the latent variables, or the rows in Xbar are
explicitly scaled to each have the variance 1/q. In practice, one should not apply such shortcut.

6.2 Data and its model
As an example, a case of coding hand-written digits is presented. As data material, there were
8940 samples of digits written in a 32× 32 grid of binary intensity values (courtesy of Jorma
Laaksonen, Dr.Tech; see http://lib.tkk.fi/Diss/199X/isbn9512254794/). In Fig. 5,
the number class averages are shown, grey color denoting intensity value 0 and white denoting 1.
The statistical properties of this data are shown in Fig. 6, where the envelope of the eigenvalues of
the data covariance matrix are plotted together with the criterion (53); it seems that the optimum
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Figure 6: Selection of the model size

model size is in the vicinity of 40 (even though the behaviors of the curves is not very radical).
Here, n = 36 was selected.

The intensity vector values were normalized, so that E{u2
j} = 1, but not mean-centered, and

they were collected in the matrix U, with k = 8940 and dim(u) = 1024. Correspondingly, the
class matrix Y, with k = 8940 and dim(y) = 10, was constructed of the labels: there is a single
“1” in each column, corresponding to the correct classification of that input pattern.

The adaptation parameters were selected so that tau was 50 (τ = 50) and taux was 2
(τx = 2). In the spirit of the self-organizing map, the coupling factor q was now not scalar but a
matrix Q, and this matrix was not originally diagonal: it started from a neighborhood matrix,
and it was adapted towards a diagonal matrix as

Q(κ) =
(

1− 1

τ

)
Q(κ− 1) +

(
1

τ

)
q In, (65)

with κ being the epoch index, andQ(0) = q Nσ. Here, this notation means a square grid topology
with Gaussian neighborhood; that is, the neighborhood effect decays as a Gaussian function,
with standard deviation σ. In this experiment, the distance between the nearest neighbors in the
6× 6 grid is selected to equal the standard deviation.

As the adaptation process is based on gradient descent, and as the “fitness landscape” is
very complicated, final adaptation takes a long time, and more sophisticated algorithms could
be proposed. For example, the problem of local minima could be circumvented to some degree
using the momentum method: the steps taken in adaptation are not steps in location but in velocity.
Then, adaptation can speed up along long, flat valleys of the energy function.

When the algorithm is run with this data, results differ from a run to another; in Fig. 7,
typical outcome is shown. Typically, representations become more and more complicated over
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Figure 7: The resulting model of data

time: first, one has some kind of category prototypes; after that, there are “strokes”; and finally,
there are some kind of spatial gradients, as in the figure. It turns out, however, that extreme
decomposition does not help when constructing efficient mappings between input and output.

6.3 Classification results
In Fig. 8, the resulting regression model from x̄ to y is visualized (compare this to Fig. 7).
Whereas in Fig. 7 it is φin,i that is shown, now it is φout,i. When used in classification, the estimates
ŷ are recorded, and the index of the maximum of these is the class estimate.

When the classifier performance was evaluated, 1000 fresh test cases were used, 100 for each
class. The results were not good: only 70.0% of the validation samples were correctly classified
(see Fig. 9). Different kinds of preprocessing methods could enhance the results; and, specially,
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Figure 8: Relevance of neurons when explaining the classes

the following possibilities could be studied:

• Now, the model is strictly linear. It is known that linear classifiers cannot perform very
well, and a sigmoid activation function, for example, could be added in the neurons.

• The chosen regularization level with b = 1 in qi = b/E{x2
i } is cautious and features

become overlapping. With larger b there would be better separation, and the features would
be more orthogonal and specific.

• The algorithm searches for common features within all training data. The inter-category
similarities among the classes are not well-suited for distinguishing between them; per-
haps there should be a separate model for each class, and the model with minimum
reconstruction error would be selected to represent a sample?
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Classification by the model

0 1 2 3 4 5 6 7 8 9

Correct 0 71 29
class 1 99 1

2 4 4 50 7 2 4 12 11 5 1
3 8 1 87 3 1
4 2 4 63 12 12 6 1
5 7 1 2 6 69 14 1
6 8 2 1 2 87
7 17 1 7 2 70 3
8 2 5 3 5 7 6 72
9 14 5 17 16 2 13 1 32

Figure 9: Classification results using the basic model are not good

Not all variation carries information that helps in classification; on the other hand, some essential
separating nuance can be rather delicate. It seems that the classifier could be enhanced by
following the intuition about the structure of natural neural networks again (see Fig. 10).

If the model is extended to have three layers, so that the middle one with x exhausts the input
layer with u, but there is also the output layer with y exhausting x, one can augment the original
minimization of the input variance by the following (robust) minimization of the state variance:

Minimize E {‖ x̄ ‖2
2} = E

{
‖φuTū− φyTȳ ‖2

2

}
when φu

TE
{
ūūT

}
φu = φy

TE
{
ȳȳT

}
φy = const · In.

(66)

The constraints are known to hold because φu and φy differ from orthogonal eigenvector matrices
through the same expressions containing only x̄ (strictly speaking, as E

{
x̄x̄T

}
is not diagonal,

there are simultaneous rotations being applied to the basis vectors). The reason to write the
expressions in the above form is that now one can employ one’s intuition about mathematical
patterns: the formulation can be shown to lead to a generalized eigenvalue problem, and its
solution, or the converged matrices φu and φy determine the matrices of canonical correlation
analysis between the spaces of u and y. There are still more statistical concepts available: the
system also implements linear discriminant analysis to data, based on the known classifications
in y for data u. Yet another concept related to matching of two data sets is time warping that
can now be implemented by appropriate pre-ordering of the data. — Note that however the
upper-level variables are disturbed, they are still interpreted as a model for the lower-level ones.

It needs to be recognized that the three-layer model can be emulated using only two layers
by putting both u and y vectors on the input side, but adding one extra minus sign in front of φy
in the formulas. The key intuition here is: what gets squeezed, becomes modeled.
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Figure 10: A clever (natural) implementation of an input/output mapping

7 Towards full-scale neuron systems
This far, only rigid grids of neurons have been studied. But this cannot be the whole truth —
there is not only data filtering taking place in the brain. There must be some kind of interaction
and coordination among neuronal subsystems. How to broaden the views? Again, applying
the cybernetic intuition, abandon the static views, and actively face the dynamic realm as such
approaches only can reveal the underlying hidden patterns.

7.1 Capturing dynamics
Above, the analyses were carried out applying a view from above, looking neuronal behaviors
from a higher emergent level, so that the variables like x̄ were assumed constant for given u. The
actual signal behaviors were assumed to be irrelevant, and it was assumed that the steady state
had been reached, signals having reached their asymptotic values. In practice, however, such
situation seldom exists — there are transients taking place all the time.

The feedforward/feedback loop in the heart of the model is a dynamic self-referential
structure, and this fact alone makes it necessary to concentrate on its properties to some extent.
It turns out that beauty hides itself in details.

One can also benefit from the complex-looking situation. The loop structure itself implements
iteration; by exploiting dynamicity, special kinds of seemingly complex tasks can be implemented
in a straightforward manner. Plausible neuron models must include dynamics as dynamicity
is the only computational tool nature has available. For example, the mathematical operation
(matrix inverse) in formulas like (59) for finding the solution to a group of linear constraints can
be motivated without having to abandon locality when one employs dynamics. Indeed, in the
algorithm 6.1, dynamics enters the loop in a form of a (discrete-time) integrator. To get more
intuition concerning integrators, study the following extended model:

d x

dt/τ
(t) = E

{
x̄ūT

}
ū−Q−1x(t). (67)

Now, there is an additional local negative feedback loop within each computational unit, each
neuron having an inhibitory link to itself. And, assuming (48), the additional synapses again
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adapt in the Hebbian fashion (but now there is the minus sign). Because the system matrix −Q−1

is negative definite, this model is always asymptotically stable; however, at the same time, this
internal dissipation structure makes the system lossy. — When setting the derivative to zero
(meaning that equilibrium is found), and studying what kind of balance signal x̄ matches other
variables (or causes appropriate tensions exactly compensating opposing ones), one can see
that it is exactly the expression (8) that is being implemented by this “naural computation” (or
“netural computation”!).

However, one would like to avoid any structural complications; the internal stabilization
is not necessary because there already is the balancing feedback outside, being reflected in
the experienced signal ũ(t) = u − φx(t). The key forward is to apply intuition again: there
are similar-looking mathematical patterns when one extends views to probability distributions,
allowing us to discuss optimal dynamics.

The Ensemble Kalman Filter is an iterative implementation of the probability density
update problem: given an estimate of the pdf, called the prior, and the likelihood
of some new data, find the new enhanced estimate, or the posterior. The Kalman
filter is known to be the optimal update strategy for Gaussian data; the ensemble
formulation means that the distribution is stored implicitly in the form of compressed
“virtual data” in the state vectors. Using the adopted notation, the goal now is to find
the model vectors x so that the conditional Gaussian probability for data u

p (u|x) ∝ exp
(
−1

2
(u− φx)

T

R−1 (u− φx)
)

(68)

would be maximized for all data in the maximum likelihood sense; there is a priori
uncertainty in the data that is revealed in terms of the covariance R. The best result
is reached when one updates the model in x iteratively as

xposterior = xprior + CφT
(
φCφT +R

)−1
(u− φxprior) . (69)

In (69), the model uncertainty (the sample covariance C = Cov{xprior}) is projected into the
space of data u, employing the covariance of the reconstruction φxprior. However, for practical
reasons one would like to implement robust matrix inverses in the lower dimension, even with
the cost of less “optimal” estimates. The projection mapping φT can be moved to the other side
of the inversion:

xposterior ≈ xprior + C (C +R′)
−1
φT (u− φxprior) . (70)

Here, R′ is now the a priori model covariance. If one assumes that covariances are very small,
so that R′ � Cov{xprior}, the expression can be simplified. Further, one can observe that xprior is
simply x(t), and xposterior can be denoted x(t+dt), or the state after a time dt; letting the originally
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discrete-time update process become faster and faster, the difference between the posterior and
the prior becomes the derivative with some time constant τx, and there approximately holds

dx

dt/τx
(t) = φT ũ(t). (71)

This expression resembles the cybernetic model formula in (8). Indeed, now one can interpret
the static model to have been implemented as a dynamic Kalman filter that also models its
environment. Because of the optimality of the Kalman update scheme, it can be assumed that
also natural neurons have adopted similar dynamic state update strategy during evolution. The
model is lossless, there is no dissipation, with neurons acting as pure integrators.

The above assumption of R′ being very small, or assuming that the a priori covariance would
be negligible as compared to the observed sample covariance, is clearly incorrect, and in such
case the current assumption of zero mean would be even less appropriate. A more plausible
down-shifted formula for state adaptation is found when one simply selects R′ = γC for some
scalar γ > 0; then one has an additional scalar factor 1

1+γ
in front of φTũ(t) in (71). Or, indeed,

should one not select R′ = Q−1 for the state uncertainty! The extra factors (together with those
caused by the time constants) become anyway dissolved in the asymptotic model structures, as
studied in 3.1. — One more simplification can be made in the model formulas, substituting

E
{
x̄ūT

}
≈ E

{
xũT

}
, and E

{
x̄x̄T

}
≈ E

{
xxT

}
, (72)

if it can be assumed that the internal dynamics is much faster than the environmental dynamics:
then there is no need to wait for the convergence of signals, and learning can be continuous.

More intuition about the properties of the cybernetic model has thus been gained. Seemingly,
one has made additional limiting assumptions: here, the data was assumed Gaussian. However,
there is no increase of assumptions, because our model has been linear all the way — and it is
well known that linear models and Gaussianity of data are in one-to-one correspondence with
each other!

Something more needs to be said about this new probabilistic way to look at the data. It
is the central limit theorem that assures that a sum of a large number of independent random
variables will be approximately normally distributed — and this is a good assumption in our
case, too, so that this way the adopted linearity assumption can be naturally motivated. Similarly,
Gaussianity also helps to motivate the definition of information in 2.1: it is known that for
normally distributed data all statistical cumulants beyond the second one (variance or covariance)
vanish. To capture the statistical properties of the data, to be better prepared to its behavior and to
have the best benefit of it, there is no need to employ more complicated definitions of information.
All that is valuable in data must be already present in covariances.

7.2 Entering the frequency domain
When differential equations are integrated as a part in the neuronal model, it seems that the
possibility of simple static calculations is lost. Dynamic signal structures are more difficult
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to analyze and grasp. However, this increase in complexity does not take place, when one
employs the frequency domain, where it is assumed that individual signals are irrelevant, and it
is the resultant group behaviors or wave fronts that are of importance; in steady state, then, it is
frequencies and their phases that count.

Now the original ambition, or sticking to linearity, is nicely rewarded: there are strong tools
available for analysing signals in the frequency domain. The mathematical tool to manipulate
and analyze systems with linear differential equations is the Laplace transform. Applying this
transformation, differential equations change back to static algebraic equations, but the signal-
domain variables become substituted with frequency-domain ones. In a way, a separate model is
constructed for each frequency, and signals are thought to be superpositions of those frequencies.
After the system has been solved in frequency domain, the dynamic trajectories in time-domain
can be solved (if this is needed) applying the inverse transform. But vibration patterns can best
be studied directly in Laplace domain (or applying the related Fourier analysis).

There is one catch, though: frequency domain signals are complex, as the amplitudes and
phases both count. But this is not a problem now, as complex numbers can readily be used in
the cybernetic models; it even seems that convergence properties of neural algorithms typically
become faster and more robust in complex domain. However, there is one essential change:
all transposed expressions are substituted with Hermitean ones, that is, formulas like E{xuT}
change to E{xuH}, etc. In matrices that are Hermited, in addition to transposition, all complex
values of the form x+ yi (or reiψ) are changed to complex conjugates x− yi (or re−iψ). This
change in formulas can be motivated so that the symbol ψ in reiψ represents the phase difference;
if the mapping φ conveys some phase lag, it is only natural that in the matching balance the
backward mapping φH conveys the corresponding phase lead.

So, presenting the model (71) in complex domain, one has a model that can be interpreted as
defining a multivariate electric circuit, where the driving force ũ is the difference between the
two neuronal vectors of potentials (variables representing deviations from some nominal levels):

dx

dt/τx
(t) = φH ũ(t), (73)

corresponding to τxsX(s) = φHŨ(s) when Laplace transformed. Here s = i 2πf is the Laplace
domain variable with f being the frequency (strictly speaking, the time constant is now not τx but
the matrix τx(φHφ)−1, meaning that the stiffnesses affect the dynamics). Transformed variables
are typically written in capital letters.

In frequency domain the signal activities change to signal amplitudes. In both cases, averages
of their squares are related to “information energy” (remember the Parseval’s theorem, etc.),
and motivations presented earlier concerning the “neuronal hunger” still hold: the adaptation of
synapses can be assumedly carried out directly in Laplace domain. The synaptic weights, too,
become complex-valued then. — The sensitivity to phases opens up new possibilities, as in the
succession of input patterns, for example, anticipation of change (a kind of “pattern derivative”)
can become coded in the phase when data is appropriately preprocessed.
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Figure 11: Hierarchy of scales (cut-off frequencies determined by the time constants)

Note that the “weakly emergent” model updates that are based on the formula (7) are also
linear, and they can also be studied in frequency domain; however, if combined with signal-
level dynamics, behaviors become bilinear. To preserve model linearity, one has to study one
frequency scale at a time: too fast changes at any selected scale are just noise, and they should be
low-pass filtered, whereas too slow changes get captured by some higher-level lower-frequency
models. In Fig. 11, a schematic illustration (log/log scale) shows how the system recognizes
the energy spectrum, or information spectrum around it, and how signal variation gets filtered.
As time passes, information about long-term cycles can be detected so that models can be
constructed on ever lower frequency scales.

Exploitation of frequency and phase information between neural subsystems can be the
key to get onto the next-level neural models, not only quantitatively, as in the figure, but also
qualitatively. Indeed, the cybernetic model inspires new hypotheses.

7.3 Scenario: higher-level models?
When extending our view to larger-scale neural systems, one thing that becomes clear is that
the number of neurons increases very much as compared to the number of available sense
inputs. This means that it is other neurons that have to serve as inputs to each other. As the
neurons operate on the same emergent level, on the same time scale, the dynamic considerations
become necessary when trying to capture their interactions. This observation of neurons acting
as inputs raises a question: the inputs themselves are also dynamic now, being governed by
similar differential equations. The increase in the activity of x is sucked from neurons u, and
this loss can be expressed as

d ũ

dt/τu
(t) = −φx(t). (74)
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To get rid of the other variable, apply further differentiation to (73):

d2x

dt2/τxτu
(t) = φH d ũ

dt/τu
(t) = −φHφ x(t). (75)

This expression now characterizes the lossless coupling between the neuron groups. By experi-
menting, one can recognize that there is a class of signal forms that fulfills this expression:

x(t) = A sin

(√
1

τxτu
φHφ t+ ψ

)
. (76)

There is also an unattenuated harmonic oscillation taking place between the neurons, defining
a set of resonators, at least if assuming diagonality of φHφ (eigenvalues are real in any case).
Frequencies of the resonators are determined by the coupling strengths in φ, tighter coupling
resulting in higher frequency. The system dynamics is autonomous, and the external inputs can
only affect the initial values, determining the free parameters, or the amplitudes in A and the
phases in ψ. In steady state, with constant frequency patterns, Fourier transform only is needed.

How can such frequency coupling take place in practice, how can frequency domain be
addressed in real time? Perhaps it is now time to get back to the basic principles, and beyond
the abstraction of “neural activities”. Neuron activity is implemented in terms of pulses; if there
is a pulse train of constant intervals, this defines a frequency. Then, if there is a frequency,
and if a neuron starts following the corresponding pulse train, one can have a phase-locked
loop with synchronization of pulses. One can now extend the neuronal learning principle from
static activities to frequencies: try to make pulses match! If there already exists a consistent
frequency to be experienced, adapt towards it: increase the synaptic coupling if own pulses are
delayed, so that the signal path becomes faster, and decrease it in the opposite case. It seems that
such “frequency locking” can be presented in time domain when the time constant τx is allowed
to be imaginary-valued? — Otherwise, in the purely stochastic case of no detectable nearby
frequencies, things reduce to original case of Hebbian learning based on average activity levels.

Indeed, as indicated by EEG recordings, it has long been known that there are brainwaves that
reflect the overall cognitive status, like alertness. What is more, it has been observed that there
really exist some kind of rhythmic interactions between brain regions, and in some situations
their synchronizations take place.

Such visions of oscillating neurons can help to attack some of the age-old dilemmas of mental
functioning: for example, there can exist dynamic coupling of models and data being determined
by their mutual resonances. Perception can be like a “blackboard system”, where competing
resonators (or the complex cells and other kinds of cell complexes) bootstrap characteristic
frequencies, thus implementing feature augmentation “in place”. A neuron can sustain various
frequencies by implementing appropriate pulse firings. The processing hierarchy is collapsed,
as all resonators operate side by side on the same data but on statistically orthogonal frequen-
cies, constructing frequency-domain “fingerprints” to mental contents, facilitating far-reaching
associations, neuron groups actively reacting to their characteristic chords. — As examples
for need of this kind of dynamic construction of information structures, one can think of the
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two-dimensional case of analysing visual views, or the one-dimensional case of natural language
comprehension. The deep structure of thought is assumedly found when the vibration fields have
converged.

It needs to be remembered that the frequency representation based on complex numbers
is essentially richer than any familiar representation that is based only on real numbers. The
possibilities of the additional phase information can be understood when one studies the operation
of holographic memories.

In short, the new frequencies-based view makes it possible to see mental states as being
characterized in terms of standing waves. It makes it also possible to assume that some kind
of delocalization and fast coupling in information processing can take place. Combined with
cybernetic self-organization, the pulse-coded neuron system can make sense.

8 Cybernetic minds
The above discussions have intuitive appeal and it is easy to make even more brave hypotheses.
It seems that there are, for example, connections not only to cognitive theories, but also to the
philosophy of mind, and there are connections to complex systems in general; below, some
examples along these lines of thought are presented.

8.1 Further interpretations
There exists a large body of research on cognition, but the cybernetic approach does not fit very
well with that tradition. However, embodied embedded cognition is a philosophically oriented
position in cognitive science, closely related to situated cognition and embodied cognition, etc.,
that appropriately matches our intuitions. This theory states that intelligent behaviour emerges
out of the interplay between brain, body, and world: all these are equally important factors in the
explanation of how particular intelligent behaviours come about in practice.

The cybernetic metaphor is a good basis for constructivism: neuronal structures and mental
constructs are being built gradually from non-existence. There is natural complexification driven
by the hunger for information. The predicted functionalities — sparse coding, or detection of
“strokes”, etc. — have been observed in natural vision systems, but how about the higher levels,
can the intuitions be expanded beyond the lowest level?

As neurons extract activation from their environment, it is only their activation that can be
seen as a resource by others. This results in chains of cells. From the modeling point of view,
what is the added value when there are multiple layers in the neural net structure? To understand
this, study a case where input variables are logarithmic, that is, high sensory values are heavily
attenuated (this is what senses typically do, at least what comes to visual and auditory signals).
Summations of modified signals correspond to multiplications of the original. If the original
signals have probability interpretation (or unscaled relevance interpretation truly), adding
variables can be seen as a logical AND operation; sparse subsets approximately correspond to
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OR operations among the sets of variables. Altogether a chain of cybernetic models can be seen
as an AND/OR graph, thus making ever more accurate categorizations among patterns possible.
The succession of elementary models facilitates better modeling and exploitation of information.

When simple manipulations cumulate, at some point the purely physical information changes
to something non-physical: information granules change to symbols and concepts.

It seems that there are various cognitivistic concepts that can be interpreted in terms of the
cybernetic model. The computer metaphor can be relaxed as the constructs are truly distributed:
for example, the long-term memory gets implemented through the vectors φi in all cybernetic
subsystems, and the short-term memory consists of the references to them — that is, it is the
activations in variables x̄i that stand for temporary storages. There is no need for computer-like
transfer of data between memory registers. Simultaneous fuzziness or continuity of concepts and
their crispness can be explained: normally, the locations of minima are smooth functions of the
inputs, but in appropriate conditions stability of an attractor can suddenly get lost. As seen from
another point of view: attributes (or style) of an object are its features, or degrees of freedom, and
the category prototype is the most significant of them; again, all this can be seen in the cybernetic
perspective. — One can even become arrogant: if some ideas concerning mental functioning do
not have a correspondence in a cybernetic model, one can claim that such intuitions are incorrect.
Many of the today’s ideas are based on the computer metaphor; computer has been the only
concrete example of information processing outside the brain, and its role is over-emphasized,
even though the shortcomings of such interpretation can easily be seen.

It would seem that one cannot reach higher levels of mental processing applying the cybernetic
ideas, but, at least to some extent, this is an illusion caused by a bias: subsymbolic processing
cannot be captured through introspection as it cannot be explicated. It is evident that only novice-
level knowledge is declarative, whereas expert knowledge is based on pattern matching. Expertise
is based on balance models, matching of observations against a model, filtering irrelevant details
(or “noise”) away. And it is typically not the most visible features that make the difference.

The cybernetic model is based on balance structures — how about true transients, then?
Study a process of detecting sequences of correlated inputs entering a realm of “free” neurons
searching for activation. Assume that the “hungriest” neuron builds a momentary connection
to the simultaneously active units; if this coupling is relevant, that is, if the neuron can get its
livelihood from this combination later, too, this neuronal substructure can remain there. Later
activations start connecting such neurons together, and, finally, the directed graphs of neurons
become part of the pancausal “cybernetic medium”. This way, the process of a one-time-only
(declarative) event becoming a statistically relevant (associative) structure can, in principle, be
explained; however, generation of time-domain representations is a bigger problem. How can
the activity in neurons be discharged into an ordered sequence of bursts, how to explain attention
control, what about the seemingly controlled construction of linguistic structures, and thinking?

The building blocks for a complete neurophilosophy are not yet there. But even though the
details are not understood, some hypotheses about the big picture can be made. In the cybernetic
spirit, one can perhaps trust that some kind of higher-level feedbacks, or infinite number of
iterations through some kind of conscious mind, can again do the difference.
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8.2 What is consciousness?
The convergent processes determine attractors in data space, being somehow relevant in their
environment, defining a grounding for higher-level constructs to build further. In the neuronal
domain, such higher-level “atoms” can be seen as chunks, or (more or less subsymbolic) concepts
or categories. Based on such concepts, next emergent levels are needed as new modalities, etc.,
get involved, and finally in the succession of levels, assumedly there will be consciousness as the
highest-level attractor.

This is a nice thought with all-embracing dynamics; but why should all mental levels follow
the cybernetic ideals? — The higher-level systems always try to capture the lower level activation
patterns in a compressed way; and to accomplish this, they need a model. According to the
above studies, the cybernetic one is the best of all models what comes to pumping of activation
to higher levels, so that this strategy has evolutionary advantage.

What does the cybernetic “model of models” then look like? The low-level model of own
action is a blur of observations representing the whole closed loop between the inner and outer
worlds; after that, however, the sparsity goal in modeling means that there will be a separate
model of self, with more or less realistic attributes, being in interaction with environment. Is this
not what today’s experts on human psyche say about the nature of the homunculus, too?

The above model-oriented technical view can satisfy some, but simultaneously others will
ask: do you really think that this is all there is about consciousness to say? Indeed, it is interesting
to note that the cybernetic approach offers yet another intuition of what consciousness could
consist of. The vibration fields of 7.3 assumedly permeate in all mental structures, causing an
unexplainable experience of wholeness ... the process philosophical feeling of what happens,
and qualia (as studied in 8.3), is the essence of feeling alive, and the experience of being part of
it all. The feeling of pain, or anguish, is not only a category of thought.

Thus, consciousness can be deterministic without being algorithmic. One does not need to
employ the ideas of Roger Penrose to attack the mechanistic interpretations of strong AI. And
one does not need to resort to quantum phenomena, etc., to explain free will and creativity: it is
about finding new freedoms among constraints determined by the controls, finding escape from
the balance tensions, instantiating new variables as couplings become too intense. There are no
random butterfly effects in cybernetic systems. Structures emerge only if they are relevant; but as
soon as a new stable attractor becomes instantiated, minor effects explode “saltationistically”.

Such “fields-based consciousness” can perhaps someday be studied when the methodology
of frequency domain pattern recognition matures: rather than studying individual EEG signals,
the frequency-domain “multivariate scenes” should be compared to the pattern analyses of
visual scenes. The Kantian basic assumptions about mental functioning being anchored in space
and time can be escaped: frequencies are not bound to locations or directions, and, in a way,
frequencies address both the past and the future in current time. Different mental constructs
define characteristic chords, together hopefully constituting a (Pythagorean) harmony of spheres!

It is evident that if it is the cybernetic principles that make the minds emerge, there is some
level of consciousness in animals, too. On the other hand, infants are not yet truly conscious, as

40



their world is “holistic”, the inner still being mixed with the outer.
One objection against reductionistic theories about consciousness is that mental models are

causal, so that the structure of action and reaction is somehow integrated in them. Causality
cannot be observed in data, only correlations can — how could one address this intuitive feel of
causality in observations-based mental models, then? — Indeed, now there is an easy answer:
because of the all-embracing observer effect in the cybernetic models, it is models of one’s
actions on the environment as being induced by the environment that are constructed.

In 2.2, knowledge was formally defined — similarly, in a very narrow sense, one can go still
further: wisdom means that one knows one’s self, what are one’s capabilities, and how these can
be used to change the world, and how the world (or others) will respond. The models are there
ready to be used: whereas clever ones can find their ways out of troubles, the wise ones never
end in problems in the first place.

Such high-level models that reside in ideasphere are not limited to exist within only a
single brain, and the world models need not be subjective. There can exist intelligent societies,
distributed models among groups of people, if the communication among the atomic minds is
complete enough. The systems thinking in one mind can change to a thinking system as seen
from outside — and this need not be only metaphorical speaking. In still wider scales, the
Hegelian self-consciousness of nature can perhaps be implemented as the models of cybernetic
systems in human’s and nature’s history are constructed by humans, detecting the cycles and
their frequencies in one’s world. The human implements the distributed consciousness of nature.

8.3 Extensions beyond neuronal realms
This far it has been assumed that the inputs were sensory signals, or neuronal ones; however,
one can extend the view. It is evident that information or energy capture in general means
evolutionary benefit, and the formulation E{ū2

j} generally has the interpretation of energy, or
some kind of capacity (or emergy) for many different kinds of signals ūj . The framework of
domain semantics changes to finding relevant signs in the environment, or determination of the
system semiosis: one has to recognize where there are resources available in the environment.

Assume that there exist some receptors of the internal state of the body, for example, some
hormone level indicators. Including such measurements in the input vector u delivers valuable
information about the environment of the neuron system, and becomes most probably included
in the models, together with the purely neuronal signals. Together with the sense signals, these
measurements can be seen to deliver the lowest-level semantics to the otherwise hermeneutic
neuronal models. One could assume that feelings, for example, inherit their contents at least
partly from the prevailing adrenaline and testosterone levels, etc. And, more generally, the
artificial intelligence problem of qualia can perhaps be explained through the connection to the
bodily state. The dichotomy between the mind and the body need not be sharp.

One can generalize further. There are feedbacks also outside the brain: the motivation for the
existence of the whole neuronal system is to implement clever cybernetic feedbacks between
sensors and actuators so that the perceived environment would become better controlled. The
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observations can be affected through real changes in the environment, or through one’s own
actions (either through some kind of adaptation, or through moving to another location). There
are different levels of models involved here, too, starting from the lowest-level reflexes to goals
of high-level cognition. The limbic system can be seen as a “chemical controller” of its own.

And, further, it is not only the neuronal system that can adapt; automatic model construction
and model-based control can take place also without the brain involved at all in different kinds
of agent societies reaching for resources. Such agents can be humans or animals, but, more
generally, they can be cells or even mere molecules that experience the selection of the fittest.
Assuming that the exploitation of scarce resources is the common goal in nature in general, and
there is competition for them (implementing negative feedback), it is the above principles that
still rule: the domain area semantics in its most basic form can be reduced to these resources,
and, after all, the cybernetic approaches promise the best possible utilization of them. The
similar adaptation strategies should then have evolutionary advantage, and, using the presented
methodology, one can perhaps proceed from explaining intelligence to understanding life.

In the preceding discussions, optimality in information processing was emphasized. It may
be that the “tools” available to nature do not make it easy to reach the structures that would
assure such optimality, but it is interesting to see what the cybernetic balance in the slowest time
scale dynamic system is: what does the hypothetical evolutionary equilibrium look like? Given
enough time, where would nature aim at?

Indeed, in the cybernetic perspective, something can be said about nature’s “goals” in general.
It has been claimed that the extended view of entropy, or maximum energy dispersal would be
the principle also beyond complex systems; however, the “whirls” in the entropy flow cannot
still be explained. Such phenomena can be understood on the higher scale: energy must be seen
as a form of cybernetic emergy, and what takes place is maximum emergy dispersal. Information
coagulation on the higher level (seemingly against the entropy flow) can be explained in terms of
control, in terms of still more effective emergy elimination on the lower level of more abundance.
The neuronal system, and also the cognitive system, are nature’s ways to reach “heat death” still
more effectively, escaping the qualitative barriers that are chaining the flow of emtropy.

There are still deeper philosophical questions lying beyond such considerations. For example,
assume that the modeling methodologies are the same in different domains; then, given the
same input data, the resulting models should be effectively identical. This should apply also
if the modeling takes place in the mind instead of taking place in the nature. The mind should
construct mental models that capture the essence of the systems being studied — this view
can be called interobjectivity. And this modeling can also take place in a computer using the
cybernetic algorithms: it is not only artificial intelligence, mimicking humans, but it can be
universal intelligence, explaining survival and prosperity in an environment. Omitting proof
here: on the highest level, it is pattern recognition of vibration patterns that is the key issue.
What is more, it can be claimed that the “incomprehensibility of comprehensibility”, or (as
interpreted here) the separability of individual problems, can be caused by the sparse coding
in the cybernetic processes taking place deep in the nature; and the fine tuning of the natural
parameters can perhaps be explained so that they are tuned by the ongoing natural optimization!
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9 Discussion: what lies ahead?
Above, the theory of neocybernetic systems was discussed as applied to modeling of neural
networks, and beyond. Not very many conclusions can yet be drawn; instead, let us see some
prospects. Finding a model of a mind, as claimed above, should have wide-ranging consequences
what comes to one’s own mind, too! — Are there any practical lesssons to be learned?

Here, towards the end, let us get back to the research on artificial neural networks. This field
is very incoherent, being a collection of diverse methods, the only integrative factor being the
intuitive ambition: one is not only searching for some technical tools for data manipulation, but,
after all, one tries to understand the functioning of the brain. Today, the field of neural networks
research seems to have “converged”, and conclusions can perhaps be drawn. Even though there
are new algorithms being developed and minor breakthroughs being found every now and then,
the overall picture seems to be missing. The field is a fiddler’s paradise with no consistent
paradigm, consisting of a multitude of distinct ideas; indeed, approaches are collections of
elaborated intuitions, visions of what is relevant when capturing the essence of brain functions.

There is nothing bad in intuitions per se. To reach back towards a unified vision, one has
to look at the research in a wider perspective, and it has to be admitted that research cannot
be merely empiristic: one needs some guidelines to do experiments. Consistent research is
theory-driven — or, more fundamentally, good research is intuition-driven, even though this fact
is shamefully ignored afterwards. Perhaps speaking of such facts can someday be approved, as
creativity and workings of the mind are so important components of scientific work.

To reach forward in the research on neural networks, goals need to be discussed, and the
means to reach towards them. Concerning one’s own work, one should answer why that approach
is good, what it can say about higher brain functions, and where that vision would take us. Again,
intuition is the key issue: what do you think is important? Indeed, one needs to discuss one’s
“values”. The claim here is that modeling in ideasphere makes it possible to refine intuitions.

It needs to be emphasized once again: intuition has the key role in research, and in creativity
in general. Intuitions are the sparks of new thinking, escaping the constraints of the current
world, making it possible to find a new freedom, igniting the fire. Intuitions are kernels, changing
to ideas when they have appropriately emerged and when they have been mentally elaborated on
with the help of imagination. What one needs is a tool for analysis and modeling of not only
information but ideas, a delicate machinery that would not embrace the ideas to death. And it
seems that the intuition of a cybernetic model is that it can be also a model of intuitions.

In ideasphere, intuitions can be seen as the “data”, and competing visions find their
model in the balance of tensions, such equilibrium revealing the structure among
elementary intuitions: what is relevant when studying the domain field.

One can define the formalized Delphi method for refining the intuitions and making
them compatible. Raw intuitions as “data” can be collected from expert opinions:
what features does each of the researchers think are the most important what comes
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to the domain field? Entries of the “intuition vectors” are weighted by all experts.
When the weight vectors are compressed in the cybernetic adaptation, one can
perhaps see a structured view of the domain.

The key point in the Delphi method is iteration: as the experts see the other’s
opinions in a coherent framework, interpretations compete with each other, and the
experts can rethink and refine their intuitions. The cybernetic principle can be a tool
for modeling expertise in general — this can be the key to reusability of expertise.

10 About bibliographies
A traditional-style list of references is not included here. Rather, for reaching further material, a
“cybernetic” mechanism is proposed: to have a (more or less) complete, up-to-date, balanced
view of what lies beyond the ideas, put keywords in an internet search engine and follow links.

Internet is a distributed memory, but together with the search engines it is becoming the tool
for implementing distributed cognition, ever better matching the users’ intentions. It is dynamic
and changing as the network contents are continuously updated — and, indeed, it is not the fixed
truth you find there, but it is the relevance-directed view of the real world. The resource for the
nodes to compete for is the users’ interest and trust, and, thus, the evolution in the net seems to
follow the cybernetic principles. The vision of distributed expertise works today already, offering
glimpses to the “net-scape”, and, regardless of the stochastic nature of the more or less random
developments, this network of knowledge is getting better all the time.

In principle, following the cybernetic ideas, structure (knowledge and understanding) emerges
automatically from the body of information available in the net — but this can take a very long
time and a lot of shuffling of data (that is, thinking). This all is, of course, much easier, if there is
some structure readily available to put the pieces of information in. Not to just get lost in the
limitless networld, the key problem is to be capable of characterizing the intuitions and intentions
in an appropriate order to make the mental monads start when they are needed. The role of
presentations like this text is to deliver an organized list of structured “sparks of thought” to
constitute a platform to build on, to set on the fire in the mind. Hopefully this new node in the
network of distributed cognition becomes “alive” in your node of localized personal brains!

However, there cannot be found very much material along the presented lines of thought in
the net, as this research is rather original. — The general cybernetic theory of complex systems
(or neocybernetics) is available in internet at the pages of http://neocybernetics.com .
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Appendix: additional emulations
Here, some additional simulations of structure emergence applying the cybernetic approach are
presented. The experiments were carried out by Mr. Petri Lievonen.

1. Examples of models for the digit data
On page 46, additional modeling processes were applied to the data presented in 6.2. Again, only
input data was employed; this time no SOM-like self-organization of neurons is applied. These
experiments illustrate the robustness of the cybernetic adaptation: not even data normalization is
necessary; and it seems that there is much freedom when selecting the nonlinearity (the activation
function can even be nonmonotonous).

2. Frequency-domain model of MEG data
Pages from 47 onwards demonstrate the cybernetic frequency-level model hypothesis. As data,
there are spatially distributed spectra, and the goal is to reconstruct the underlying structure. This
task is rather ambitious, as what is used is the ICANN 2011 benchmark data, real measurements of
brain functioning, as explained in http://www.cis.hut.fi/icann11/mindreading.php :

The challenge combines two recent trends in neuroscience: Analysis of naturalistic
stimulation and mind reading. The task in the challenge is to decode the stimulus
identity based on magnetoencephalography (MEG) recording done during natural-
istic stimulation. In more detail, the subject is viewing video stimuli of different
kinds (football match, feature film, recording of natural scenery etc), and the goal is
to classify unlabeled test examples into these categories based on the MEG signal
alone. . . .

The data consists of MEG recordings of a single subject, made during two separate
measurement sessions (consecutive days). In each session the subject was watching
visual stimuli consisting of five different movie categories. The stimuli were presented
without audio.

The data contains measurements of 204 planar gradiometer channels at 200Hz rate,
segmented into samples of one second length. The samples are given in random
order, to enforce prediction based on the 1s window alone. The data is provided after
standard preprocessing (removal of external inference, motion correction, low-pass
filtering), and the raw signal measurements are complemented with outputs of five
bandpass filters. . . .

Task: Design and implement a classifier that takes as an input the MEG signals of
the test samples (one second of time) and produces as an output the predicted class
label (the type of the video stimulus). . . .
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(a) Two seconds of MEG recording of a subject watching
animated shapes or text.

(b) Two seconds of MEG recording of a subject watching
sequences from a football match.

(c) Two seconds of MEG recording of a subject watching
a nature documentary.

(d) Two seconds of MEG recording of a subject watching
a Charlie Chaplin feature film.

Figure A.2: A few samples of the MEG recordings. The 204 MEG channels around the head are in
the rows, and the signals flow from left to right for a total duration of one second in each sample.
Synchronized oscillations are clearly visible.
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(a) Raw sample (0–50 Hz) (b) ~2 Hz

(c) ~5 Hz (d) ~10 Hz

(e) ~20 Hz (f) ~35 Hz

Figure A.3: Different oscillatory activity manifest on different scales. The dimensions are the
same as in Figure A.2.
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(a) Two seconds of MEG
recording of a subject
watching animated shapes
or text.

(b) Two seconds of MEG
recording of a subject
watching sequences from a
football match.

(c) Two seconds of
MEG recording of a
subject watching a nature
documentary.

(d) Two seconds of MEG
recording of a subject
watching a Charlie Chap-
lin feature film.

Figure A.4: The same samples as in Figure A.2, but now Fourier-transformed into the frequency
domain. The 204 MEG channels around the head are again in the rows, but now the frequencies
0–45 Hz are depicted from left to right in each sample. The upper part is the logarithm of the
magnitude, and the lower part is the phase. Different frequency bands manifest in data as areas
of larger magnitude, but there are also other interesting areas with coherent phases.
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Figure A.5: Profiles of 36 non-negative emergent components of MEG data (677 samples as in
Figure A.4) in random order. The 204 MEG channels around the head are in the rows, and the
logarithm of frequency magnitudes 0–45 Hz are depicted from left to right in each profile. The
profiles span most of the energy in data. 50



Figure A.6: Profiles of 12 emergent components of MEG data, now augmented with class infor-
mation in extra dimensions. This external information rotates and mixes the profiles to facilitate
classification. With these linear components one can predict with 60% accurary which of the
five classes the subject is watching.

51



Figure A.7: ECA can also be applied on complex values. Here are 12 profiles of absolute-value
components of cepstrum (spectrum of the logarithm of the power spectrum). The dimensions are
the same as in Figure A.4.
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