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From Neural Systems to Neocybernetics

Abstract

This paper proposes a new systemic view to interpret and exploit Heb-
bian learning in linear neurons. Rather than introducing any explicit con-
trol mechanisms, a stabilizing negative feedback is implemented through
exhaustion of the incoming signals. Even though the resulting models are
essentially linear, they are far from trivial; it turns out that the model
spans the principal subspace of the input data. What is more, the basis
axes are rotated to implement sparse coding. The linearity of the structures
facilitates concrete analyses and a deeper view into emergent structures.
As it can be claimed that the proposed neuron structure is the simplest
possible, wider horizons seem to open up.

Key words: Hebbian neuron, principal components, factor analysis, sparse
coding; systems, control and feedback, cybernetics.

1 Introduction

Perhaps the most fundamental principles of neuronal functioning were found some
fifty years ago by Donald O. Hebb [9]. Similarly, the ideas of cybernetic systems
were found almost at the same time by Norbert Wiener [22]. Both of these
innovations give clues about approaches for understanding complex interactions
in the brain; still, it seems that this far these ideas have not truly been put
together.
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When the Hebbian principles were functionalized, it soon turned out that the
learning rule as such is unstable. This shortcoming was circumvented by in-
troducing different kinds of structural or functional nonlinearities; interesting
behaviors in such neural networks were observed (for example, see [18], [21], [5],
and [4]). However, when exploiting nonlinear models, there is an explosion of the
space of possibilities, and one soon ends in a “fiddler’s paradise”. One gets lost
in the details — but, still, the beauty lies in the details.

One has to select the correct details. The systems theoretical modeling under-
standing reveals that one has to characterize the real non-idealities applying the
transfer of real signals rather than the artificial nonlinearities applied in the
transfer of idealized information. The cybernetic models reveal that stability can
be reached also through linear negative feedback ; such feedback loop is created
when exploitation of signals exhausts them. No phenomena in nature are based
on pure information flows but there always exists the material flow. Introduction
of nonlinearities, on the other hand, would limit the models to non-scalable “toy
worlds”.

Such intuitions give strict guidelines when pondering in which direction to search
for the neuronal model. Counterintuitively, detailed analyses make it possible
to reach high-level Platonian “ideals” beyond the non-ideal reality. It turns out
that the general model structures are applicable also in domains beyond neural
networks.

2 Another look at Hebbian learning

When looking at complex systems one observes that there is too much data and
too many possible projections (explanations) of that data. To limit the search,
one needs strong undrelying theories.

The operation of a natural neuron is extremely complex. However, there seem
to exist some general properies characterizing their functioning — as seen from
above, the neurons almost seem to aspire towards something, in a teleological
spirit; indeed, the Hebbian learning principle [9] is here paraphrased as follows:

When the neuronal activity of a neuron and the activity of an incom-
ing signal correlate positively, the synaptic strength between them
increases.

Assume that there are n neurons with activities x̄i, where 1 ≤ i ≤ n, and there
are m input signals ūj, where 1 ≤ j ≤ m. Then the effect of an adapted Hebbian
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synapse between input j and neuron j can assumedly be characterized in linear
terms as

x̄ij = E {x̄iūj} ūj. (1)

Here E {x̄iūj} is the long-term (unnormalized) correlation between x̄i and ūj,
determining the coupling between the input signal and the neuron according to
the Hebbian principle. The signals are assumed to be appropriately sampled.
The activity of of the linear Hebbian perceptron can then be expressed as

x̄i = qi

m∑
j=1

x̄ij , (2)

where the additional activation parameter qi > 0 is here employed; for reasons to
become clear later, this is called the coupling factor . The operation of the whole
grid can be compactly represented in a matrix form

x̄ = Q E
{
x̄ūT

}
ū, (3)

where x̄ is an n×1 vector containing all variables x̄i, the m×1 vector ū contains
the inputs ūj, and the matrix Q contains the parameters qi on its diagonal.

The synaptic strengths are now captured by the covariance matrix E
{
x̄ūT

}
;

strictly speaking one should speak of an inner product matrix, as the variables are
assumed to be neither mean-centered nor normalized. Regardless of this matrix
formulation, all operations in the system are strictly local, and adaptations in a
synapse can take place without any information about what happens in other
synapses. This strict locality of operations applies throughout this discussion.

Hebbian neurons have been studied for a long time, but it turns out that there still
exist fresh approaches. Key point here is to recognize the dynamic nature of the
processes: signals and variables represent dynamic equilibria. This dynamics is
studied in the following section; here the fractal hierarchy of balances is elaborated
on, just assuming that those balances can be reached.

2.1 Emergence in neuron grids

Dynamic neuron models have been studied directly; however, in such models
complexity becomes overwhelming [20]. One needs appropriate simplifications;
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the “average neuronal activity” applied above is already an abstraction — but
more abstractions are needed.

The key phenomenon in complex systems is emergence: something qualitatively
new comes up when some kind of infinity or singularity is reached and individual
lower-level phenomena are abstracted away. Typically, the concept of emergence
is rather heuristic, but here weak emergence is defined compactly as

ζ = E {f (ξ(t))} = lim
t→∞

{
1

t

∫ 0

−t
f(ξ(τ)) dτ

}
. (4)

Here, ζ is the emergent variable (vector) emerging from individual observations of
variables ξ at the lower level; f is some function (t = 0 here representing current
time). In practice, expectations reduce to averages over some finite data.

This definition of emergence makes it possible to connect successive levels of
abstraction in a system, combining two time scales. Because

E
{
x̄x̄T

}
= lim

t→∞

{
1

t

∫ 0

−t
x̄(τ)x̄T(τ) dτ

}
, (5)

Hebbian learning is an example of weak emergence, exploiting a coupling between
time axes. The transition between the formal levels will be exploited below.
The fast dynamics of signals is combined with slow dynamics of the synaptic
adaptation processes. The model based on covariances is defined on the higher
level of statistical hierarchy; to make the correlation matrix exist, one has to
assume stationarity of signals and variables. Balances are of primary importance
here. Indeed, one has to study the “second-level dynamic balances” of statistical
properties; this will be explained in the next section.

When concentrating on vectors x, the variables in u look static, being very slow,
and when concentrating on u, the variables in x look static, being very fast. This
means that when looking the system from outside, one can always apply static
analysis, even though the convergence of the state is an asymptotic phenomenon.
In Fig. 1, the hierarchy of time scales is illustrated schematically. The long-term
behavior of u is assumed to be stochastic but stationary.

When looking at the system in a functional perspective, it can be said that the
emergent functionality is memory, storing information of past associations among
signals. Such memory constitutes a filter that defines how the system sees the
surrounding world. Indeed, as will turn out, the memory becomes a model of the
world.
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Figure 1: Illustration of two time scales. It is assumed that the dynamics
of u (on the t scale) is much slower than that of x (τ scale)

From now on, assume that there is excitation in the data, so that there are at
least n linearly independent directions in the data space spanned by the input
signals. Only then the matrix E

{
x̄x̄T

}
can be invertible.

2.2 Interplay among emergent levels

To connect the level of signals and their emergent counterparts, one has to con-
centrate on their statistical properties. Now, one can find many expressions
governing signal covariances. When multiplying (3) from the right by x̄T and
taking expectation, one has the following expression:

E
{
x̄x̄T

}
= Q E

{
x̄ūT

}
E
{
ūx̄T

}
. (6)

The transpose of this gives yet another expression

E
{
x̄x̄T

}
= E

{
x̄ūT

}
E
{
ūx̄T

}
Q. (7)
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From these, it is evident that there must hold1

Q E
{
x̄x̄T

}
= E

{
x̄x̄T

}
Q, (8)

so that also

f (Q) g
(
E
{
x̄x̄T

})
= g

(
E
{
x̄x̄T

})
f (Q) , (9)

where f and g are any functions that can be defined in terms of matrix power
series. This commutativity property means that many mathematical manipula-
tions of the matrix data structures become very much like scalar algebra in later
analyses.

Further, assuming invertibility of E
{
x̄x̄T

}
, and noting (9), from (6) or (7) one

has

In = Q1/2E
{
x̄x̄T

}−1/2
E
{
x̄ūT

}
E
{
ūx̄T

}
E
{
x̄x̄T

}−1/2
Q1/2. (10)

When defining

θ = E
{
ūx̄T

}
E
{
x̄x̄T

}−1/2
Q1/2, (11)

one has

In = θT θ. (12)

The columns in θ are also orthonormal. What else can one say by applying
strictly formal analyses?

By multiplying (3) from the right this time by ūT and taking expectation, one
has

E
{
x̄ūT

}
= Q E

{
x̄ūT

}
E
{
ūūT

}
. (13)

1For example, E
{
x̄x̄T

}
= αQ−1 fulfills this for any scalar α; or, if Q = βIn for some scalar

β, E
{
x̄x̄T

}
can be arbitrary. These classes of solutions help to understand the results later.

Because E
{
x̄x̄T

}
is symmetric, also Q must be symmetric, so that Q = QT; in what follows,

it is assumed that qi �= qι for all i �= ι, but the diagonality assumption of Q can in some cases
be relaxed
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Substituting this in (7), there holds

E
{
x̄x̄T

}
= Q E

{
x̄ūT

}
E
{
ūūT

}
E
{
ūx̄T

}
Q. (14)

Assuming invertibility of E
{
x̄x̄T

}
, and noting (9), this can be changed to read

Q−1 = Q1/2E
{
x̄x̄T

}−1/2
E
{
x̄ūT

}
E
{
ūūT

}
E
{
ūx̄T

}
E
{
x̄x̄T

}−1/2
Q1/2, (15)

so that

Q−1 = θT E
{
ūūT

}
θ. (16)

This means that if ever the basic assumption (3) is fulfilled, the statistical proper-
ties of the input ū are fixed. But how can the system dictate the properties of its
environment? This question is the key towards extending the analyses towards
general cybernetics (see later).

2.3 Relation to principal subspace

To understand the properties of the Hebbian neuron grids, the structure of input
data needs to be studied closer. For stationary data u, one can always write the
eigenvalue decomposition for the covariance matrix E

{
ūūT

}
as (for example, see

[1])

E
{
ūūT

}
= Θ̄ Λ̄ Θ̄−1, (17)

where the m × m matrix Θ̄ contains the eigenvectors of the covariance matrix,
and the diagonal matrix Λ̄ contains the corresponding eigenvalues on its diagonal.
Because of the structure of the covariance matrix, all of its eigenvalues are real
and non-negative, and they can be ordered in the order of descending significance,
revealing the proportion of variation that is distributed in that eigenvector direc-
tion. Because of the symmetricity of the covariance matrix, all eigenvectors are
normal to each other, so that when they are normalized, there holds Θ̄T Θ̄ = Im,
or Θ̄−1 = Θ̄T.

When data is projected onto the basis determined by the covariance matrix eigen-
vectors, so that z̄ = Θ̄T x̄, the new latent variables z̄ are known as principal
components.
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Now, together from (12) and (16) one can see that the columns in θ are orthonor-
mal, and if Q is diagonal, they diagonalize the data covariance. If Θ̄[n] is used to
denote a matrix with only n of the m columns in Θ̄ being selected, one can write

θ = Θ̄[n] D, (18)

where D is some orthogonal n×n mapping matrix, DT = D−1. This means that
the columns of θ span a subspace of n eigenvectors of E

{
ūūT

}
, the eigenvalues

being given by the diagonal entries in Q−1. It needs to be noted here that
the selected subspace directions are not necessarily the most significant ones, as
measured in terms of the corresponding eigenvalues.

From (8) it becomes evident that if the diagonal entries in Q are distinct, qi �= qj

for i �= j, the matrix E
{
x̄x̄T

}
also has to be diagonal; this means that it is not only

the subspace but the columns in θ are the actual principal component directions
themselves. This means that the “behavioral modes” become separated from
each other if they are coupled to the environment in different degrees, variation
levels in variables x̄i being determined by the coupling factors qi. On the other
hand, if one has Q = q In, all eigenvalues are equalized, λ̄j equalling 1/q, but then
the principal component directions do not become separated.

The above analyses apply if such a mapping matrix exists as proposed in (3). How
to avoid the excessive growth of x̄i and the resulting instability of adaptation?
How to supply the “intelligence” to assure the balance on the “edge between
order and chaos”?

3 Facing the reality and exploiting it

It is well known that the basic Hebbian learning strategy is unstable. If the
synapses adapt according to observed correlations, the correlating signals grow
ever larger without limit. The traditional approach to fix this problem is to apply
some nonlinearity: for example, the Oja’s rule normalizes the synapse vector after
each step [16].

However, following the system theoretical understanding, it is clear that stability
can be assured in linear terms, for example, by applying negative feedback. Indeed,
this idea is applied implicitly in the subspace learning algorithm [17] and its
derivations, and explicitly in negative feedback networks [8]. Applying the current
notation, however, the mapping matrix φ from ū to x̄, rather than being φ =
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E
{
x̄ūT

}
, it is now

φ′ = E
{
x̄
(
ū − φ′T x̄

)
T
}
. (19)

The inner expression −φ′T x̄ can be interpreted as negative feedback from x̄ back
to ū. This formula has a complex structure as there are different signals to be
operated on and being used for training: the input signal itself is filtered and the
feedback signal for adaptation. A completely local synapse can only use the signal
it immediately sees, ūj being the locally visible effective input (see later). Indeed,
the feedback assumption has not been taken here to the logical conclusion.

In [11], there is explicit feedback dx
dτ

= −E
{
x̄x̄T

}
x + E

{
x̄ūT

}
ū, with x̄ being

the converged x, that also assures global system stability. Here, the locality is
implemented as claimed above, and, again, the structure converges to principal
subspace. However, such combination of Hebbian and anti-Hebbian like adap-
tations means that the roles of signals are different, and one needs information
about the hierarchy among signal sources; what is more, as n grows, the number
of explicit feedbacks grows as n2, the scalability of the structure becoming poor.
Such neurons with global-level view about their neighbors could be called “social”
or “intelligent” agents (as opposed to the “selfish” agents studied below).

In what follows, the above shortcomings are fixed. The structural complexity of
synaptic filtering and adaptation is changed to functional complexity. It turns
out that when asymptotic properties of dynamic processes are appropriately em-
ployed, the network structure becomes the simplest possible, and, thus — one
can claim — such structure is also physically plausible.

3.1 Feedback through environment

The key to solve the problems is to look closer at real systems and non-idealities
therein. There are no pure information flows in nature. Applying the electrical
engineering analogy, the fan-out of the feeding port cannot be infinite. When an
input is observed by the system, the input is affected: exploitation of a signal
means exhaustion. This exhaustion defines an implicit negative feedback through
the environment. In this way there is a coupling of information and matter/energy
flows in real systems. As it turns out, the observer effect means that the envi-
ronment becomes part of the system, the system reflecting the properties of the
environment.

The inputs from environment as modified by the system (closed loop) are char-
acterized by the vector ū, whereas the original undisturbed inputs (open loop)
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are hereafter denoted u. How to express the ū in terms of u?

If qi E {x̄iūj} is the contribution of an input what comes to the activity of a
neuron, it is reasonable to assume that the loading among the inputs is distributed
in the same way — that is, the change in input is Δuj = −E

{
ūjx̄i

T
}
qi xi, or when

all feedback effects are expressed in a matrix form2

Δu = −E
{
ūx̄T

}
Q x. (21)

Both ū and x̄ represent dynamic equilibria, being only virtually static signals.
The asymptotic values are defined (in a somewhat sloppy way) as

ū = lim
τ→∞

{
u − E

{
ūx̄T

}
Q x(τ)

}
(22)

and

x̄ = lim
τ→∞ {x(τ)} . (23)

Here it is assumed that one only studies some kind of “local infinities” at the
local time scale τ as seen on the time scales relevant to the dynamics of x. When
the expressions are combined,

ū = u − E
{
x̄ūT

}
Qx̄. (24)

When the balance is reached,

x̄ = Q E
{
x̄ūT

}
ū = Q E

{
x̄ūT

}
u − Q E

{
x̄ūT

}
E
{
ūx̄T

}
Q x̄, (25)

2If it cannot be assumed that the feedback effects are directly given by the feedforward
effects, the system state variables can be changed, or feedback effects can be scaled without
affecting the derivations. If the expression (3) is assumed valid for x̄ it is valid also for x̄′ = Cx̄
because

C−1x̄′ = QE
{
C−1x̄′ūT

}
ū = QC−1E

{
x̄′ūT

}
ū = C−1QE

{
x̄′ūT

}
ū (20)

or x̄′ = QE
{
x̄′ūT

}
ū for diagonal and invertible C (and Q diagonal). More generally, if it can

be assumed that the feedback effects just somehow stabilize the overall system (as the case
must be in existing systems), however stability is guaranteed the mathematical structure of (3)
always implements the eigensystem
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Figure 2: Exhaustion of the environment presented as negative feedback

or, when solved,

x̄ =
(
In + QE

{
x̄ūT

}
E
{
ūx̄T

}
Q
)−1

QE
{
x̄ūT

}
u. (26)

Using (7), one has

x̄ =
(
In + QE

{
x̄x̄T

})−1
QE

{
x̄ūT

}
u, (27)

and, further,

x̄ =
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄ūT

}
u. (28)

Then ū = u − E
{
ūx̄T

}
Q
(
In + QE

{
x̄x̄T

})−1
QE

{
x̄ūT

}
u (see Fig. 2).

3.2 Stability of mapping

When the system affects its environment as studied above, the overall structure
becomes an algebraic loop, and this dictates many of the system properties. How-
ever, in real life there are always delays, and the system becomes dynamic; this
internal dynamics is needed to find the solutions fulfilling the static constraints,
recursion refining the “eigenforms”. The challenge here is that feedbacks are noto-
rious: making system dynamic jeopardizes the system stability, just one unstable
mode suffices to ruin the orchestration.

Now, assume that there is a time delay of h when signals traverse through the
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system. One can approximate the situation in terms of a discrete-time model

x((k + 1)h) = Q E
{
x̄ūT

}
ū(kh)

= Q E
{
x̄ūT

}
u − QE

{
x̄ūT

}
E
{
ūx̄T

}
Q x(kh).

(29)

Reordering, one has

x((k + 1)h) − x(kh)

h

=
1

h

(
Q E

{
x̄ūT

}
u −

(
In + QE

{
x̄ūT

}
E
{
ūx̄

T
}

Q
)

x(kh)
)

.
(30)

As h → 0, the left-hand side becomes the derivative ẋ, and the corresponding
continuous time system matrix becomes

−1

h

(
In + QE

{
x̄ūT

}
E
{
ūx̄T

}
Q
)

. (31)

All eigenvalues of this matrix are always strictly negative; as h goes towards
zero, the poles go towards minus infinity. This means that one has stable system
regardless of the mapping matrices; the signals remain bounded, and so do the
covariances, no matter what are the (bounded) inputs.

Another dynamic phenomenon that also deserves some attention is the practical
evaluation of covariances. True covariance is an abstraction, involving expecta-
tions that involve infinite data sequences. In real life one can use the following
exponentially weighted estimator for covariance:

Ê
{
x̄ūT

}
(k + 1) = μ Ê

{
x̄ūT

}
(k) + (1 − μ) x̄(k)ūT(k), (32)

where 0 � μ < 1 is a forgetting factor. No matter how erroneous Ê
{
x̄ūT

}
(0)

happens to be, signal-level convergence to a unique value is assured because of
linearity; but how about the uniqueness of Ê

{
x̄ūT

}
(k) when k → ∞?

The matrix Ê
{
x̄ūT

}
in open loop is not unambiguously determined by the input

data u alone. This is easy to see, for example, by multiplying both sides of (3)
by some scalar α: the expression still holds but now for new variables x̄′ = αx̄
and correlation matrix E

{
x̄′ūT

}
= E

{
αx̄ūT

}
. However, when the loop is closed,

and when the coupling is strong enough, x̄ is uniquely determined by the input,
as seen in (28), and so is E

{
x̄ūT

}
.



Hebbian-Style Feature Extraction 14

3.3 Modification of the environment

In formulas (28), etc., there is a discrepancy: the input is u but the covariances
are given in terms of ū. This can be resolved by manipulating the expression:

E
{
x̄ūT

}
= E

{
x̄
(
u − E

{
ūx̄T

}
Qx̄

)
T
}

= E
{
x̄uT

}
− E

{
x̄x̄T

}
QE

{
x̄ūT

}
.

(33)

Solving this for E
{
x̄ūT

}
, one has

E
{
x̄ūT

}
=

(
In + E

{
x̄x̄T

}
Q
)−1

E
{
x̄uT

}
=

(
Q−1 + E

{
x̄x̄T

})−1
Q−1E

{
x̄uT

}
.

(34)

Combining (28) and (34):

x̄ =
(
Q−1 + E

{
x̄x̄T

})−2
Q−1︸ ︷︷ ︸

M1

E
{
x̄uT

}
︸ ︷︷ ︸

M2

u. (35)

Using this expression, one can study the connection between the undisturbed u
and x̄. If the statistical properties of the input data u are assumed to remain
intact, one has

3.3.1 Theorem.

If data is is rich enough (non-zero variation dimensions in data d ≥ n), and if
each mode remains cybernetic (see later), after convergence the neuronal mapping
from u to x̄ spans the principal subspace of data variation in u, corresponding to
the n most significant eigenvector directions of the covariance matrix E

{
uuT

}
.

3.3.2 Proof.

Rather than studying the adaptation process as a continuous process, the time
axis is here assumed to be divided in long enough subparts; these subparts are
indexed below using numbers in parentheses. The expectations, when calculated
as sample averages within each interval, are already assumed to be accurate
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enough. If one starts from some arbitrary mapping matrices M
(0)
1 and M

(0)
2 , the

step-by-step covariance adaptation proceeds as

x̄(0) = M
(0)
1 M

(0)
2 u

x̄(1) = M
(1)
1 E

{
x̄(0)uT

}
u = M

(1)
1 E

{
M

(0)
1 M

(0)
2 uuT

}
u

= M
(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}
u

x̄(2) = M
(2)
1 E

{
x̄(1)uT

}
u = M

(2)
1 E

{
M

(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}
uuT

}
u

= M
(2)
1 M

(1)
1 M

(0)
1 M

(0)
2 E

{
uuT

}2
u

...

x̄(k) = M
(k)
1 M

(k)
2 u =

(
k∏

i=0

M
(k−i)
1

)
M

(0)
2 E

{
uuT

}k
u.

(36)

The former part M
(k)
1 =

∏k
i=0 M

(k−i)
1 is a scaling matrix of dimension n×n and it

does not affect the subspace being spanned by the mapping. On the other hand,
M

(k)
2 deserves more attention. Assume that the eigenvalue decomposition of the

data covariance is written as3

E
{
uuT

}
= Θ Λ Θ, (37)

and one expresses the mapping matrix M
(0)
2 using the basis determined by the

columns in Θ, so that

M
(0)
2 = D Θ

T

, (38)

with D being some invertible matrix, the resulting mapping matrix M
(k)
2 becomes

M
(k)
2 = M

(0)
2 E

{
uuT

}k
= DΘ

T

ΘΛkΘT = DΛkΘT. (39)

This means that in the mapping matrix the relevance of the principal component
direction j is weighted by λk

j . At each iteration, the eigenvectors become bet-
ter aligned with the most significant eigenvectors. Because the variables x̄i are
linearly independent, it is the n most significant covariance matrix eigenvectors
that determine the mapping after adaptation. These define the same subspace

3For simplicity, assume that the eigenvalues of the data covariance matrix are distinct, so
that λi > λj for i < j, 1 ≤ i, j ≤ m
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Figure 3: The effect of the neuronal system being coupled to external data.
The feedback “sucks out” variation in the most significant data directions
— but only if the coupling manages to make the neurons cybernetic (see
Sec. 4)

as in the case of x̄ vs. ū, but the eigenvalues differ. �

Indeed, again it is the principal component directions, but more can be said
about the mapping from u to x̄ than what one could say about the mapping
from ū to x̄. It is the most significant variation directions in u that the system
concentrates on, but because of the feedback, they are not necessarily the most
significant variation directions any more in ū. This situation is visualized in
Fig. 3. And this result concerning the principal subspace is not all — one can
also say something about the actual basis vectors spanning that subspace.

4 Towards sparse coding

Despite the analyses above, there are two classes of solutions to (3). In addition
to the case that was discussed in Sec. 3, the trivial solution x̄ ≡ 0 for all inputs,
or x̄i ≡ 0 for a subset of them, also satisfies the assumed constraint, the mapping
matrix becoming E {x̄iūj} ≡ 0. To understand the faith of a neuron i, whether
it fades away or stays “alive”, depends on the corresponding coupling factor qi.
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As studied briefly in Sec. 5, one is facing deeper questions here — these properties
are characteristic not only to neuron systems, but to all systems that are cyber-
netic, being tightly coupled to their environments, and competing for resources
with their neighbors. This bold claim can be motivated when one understands
all facets of the “feedback Hebbian” network.

4.1 Fine structure of the neuronal mapping

From (28) one can write yet another expression for the covariance:

E
{
x̄x̄T

}
=
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄ūT

}
E
{
uuT

}
E
{
ūx̄T

} (
Q−1 + E

{
x̄x̄T

})−1
.

Eliminate the matrix inverses by multiplication, so that

(
Q−1 + E

{
x̄x̄T

})
E
{
x̄x̄T

} (
Q−1 + E

{
x̄x̄T

})
= E

{
x̄ūT

}
E
{
uuT

}
E
{
ūx̄T

}
,

(40)

and observe the commutativity of the matrices:

(
Q−1 + E

{
x̄x̄T

})2

= Q−1/2 Q1/2E
{
x̄x̄T

}−1/2
E
{
x̄ūT

}
E
{
uuT

}
E
{
ūx̄T

}
E
{
x̄x̄T

}−1/2
Q1/2 Q−1/2

= Q−1/2 θT E
{
uuT

}
θ Q−1/2,

and, further, because of the diagonalizing properties of θ,

Q−1 + E
{
x̄x̄T

}
= Q−1/4 θT E

{
uuT

}1/2
θ Q−1/4, (41)

or

E
{
x̄′x̄′T}+ Q−1/2 = θT E

{
uuT

}1/2
θ, (42)

where

x′ = Q1/4 x. (43)
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This is almost like a similarity transform between E
{
uuT

}
and E

{
x̄′x̄′T

}
again,

but there are some essential differences: First, there is the square root, meaning
that the eigenvalues change in the process, or variation is lost in the closed loop;
second, there is the additional term Q−1/2 in the formula. This is the key to
understand the new functionalities of the cybernetic mapping.

Because the eigenvalues of E
{
x̄′x̄′T

}
always must be non-negative, meaning that

variances in each direction must have real values, one can see that the non-trivial
solutions are only possible if the variation level in input data is high enough, so
that the additional factor Q−1/2 becomes fully compensated. If the eigenvalue λj

in u data has become coupled with variable x′
i, one can write

E
{
x̄′2

i

}
=
√

λj − 1√
qi

. (44)

There must hold

λj >
1

qi
, (45)

or, on the other hand, if one wants to make the mode i visible, one has to apply
more power in the observation according to

qi >
1

λj
. (46)

Thus, it has to be assumed that there is some local mechanism assuring that
the neuron i remains “alive” by increasing the value of qi if the activity in the
neuron i seems to be vanishing altogether. This assures that that the studies
above are relevant; this also assures that the matrix E

{
x̄x̄T

}
remains invertible.

From the plausibility point of view, such additional local activity control is not
as disturbing as it seems, because also natural neurons turn out to implement
similar activity controls [3].

4.2 Rotations of basis vectors

When looking the properties of (44) closer, it turns out that the system carries out
active noise suppression. The variation in the n most significant data directions
becomes attenuated, and could speak of “black noise” being added to signals (see
Fig. 4).
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Figure 4: Consequences of adding “black noise” are opposite to white
noise: The variation decreases in all directions — but only if it is possible

But this is not the only way to interpret the effects of the cybernetic feedback.
In the spirit of PCA, the adaptation tries to maximize the amount of variation
that is inherited by the system variables x̄i. Now, when there is the threshold,
the system tries to maximize the overall variation above that threshold. Whereas
orthonormal axis rotations do not alter the total variation above zero level, they
can alter the visible variations in the cybernetic loop. As the total variation
level cannot be changed, one should select the basis vectors so that whenever the
variable differs from zero, it does that in a spectacular way, getting high above
the threshold (see Fig. 5).

This all is near the ideas of factor analysis, where, too, one tries to apply basis
rotations so that the latent variables would become better separated. In factor
analysis one applies criteria like varimax, etc., where the goal is similar: to maxi-
mize the variations in factor scores. Such selection of variables has turned out to
often result in physically meaningful models, enhancing the underlying features
in data.

4.3 “Symmetry breaking”

The structure of the cybernetic neural network is simple and symmetric — in-
deed, it seems to be too symmetric. As in cosmic environments, say, it is only
“symmetry breaking” that makes it possible for the structure and differentiation
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Figure 5: How black noise results in sparsity pursuit: Area above the
threshold becomes maximized in the process of variation pursuit

to pop up in a system. And here, too: it seems that in practice a finishing step
is needed when applying the above approach. Rather that defining the Hebbian
neuron as in (2), introduce a nonlinearity in the model:

x̄i = fi

⎛
⎝qi

m∑
j=1

x̄ij

⎞
⎠ . (47)

Note that as the nonlinearity is applied in such a late phase, the basic function-
ality of the system can still be interpreted in terms of linear theory.

One can employ one’s intuition of natural nonidealities to determine the outlook
of the nonlinearity. The “neuronal activity” is only an abstraction; in reality,
it is manifested either as a pulse frequency or as concentration of transmitting
chemicals. In either case, the signals can never become negative. In the neuron
model, this can be taken into account by manipulating the activity values as
follows:

fi(ξ) =

{
ξ, if ξ > 0
0, otherwise.

(48)
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Such nonlinearity cuts out all negative values, resulting in sparse coding where
only a subset of the latent variables are non-zero at a time. Sparse coding behavior
has been observed also in real neuron systems (for example, see [19]).

Artificial sparse coding networks with explicit recurrent structures have been
constructed before (see [6], [7]), and it seems that sparse coding is a rather general
functionality in dynamic feedback structures. The current approach to sparse
coding has some special benefits: For example, as studied in Sec. 4.6, the system
tries to minimize the error between the input and the system-defined estimate;
as the matching is optimized, the variable values are effectively pushed from zero
into the positive (hyper)quadrant. This neural structure is also specially suited
for data where the features are assumed to be either non-existent, or the features
have positive weights in patterns.

It turns out that such nonlinear extension essentially enhances the convergence
properties of the implemented sparse coding algorithms.

4.4 Application example

The presented mathematical operations can be written in a form of a simple
algorithm as shown in Fig. 6. In the Matlab form code, U is a k × m matrix
of input vectors uT(k), and Xbar is k × n matrix of neuronal activities. The
matrices representing the covariances are denoted Exx and Exu. In addition to
Q, there are additional parameters for affecting the adaptation: lambda is the
forgetting factor, and P is the controller gain determining the adjustment rate of
the coupling matrix Q, trying to keep variances at a constant level Vref. The
model matrices are initialized to random values, and the algorithm is iterated for
the data until convergence is reached. To make the algorithm parallelizable and
to avoid low-level iteration, the nonlinearity is implemented in a sloppy way here,
leaving it out fom the loop.

As an example, a case of coding hand-written digits is represented. As data
material, there were 8000 samples of digits written in a 32 × 32 grid of binary
(black vs. white) intensity values [15]. These intensity vectors were used as data
U, with k = 8000 and m = 1024. The results for n = 25 are shown in Fig. 7.

4.5 Related neural algorithms

In addition to the subspace algorithms and the sparse coding algorithms, as dis-
cussed above, there are also other neural approaches that need to be mentioned.
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while ITERATE

% Balance of latent variables

Xbar = U * (inv(inv(Q)+Exx)*Exu)’;

% Enhance model convergence by nonlinearity

if nonlin

Xbar = Xbar.*(Xbar>0);

end

% Balance of the environmental signals

Ubar = U - Xbar*Q*Exu;

% Model adaptation

Exu = lambda*Exu + (1-lambda)*Xbar’*Ubar/k;

Exx = lambda*Exx + (1-lambda)*Xbar’*Xbar/k;

% Maintaining system excitation

Qmult = diag(exp(P*(Vref-diag(Exx))));

Q = Qmult * Q * Qmult;

end

Figure 6: Algorithm. Feedback Hebbian feature extraction
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Figure 7: The 25 sparse components extracted from the handwritten dig-
its. It seems that different kinds of “strokes” become manifested

The Boltzmann machine [10] is similarly based on energy functions, as the cyber-
netic neural network is, and the convergence towards the “pattern” is a dynamic
process. And, similarly, the Boltzmann machine can be trained applying strictly
local learning. However, the training is a complicated process with separate pos-
itive and negative training samples. Whereas the Boltzmann machine learns a
single energy landscape, the input missing there, now the energy landscape is
determined by the input data. There is only a finite number of predetermined
training samples, the Boltzmann machine carrying out pattern matching among
them, whereas now the pattern classicication is more continuous. Indeed, the
cybernetic network tries to construct a model over the whole relevant input data
space.

There are connections to more exotic neural approaches, too. For example, Ko-
honen SOM’s, self-organizing maps [14], can be given a new, more general formu-
lation in the presented framework. Note that in the above approach the matrix Q
determines the connection strengths in the system; letting Q be non-diagonal one
can simulate “neighborhood effect”, so that nodes close to each other assumedly
become somehow related. Symmetricity and positive definiteness claims are typi-
cally fulfilled also by such neighborhood matrices. In a “Hebbian feedback SOM”
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there are various differences as compared to the traditional SOM:

• Now there are new interpretations and new cost criteria that can be em-
ployed to understand and exploit self-organization.

• Now there is no globality in the algorithm as the selection of the winner is
ignored — there are “many winners” every time.

• Now the representation allows various dimensions, there is no need to
project the data onto a low-dimensional local manifold.

• Now there is a continuous high-dimensional coding of data, rather than
having a fixed number of discrete node indices as output.

• Now there is automatic distributed tuning of adaptation parameters, keep-
ing all variables active and boosting convergence.

4.6 Relation to statistical regression

One can interpret the formulas governing the neuronal system in terms of multi-
variate analysis and regression models. It turns out that there is an interesting
connection between principal subspace analysis and linear regression, on the one
hand, and between factor analysis and regularized regression, on the other. In-
deed, in a way they are inverse operations on data.

Assume that there is a mapping from some given vector x̄ to a variable uj,
interpreted here as output,

uj = φj
T x̄, (49)

and given some data, one would like to find an estimate for the mapping matrix
minimizing the criterion

Jj(φj) = E
{(

uj − φj
Tx̄
)2
}

+ φj
TQ−1φj . (50)

Here it is not only the quadratic matching criterion that is employed, but one also
tries to keep the model parameters small, thus making the estimates less sensitive
to errors, and making the mapping more robust. Assuming that this criterion
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has been optimized for a group of variables uj, where 1 ≤ m, the solution for
estimates of uj has the familiar form

û =
(
Q−1 + E

{
x̄x̄T

})−1
E
{
ux̄T

}
x̄. (51)

Indeed, in the familiar ridge regression one selects Q = q In for some scalar q;
and if Q → ∞ so that no parameter weighting is applied, one has traditional
multilinear regression formula

û =
(
E
{
x̄x̄T

})−1
E
{
ux̄T

}
x̄. (52)

Now it is evident that these regression formulas are closely related to the derived
feature extraction formula

x̄ =
(
Q−1 + E

{
x̄x̄T

})−1
E
{
x̄uT

}
ū, (53)

and to the principal subspace analysis formula with explicit (anti-Hebbian) feed-
back (see [11]), respectively:

x̄ =
(
E
{
x̄x̄T

})−1
E
{
x̄uT

}
u. (54)

In Fig. 8, the above observations have been exploited to implement a scheme for
technical data analysis. Traditionally, if the dimension of the latent basis is not
minimal, problems may emerge, but it can be assumed that the feature-based
regression tolerates extra variables better as there are no matrix invertibility
problems. When modeling complex environments it can be beneficial when the
system state can be expanded to include additional information.

If the variables ȳ are not recirculated into x̄, the latent structure is determined
solely based on the properties of the input u, in the spirit of principal component
regression; on the other hand, however, if there is some kind of “attention control”
switching between the alternative inputs u and y, the feedback loop corresponding
to the contemporary output remaining open during signal recirculation, the model
structure is assumedly a compromise between the properties of the input and
those of the output (in the spirit of partial least squares, for example).
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Figure 8: Extension of the framework towards technical data analysis
applications

5 Neocybernetics — extension of intuitions

It can be claimed that the above discussions create a framework for studying
complexification in general terms.

As the observations in (51) to (54) reveal, a system with Hebbian feedback learn-
ing constructs the best possible model of the input data (capturing the maximum
of available variation) and applies the best possible attenuation of data variation
(subtracting the most accurate estimate from the data). Indeed, one could speak
of emergent model-based control eliminating variation in the environment; or, as
seen from the opposite point of view, the system can be said to suck variation,
exploiting information in the environment.

The thermodynamic analogue makes it possible to put the above observation
in a more general setting. Remember that entropy can be defined in terms of
probability; the more probable a state is, the higher is its entropy level. In a well-
controlled system the state remains in the vicinity of its nominal value, so that
its entropy level is high. Complete elimination of variation denotes “heat death”.
This means that when a system is defined in an appropriate way, cybernetic
adaptation struggles towards increasing entropy: the increasing complexity in
the emerging control structures is compensated by the loss of information in the
controlled data. In a way, a cybernetic system essentially inverts the arrow of
entropy, so that such systems with increasing structure and order are consistent
with other physical systems; perhaps the idea of maximum entropy production
can even be applied.

The above intuitions make it possible to make brave hypotheses, escaping the
neuronal framework.

The input u can be seen as a set of forces pressing the system; the vector x̄ reveals
how much the system yields in that force field along the corresponding degree of
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freedom. In mechanical systems it is easy to see that the product of force and
resulting deformation reveals the energy stored in the system; correspondingly,
for “generalized forces” and “generalized deformations”, or action and reaction,
one can define their product as “generalized energy” or emergy. These definitions
make it possible to see the Hebbian learning principle in a yet wider perspective.

Generally, the vector u can be seen as the resources available in the environment.
For example, neurons compete for activation, and the Hebbian-type learning
strategy maximizes the average intake of that resource. In practice, the very
natural-sounding rule (“generalized Hebbian principle”) for individual agents to
follow is to go for resources. Successful exploitation of the resources makes it
possible for the system (population) to grow and reproduce faster; this means that
the Hebbian learning strategy is evolutionary optimal and outperforms others in
the struggle among systems, and it has survived for us to be seen.

These observations are elaborated on in the studies of neocybernetics [12] — the
“difference that makes a difference” (see [2]) is very simply covariation in data
now4. It can be claimed that neocybernetics offers a versatile framework for
networked agent systems where there is no centralized control among the actors,
making it possible to quantify studies of distributed intelligence. In neocybernetic
systems a higher-level structure emerges in the form of principal subspace based
sparse components; such systems implement pattern recognition among environ-
mental signals. In more abstract systems the vector u can be seen to constitute
the vector of needs or functionalities, and one ends in the field of (bio)semiotics.
Interpretation of the environmental signs, or the selection and weighting of in-
puts determines the resulting structures in a more or less unique manner. The
dualism between information and matter/energy can be attacked from a fresh
point of view (see Fig. 9).

The same ideas of semiosis apply when extending the models from the infosphere
to ideasphere, or when explaining the basis of cognitive systems: the mental
model is a cybernetic balance among concepts that represent more or less explicit
attractors in the ideasphere. Perhaps the multi-layered model of models is the
key to the emergent consciousness?

There are a plenty of intuitions readily available to be exploited when trying to
reach a “holistic” view of complex real-life systems — here are some examples:

• In an ecosystem, it seems that the magnificent diversity in the natural net-
works is more robust than the optimized monotony in man-made networks.
Now there are some fresh ideas available: biodiversity and the structure of

4Information on neocybernetics can be found at
http://www.control.tkk.fi/research/cybernetics/
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Figure 9: Abstract flows between two trophic levels in a neocybernetic
system

“niches” can be explained in terms of principal component structure in the
resources. Similarly, such principal component structure makes the system
robust against random noise.

• In social systems there also exist trophic layers, and the new intuitions
perhaps can even help in fine-tuning political systems. For example, it
has been argued what would be the correct way to distribute the seats in
the Parliament of the European Union; how should one weigh the popula-
tion differences in member states? Looking at the formula (44), one could
propose a resolution: the number of MEPs should be proportional to the
square root of the population.

There are also more fundamental consequences. For example, assuming that the
interaction mechanism between a system and its environment can be expressed
in terms of distinct variables, the emergy maximization reduces to analysis of
covariances, and linearity of structures has evolutionary advantage as such struc-
tures are optimal in that case — meaning that natural systems try to become
linear!

There are philosophical dimensions, too — assuming that nature is essentially
trying to model the environment to exhaust its resources, and if natural systems
are actually manifestations of such models, one can address even the very prin-
ciples of scientific work: man-made models are not necessarily only shadows of
reality, in the Platonian sense; rather, if one applies the same model structures
as nature does, one can capture the essence of the systems in one’s models ...
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and, at the same time, the eternal Einsteinian mystery why natural systems are
modellable in the first place need not remain a mystery forever.

6 Conclusion

Neural networks should not be seen as mere data filters; after all, the driving force
in articicial neural network research is the magnificent capabilities of the brain.
When evaluating architectures and algorithms, one should have a systemic, wider
view.

It seems that the whole cognitive machinery is there to model and simulate the
surrounding world. This means that there are various sets of constraints that need
to be addressed when constructing artificial neuron systems capable of carrying
out such modeling:

1. View from outside. The ontological challenge is that the same basic
neuronal structure should be capable of capturing very different kinds of
real-world data.

2. View from inside. The epistemological challenge is that the resulting
(emergent) models should be compatible with the qualitatively higher level
cognitive system models.

And, in between these extremes there is all the time the engineering-like modeling
view that is needed to keep the studies plausible. For example, do the models
truly scale up beyond toy worlds? As there are no pre-determined structures or
controls among neurons, does self-organization and self-regulation emerge from
local interactions among the identical low-level entities that do not know the “big
picture”?

And, after all, why is the proposed structure so good that it has survived in
evolution, outperforming all other candidates?

As studied in [12], it seems that the neocybernetic neural network structure is a
candidate model that can address all of the above challenges.
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