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Abstract. Cybernetics, or the study of “Control and Communication
in the Animal and the Machine” was one of the cornerstones of sys-
tems science. However, it seems that no concrete methodologies exist to
make use of the intuitively appealing ideas. — This paper proposes one
approach that makes it possible to benefit from the intuitions. The pro-
posed generic model structure is based on local interactions, resulting
in globally optimized behavior, and it can be claimed that the underly-
ing ideas are applicable to a wide variety of complex systems, including
neuronal, ecological, and economical ones.

1 “Project 42”

The idea of cybernetics was presented by Norbert Wiener over half a century
ago [21]. In many natural systems it is local interactions that result in emer-
gent global behaviors, like self-stabilization and self-organization. The ability of
adaptation, and surviving in changing environments was seen as a prototype of
what intelligent behavior is. Indeed, cybernetics was one of the cornerstones of
the early Artificial Intelligence research. And today, again, it seems that AI field
more or less is identified with “Agent Intelligence”, or “Ambient Intelligence”.

During the decades, the ideals of holism have flourished under different
names. For example, the theory of complex systems has also been searching for
panacea for explaining all systems, big and small, in the same coherent frame-
work. The intuitive feel of similarity among different systems has resulted in
hopes of finding theories for “Life, Universe, and Everything” (for example, see
[13]). There have been no breakthroughs, and as compared to the wonderful
promises, the results have been marginal. Because of the disappointments, the
concept of ironic science has been coined [9].

The power of theories should be in their capability of providing us with new
intuitions that could not be anticipated right from beginning. Are there such
intuitions to be reached?

The claim here is that different branches have now matured enough so that
new intuitions really are available. Specially, control theory and mathematical
modeling have developed considerably since the mid 1900’s. Understanding of the
dynamics in closed feedback loops has deepened. What is more, understanding of



specific cybernetic systems (neural networks, for example) has dramatically pro-
gressed. Still, it seems that the other key to deeper understanding of cybernetic
systems also dates back to the late 1940’s — namely, the work of the physician
Donald O. Hebb is employed here.

Rather than starting from all-embracing hypotheses, the discussion below
concentrates on a concrete example. Conceptual tools from system theory are
applied to reach a systemic view, and based on that, assumptions about the
emergent functionality can be made. It turns out that these neocybernetic dis-
cussions can be applied to a wide variety of different fields.

2 Starting Bottom-Up ...

When studying complex systems, concrete examples often help to see the bigger
picture, making it possible to draw analogies. For this purpose, a specific example
of complex systems is studied, namely, a grid of neurons.

2.1 About system theory

When searching for models for complex systems, there always exist various ways
to proceed. And depending on the selected route, one can either get a long way, or
the analyses are inevitably doomed in deadlock. How to select among candidate
approaches? In this paper, system theory is applied as a guiding principle.

System theory is the conceptual framework for capturing general behavioral
principles common to different kinds of systems [2]. In the system theoretic
setting, the problems are seen in a wider perspective. Rather than studying single
signals, for example, the system of signals is studied as a whole. It may turn out
that from the interactions between signals some unanticipated behaviour pops
up.

It is essential to select the boundaries of the system being studied appro-
priately. Correct level of abstraction needs to be selected, and all dependencies
within the system need to be captured. For example, in [15] the problem with
simple causal models are studied: The basic problem with cause/effect structures
is that changes in effect do not mean that the causes have changed, meaning that
simple statistical correlations-based analyses become void. The answer to this
problem is appropriate selection of system boundaries; closures of causal depen-
dencies are only studied here.

One is not trying to study all mathematically possible systems, only physi-
cally plausible, or interesting ones: In a “smart” — cybernetic — system, there
are no unidirectional causality diagrams but there always exist feedbacks, so that
all dependencies become tangled. All interacting variables need to be included
within the system, whereas the truly independent variables are interpreted as
inputs coming from outside. Different kinds of analyses and theoretical tools are
needed here as compared to traditional modeling of causalities. Assuming that
appropriate feedback mechanisms somehow have been implemented, no matter



where these feedbacks originate from. This way, natural and technical systems
alike can be studied.

In a cybernetic system causes and effects are bidirectionally connected (in-
deed, there exists a multitude of influence mechanisms), and statistical tools can
be applied. However, the dimensions of the systems become high as all variables
need to be simultaneously represented. And because of the feedback loops, static
studies do not suffice, but dynamics has to be taken into account. It is these two
things — high dimensionality and dynamicity — that make it possible to reach
new system-level functionalities. When seen in the traditional perspective, this
high dimensionality and dynamical nature of the systems seems to make analysis
difficult. But if appropriate tools are applied, things seem to clear up — there ex-
ist special mathematical frameworks for mastering such high-dimensional spaces
of parallel dynamic signals: Linear algebra and matrix calculus, together with
multivariate statistics and theory of dynamic systems.

When trying to be too ambitious the applicability of the system theoretic
ideas necessarily becomes vague. To reach something concrete, an additional
assumptions is made here:

The structures that are studied are essentially linear.

The only justification for this assumption is based on intuition: We are not yet
facing the End of Science — for example, the neuronal system, after all, just has
to be analyzable1. Only for linear structures the scalability of the models can be
reached, and properties of the whole system can be attacked using reductionistic
approaches — the only ones there exist today (later, this linearity constraint
is relaxed to make the studies better match reality). And, even though one is
here studying “non-equilibrium state” systems, to reach concrete results, another
basic system theoretic intuition that has to be obeyed is:

The structures that are studied are essentially stable.

There are theoretical and philosophical motivations for this stability assumption.
First, from the theoretical point of view, powerful analyses are only available for
stable systems. The second motivation is more intuitive: Interesting functionali-
ties take time to emerge, and in an unstable environment, there is no possibility
for such fragile functionalities to ever become noticeable. As the systems become
larger, there is more and more need for explicit emphasis for the stability issue:
It is enough that just one of the n dynamic modes in the system is unstable,
and the whole system explodes.

The loss of expressional power due to the linearity assumption, and the loss
of intuitive appeal due to the stability assumption, are compensated in a sys-
tem theoretic way: Rather than studying individual neurons, the whole grid of
neurons is simultaneously taken into account, and the feedback loops result in
dynamic behaviors. The interactions between neurons result in emergent func-
tionalities, as will be seen later.

1 Just as Gaia preserves the Earth, Pallas Athene preserves scientific progress!



2.2 Modeling a Hebbian neuron

The research on artificial neural networks has departed from the original objec-
tives — today, ANN’s are seen only as computing devices, forgetting about the
origins in artificial intelligence, when the operation of the brain was being studied
and explained. Simultaneously, the models have become increasingly complex, so
that efficient analysis methods do no more exist. For example, starting from the
linear, intuitively appealing Hebbian neuron model, highly complex structures
have been developed (for example, see [7], [4]).

In what follows, the goal is to explicitly stick to basic neurophysiological
observation, the Hebbian learning principle. This neuronal behavior was observed
by the physician Donald O. Hebb some half a century ago [8], and it can be
formulated as follows:

Hebbian law. Synaptic connection between the neuron and an incoming
signal becomes stronger if the signal and the current neuron activity
correlate with each other.

As is known, simple Hebbian learning is unstable: Following the basic idea, the
synaptic connections become stronger and stronger without limit. In practical
Hebbian algorithms, this instability is eliminated by introducing an additional
nonlinearity (Oja’s rule, see [14]). Unfortunately, this nonlinearity makes the
analysis of the overall system very difficult.

However, stability can also be reached using linear techniques by applying
negative feedback.

To study the neuronal system behavior in systemic terms, let the vector
x(t) denote the neuron activities at time t, so that vector element xi represents
the activity of the neuron index i. Further, let the vector of input signals be
u(t). Assume that the number of neurons, n, is lower than the number of input
channels, m. The synaptic strength between neuron i and input signal j, or rij ,
is now assumed to change as

d rij

d t
(t) = ρx̄i(t)uj(t) − 1

τ
rij(t). (1)

The first term contains the Hebbian learning factor (unscaled correlation be-
tween neuronal activity and input signal), whereas the latter term represents
the negative feedback from the neuron activity. In what follows, x̄ denotes the
steady-state value of x after initial transients. Parameter ρ determines the synap-
tic dynamics, together with the parameter τ that is the time constant determin-
ing the rate of decay. Correspondingly, all connections from inputs to neurons
can be expressed in matrix form as

dR

d t
(t) = ρx̄(t)uT (t) − 1

τ
R(t), (2)

where uT denotes vector transpose. If it is assumed that the system is (weakly)
stationary, that is, the (second order) statistical properties of the data do not



change over time, and if τ is large, one can solve for the steady-state value, so
that (using the expectation operator in a somewhat sloppy way)

R̄ = ρτ E{x̄uT }, (3)

That is, the matrix of synaptic weights R becomes the (scaled) cross-correlation
matrix.

2.3 Dynamics in a neuron grid

Above, individual neurons (indeed, individual synapses) were studied — no inter-
esting functionalities can be seen yet. Next proceed to the grid level adaptation
among a set of Hebbian neurons.

When studying interconnections among individual neurons, stability issues
become crucial again. And, again, stabilization of this process can be imple-
mented in linear terms by applying negative feedback.

Assume that each neuron is connected to each input, but, additionally, each
of the neurons is also connected to all other neurons. Using the matrix notation,
the dynamics in a linear neuron grid can be modeled as

d x

d t
(t) = −Ax(t) + B u(t). (4)

Matrix A captures the synaptic weights between neurons; because of its con-
struction (as explained below) A is positive definite, and negative feedback is
reached by explicitly adding the minus sign. When looking at the Hebbian prin-
ciple above, it is evident that one can decompose (3) for different signals as

A = ρτE{x̄x̄T }, (5)

and

B = ρτE{x̄uT}. (6)

Despite the simplicity of the formulation, this kind of all-embracing framework
has not been studied before. Note that even though the synaptic effects are
presented in such a compact form, the interactions and adaptation operations are
still completely local, matrix element Aij , for example, representing the synaptic
weight from neuron j to neuron i. Unbiased correlation matrix estimates can be
updated on-line as follows:

d Ê{x̄x̄T }
d t

(t) = −λ Ê{x̄x̄T }(t) + λ x̄(t)x̄T (t) (7)

and

d Ê{x̄uT }
d t

(t) = −λ Ê{x̄uT }(t) + λ x̄(t)uT (t), (8)

where λ determines the adaptation rate. In what follows, it is assumed that the
grid dynamics, as determined by (4), is much faster than the rate of change in



the external input; further, the adaptation of correlation matrices, as determined
by (7) and (8), is assumed to be still much slower. Because of the properties of
correlation matrices, all eigenvalues of −A are non-positive, and the model (4)
is stable.

One can elaborate on the structure in (4). Because of the minus sign, it
seems that the basic Hebbian law is inverted if the signal belongs to a feedback
structure. Indeed, one can define

Anti-Hebbian law. Synaptic connection between two neurons becomes
weaker if the neuronal activities correlate with each other (or, actually,
opposite activation becomes stronger).

The Hebbian laws can be interpreted so that the effects from the prior level are
excitatory, but lateral connections between the same level neurons are inhibitory.
As will be seen later, the Hebbian principle makes it possible to learn the data,
whereas the role of anti-Hebbian learning is to implement some kind of com-
petitive learning resulting in organization of structures. Whereas the Hebbian
learning has a long history, anti-Hebbian learning is newer, perhaps the most
notable early studies being carried out in [5]. However, all such models have
been highly nonlinear, and they have been developed for one neuron at a time.

2.4 Principal subspace analysis

It is also assumed that the system is in stationary state; further, assume that
the change of rate in u is low enough, d u

d t (t) ≈ 0, so that, perhaps excluding the
initial transient, x in the process (4) always follows the input very fast. If this
holds, the derivative in (4) vanishes, and one has for the steady-state

x̄(t) = A−1B u(t), (9)

assuming invertibility of A (this always holds if the variables in x are not lin-
early dependent). Note that the effects of the parameters ρ and τ vanish in this
operation. For future reference, define this linear mapping from u to x̄ as

φT = A−1B = E{x̄x̄T }−1E{x̄uT}. (10)

Next, study the covariance of the neuronal state, as calculated from (9), taking
the expectation of the sidewise outer products:

E{x̄x̄T } = E{x̄x̄T }−1E{x̄uT }E{uuT}ET {x̄uT }E{x̄x̄T }−1. (11)

One can multiply the expression from left and from right by the covariance
matrix E{x̄x̄T }, so that

E{x̄x̄T }3 = E{x̄uT }E{uuT}ET {x̄uT }. (12)

There seldom pop up third powers in linear algebra! Remembering the definition
of φ, this becomes

(
φT E{uuT}φ)3

= φT
(
E{uuT})3

φ. (13)



As shown in [11], the stable fixed point for φ is such that it spans the principal
subspace of the input data, that is, columns of φ are linearly independent combi-
nations of the n most significant eigenvectors of the input correlation (covariance)
matrix E{uuT}. Further, the variability in x equals the total variance along the
n most significant principal component directions in u (for information on the
central role of principal components and principal component analysis (PCA) in
modern multivariate data analysis, see [1]).

Because n < m, not all variation in u(t) can be explained by x(t). However,
the coding based on PCA is efficient, because the latent variables are mutually
uncorrelated and do not disturb each other. What is more, it can easily be shown
that the largest principal components explain the variations in the inputs in the
best possible way. Indeed, this global optimality can be elaborated on closer.

2.5 Optimality of representations

As shown in [11], the operation of the neuron grid can be seen in a more abstract
perspective. It turns out that (4) determines an algorithm (steepest descent
approach in continuous time) for finding the minimum for the quadratic criterion

J(x) =
1
2

(u − φx)T E{uuT} (u − φx) , (14)

where φ is the stationary solution to (10). It is evident that x’s that minimize
the above criterion try to explain the input data u as accurately as possible.
Because of the weighting matrix E{uuT} it is also clear that the above criterion
emphasizes the directions in the data having the highest variation — and, indeed,
this property can be detected in simulations (see [11]). The peculiar weighting
makes the solutions differ from the traditional maximum likelihood data fitting
approaches.

The cost criterion gives us yet higher-level view of what happens in the
neuronal process: Rather than having to follow the actual iteration, one can
directly concentrate on the final pattern that would finally emerge out from the
iteration.

In (general) systems theory two views of looking at a system are distin-
guished: The process view and the pattern view [18]. In this perspective, the
original approach of seeing the behavior of a system as a dynamic process, or
as an iteration, is an example of the process view. The opposite perspective, or
trying to see beneath the complicated iterations, trying to perceive the emergent
patterns, may open up new horizons. It is not the complicated iterations that
determine the essence of complex systems, as claimed by Stephen Wolfram [22]
— it is the final pattern that emerges from that iteration!

It should be remembered that one is just constructing models, not claiming
that there should exist some fundamental correspondence between the model and
the reality. However, as compared to traditional engineering disciplines, system
theory is just a step nearer to philosophy and metaphysics: It not only tries to
explain behaviors, answering the how questions, but it also tries to answer the
why questions, searching for general principles governing the system behavior.



Here, in this study we started with an intentional assumption concerning the
neuronal behavior: It was assumed that neurons try to maximize correlation or
match between some quantities, and now it turns out that simultaneously they
try to optimize something else. Whereas the original behavior was local, the
optimizing behavior turns out to be an emergent global property.

2.6 Relaxing the assumptions

The mathematical approach above is not truly credible: Why should the neurons
exactly obey some mathematical formula? Indeed, it turns out that it only needs
to be assumed that the formulas (4), (7) and (8) reveal the tendency, not the
rate, that is, the numerical parameters are of no major relevance what comes to
global properties of the system. For example, assuming that the actual neuronal
dynamics can better be expressed as

d x

d t
(t) = −αN Ax(t) + βN B u(t), (15)

where α and β are arbitrary scalars and N is an invertible matrix, the structure
of the problem remains intact: Even though the correlation matrices may become
scaled because of the numerical values of α and β, their structure is not changed.
Eigenvalues (or activity variances) become scaled, but the eigenvectors remain
the same. The presented mathematics also applies if one just assumes that all
signals are treated equally. If α ≡ β, the above results can directly be applied,
no changes taking place whatsoever.

The matrix N , on the other hand, can be introduced to facilitate representing
some kind of topology among the neurons, so that, for example, diffusion (or
spread of activation) can be modeled. Note that in this linear case N has no
effect on the steady state.

One phenomenon that later turns out to be important when extending the
model is that if there exist various neurons having the same behavioral pattern,
the results do not change, if the corresponding xi’s are combined into a single
variable that contains the cumulative activity of individuals. This fact results
from the linearity of the model. One can also freely select the appropriate level of
abstraction, switching the emphasis from individuals to populations. From the
point of view of extending the model to more complicated environments where
the boundaries between subsystems cannot necessarily be exactly determined
(see later), this linear scalability property is crucial.

Further, it turns out that if one defines the adaptation of the correlation
matrix estimates as

d Ê{x̄x̄T }
d t

(t) = −Λ Ê{x̄x̄T }(t) + Λ x(t)xT (t) (16)

and

d Ê{x̄uT }
d t

(t) = −Λ Ê{x̄uT }(t) + Λ x(t)uT (t), (17)



where Λ is no more scalar but an invertible matrix, the steady-state solutions
for A and B still remain intact (and the Λ’s in (16) and (17) need not even be
the same). This means that, for example, if Λ is diagonal, individual forgetting
factors of the neurons being collected on the diagonal, different neurons can
have differing adaptation dynamics without affecting the overall behavior at all.
This property can become relevant if the local actors are not identical (see later).
And for a nonlinear system where there can exist various local extrema the local
dynamics can play a major role.

Often, specially when the system is locally linearized, the model is not linear
but affine, that is, there is additionally a constant term in the model:

d x

d t
(t) = Ax(t) + B u + c. (18)

The original linear model formulation still applies if one introduces the new
(non-zero-mean) state variable x′ = x + A−1c.

2.7 Unification of levels

A single synapse is a lower-level complex system, where the interplay of underly-
ing chemical processes determine its behavior on the macroscopic level. Above,
the models were derived essentially in the same way for a single synapse and
for the whole neuron grid: Correlation-oriented structures were constructed, and
stability was provided by applying negative feedback. Could the same model
structure be applied in both cases? It is evident that some extensions are needed
to capture both systems in the same framework; the goal here is to search for
the simplest of such extensions.

Let us assume that the synapse operates qualitatively in the same manner
as the whole neuron grid does. In this case the input and output are scalars2,
and slightly extending the Hebbian/anti-Hebbian basic formula one can write
for the output of a single synapse as

d ξij

d t
(t) = −λiE{g(ξ̄ij)2} ξij(t) + λiE{g(ξ̄ij)uj} uj(t), (19)

so that in steady state

ξij(t) =
1

E{g(ξ̄ij)2}E{g(ξ̄ij)uj} uj(t). (20)

In the similar way, also the synapses between two neurons can be expressed
analogously (below, variables ζ rather than ξ are used in those cases). The
function g offers extended functionality in the model. Assume that function
g is defined as

g(ξij(t)) = ξij(t) + ε(t), (21)

2 Note that this scalar nature of the synapse is only a simplification; the synaptic
process is complex, involving many variables. Again, the observed synaptic behavior
is an emergent phenomenon



where ε(t) is some unknown signal. The main difference in (19) as compared to
earlier discussions is the function g: It defines the interaction mechanism between
cybernetic subsystems. From the viewpoint of the single synapse, the role of the
function g is to introduce noise in the system; however, as seen from outside,
however, the noise consists of the contributions of the other synapses, that is,
the final neuron activation can be written as xi(t) = g(ξij(t)), or actually

xi(t) = −ζi1(t) − . . . − ζin(t) + ξi1(t) + . . . + ξim(t), (22)

where the signs are determined by whether the effects are inhibitory or excita-
tory. This means that when (22) is differentiated, using (20) one can write

d xi

d t
(t) =

1
E{x̄2

i }

⎛
⎝−

n∑
j=1

E{x̄ix̄j}xj(t) +
m∑

j=1

E{x̄iuj}uj(t)

⎞
⎠ . (23)

When collected into a matrix form, the set of expressions capturing the whole
neuron grid can be written as

d x

d t
(t) = −ΛE{x̄x̄T } x(t) + ΛE{x̄uT} u(t), (24)

where Λ is a diagonal matrix containing the elementwise adaptation rates on the
diagonal; in the above case, this matrix is defined using the variance matrix as

Λ = V{x̄x̄T }−1 =

⎛
⎜⎝

E{x̄2
1} 0

. . .
0 E{x̄2

n}

⎞
⎟⎠

−1

. (25)

Comparing (24) to the behavior of the Hebbian/anti-Hebbian neuron grid, where
there were only the correlation matrices without the matrix Λ, one can see that
this new formulation is an extension of it: If defined as Λ = V{x̄x̄T }−1, the
neuron indices reveal that the parameters σ and τ in (3) are now neuron-specific,
so that ρiτi = 1/E{x̄2

i }. From the physiological point of view, this extensions is
motivated: It has been recognized that high variation level exhausts the neuron,
making it less sensitive to inputs; this phenomenon can also be modeled in the
above form. It turns out that if one in (15) selects αN = βN = V{x̄x̄T }−1,
as defined in (25), the steady state is identical in any case. However, the new
more sophisticated approach gives information also on the transient dynamics:
The adaptation rates are given in the matrix Λ. As compared to the earlier,
extremely simple model that was proposed for neuron grids (4), it seems that
the model (24) can be accepted as a more sophisticated version of it.

The main result here is, however, that the extended model applies to various
domains. Indeed, comparing formulas (19) and (24) it seems that the same model
structure captures the behaviors of two different systems, the synapse-level pro-
cesses as well as processes on the neuron grid level. On the neuron grid level,
there are no neighboring systems, so that the function g is an identity mapping.
Or is it?
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Fig. 1. Schematic illustra-
tion of levels in a neural sys-
tem

When wondering whether the presented neuron model could still be extended,
so that there are various coexisting subsystems, one can generalize the above
studies, interpreting neuron grids as mere synapses above. Indeed, if one has
vector-form sub-blocks in (25), so that Ei{x̄x̄T } denotes the covariance matrix
of the i’th block (only a subset of x’s being employed), one can write

V{x̄x̄T } =

⎛
⎜⎝

Efirst{x̄x̄T } 0
. . .

0 Elast{x̄x̄T }

⎞
⎟⎠ . (26)

Similarly, the additive formulation of the function g can be motivated also in
more general cases. Assume that there are η subsystems, each generating its own
vector-form contribution ξη to x, and these vectors are summed:

x = ξfirst + · · · + ξlast

= E{x̄x̄T }−1E{x̄uT
first}ufirst + · · · + E{x̄x̄T }−1E{x̄uT

last}ulast

= E{x̄x̄T }−1
(
E{x̄uT

first} · · · E{x̄uT
last}

)
⎛
⎜⎝

ufirst

...
ulast

⎞
⎟⎠

(27)

This means that the input vectors ufirst to ulast can be stacked on top of each
other, and the overall system assumedly carries out principal subspace analysis of
this combined vector. Subsystems can also be freely connected; the appropriate
subsystem boundaries are dictated by where the structure adaptation feedback
comes from, or where is the focus of system optimization, as determined by
the selection of the function g. In the discussions that follow, this function g
will be ignored: It is assumed that the scope of the cybernetic system has been
determined appropriately, so that it is the system output x that is the feedback
signal in the system matrices (see Fig. 1).

The derivations above were based on intuition: One would like the have the
same structure on all levels. Applying the model (24) this holds: The synapses
have the same model as the neurons do (even though the dimensions are very



different). However, the results sound plausible also from other points of view:
The weighting factors in Λ (that is, the input to the neuron xi are multiplied
by 1/E{x̄2

i }) resemble the maximum likelihood weighting of variables when the
error variance levels in different variables are not the same.

Extending such mathematical considerations, there is still more intuition
available. Note that the model (4) with (5) and (6) has its fixed point in the
same point where the following criterion has its minimum:

J (x) =
1
2
xT E{x̄x̄T }x − xT E{x̄uT }u. (28)

This must equal to the original formulation (14) if constant terms are omitted,
defining the same minimum. The gradient of this criterion is

dJ
dx

(x) = E{x̄x̄T }x − E{x̄uT }u, (29)

giving the gradient descent process in the familiar form

d x

d t
(t) = −Λ

(
E{x̄x̄T } x(t) − E{x̄uT } u

)
. (30)

Any positive definite matrix Λ determining the final search direction can be
selected; if this matrix is selected according to the Newton method that gives for
quadratic criterion the best possible search direction, one has

Λ =
(

d2J
dxdxT

(x)
)−1

=
(
E{x̄x̄T })−1

. (31)

Comparing this to (25), one can see that this formulation is more complicated,
also the non-diagonal matrix entries being employed. This more efficient defini-
tion cannot be implemented locally, but it can have some practical value: If one
wants to simulate a neural system, a practical algorithm has the form

d x

d t
(t) = −x(t) + E{x̄x̄T }−1E{x̄uT} u. (32)

Model (32) represents a filtered version of the direct static mapping x = φT u.

2.8 Towards sparse coding

Above, linearity was taken as one of the basic goals in modeling. However, linear
networks truly are too restricted to carry out really interesting tasks. For exam-
ple, successive layers of linear grids, when connected together, can be substituted
with a single layer, where the mapping matrix is constructed by multiplying the
original mapping matrices together.

It is well known that PCA is well-motivated from the mathematical point
of view, but not so well from the physical point of view. How to introduce
nonlinearity in the model to reach something new? One should be extremely
cautious when selecting the function form, because, from the point of view of



analysis and well-founded theory, nonlinearities open the Pandora’s box. One
would not like to change the basic PCA-type functionality too much.

How to select the nonlinearity in practice, and where to put it, then? Natu-
ral data is often non-Gaussian, being composed of independent or sparse compo-
nents (see [6], [16]). The cognitive machinery also seems to decompose input into
sparse components, that is, some neural units being active and some being inac-
tive. This means that in the current framework only some of the latent variables
should be non-zero whereas other ones should have strictly zero activity when
explaining an input sample. The simplest way to reach sparsity is by introducing
the “cut” function fcut : Rn → Rn

+ that can be defined elementwise as

fcut,i(x) =
{

xi, if xi ≥ 0, and
0, otherwise. (33)

In principle, vector elements below zero are simply cut to zero, dividing the state
space in two parts: Active (non-zero) and inert (zero). This function form has
the following advantages:

– Physical plausibility. No matter if the neuronal activity is based funda-
mentally on pulse frequencies, or chemical concentrations in synapses, the
only structural constraint is that such signals cannot be negative.

– Theoretical applicability. The model is piecewise linear; sparsity is fa-
cilitated when negative variables automatically are inactivated, and do not
affect the locally linear dynamics.

– Pragmatic benefits. There are no adjustable parameters; in larger systems,
this considerably simplifies the tuning of the model behaviors.

The sparsity introduces new possibilities in the model structure. Experiments
are presented in [11]: Hand-written digits are modeled, etc. However, from now
on the approach differs here from that presented in [11]: There the selected
approach was plagued by theoretical and practical problems. The goal is now
to keep the iteration structure as simple as possible, only extending the linear
model. For that purpose, define the extended nonlinearity f : Rn → R2n

+ as

f(x) =
(

fcut(x)
fcut(−x)

)
. (34)

In fact, this function f represents feature extraction — how a system is seen by
the outside world. When this nonlinearity is added in the output mapping of the
system, so that previous layer of signals is mapped onto the next layer as

unext = f(x̄) = f
(
A−1B uprev

)
, (35)

it is evident that the nonlinear model is simply an extension of the linear
one: Assuming that there exists a linear mapping from the linear system vari-
ables x to some other set of variables y, so that y = cT x, the same map-
ping can be implemented also using the nonlinear variables because there holds
y =

(
cT −cT

)
f(x). If the actual underlying mapping is nonlinear, the param-

eter weightings in the approximated piecewise linear mapping typically become



unsymmetric. In both cases, the parameters can be solved applying linear re-
gression techniques3.

This expansion of the variable space, or changing the n variables to 2n, corre-
sponds to the multivariate statistical approach to attacking nonlinear mappings.
The structural complexity is changed into dimensional complexity: Hoping that
in the higher-dimensional space the problem is monotonous and better lineariz-
able, the efficient tools of linear algebra can take care of the remaining problems
of redundancy compression (and, indeed, the PCA nature of the Hebbian/anti-
Hebbian network is well suited for this compression task).

Adding the nonlinearity to the output of a single system makes it possible
to introduce nontrivial multi-layer systems. Because of the positivity of the sub-
system outputs, they cannot naturally be made zero-mean; this means that the
variables in the sparse basis typically remain correlated.

2.9 Networks of neuron systems

Intuitively, it is evident that in a neuronal system, there are subsystems at
many levels. Successive (or strictly hierarchic) neural layers are not problematic:
The latter just uses the outcome of the former ones, the former ones remaining
ignorant of the subsequent processing phases. Theoretical problems emerge if
the former layers also refer to the latter ones, so that the hierarchy changes into
a network.

Indeed, intuition tells us that the structure of a complex system is somehow
fractal, so that the same kinds of substructures are found in different scales —
and, somehow, the neuronal functionalities gradually change to cognitive ones
when higher levels are studied. It would be nice if the same modeling principles
could be applicable at all levels. Above, the synaptic systems within single neu-
rons, and the neuron grid itself, were seen to constitute a subsystem/supersystem
pair having the same model structures; how about higher-level structures? When
going from the synaptic level to neuron grid level, the data structures changed
from scalars to vectors; in the same way, one could assume that on the higher
level, tensors are needed. However, in this context, simple methods are preferred,
and it is assumed that standard matrices can still be applied also on the higher
levels. Whereas the system semantics can become infinitely complex, the system
structures remain the same.

Where does to added expressive power come from when lower-level structures
are connected? The answer here is, of course, that the structures are not linear.
It is not only through explicit nonlinearities, as in Sec. 2.8, but also through im-
plicit structures that give rise to nonlinearities. In the above cases, the networks
between neurons were fully connected, but there can be different sets of vari-
ables for subdomains, structural constraints affecting the emergent structures
3 These methods typically necessitate covariance matrix invertibility; now, on average,

half of the variables are zero for any given input, and some variables can always
remain zero, meaning that the covariance matrix becomes singular. These cases need
to be taken care of, for example, always adding a small constant ε in the diagonal
elements of the covariance/correlation matrix



(see [23]). Typically, in a neural system, there are rather sparsely connected net-
works coupling individual densely connected subsystems, and it is reasonable to
retain such functional decomposition also in the model. However, each subsystem
is highly iterative; how to achieve pragmatic, practical models?

In multi-level systems, the inner time scales are shorter, the inner dynam-
ics being faster. When seen from the higher-level system, the lower-level system
looks like a static mapping, the inner-level dynamics being abstracted away.
The inertia in the dynamic nonlinear system is unavoidable, and when there
are many layers, time scales become difficult to master; what is more, conver-
gence can take a considerable amount of time. However, in systems with such a
simple underlying linear structure, different kinds of enhancements are possible:
Higher-level phenomena can be modeled using lower-level tools, collapsing the
structures, and the whole structure of different time-scale dynamics vanishes to
a singularity, as explained below.

When there are various such sub-blocks with different sets of input and out-
put variables, how to represent the overall system in a compact form? And,
what is more acute, when neural sub-blocks are connected together, there again
emerges the stability prolem. It seems that the most practical way to accomplish
this is to collect all variables in all x’s in a single vector χ, stacking them on top
of each other, and collect all completely independent inputs in another vector µ;
and, again, the stability problem can be solved applying negative feedback. The
model between vectors µ and χ can be expressed in the form

dχ

d t
(t) = −A f(χ(t)) + Bµ, (36)

starting from χ(0) = 0. Matrices A and B reflect the network structure, being
sparse if the network is not fully connected. Matrix A is an n × 2n matrix and
naturally uninvertible; dynamic process is thus needed to determine the steady
state χ̄ — but just one dynamic process is involved instead of many fractal ones.
Function f transforming outputs of previous levels to inputs for later (or same
level) layers is defined in (34). Whereas in the linear case the data structures
are determined by the principal subspaces that can be solved explicitly, in the
extended nonlinear case the correlation matrices cannot be determined without
iteration. What is more, the resulting correlation structures depend on the order
of introducing new layers: The structure has to be trained gradually step by step,
in a “constructivistic” manner. Because of the (different kinds of) nonlinearities,
the dim of χ can become higher than that of µ.

The simple structure in the model (36) is deceptive. There is no hierarchy
fixed in the structure, the structure being homogeneous and flat, but within the
correlation matrices the dependencies can be explicitly maintained. If one wants
to retain the known a priori structure, assuming it is known, the elements in the
correlation matrix A corresponding to no connection can be explicitly zeroed.
Indeed, this issue needs to be elaborated on: It is also the hierarchy in the
network that is dictated by the correlation learning strategies.

Remember that it was the Hebbian learning rule that resulted in positive
feedforward and emergence of structures, and anti-Hebbian rule that resulted



in negative feedback and stabilization, and self-organization of structures. This
intuition can be extended: The connections from lower layer to a higher one
follow the Hebbian principle, and connections among the same layer units, or
from higher layer to lower ones follow the anti-Hebbian principle. This means
that depending of the ordering among neurons, adaptation is either positive or
negative; this can be formulated in the correlation matrix estimate calculation
as

d F̂{χ̄fT (χ̄)}
d t

(t) = −λ F̂{χ̄fT (χ̄)}(t) + λK � χ̄fT (χ̄). (37)

Symbol “F” is used instead of “E” to emphasize the structure modifications.
Above, operator � denotes elementwise multiplication, that is, the matrix K is
a mask determining whether there is connection, and if so, in which direction the
adaptation takes place. Matrix element Kij is zero if neuron j is not connected
to neuron i, otherwise the element is either 1 or −1, depending on whether
learning is Hebbian or anti-Hebbian (in the connections from the “minus block”,
or the lower part of f(χ), the reasoning applies in the same way). Matrix K can
be utilized also in another masking role: Densely connected subsystems (of the
form studied above) carrying out principal subspace analysis do not necessarily
converge; it is better to force different variables select their roles, so that unique
PCA representation is created. This is reached (as explained in [11]) by making
the connections explicitly unsymmetric, that is, zeroing the elements above (or
below) the diagonal in the corresponding correlation matrix block using the
matrix K. This means that instead of being full of ones, the corresponding sub-
block (on the diagonal of K) is triangular.

Combinations of active variables determine the state of the neural system,
facilitating “on-the-fly” structures, making it perhaps possible to integrate quan-
titative (numeric) and qualitative (symbolic) representations in the same model
framework (for cognitive concequences, see [23]).

The above discussions were still rather concrete, being grounded on the neu-
ronal realm. In retrospect, it seems that there was need of balance (dynamic
equilibrium) in synapses, and there is need of balance in the neuron grids in
different levels: Applying these starting points, far-reaching hypotheses could be
made. This suggests that it is balances that are the key issue in complex cyber-
netic systems also in more general terms. This starting point offers a compact
structural framework for further studies. In what follows, very brave generaliza-
tions of these intuitions are presented. The question being elaborated on in what
follows is the following: What is the structure of a cybernetic basic block when
characterizing complex systems?

3 ... Continuing Top-Down ...

Above, the behavior of a neuron grid was studied from the reductionistic point
of view. It turned out that self-stabilization was reached when the neurons were
connected to each other and feedback was applied. Further, it was recognized



that if structural constraints are introduced, or if there is nonlinearity in the
system, some kind of order emerges in the system. Is this all there is, or are
there still more intuitively appealing results to be discovered? Can the results
be generalized? Indeed, in what follows, a more holistic approach is applied.
Concrete examples are presented in [23].

3.1 Cybernetic models

When looking at the obtained higher-level principles concerning neuronal be-
havior, it seems that the details about the system have been abstracted away.
Rather than speaking of pulse trains, etc., one concentrates on the information
processing level, speaking of correlations; and still higher levels of abstraction
are reached, when optimality issues are addressed. One is using concepts that
have nothing with actual neurons to do any more. Just as in the case of neu-
rons, in other areas of complex systems, analogues pop up when higher level of
abstraction is selected, when details are ignored, and appropriate concepts are
employed.

The goal here is to find a concrete definition for what a cybernetic system is.
A neuronal system is intuitively a very characteristic example of such a system,
and the above intuitions are employed here: Neural system is, after all, one of the
best understood cybernetic systems, and its subsystems (synaptic level and grid
level) are easily quantifiable. What kind of general lessons have been learned?

First, there is the powerful basic structure — dynamic state-space models —
that will be employed. The second objective is simplicity, constraining the effects
of nonlinearities to minimum. In what follows, the most important assumption
concerning cybernetic systems is the emphasis on equilibria: At each level in
the neuronal system it is the steady state after transients that was of relevance,
and this stabilization at various levels seems to be the key point in a cybernetic
system.

Now we are ready to define the “cybernetic standard systems”. There are
three levels of such models4:

1. First-order cybernetic systems can be represented in the form

d x

d t
(t) = −ΛAx(t) + ΛB u, (38)

with the system output being defined in the steady state as f(x̄). Because
it is this fixed state that is mainly of interest, the model could easily be
formulated also in discrete time. It is assumed that the matrix A is stable,
and the internal dynamics of the system is much faster than the changes in
input u. This model describes a simple balance model of dynamic equilibria;
only the most concrete adaptation, or reacting to environmental phenomena,
takes place in such a system. In a way, any stable state-feedback control
system is cybernetic in this sense.

4 The formulations can be somewhat modified without affecting the basic functional-
ities, as explained in Sec. 2.6



2. Second-order cybernetic systems5 are first-order systems where

A = E{x̄x̄T } and B = E{x̄uT }. (39)

This structure means that there is not only the evident balance, but also
the second-order balance among the statistical properties of the system. The
system spans the principal subspace of the input data. As compared to con-
trol engineering systems, this model corresponds to an adaptive control sys-
tem with special goals of adaptation algorithms. Higher-order cybernetic
systems have the same form as the second-order system, but the correla-
tion matrices can be deformed to reflect the structure among subsystems
(elements corresponding to missing connections are zeroed).

3. Enhanced/optimized cybernetic systems are second-order systems where

Λ = V{x̄x̄T }−1 or Λ = E{x̄x̄T }−1, (40)

respectively, where the variance matrix V{x̄x̄T } only contains the diagonal
of the correlation matrix. Seen from outside, the steady-state behaviors of
such systems do not differ from those of the second-order systems, but the
transient behaviors are more streamlined and better applicable to practical
implementations.

Indeed, a truly cybernetic system can be characterized in terms of balances: Or,
what is more, the goal of a truly cybernetic system is a balance of balances, or a
higher-order balance with the environment; or, just as well, it is a higher-order
match with the environment, as measured in terms of correlation structures.

A truly cybernetic system is balanced not only on one level. Qualitatively,
when going from a lower-level balance to studying the higher-level balances,
nothing new takes place. It is just the time scales, etc., that are different: When
the previous-level phenomena are studied statistically in a wider perspective,
searching for balance at that higher level, new emergent properties pop up.

The function f in the models is either identity mapping (strictly linear sys-
tem, where f can be ignored altogether), or the cut function with augmentation
(different kinds of function forms could also be proposed). When model is de-
veloped for a locally linearized behaviors and small deviations from the nominal
state or the linearization center, the linear model is appropriate, whereas when
constructing global models, the nonlinearity is needed. Note that when a model
is linearized, the resulting model is generally affine; it is here assumed that
the variables are not zero-mean, and there are excessive variables, so that the
constant terms need not be explicitly included in the model.
5 Note that this has not very much to do with studies of “second-order cybernetics” (by

Heinz von Foerster), where the higher level denotes the observer system, also being a
cybernetic system. Such studies where separate systems are explicitly mixed together
easily result in “cyber-semiotics” and other esoteric studies; now there is no need
to introduce Heisenbergian-style uncertainties (“observer disturbs the system”), or
there is no need for infinite regress; the studies can be kept mathematically concrete.
On the other hand, this mathematical basis results in a new platform that facilitates
studies on the Foersterian second-order cybernetics, too (see [23])



In the higher-order systems, the scaling of the variables is of crucial relevance.
Due to the role of the correlation matrices, the models are by no means unique:
Because the underlying model constructs are the (sparse coded) principal compo-
nents, variation levels of variables in u (or, for uncentered variables, the average
deviation from zero) dictates how visible those variables will be in the results.
Typically, the absolute values of the input variables should be directly applied,
if the inputs are equally valuable as resources (see later); however, if there is no
a priori knowledge about the relevances of very different types of variables, the
best initial guess is to normalize them, or scale the variables to have identical
variation range. Another important issue is the selection of variables, of course:
Different sets of variables result in different models. Specially, omission of some
relevant variables may make the model misleading, however cybernetic it may
be.

In technical terms, it is perceptron-like basic blocks that could be duplicated
to implement complicated systems for modeling of signals. It is an open question
how such correlations-based adaptation of weight factors could be implemented
on silicon; in software, however, such modules can readily be implemented, and
such a framework is being developed (in Matlab/Simulink environment).

3.2 “Humble systems”

The system level studied in the previous section is an emergent level, not visible
in the actual lower level. As experienced at the local level, what is it like to be
a member of a cybernetic system? After all, it is these individual agents that
autonomously implement the emergent functionalities of the system: How can
they do it, how do they know what they are expected to do?

One has to generalize intuitions gained when studying the Hebbian neurons.
First, it needs to be recognized that the network structure is just the framework
to facilitate communication among the neurons: When all neurons are connected
to each other, the network paradigm loses its intuitive appeal and explanation
power. The all-or-nothing style of thinking about connections in a network is
misleading, because the phenomena are not qualitative but quantitative. A more
appropriate way is to forget about the physical connections and study the system
in an information theoretic way; the grid of neurons changes into a population
of neurons. This view can be generalized to more abstract environments.

From now on, the data structures can be given new interpretations: The
vector x represents any population, vector elements being activities of the in-
dividuals, whatever is the realization of these activities, and u is the vector of
resources, whatever these resources are. Elements of x and u are real-valued
scalar signals, even though the signal carriers can be nerves, chemicals, or ants
(see later). It is assumed that relevant phenomena (activities) can be quantified
in a scalar form, and, similarly, interactions among the actors can be expressed
as scalar functions of the activations. The elements of x can be activities of indi-
vidual actors, or, in other cases, they can be the activities of a group of identical
actors. It is assumed that the actions of actors are local, behavioral decisions
being carried out independently by individual actors.
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Fig. 2. General structure of a cybernetic (sub)system

Often, the cybernetic agent can be characterized as shown schematically
in Fig. 2. According to traditional terminology concerning neural systems, the
function f can be called activation function, mapping from internal state x̄
into the system output f(x̄), as determined by the physical constraints. In the
same spirit, g can be called deprivation function mapping the agent’s internal
activity ξ̄ into x̄, representing the actual contribution of the individual in the
overall system, being constrained by other subsystems. This function offers a
mechanism for integrating separate subsystems.

The (sub)system tries to affect the environment by modifying x̄, but it does
not necessarily succeed; in this sense, the system has two inputs, u and x̄, and
the role of the cybernetic agent is to get along there in between. Variables in u
are such that nothing can be done about them, whereas variables in x̄ are such
that something perhaps can be done (as restricted by the function g). Only if
no compromises are needed (g vanishing), the optimal case characterized by the
eigenvectors, etc., is reached already on the lower level. The topmost system with
no constraints can reach the optimum, not the subsystems; one could speak of
exocybernetic systems, when the goal is given from outside, and of endocybernetic
systems, when everything is self-contained.

If one assumes homogeneity of the actors, that is, if one assumes that the
actors in the system are equal, the effects of individual actors can be directly
summed; similarly, (appropriately scaled) resources are assumed to be additive.
This means that the signals in the system input can be assumed to be linear.
The linearity assumption means that the connection weights among variables
can be characterized as profiles in a vector form. In concrete terms, competition
is harsher if the actor profiles are similar. In a (higher-order) cybernetic system,
the key property is that these profiles are adjusted in a consistent way. The
compromising, or balancing between demands is characteristic to a cybernetic
system; it is the way to reach coordination among subsystems without central
control. In concrete terms, The behaviors of individual actors, or “cybernetic
agents” are governed by the following principles:

– Strive after resources: Better availability of resources results in increasing
activity (excitation).



– Strive against competitors: Higher number of competitors means less
available resources resulting in decreasing activity (inhibition).

In a word, it seems that a cybernetic agent is simply sensible. There is egoism
— you try to prosper — but most of all, there is realism: When you are too
weak and when you are alone, you have to retreat (truly, the agents are alone to
start with — note that cooperation is an emergent higher-level phenomenon).
The agent tries to do something; if it does not manage (remember function g) it
adapts to the reality. In this sense, cybernetic systems are “humble systems”, as
contrasted with the man-made arrogant ones that apply excessive power to carry
out actions. The opportunism can also be interpreted in other ways: Cybernetic
systems conforming and adapting to their environments, whatever the properties
of that environment happen to be, could be called “chameleon systems”. A
philosophically motivated way to characterize the essence of such systems that
always strive towards something or against something (more or less hopelessly)
would perhaps be to speak of “Schopenhauer systems”.

Adaptation to the environment means that the connection weights are up-
dated in a “locally consistent” way. Local consistency here means that behavior
is locally adapted towards the direction where there seems to be resources eas-
iest available and where there is less competition, in a more or less consistent
manner. It does not matter very much what are the details of the adaptation pro-
cess; seen in the global scale, the resulting steady state is assumedly always the
same (at least in the linear case). One can ignore the dynamics of the complex
stochastic process, and directly study the situation where the system inevitably
ends in, assuming stationarity of the environment and long enough time span.
The details of the process still determine how the different “roles” in the en-
vironment are distributed among actors, so that, as seen from the local rather
than the global perspective, the dynamics makes a difference.

3.3 Elegance through minimalism

It is the same low-level strategies that have to be shared by all of the actors
— otherwise the emergent functionalities do not pop up. In all environments,
there always exist more than one strategies that can be employed — why should
one assume that it is the above scheme that is followed by all the agents in a
complex system? And, specially, what is the justification for generalizing the
assumed principles over all very varying cybernetic systems?

Indeed, it needs to be assumed that there have existed various strategies in
sub-cybernetic systems. The subsystems with different strategies have competed
for survival, in the Darwinian sense, and the fittest has become dominant. The
question should also be posed as follows: What kind of evolutionary advantage
does the presented scheme have? The answer here is very simple — a higher-
order cybernetic system structure as presented above is optimal. This global-level
optimality that is fundamentally based on the observations in Sec. 2.5 can be
paraphrased in different ways, because in different environments different kinds
of semantical entities are relevant. In general, the presented system structure as



a whole exhausts the resources available in the environment in an optimal way.
The system as a whole operates applying minimum amount of effort. Simultane-
ously, robustness against variations becomes optimized (see [23]): Cybernetically
“less mature” systems are (on average) less prepared to environmental surprises,
whereas in an optimized system the outside disturbances are compensated as ef-
ficiently as possible by the system. This could also be expressed in information
theoretic terms, if information is measured in terms of variations from the ex-
pected values.

The optimality pursuit applies to subsystems as well to the overall system —
in linear system the problems can be decomposed and analyzed separately. An
intuitively holistic system can be distributed and studied in parts. Cybernetically
constructed system of cybernetic subsystems is itself cybernetic. The successive
layers of cybernetic subsystems have the same form, so that a fractal hierarchy
of similar abstract structures is spanned. Each of the subsystems is optimal,
minimizing the efforts for achieving the goals; this fractal optimality pursuit is
the key to the marvellous elegance of Nature.

A crucial point in the mathematical derivations above was the assumption of
system linearity, at least on the lowest level. However, it is well known that real
systems are fundamentally nonlinear, and observing the very different domains
where there are cybernetic systems, this problem becomes acute. However, here
it is assumed that Nature applies the imperfect machinery it has available in such
a way that linear behavior is approximated. It is claimed that in truly cybernetic,
or “interesting systems” with many interconnected cybernetic sublevels, linearity
can be assumed. Again, the motivation is based on evolutionary considerations6.
As seen from the Nature’s point of view, trying to optimize complex systems,
linearity has an evolutionary advantage. If the structures were nonlinear, dif-
ferent optimization strategies would be needed in all levels of the systems; the
Universe is simply not old enough. If linearity applies, solutions scale up, and
the same strategies can be applied in all levels.

If the above assumptions truly are motivated, powerful predictions about
the system behaviors also beyond the neuronal realm can be made. The system
carries out principal components oriented sparse coding of the resource varia-
tions, offering views for understanding large-scale systems as seen from above.
The methodology extracts the underlying structures beneath the observations,
no matter what the application domain is: The cybernetic framework is the same
for a wide scale of systems. This is, indeed, near to the promises that have been
hypothetized in complex systems research community.

4 ... Putting Inside-Out

In what follows, the above cybernetic intuitions are followed to the extreme,
extrapolating the ideas beyond their nominal validity area. Because of the prob-

6 Another point that needs to be noted that feedback systems virtually linearize
smooth nonlinearities



lems when trying to quantify phenomena in very abstract domain fields, only
rather loose interpretations can be made.

4.1 Economies and ecologies

There has been some activity for applying system theoretical principles in the
analysis of economical environments; however, the models derived using the ideas
of System Dynamics (see [20]) are typically rather heuristic, the large number of
model parameters being determined more or less intuitively. There never exists
enough data to uniquely determine the high number of parameters. A more
consistent approach to modeling of business dynamics would be invaluable.

For example, assume that there exists a selection of industrial enterprises
within some branch, or niche. Such a system is a prototypical example of the
above type: Together the companies fulfill the demands of the market, while
competing against each other. The activity of a company can be measured in
terms of its annual turnover. What is more, such an economic system not only
strives towards balance, they also try to reach the higher-order balance:

1. The companies explicitly optimize their production based on the market
demands and competition7.

2. The similarity of companies can be measured in terms of similarity in their
production profiles.

This means that the “match of matches” interpretation is applicable now. How-
ever, the similarities in production can be difficult to quantify; for the purposes
of determining the model parameters, a still simpler idea can here be applied:

The similarities among companies can be measured in terms of co-activity;
if the companies have similar activity histories, having been operating in
the same environments and experiencing the same boundary conditions,
their profiles have assumedly become similar (assuming consistency of
actions).

This motivates why the correlations in activities are used as a measure of sim-
ilarity — correlations are emergent key figures, reflecting the underlying realm
and abstracting details away. Remember that because one can extend the model,
as presented in (15), the correlations are needed only for determining the trend
directions in activities, and numeric values are irrelevant from the systemic point
of view. From the point of view of an individual company, the numeric values
are relevant, of course: It is well known that the difference between stable and
7 Actually, companies just try to maximize profit. The hypothesis here is that (as-

suming that xi’s have the unit of money) the Hebbian adaptation rules (7) and (8)
accomplish this peek-a-boo optimization, and the vector x reveals how the available
money Σuj is redistributed among competitors. — On the other hand, the presented
model “proves” the heuristic claim that free market economy where the companies
behave in a selfish way is also optimal for a customer (indeed, free market economy
is more cybernetic than the Soviet-style centrally controlled economy)



unstable behavior is in the parameter values. Indeed, closer studies of adapta-
tion factors λi may cast some light on the heuristic notion of edge of chaos:
Fast reactions (high λi) may give a company the competitive advantage, but too
fast adaptations result in a catastrophe, when the activity starts following some
random fluctuations in the markets. If the company profile drops out from the
principal subspace describing the market, it is a catastrophe for the company,
but not for the system: The system feels no pity for individuals, the more con-
servative companies soon fill in the gap. What is a good rate of adaptation —
this is dependent of the signal-to-noise ratio in the market (a rule of thumb:
Acquired correlation structures should be forgotten at the same rate as the ac-
quired information becomes obsolete). This kind of studies of adaptation rates
may make it possible to answer some paradoxes: Why is it so that in some sys-
tems of interacting agents (like gases, for example), energy is wasted to increase
entropy, whereas in truly cybernetic systems, energy is utilized to decrease the
entropy level.

Following the cybernetic intuitions, a company can, for example, differentiate
its activity dynamically rather than statically in its environment. The company
can perhaps optimize its behavior in its environment, not by trial-and-error, but
once-and-for-all. In any case, different scenarios can be easily simulated. Chang-
ing ones behavior also changes the market, changing the boundary conditions,
so that successive optimizations are needed.

Just in the same way, in ecological systems, plants in the same area share the
same resources. Indeed, in the case of an ecosystem, one is modeling populations
of populations, so that the activity of an individual species is characterized by the
number of individuals. Together all these plants exhaust the available resources
(soil, light, water, etc.), and, similarly, correlations in their temporal/lateral
distribution reveal their similarities. The herbivores, on the other hand, share
the resources provided by the previous level, the plants, and carnivores share
the production of this intermediate level. In this sense, a hierarchy of models
is formed; the trophic levels constitute a succession of (more or less mixed)
cybernetic systems.

In Figs. 3 and 4, a single population of bacteria is simulated, x denoting
biomass, assuming that there is a step change in substrate u from 0.01 to 1
(dotted line). The one-species “enhanced” model with no nonlinearities can be
written as⎧⎪⎨

⎪⎩
d x
d t (t) = −x(t) + b(t)

a(t) u(t)
d a
d t (t) = −λa(t) + λx2(t)
d b
d t (t) = −λb(t) + λx(t)u(t).

(41)

In Fig. 3, the behavior of the “cybernetically optimized” population is shown.
This does not truly look familiar, and it is evident that the standard model is not
directly applicable: In a completely cybernetic system there is no inertia included
in the structures, whereas in practice the growth rate is limited, a population
can multiply only following the exponential growth curve. Additional dynamics
emerges from the fact that the number of offspring is related to the number of
parents.



Dynamics can be modified, for example, by ignoring the extra weighting, so
that the results of Fig. 4 are obtained if one modifies the first part in (41):

d x

d t
(t) = −a(t)x(t) + b(t)u(t). (42)

There exist a plenty of different kinds of growth models (Monod, Lotka–Volterra,
etc.); typically their behavior is exponential in the beginning, stabilizing when
the constraints of the environment are met. These principles are obeyed also
by the latter model: Looking at the steady state, there is the positive factor
of the form u2 x (assuming that λ is large, and u is constant), resulting in
exponential growth, and the constraint is essentially of the form −x3 (compare
to logistic model, where the limiting factor is only quadratic)8. As compared to
the standard growth models, there is an interesting difference — it seems that
now there always is an overshoot before stabilization.

Another major difference in the new model as compared to old ones is that
there is only one tunable parameter, the forgetting factor λ now having the
interpretation as growth factor. If there were various species, it would be natural
to modify the original formulations (7) and (8) so that each matrix row would
have its individual adaptation rate, scalar λ being substituted with diagonal
matrix Λ, as shown in (16) and (17). In such a case, matrix A could temporarily
become non-symmetric during adaptation (steady-state solution still remaining
intact).

It needs to be recognized that adaptation in economical and ecological do-
mains is not as smooth as in the case of neuronal systems: In economical systems,
modifications of business strategies are based on more or less random distinct de-
cisions, and in ecological systems, adaptation is based on genetic changes, being
an equally discontinuous and spurious process. However, in the long run, such
stochastic optimization still wanders towards optimum — and, assuming that
the system is cybernetic, this final state is essentially unique. Unfortunately, if
there is too much “intelligence” in the system — that is, if there is some master
mind trying to globally optimize the company behavior (“let’s concentrate on our
main business!”) — the cybernetic balance in the system can be disturbed, and
the analyses become void altogether. The harsh reality sooner or later assumedly
eliminates such non-optimal anomalies, but this can take a long time.

Of course, the basic model framework can be extended if there exists some
a priori information available. For example, modeling the age distributions in a
population, letting each age class have a separate variable of its own, makes it
possible to explicitly model transitions between the classes. The presented model
structure only helps in capturing the large numbers of interactions among and
within classes in a compact framework.
8 In the simulation it is assumed that adaptation rate λ in the population is rather

fast, and the covariance structure is not in steady state; if this were not the case,
if there were no adaptation in the population of bacteria, so that the (co)variances
a and b were kept practically constant, the curve forms would be qualitatively very
different, the biomass approaching the final value exponentially as a first-order linear
process
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4.2 Further domains

The above examples were rather straightforward, because the optimality assump-
tion was more or less natural, and the role of correlations could be motivated.
However, there are different kinds of cybernetic systems where the basic model
structure still is applicable, even though the optimality cannot necessarily be
assumed (and predictions about matrices A and B cannot be based on observed
u alone).

The more abstract the domain field is, the more qualitative are the results of
cybernetic analyses. In narrower fields, quantitative and more concrete analyses
can be carried out. This applies also to synthesis of systems: Concrete engineering
applications of the methodology are presented in [23].

Let us briefly study some examples of different kinds of populations. The
underlying realms and the physical laws are very different, but on the more
abstract level, general principles seem to exist (as has always been assumed in
the field of complexity research). Quite concretely, the society of individuals
extends the capacity of an individual, and it is a very tempting idea that the



model structure remains the same on all levels — it is only the signal carriers
that are changed.

– Genetic system consists of a population of genes within a nucleus; the
genes compete for the transcription factors, excitation of a single gene being
a weighted sum of excitatory and inhibitory effects. The Dawkins’ “selfish
genes” are not competing only at the population level, but also within each
individual, and within each cell, where the feedbacks are much more immi-
nent and concrete. On the other hand, the lower-level metabolic processes
can also be studied in the same balance framework (see [12]).

– Ant colony is based on distributed operation of individual ants; the control
of ants is carried out by spatially distributed pheromone levels. Individual
ants are more like mere signal carriers, determining a more or less stochastic
spatial distribution, whereas the society itself is the living organism in this
perspective. The local activation, or the ant frequency, is proportional to the
pheromone gradient along that path, and it is the pattern of such activations
where the ant colony functions are manifested: Different tasks and paths
compete for activation, or ants.

– Project team is an example of another kind of society that is explicitly
directed towards some goal; in that sense, analysis of such societies is sim-
pler, assuming that the goals can be appropriately quantified. The seemingly
optimal “assembly line style” of division of labour — everybody specializ-
ing on a single task — is not robust; the workers’ ability profiles should be
cybernetically matched against the dimensions in the “task space”. Larger
human societies (associations, companies, etc.) can also be modeled using
the same model structures.

– Democratic society is a straightforward instantiation of (implicit) cyber-
netic ideas: Political parties compete for popularity, trying to differentiate
between their profiles, and the resources, or given votes, are distributed
among them accordingly. This offers yet another perspective to explaining
why democracy is so successful despite all its shortcomings (inefficiency, etc.)
— it can be claimed that the democratic system is the best possible approx-
imation of a cybernetic one, assumedly being robust and reacting relatively
fast to changes in the environment.

– Memetic system abstracts the above view: Ideas share the common info-
sphere, similar ones (ideologies, religions, etc.) competing with each other
in human minds, having varying profiles what comes to their capabilities of
explaining observations. Specially in science, where one tries to be objec-
tive, so that “goodness” of explanations can be explicitly quantified, shifts
between theories and paradigms can be abrupt when time is right. The self-
correcting nature of science is that of a cybernetic system. And within a
single language, concepts (words) compete with each other, each having its
own profile of connotations ... There is an infinite number of cybernetic sub-
domains within the memetic world. Whereas free will is not necessarily only
a myth, there are very stringent laws (“statistical ethics”) that have to be
followed for an individual to prosper.



It needs to be noted that the proposed cybernetic model formulation is infor-
mation theoretic, being applicable only in populations where there locally is
complete information available. For example, the distances between actors, or
the actual locations of the actors, was not assumed to affect their mutual in-
teractions. In this sense, “populations” of elementery particles, or atoms and
molecules, cannot (directly) be studied in the above framework, even though it
is again interactions and feedbacks that determine the individual behaviors also
in such systems.

4.3 New tools and intuitions

In [22] it is claimed that totally New Science is needed to attack the complex
systems. On the contrary, it may be that age-old tools only are needed — they
just need to be applied in new ways, and new interpretations are needed.

How to attack emergence that by definition is beyond the capacities of reduc-
tionistic science? How to reach a qualitatively new level? Here, one can proceed
one step at a time. Whereas signal realizations are actual, statistical parameters
are a step towards more abstract system characterizations. Another step is taken
when these statistical quantities are studied statistically. If there is an infinite
number of such levels in this continuum, something qualitatively new can pop
up. Essentially, in (11), statistical expectation operators are applied recursively,
taking “expectations of expectations” indefinitely. To emphasize the shift in
thinking, the expectation operator E could be substituted with the “emergence
operator” E .

Multivariate statistics, when applied appropriately, is an efficient way to
study cybernetic systems. For example, in foraging theory [19] rotated principal
components have been applied for modeling forage profiles in ecosystems. Now
these profiles are the columns of φ. Rather than being only analysis tools the
statistical phenomena can be thought to convey some essence of the system. For
example, the number of species in trophic levels can be estimated by studying
the variability structure in the previous level.

Indeed, multivariate statistics offers not only practical but also conceptual
tools for attacking cybernetic systems. For example, assume that an economical
system is being studied; because of the turmoils in economy, time series data from
the past is not comparable to current data (the markets expand or contract, old
companies get bankrupt and new ones are founded), and there is no possibility
of finding statistically credible models. However, utilizing statistical intuitions,
assuming that the system is fundamentally ergodic, that is, statistical properties
over time and over individual realizations are equal, one can collect simultaneous
data from different markets (from different countries, say) and apply modeling to
that spatial data instead of temporal data. Whether or not an economic system
truly is an “ergosystem” is another interesting issue9.

9 For example, it has been claimed that as there is continuous evolution in an ecosys-
tem, no stationarity assumptions are justified; however, for some reason, it seems
that there are long periods of balance between the rapid developments



The central role of simple (co)variances in the new framework also suggests
natural extensions: The mapping between u and x̄ above was assumed to be
static (x having reached its steady-state value after transient in u) — however,
also in identification of dynamic systems, different kinds of statistical correlation
structures play a central role. If one defines a dynamic agent so that it not only
operates on instantaneous signal values but also has memory, its history and past
activities being taken into account, one can define a formula for power spectra
in frequency domain:

X̄(ω) = |Hxu(ω)|2 U(ω). (43)

This means that one can define formally similar-looking expressions for truly “cy-
bernetic dynamics” as shown in (4): Matrices A and B corresponding to A and B
are now matrices of auto spectrum and cross spectrum functions, respectively (in-
troducing yet another level of statistical quantities in the analyses). This means
that the changes in the dynamic behavior (as revealed by the spectra) become
modeled. Updating the matrices has to be carried out in a very different way, of
course, but because of the algebraic nature of the Laplace transformed signals,
involved convolution integrals are avoided, and, essentially, simple frequency-
wise calculations are enough to determine changes in H(ω). Note that positivity
constraint (cut nonlinearity) is again appropriate when studying power spectra.
For example, the spectrograms studied in voice analysis could benefit from such
analyses.

The presented approach — determining both x and φ, or the state and the
structure together when only the input data sequences u are given — is one
form of blind source separation. Finding structure beneath the observations is
a huge (philosophical) challenge, and some assumptions are needed to make it
possible. In Independent Component Analysis (ICA) [10] this additional assump-
tion is that the original underlying signals are maximally non-Gaussian; now, on
the other hand, the assumption is that the underlying system is cybernetically
balanced. Indeed, one could speak of Cybernetic Component Analysis (CCA).
Similarly, in traditional control engineering different kinds of canonical repre-
sentations play a central role; corresponding to balanced realizations, one could
define a “cybernetic realization” between input u and output y, where the state
vector is selected as presented above.

4.4 Technical applications

Today, there is great need for analysis and design methods for different kinds of
networks and distributed agent systems. This is clear in environments like Inter-
net; but also in social systems, for example, one would need tools for analysing
networks where individual actors have differing ability profiles. Agent systems
consist of software architectures with no systemic theories. The resulting control
schemes are centrally controlled rather than truly distributed. Now, on the other
hand, quantitative analysis and synthesis tools may be available. In truly dis-
tributed systems new functionalities are reached that cannot be foreseen when



centralized approaches are applied. To illustrate this, different kinds of simula-
tions have been carried out (for closer information, see [23]).

In the first example a distributed sensor system was studied. It has been
proposed that the state of distributed parameter models that are governed by a
partial differential equation models could efficiently be captured by more or less
randomly distributed sensors. To make the promises come true, clever sensor fu-
sion techniques are needed. In the example, the temperature in a heated rod was
to be measured. Because of the continuity of the temperature function, spatially
neighboring temperature readings ui are correlated, and this fact can be utilized
to filter the measurements, having the latent variables xj in (9). Regression from
xj back to filtered ui is implemented as explained in [11]; the filtering scheme
that was applied was linear. If the sensors are fully connected, the network carries
out principal component filtering, projecting the measurements onto the latent
basis determined by the most significant principal components, utilizing the cor-
relations among measurements, and from there back to temperature readings.
In a sense, this behavior is trivial, being the same as when using a centralized
architecture; more interesting functionalities emerge if the network of sensors
is not fully connected. It turns out that when only the nearest neighbors are
connected, the latent variables become localized in an interesting way, and, even
though information is incomplete, the resulting estimates seem to be more accu-
rate. Such emergent properties cannot be implemented in a centralized manner;
or, rather, in the distributed system there emerge properties that cannot be
foreseen in the centralized framework. The distributed framework seems to give
new substance to the agent paradigm.

Typically, technical implementation tasks can be formulated as optimization
problems. The key question is how to formulate the optimality criteria appro-
priately. Assuming that the proposed structure truly is the essence of cybernetic
systems, this approach gives a way to determine the optimality in a consistent
way. This approach was experimented in a power plant simulation: There are
m consumers and n producers, and the demand has to be balanced. Here, the
original model framework had to be modified: the sum of xi’s, or the power pro-
duction, has to equal the sum of uj’s, or the power consumption, at any time,
and an additional optimality criterion was added to emphasize the energy pro-
duction costs at each plant. When the system was simulated, consumers having
more or less redundant consumption behaviors, the converged “production pro-
files” for the plants, or the columns of φ, revealed how the plants should react to
behaviors of individual consumers. There were various local minima in the cost
criterion, and the resulting distribution structures were dependent of the initial
configuration. Again, the experiences were interesting.

It has been claimed that natural systems are more robust than the man-made
ones. For example, a single fault can result in a domino effect in an energy supply
system, but single collapses of some species do not escalate into ecocatastrophes.
But what is this “natural robustness” in the first place? The power plant case
simulations offer some intuitions:



– Globally optimized control always runs the power plants so that only one
of them is active, others being in their extreme values (assuming affine cost
increase between minimum and maximum, that is, for each active plant i
there is additional cost kixi + ci for some constants ki and ci). The novel
scheme, on the other hand, seems to avoid extreme values. It is evident that
as more plants are active, there is more buffer against sudden changes in
consumption.

– Explicitly distributed systems with some fixed profiles (for example, a few
plants taking care of a set of consumers) is vulnerable to domino effects: If
one of the plants is out, the sudden excessive load can collapse the other ones
too. Now, the profiles are based on (sparse) principal components, meaning
that the profiles are (almost) orthogonal. Collapse of one plant does not
excessively strain any of the other plants; rather, the additional load is dis-
tributed evenly among the reserve plants.

– Also, because the profiles are based on (sparse) principal components, the
plants are insensitive against random noise (compare to principal component
analysis). The plants only react to real underlying changes in consumption,
probably resulting in smoother production.

From the technical point of view, the problem with the cybernetic models is
that their causality structures are — by definition — deeply tangled. As com-
pared to traditional input/output models, it is difficult to construct controllers,
for example, based on such models. However, it should be remembered that
the traditional models are only a pragmatic simplification of reality: When the
dependencies truly are cyclic, simplified unidirectional models often result in
false interpretations and questionable control strategies. What is more, causal-
ity structures cannot be automatically induced from data (remember Hume) —
but “pancausal” cybernetic structures can.

The cybernetic models with no clear-cut causal flows cannot perhaps be
used for changing the system behavior, but they can efficiently be applied for
prediction, and for gaining intuition of the system behavior.

4.5 About the cognitive system

This discussion started from neurons. These neurons offer a cybernetic medium
for another cybernetic system, the cognitive machinery.

The cognitive machinery is based on the neural one, and — at least, what
comes to some specific mental pattern matching functions — if the neuronal
level is available, it is only a scaling matter to reach some cognitively relevant
functionalities. And, it truly seems that cognitive issues can also be addressed
to some extent by the presented methodology. Such cognitive concepts are, for
example, short term memory or working memory (vector x) and long-term mem-
ory or chunks (columns of φ). The field of cognitive science is far from mature;
some intuitions are presented, for example, in [17] and [3].

As an example, chess configurations have been trained in such a cybernetic
model. The configurations were coded as 768 dimensional sparse binary vectors,



and these vectors were used as inputs u one at a time. When the data structures
had converged, it turned out that some columns in φ represented some kinds
of centers (“categories”) in the chess configuration space, and the other ones
were used to fine-tune the patterns around the category centers (“features” or
“attributes”). The non-zero entries in x (maximum number of active entries
being limited by the “short-term memory capacity”) revealed how the patterns
were reconstructed using the data structures (“mental representations”). The
learning dynamics and the recall performance of the model resembled those of
human test subjects (see [23]).

Assuming that the essence of mental machinery has been captured (at least
to some level), interesting perspectives open up. If a computer is given a set of
data, and the appropriate modeling approaches are applied, the resulting data
structures should have something in common with those mental representations
that a human would construct if given (only) the same data and enough time.
Even though objective reality beyond the data cannot be seen, the possibility of
interpreting between the beliefs of a computer and a human makes it possible
to reach “intersubjective” world views. This opens up new horizons what comes
to applying the today’s number crunching capacity for knowledge mining in
complex environments. For example, in industrial processes smart preprocessing
of measurement data can perhaps be implemented.

In any case, a search engine has already been implemented where the above
views are implemented: This tool searches contextual similarities among textual
documents, and models them within the cybernetic model. Vector u contains the
document “fingerprint”, that is, the histogram of words within the document,
and, after convergence, the columns of φ represent the “generalized keywords”
assumedly being relevant for characterizing the documents and distinguishing
between them. The resulting model looks like a higher-level table of contents
into the body of documents; but there may be also more interesting conclusions
to be made (see [23]).

5 “Panta Rhei”

Can the above hypotheses be proven? Certainly not. But no theories can be
proven.

A more appropriate way to test the claims is to study whether some specific
cybernetic system really behaves as was assumed. This way, one can gain un-
derstanding to what extent the model structures are applicable, and what are
their limitations. Another, more philosophical approach is to study whether the
hypotheses are intuitively reasonable — do the abstractions capture the essence
of what cybernetics actually is? If it turns out that the new models explain
phenomena more economically than the old ones, or if new phenomena can be
studied that earlier remained in darkness altogether, they are useful abstrac-
tions. Even if incorrect, the new ideas can give new intuitions when focusing and
redirecting the further research efforts.



For example, have you ever wondered biodiversity, how the variability in
ecosystems seems to flourish after all these millions of years. Why the exponen-
tial decay does not continue to extinction, why the dominating species has not
specialized in being the best in all respects, wiping the losers away? The same
question applies to business enterprises. Similarly, why the best ideas (memes)
never seem to reach the final victory, or why the best genes are still accompanied
by the more inferior ones? Why is this volatile state so non-volatile?

The presented cybernetic model demonstrates that in a dynamical environ-
ment it is not some kind of blind explosion that takes place — feedback structures
stabilize the system. However, this “stability” is far from being some placid sta-
tus quo. Indeed, it is well known that representations based on PCA explicitly
try to maximize the variability that is observed in the input. The statistical
maximum likelihood seems to be replaced by maximum livelihood in nature. The
new approaches to looking at existing systems offer a novel top-down view for
analysis of complex systems: Just study the environmental conditions and their
variability, and draw conclusions concerning the distribution of individual actors.

It is astonishing how far-sighted the ancient Greeks were. For example, ac-
cording to Heraclitus “wisdom is knowing how all things are steered by all
things”. Another observation by Heraclitus is the following:

Everything changes, everything remains the same.

Paradoxes, like the one above, help to see the contradictions in the everyday style
of thinking. Just as the Epimenides Paradox (liar’s paradox), when appropriately
formalized, resulted in the famous Gödel’s incompleteness theorem, it may be
that the Heraclitus paradox helps us to see the fundamental questions underlying
the cybernetic systems: The world is one unified whole which is constant yet
contains perpetual change.

Whereas 42 is known to be the answer to “Life, Universe, and Everything”
(as claimed by Douglas Adams), the key point is to find the correct questions.
The Greeks have pondered the eternal questions — but we have the language
the present these questions. The correct tools for formalizing ideas are offered
by mathematics. Even though everything may remain the same, the memetic
evolution is not a cycle; perhaps the above discussions help us to take yet one
step towards Logos, the center of the spiral.
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