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Abstract. What is life? Somehow, it seems that intuitively life-like phe-
nomena emerge from dead materia when enough complexity cumulates.
This paper proposes physically/chemically more or less motivated models
for capturing the relevant phenomena underlying life processes. It is not
surprising that the model structures that pop up are analogous to those
ones that have been derived for general cybernetic systems. The studies
start in a down-to-earth manner, proceeding towards more complex, and
more speculative discussions.

1 Introduction

In artificial life (AL) research is typically based on simulations, where evolution
of artificial life forms is monitored in artificial environments. However, it seems
that after the early enthusiasm, the intuitive feel of the essence of life is still
missing. The key issue, or the key to “real life” is the capability of adaptation
according to unanticipated changes. Something is lost when the environment is
preprogrammed. When the basic principles underlying life are still a mystery,
it seems that synthetic approaches are of no use; still, the only way to analyze
life is to study how it is manifested in nature. Real life has to be studied in real
environments, in analytic rather than in synthetic manner, analysing existing
biological systems.

After the era of symbolic approaches, data-oriented, computational approaches
are flourishing in today’s artificial intelligence research; it seems that also in arti-
ficial life fresh intuitions can be reached when empirical data is carefully studied
— applying modern multivariate statistical tools, and applying new conceptual
ideas.

The data-oriented approach can help to avoid deadlocks. For example, folding
of proteins should be modeled accurately to reach first-hand knowledge of their
activity profiles. However, it has turned out that such studies are extremely
elaborate and computer intensive. Whereas such models are necessary when
new drugs are being designed and their effects are being predicted, now, when
existing metabolics are being modeled, there is no need to study first principles.
The actual contributions of chemicals are (hopefully) visible in data, and the
system can be studied in a behavior-based manner. Of course, not everything



can be done based only on observation data: The interesting challenge is to find
out where is the boundary region between the possible and impossible.

Methods for measuring different bio-entities have improved considerably dur-
ing the last decade. DNA microarrays is a very powerful technology for measuring
the gene expression responses (in terms of messager RNA’s) in organisms. Also
protein expression can be measured in a quantitative manner from relatively
complex mixtures using mass spectrometry. In parallel, methods such as chro-
matin immunoprecipitation (ChIP) offer data about protein-protein or protein-
DNA interactions. Thus, today there exist very much data but not enough un-
derstanding. The wealth of data makes it difficult to see the big picture, and
conceptual tools are needed to manage the complexity.

Mathematical modeling methods including statistical approaches have been
successfully applied to many biological problems. Such methods are often studied
under the name bioinformatics; in more general setting, one could speak of data
mining (for example, see [20]). While the value of old methods has been re-
discovered in the biomedical context, there is also a need for deploying new
approaches.

To extract real information out from the data, there is need for systemic
approaches in systems biology [17]. The current models are reductionistic, trying
to see the big picture when looking at tiny fragments of reality at a time. One
should study the processes in a systemic way, taking the interactions among the
system components into account. Life phenomena are processes rather than static
structures, and real understanding of these processes cannot be reached without
understanding of the underlying interactions and feedback loops. Because of
the huge challenges, one should not be too ambitious. Rather than pursuing
general system theory (see [3]), this paper concentrates on the engineering-like
approaches: System theory is utilized because of the conceptual and practical
tools it offers (model structures, and related mathematics).

Finding models for life processes would be very important also from the prac-
tical point of view. Understanding the coordination among genes and metabolics
is pivotal in biomedical research. It helps, for example, in understanding develop-
ment and disease states, responses to the environment and adaptation to specific
conditions or cell behaviour in normal and triggered situations. Being capable
of inferring regulatory or functional networks from present data to help design-
ing new and more precise experiments is a key issue in bioinformatics. Another
issue is to simulate biological processes such as cell behaviour, so that savings
in drug development process, etc., could be reached. Thus, in 2004 a two-year
project “Systemic Models for Gene Expression and Metabolic Dynamics (SyM-
bolic)” funded by Tekes NeoBio program was launched. Co-operating partners
in the project are Helsinki University of Technology (HUT), Center for Scientific
Computing (CSC), and MediCel Oy. The goal in the project is to study ways to
define simple but powerful models for representing dynamic phenomena within
a cell and a nucleus from different, complementary points of view. This paper
presents some “background material” perhaps offering some ideas for systemic
approaches towards analysis of the life processes.



2 Modeling metabolics

In what follows, analysis of the metabolic system is started from simple static
models applying well-known ideas of chemistry. However, it turns out that if
additional (more or less plausible) hypotheses are made, more powerful model
structures can be derived.

2.1 About models

First, it has to be repeated that a model is just a model, being always simpli-
fication of reality. As has been recognized, all models are false, but some can
be useful. Models are abstractions that ignore details and make it possible to
concentrate, hopefully, on the relevant phenomena only. Good models make it
possible to make predictions of the system behavior. Sometimes, intuitions and
understanding of the system can also be gained; and, further, sometimes a good
model helps to see analogues, making it possible to extrapolate beyond the for-
mal validity range of the model. If such a “higher-level” model can be found, a
new conceptual level of new explanations is reached.

Higher-level models are based on some more general principles rather than
on the immediately visible phenomena. Note that there are many ways to pro-
ceed when aiming towards higher-level models. The traditional model structures
are not necessarily well suited for modeling biological systems. For example, it
is typical that one wants to find causal models, where action/reaction pairs are
easily managed. However, in cybernetic systems such studies are doomed: Try-
ing to capture the interactions in explicit dependency structures actually hides
the underlying network of interactions. In a biological system, for example, all
variables are mutually connected, and pairwise causality models fail to represent
the overall picture; indeed, they can promote false intuitions.

The current model structures are typically static, that is, they only capture
a single steady state, trying to capture the connections between genes, mRNA’s,
and metabolites using more or less fancy model structures. There also exist
approaches to dynamic modeling applying traditional mass balances and com-
partment models (for example, see [21]), but the overall picture is still missing.
The problem is that in reality the history of a cell dictates its future behavior
and its responses to environmental activations, and to develop models for de-
velopmental biology purposes, for example, this history should be modeled. For
example, whereas the genetic code is identical in each cell, only the stem cells
are unspecialized, being still capable of developing into any cell type. However,
there are problems with dynamic models: As compared to static models, there
typically exist more parameters — and as the degrees of freedom are increased,
it soon turns out that not enough experiments can be carried out.

This all means that one is facing a huge modeling task. Thinking pragmat-
ically, powerful model structures are needed to compensate for the complexity
of the domain area. In practice, this means linear models. Linearity makes it
possible to efficiently apply multivariate statistical methods and linear alge-
bra. Another key to model compactness is that domain-oriented structures are



employed, so that the expressional power of the model is limited to relevant
phenomena only. Luckily enough, as will be shown, at least in some cases it
turns out that linearity and domain-orientedness are not necessarily contradic-
tory goals. In more complex cases, linearity assumption is a compromise between
physical plausibility and usability: It cannot be determined beforehand whether
the model understandability, analyzability, scalability, and easy parameter iden-
tifiability outweighs the loss in biological functionalities.

It needs to be emphasized that to explain complex behaviors it is not nec-
essary to always apply complex models. As has been recognized in complexity
theory, seemingly complex behaviors can also emerge from simple ones, if they
cumulate sufficiently. And, indeed, complex behaviors can emerge also in (al-
most) linear structures; comprehensibility and analyzability of linear models is
then a bonus benefit. Just as in [13], starting from simple starting points, higher
levels of abstraction can be reached also when life processes are studied — or,
at least, the immense mysteries of Nature can be studied from a fresh point of
view. Understandability is more important than absolute accuracy.

Simplicity of the models is also one of the main goals in this research. Coun-
terintuitively, it is through such higher-level models being based on more gen-
eral modeling principles that one can reach this simplicity: Appropriate models
constrain the degrees of freedom automatically, ignoring irrelevant phenomena,
making it possible to survive with the wealth of data. Putting it poetically: If
one looks in the right direction, one does not need to study shadows only.

2.2 Chemical reactions

First, let us study metabolic processes. It can be assumed that such processes can
be characterized as chemical reactions; study a hypothetical example reaction,
where the λ reactants on the left hand side are denoted as Li, 1 ≤ i ≤ λ, and
the ρ products on the right hand side are Rj , 1 ≤ j ≤ ρ:

l1L1 + · · · + lλLλ
k1⇔
k2

r1R1 + · · · + rρRρ, ∆H. (1)

The metabolic processes are typically reversible, so that the reaction can take
place in both directions (k1 being the reaction rate in forward and k2 in backward
direction). Symbol ∆H denotes the change in enthalpy, or inner energy, when
the reaction takes place. It needs to be recognized that it is not only chemical
reactions that can be expressed using such formulas; also phase transitions, etc.,
can be expressed in this form.



The practical problem is how to represent such a formula in a useful form for
data-oriented approaches. It seems that a practical way to code such reactions in
a mathematically compact form is to use vector formulation: Define two vectors

ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−l1
...

−lλ
r1

...
rρ

1/cT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆CL1

...
∆CLλ

∆CR1

...
∆CRρ

∆T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

so that ϕ contains the coefficients, and µ contains the changes in concentrations
C of the chemicals (unit mole/liter). Parameter cT is the (constant) specific heat
capacity of the cellular liquids, appropriately scaled, so that one can express the
total changes in the system as

µ = ϕx. (3)

Here, x is a scalar that reveals “how much” (and in which direction) that reaction
has proceeded. It turns out that reactions can be characterized applying linear
algebra in the space of chemical concentrations: The above formulation makes it
possible to express also more complicated cases in the same framework. When
there are many simultaneous reactions taking place, ϕ is a matrix containing
individual reactions (as characterized by the vectors of the form (2) as columns),
and x is a vector; the weighted sum of reaction vectors µ reveals the total changes
in chemical contents.

The row dimension of ϕ is such that all (active) chemicals in the system are
involved. There can be zeros in columns of ϕ, meaning that respective chemicals
are not involved in those reactions — the matrix structure is sparse. The columns
of ϕ determine the degrees of freedom in the high-dimensional “chemical space”;
these vectors (“independent components”; see [10]) constitute a (non-orthogonal)
subspace basis in the space of chemicals.

Using the above framework, metabolic systems can be modeled: If one knows
the rates of reactions, or the vector x, the changes in the chemical contents can
be estimated. The derived model is extremely simple; it is easy to understand
and operate on, being based on multivariate theories and linear algebra. Using
such a model, it is (in principle) possible to determine the unknown quantities
applying associative matching techniques when only a subset of chemical con-
tents is known (that is, one first estimates x using the available measurements,
and using this, the unknown quantities are determined).

This idea of invariances within a chemical system have been widely applied
for metabolic modeling; the key term here is flux balance analysis (FBA) (for
example, see [7]). However, traditionally the goal has been to construct static
networks only; this means that one sets µ = 0 in (3), and utilizes the resulting
set of linear equations for determining dependencies among variables. However,



typically the set of equations is not completely determined, and one needs extra
assumptions to find additional constraints; there is no common agreement of
how this should be done.

In many ways, the model structure (3) is not what one is looking for: Most
of all, it is static, and it seems that it cannot be extended into a dynamic model
in a natural way. In a sense, the expression (1) only defines syntax; the chemical
semantics is another thing. There is no divine mind mastering the chemical
processes; it is local interactions among molecules that is the key to emergent
behaviors. This can be also expressed in terms of arrow of entropy.

2.3 Balance pursuit

There is a big difference between what is possible and what is probable, that is,
even though something may happen in principle, it will not actually happen. For
example, the reaction invariants and their weights in Sec. 2.2 are irrelevant if the
reactions simply do not happen. Dynamic modeling gives the tools to understand
the dynamic equilibrium among chemicals. To understand the dynamic balance,
the reaction mechanisms need to be studied closer.

Assume that it takes l1 molecules of L1, l2 molecules of L2, etc., according
to (1), for one unit reaction to take place. This means that all these molecules
have to be located sufficiently near to each other at some time instant for the
forward reaction to take place. The probability for one molecule to be within the
required range is proportional to the number of such molecules in a volume unit;
this molecular density is revealed by consentration (when the unit is mole/liter;
one mole always contains 6.022 · 1023 particles). Because the locations of the
molecules are independent of each other (this is the first approximation; later,
activities are employed), the probability for several of them being found within
the range is proportional to the product of concentrations. On the other hand,
the reverse reaction probability is proportional to the concentrations of the right-
hand-side molecules. Collected together, the rate of change for the concentration
of the chemical L1, for example, can be expressed as

dCL1

d t
= −k1C

l1
L1

· · · Clλ
Lλ

+ k2C
r1
R1

· · · C
rρ
Rρ

. (4)

Note that the expression (1) has to desribe the actual reaction mechanism; stoi-
chiometric net expressions are not good enough, because scalings essentially alter
the structure of (4) changing the exponents. What is more, catalytic reactions
must also be expressed in terms of actual reaction mechanisms.

In equilibrium state there holds d CL1
d t = 0, etc., and one can define the

constant

K =
k1

k2
=

Cr1
R1

· · · C
rρ
Rρ

Cl1
L1 · · · Clλ

Lλ

. (5)

In practice, the reaction rate factors are functions of temperature T according
to the Arrhenius law, so that ki = k′

ie
ciT . Also, the activities, or actual activa-

tion probabilities, of the chemicals may vary (for example, if there are complex



enzymes participating in the reaction, it is not only location but also orientation
that is of relevance). These activities can still be assumed to be linearly depen-
dent of the concentrations, A = aC, where a is a (typically unknown) constant.
This all means that one can write the polished form of (5) as

K ′ = e(c2−c1)T
ar1

R1
Cr1

R1
· · · a

rρ
Rρ

C
rρ
Rρ

al1
L1C

l1
L1 · · · alλ

Lλ
Clλ

Lλ

. (6)

Assume that the nominal temperature is T̄ , and the nominal concentration value
for L1 is C̄L1 , and so on. Assumedly these values also fulfill (6). When the above
expression is differentiated around this nominal state with respect to all vari-
ables, there holds for small deviations

0 = −l1
K ′

C̄L1

∆CL1 − · · · − lλ
K ′

C̄Lλ

∆CLλ

+ r1
K ′

C̄R1

∆CR1 + · · · + rρ
K ′

C̄Rρ

∆CRρ

+ (c2 − c1)K ′∆T.

(7)

Simplifying, this becomes

0 = −l1δCL1 − · · · − lλδCLλ
+ r1δCR1 + · · · + rρδCRρ

+ (c2 − c1)∆T, (8)

where δC denotes proportional deviation from nominal concentration C̄, so that
δC = ∆C/C̄, whereas ∆T denotes absolute deviation from nominal temperature
T̄ . This model is based on local linearization — but it has been observed that in
living cells the conditions remain practically constant, no large deviations taking
place, and local linearization is truly justified.

When there are several reversible reactions taking place in the system, each
of them is governed by an expression of the locally linear form (8). If there are
altogether n− 1 active chemicals (plus temperature) in the system, these linear
constraints constitute a null space within the n dimensional space. This means
that in these directions there is no variability in steady state. Indeed, such a set
of constraints gives a very static view of the cell system. There is another option,
too: Rather than concentrating on the constraints, one can study the degrees of
freedom: The remaining directions in the data space constitute a linear subspace
where all variation among variables is concentrated. Note that the relative con-
centration quantities along different degrees of freedom are summable, so that
these axes truly span a linear subspace in a mathematically solid way. Also, the
metabolic processes can again be compactly written in terms of linear algebra:

−u = φx, (9)

where φ is the matrix of basis vectors spanning the degrees of freedom, and x
contains the corresponding “coordinate values”. It seems that this multivariate
statistical view of equilibrium systems is a novel one.

As compared to the model in Sec. 2.2, it needs to be recognized that now
u contains (proportional) deviations from nominal point, whereas µ contains



changes from any point to another. The minus sign in (9) is added to emphasize
that the metabolic system tries to eliminate the deviations. Whereas in Sec.
2.2 the errors can cumulate, now it does not matter where the deviations in u
originate from. This means that the new model is more practical: For example,
the non-isolatedness is no problem. Energy and matter can go through the cell
membrane, the dynamic equilibrium model within the cell still holds.

There are dozens of individual underlying reactions controlling the cellular
metabolics1. It can be assumed that the number of such constraint equations of
the form (8) is not much smaller than the variable space dimension n. Or, in-
deed, it can be even assumed that there are no degrees of freedom left; the visible
transients are caused by some of the equilibrium reactions being slower than the
others. Then, concentrating on the visible degrees of freedom considerably sim-
plifies the data analysis problem: It does not matter what the actual constraint
equations are, one can ignore the null space altogether. When the number of
balance reactions grows, the inverse modeling approach involving only the re-
maining degrees of freedom becomes more and more practical. It can be assumed
that all interesting phenomena in the cell are revealed by the “metabolic degrees
of freedom”.

Now there exist efficient ways of analyzing the metabolic data: When princi-
pal component analysis PCA (for example, see [2]) is applied to the data set,
where the variables are preprocessed as explained above (concentrations ex-
pressed in terms of proportional deviations from the nominal values), the relevant
degrees of freedom are easily found. This means that matrix φ is constructed
from those eigenvectors of the data covariance matrix that correspond to the
most significant eigenvalues, that is, those directions in the data space where
there is most variation.

Phenomena like buffering are typically regarded as a problem when exper-
iments are carried out in a cell system: Huge step inputs may be needed to
reach noticeable effects in some specific variable, and these effects cannot be
focused, being reflected to the whole set of variables. Now, on the other hand,
when applying multivariate analysis methods, such buffering is just a manifes-
tation of the internal null space, and observations of the new balance deliver
valuable information concerning the metabolic processes and functions. No one-
input/one-output studies are needed. Another traditional problem in metabolic
systems is that they seem to be highly redundant (this also applies to gene
expression, see later). It seems that there typically is not just a single reac-
tion mechanism explaining the processes, making it difficult to uniquely identify
model parameters. Now, these problems are avoided: First, the actual reactions
are not searched for, but the “residual” variations; second, PCA is just the right
tool to model redundant and noisy phenomena, because it transforms from the

1 What is more, note that complex reactions can take place in parts, where subpro-
cesses follow each other; each of such intermediate products spans a new dimension
in the variable space, and each chemical reaction introduces a new constraint, com-
pensating for the increased dimensionality. The net effect is that there are practically
invisible dimensions in the variable space



visible variables to new latent variables, where noise and redundancies among
variables has been ripped off.

2.4 Model structure

When the model structure (9) is to be applied in analysis, the observation data
that is collected in u has to be fitted against the vectors in φ. The matching can
be based on the following criterion:

J(x) =
1
2

(u + φx)T (u + φx) . (10)

This means that if (9) can be fulfilled for some x̄, this x̄ also gives J(x̄) = 0,
eliminating the deviations. In practice, u has higher dimension than x and exact
match cannot be found; Eq. (10) defines the least-squares criterion for finding the
best estimate for solution. This x̄ can be searched for minimizing the criterion
using, for example, the steepest descent approach. For this purpose, the gradient
of the criterion is needed:

d J

d x
(x(t)) = φT φx(t) + φT u. (11)

Now the continuous-time version of the gradient algorithm can be written in the
state-space form:

d x

d t
(t) = ΛAx(t) + ΛB u, (12)

where A and B are matrices, defined as

A = −φT φ, and B = −φT . (13)

Assuming that u remains constant, x converges to the unique solution of the
criterion (note that −φT φ has all of its eigenvalues in the negative half-plane, so
that the process is stable). Above, the adaptation rate Λ is a (diagonal) matrix,
meaning that the adaptation rate can be different for each variable; the steady
state solution (in this linear case) still remains intact.

When looking at the chemical reactions within the cell, the reactions that
restore balance can be rather slow, and the metabolic pathways can be complex.
How is this balance restored, then? Again, there is no central control in a cell;
for the chemical system, the gradient direction is the most reasonable way to
go, it is the only locally visible direction. It can also be motivated in terms of
local dynamic balances. This means, that model of the form (12) is not only a
computational tool — it can be used also to approximate the dynamic transients
within the cell!

Now, we have a simple, dynamic model that can be applied for modeling
also transients in a metabolic system, as defined in (12). Parameter identifica-
tion within the model structure should be simple: Matrices A and B can be
determined according to the degrees of freedom in steady-state data, as shown



in (13), and, after that, the adaptation rates on the diagonal of the matrix Λ
can be determined from transitory responses.

When a higher-level optimality criterion is being applied, the lower-level mess
with the wealth of data becomes better manageable. Seen from the above, one
can have an interpretation for dynamic metabolic processes: It can be assumed
that the metabolic system implements “chemical pattern matching”.

3 Modeling gene expression

There are various levels when studying life processes: The metabolic level is the
lowest one. The level of genetic processes is the next higher level. Even though
these two levels are in close interaction, the natures of the processes, the time
scales, etc., are so different that it is reasonable to study them separately. In
what follows, modeling of gene activation is studied. As compared to modeling
of chemical reactions, the underlying processes are very different; still, it may be
that similar-looking models can be applied.

3.1 Transcription factors

Perhaps somebody still assumes that being capable of reading the human genome
answers the problems of life ... however, as recognized already by the Nobel lau-
reate Joshua Lederberg, this is far from the truth. The code has to be deciphered
— and this deciphering is a dynamic process. Again, one needs to start from the
bottom, and study how the genes are expressed.

Modeling gene expression is extremely challenging: There are various com-
plex subprocesses involving DNA and different kinds of RNA molecules finally
producing proteins and enzymes, and, inversely, these enzymes can affect the
gene activation. Between the genetic level and the metabolic level, there are
complicated transfer and coding processes, etc. However, just as when modeling
neurons, it is reasonable to forget about the low-level phenomena, and con-
centrate on the information processing level. What is the appropriate level of
abstraction then, what are the processes to concentrate on? Again, it is activa-
tion levels that offer a good starting point; now it is gene activation rather than
neural activation that is of interest.

Whether or not a gene is active, is a result of a complicated interplay be-
tween excitatory and inhibitory factors. There are regions in chromosomes where
specific enzymes called transcription factors can activate (or inhibit) the gene
expression. An activated gene can further produce other transcription factors;
complex sequences, or activation pathways, have been identified. Indeed, there
are interactions and feedbacks in these genetic regulatory networks.

Transcription factors seems to be a good starting point for modeling of the
gene expression process in a compact way. Assume that the concentrations of
transcription factors are collected into a vector x (because of redundancies among
genes, a practical approach is to first compress the data by applying PCA, for
example). The deeply interconnected dependencies among the variables in x can



best be captured in a state-space model; as recognized in [9], linear models seem
to be promising when modeling local behaviors among transcription factors:

d ξ

d t
(t) = Ax(t) + B u(t), (14)

with

x(t) = fcut(ξ(t)). (15)

The outside effects are represented by the input vector u. Positive entries in
A denote excitatory effects among transcription factors, and negative denote
inhibitory ones. To reach enhanced physical plausibility and expressional power,
and to extend the validity range beyond a single local region, a minor nonlinearity
is included in the above model:

f
cut,i (x) =

{
xi, if xi > 0
0, otherwise. (16)

The underlying processes determining the details of activation level, including
chromatine packing, etc., are here abstracted away. The main motivation for se-
lecting such a nonlinearity form is based on the chemical fact that concentrations
can never become negative, and activations can never be negative (note that in
[13] the coupling of the nonlinearity is slightly streamlined). There are also prag-
matic benefits what comes to the function form: This nonlinearity means that
the model is piecewise linear. Typically, a state vector in such a system becomes
sparse and contains zeros. Sparse structures can also be interpreted as clusters
in the data space; in this sense, the selected nonlinearity combines a wide variety
of different modeling approaches in a unified framework.

From the identification point of view, piecewise linearity offers benefits, be-
cause transcription factors with zero entries can locally be ignored, and the
remaining problem is piecewise strictly linear. This is important, because often
there is not enough data to determine the complete covariance structure among
variables, and efficient (linear) model structures are necessary to reach anything
practical. Yet another aspect is illustrated in the next section: Because of this
nonlinearity, the positive feedback structures result in self-organization rather
than instability.

Principal component analysis, or the “more professional” version of it, sin-
gular value decomposition SVD, has successfully been applied for compressing
the available gene expression data: The genes seem to be highly redundant, and
PCA/SVD efficiently captures the covariation in the data. However, these meth-
ods are linear; nonlinear, “sparse coded principal components” supporting the
model (14) can be extracted, for example, as presented in [11].

In the previous section, it turned out that powerful models could be de-
rived when some intensional assumptions were made: It was assumed that the
metabolic system tries to reach balance. How about gene expression? Can the
(sparse) PCA oriented approaches be motivated in a physiologically plausible
way also in this case for gaining information and intuition, or is it just a data
crunching technique? This question is discussed in more detail later, in Sec. 4.1.



3.2 Example: Morphogenesis

There is one central paradox in developmental biology: How cells and tissues
differentiate when their genetic contents are equal? How the abrupt changes are
possible when the concentrations within an organism change in a continuous
fashion?

To study this issue, the following two-state model “comparator structure” of
the form (14) was simulated with two mutually inhibitory (hypothetical) tran-
scription factors:(

ξ̇1(t)
ξ̇2(t)

)
=

(−γ1 −1
−1 −γ2

)
·
(

x1(t)
x2(t)

)
+

(
γ1 0
0 γ2

)
·
(

u1(t)
u2(t)

)
. (17)

This is compatible with (14). The negative non-diagonal elements in A matrix
implement negative feedback among transcription factors. In simulations, γ1 =
γ2 = 0.75; this means that without the nonlinearity the system would become
unstable, x1 and x2 escaping to infinity, either in positive and the other in
negative direction. However, as the nonlinearity prevents variables from escaping
in negative direction, it simultaneously stabilizes the positive variable as well.

The simulation results (starting from zero initial values) are shown in Figs.
1 and 2. It seems that in this framework inhibition and excitation together
define a system where some concentrations stabilize to non-zero values and other
to zeroes (“winner-take-all”), depending on the input concentration: Using the
above model, x1 wins and x2 vanishes altogether if u1 > u2, and vice versa, the
inputs being constant. It turns out that, qualitatively, the behaviour is rather
robust regardless of the exact parameter values.

The presented model structure makes it possible to define a genetic functional
“state”. Minor changes in input concentrations make the resulting environment
within the cell completely different: The “flip-flops” take either of the alternative
states depending of the ratio between inputs, and once they have ended in some
state, it is difficult to change it (the term “attractor” has been used in some other
contexts). In this sense, associations to properties of stem cells are easily made:
A cell that has specialized cannot any more take some other role. Other bonus
intuitions are also available: Today, there is the link missing between strictly
biophysical considerations and qualitative ones. The purely numeric, quantita-
tive, continuous approaches and the qualitative and discontinuous approaches
are incompatible (this is the same problem as in AI!). The claim here is that the
presented model makes it possible to study emergence of structures in the form
of sparse coding.

The above example can be studied further: Assume that there is a grid of
interacting “flip-flop” cells to be analyzed. In such a environment, the operations
of morphogenes can be simulated (see [18]). It has been demonstrated (using dif-
ferent kinds of model structures) that competition among contradictory factors
affecting coloring can explain the dots and stripes in animal furs [19]. To study
the grid of cells rather than an individual cell, the model (14) can be extended
as follows:

d ξ

d t
(t) = N Ax(t) + N B u. (18)
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Fig. 1. Incoming concentration ra-
tio u1/u2 = 1.00/0.99

Fig. 2. Incoming concentration ra-
tio u1/u2 = 0.99/1.00

Simulations of morphogenesis process were carried out applying this model. Vec-
tor x contained the states of all cells in the grid; in the simulations the grid had
the size 60 × 60, meaning that the state vector dimension is 2 · 60 · 60 = 7200.
The matrix N represents “spread of activation”, that is, diffusion among cells, so
that some of the cell activity goes to the neighboring cells. In practice, N imple-
ments a set of spatial filters, disretized approximations of the second derivative
operators, the diffusion coefficient being di and d2 for morphogenes 1 and 2,
respectively.

The simulations revealed (see Fig. 3) that the proposed model structure also
can repreduce nontrivial colorings. In the simulations γ2 = 0.000000001, u1

and u2 having random values in all cells. It is interesting how boundary effects
give rise to extra stripes; another theoretically interesting aspect is that the
diffusion coefficients are identical in all cases (it has been assumed that the key
to emergence of patterns is differing diffusion coefficients; see [19]).

4 Discussions

In the above studies, many ends were left open, and they deserve some additional
emphasis. The discussions below are more or less speculative — but intriguing,
nonetheless.

4.1 Cybernetic systems

The presented linear and nonlinear model structures above are essentially the
same as the model structures in [13], where “simple” cybernetic systems were
studied. Indeed, it is intuitively clear that a living system is a cybernetic system;
a living cell is perhaps the most characteristic example of cybernetic systems,
where local interactions and feedbacks among lowest-level components result in
surprisingly expedient behaviors as seen from the level of the complete organism
(see [22]).
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In a cybernetic system studied in [13], the resulting (nonlinear) structures
span the (sparsely coded) principal subspace of the input data. Here, again,
PCA was proposed as the mechanism, but its role is to determine the subspace
that remains outside the null space, being the first-hand reflection of the un-
derlying chemical processes. Whereas now the system structure is assumed to
be “constraints-oriented”, in [13] the structures are “freedoms-oriented”. The
mechanism is also very different — no learning of Hebbian/anti-Hebbian type
(see [12]) takes now place as in the “standard” cybernetic system. It is interest-
ing that the same kinds of structures anyway emerge from the local interactions
among mindless lowest-level agents even though the physical first principles are
completely different. When the principle of local interactions still applies, and as
the resulting functionalities seem to be similar, it is not far-fetched to call this
metabolic system also cybernetic in the sense of [13].



When studying the genetic system, it needs to be noted that the model (14)
was introduced simply because of pragmatic reasons — on the surface level,
it seems to capture some of the relevant functionalities in the genetic system.
However, this model structure is again familiar from [13] (or, actually, from [12]).
Could the genetic system also be described as being a cybernetic system? As
noticed above, it would be nice if a higher-level principles governing the system
behavior would exist, and this applies also to characterizing the gene behavior.

The gene expression process cannot be characterized in terms of chemical
balances in the same way as the metabolic system can: The genetic transcription
process is irreversible, just as the mRNA transfer processes are. However, the
genetic system is a cybernetic system not in the metabolic chemical sense, but
in the original spirit of [13]: The functionalities emerge from competition among
agents (even though this “competition” is purely based on statistics). There is
scarcity of transcription factors; genes share the available resources. The more
there are genes with similar profiles (as measured in terms of transcription factor
activation efficiencies), the less activation factors there will be available per gene.
Again, if these assumptions hold, ideas of [12] apply, and statistical assumptions
about the asymptotic properties of the genetic system can be made. One can
start wondering whether it is again some kind of (sparsely coded) principal
subspace of the variations in the environment that is spanned by the genes.

It can be assumed that the genetic system is just a more sophisticated im-
plementation of the balance pursuit system with the same goals. Whereas the
metabolics system responds to temporal, local, and small changes, the gene ex-
pression system responds to spatial, global, and major changes. Spatial here
means that the genetic system has to respond to conditions in different loca-
tions; of course, there is also temporal gene activity variation within one cell,
in the global scale (development from a stem cell into a specialized one), and in
the local scale (responding to sporadic changes in the environment). Because of
the global range of genetic variables (from “very active” to completely inactive),
proportional differences around nominal equilibrium cannot be applied; absolute
values need to be used.

The most characteristic feature about a cybernetic system was assumed to
be that of dynamic equilibria. This balance pursuit assumption applies directly
to the chemical level; if it is extended beyond applied beyond that, what are the
consequences? This question leads us to yet wider perspectives when starting to
study the “total balance” in the system including the cybernetic control.

4.2 About life

The explanations of how life once might have emerged on Earth contain so many
improbable processes that assuming them all having taken place in succession
sounds too marvellous. Applying the balance idea in each phase separately, the
problems seem to become solved one by one.

What is interesting in the above studies is that local interactions and feedback
on the completely dummy molecular level is enough to implement designed-
looking functionalities in a metabolic system, as presented in Sec. 2.3. A key



observation here is that function is more relevant than structure — and functions
are supplied by the chemical equilibrium reactions. No smart agents or “Maxwell
Demons”, not to speak of centralized control, are needed to implement “ambient
intelligence” — everything happens according to the laws of thermodynamics.
For example, assume that some chemical level — for example, glucose providing
energy — is getting low, or temperature is increasing, or anything like that
is happening: The system tries to balance itself, going towards a state where
the anomaly becomes compensated according to Le Chatelier principle that is
familiar from chemistry. On the other hand, if there are excessive resources,
metabolic processes are stimulated. Seen from the anthropocentric point of view,
when chemicals are given semantical roles (“nutrient”, “waste product”, etc.),
the equilibrium system can look astonishingly clever, in terms of functioning in
a seemingly goal-oriented way, and surviving in its environment, and exploiting
it.

It seems that something familiar is emerging here. It is just as with intelli-
gence: Also life is an emergent phenomenon. You cannot define it, but you can
recognize it when you see it. There are some common features that apply to all
living systems (see [4]): They can exploit the environment and adapt according
to it; there needs to be some kind of reproduction and modification mechanisms
available in a living system, etc. However the life processes are defined, there al-
ways exist counterexamples, and the final “liveness” rate is intuitive. In a living
system, some kind of organization and differentiation is taking place; there is
robustness against some phenomena, and sensitivity with respect to some others.
In some sense life forms seem to be locally optimal — but what is the optimal-
ity criterion? How everything is orchestrated so that order rather than chaos
emerges, and how this orchestration is implemented with no centralized control?

Now, a concrete definition of life can be proposed. However, before such fun-
damental questions can be addressed, some more intuition is needed. To reach
concrete results, the studies are started from the basic principles, from the chem-
ical equilibrium processes, as discussed in Sec. 2.3. Indeed, when studying life in
such atomic pieces, one is also facing the questions about the origin of life.

To understand the life processes in their simplest form, it is here assumed
that chemicals participate in equilibrium reactions, as presented in Sec. 2.3. To
facilitate the emergence of something more interesting, three basic hypotheses
concerning the reactions are made:

1. There is a medium available where interactions can take place. In the simplest
case, this means that there is liquid water for chemical solutions. Using the
traditional vocabulary, one can speak of primordial soup, where there are
chemicals and energy available (for example, see [5]).

2. There are mechanisms available for keeping chemicals together. It must be
assumed that there are partially isolated globules or micelles (like the “bags”
in [6], or capsids of today’s viruses) in the soup, with restricted exchange of
chemicals and energy, somehow regenerated by the internal reactions within
the globule. This isolation can be implemented either by some gel where
the reactions take place, or by producing some kind of membrane (based on



lipids?) for isolating the globule contents from the environment. Or perhaps
there are originally only water droplets in oily medium, or between layers of
clay?

3. There are autocatalytic chemicals available in the soup. Autocatalysts are
chemicals that act as catalysts, activating reactions, being produced in the
same reactions (or through a chain of successive reactions); for example,
peptides, extremely simple proteins, can be autocatalytic (see [1]).

It is claimed here that the above assumptions are only needed to construct a
vision of how life once could have emerged on Earth — or on any other planet.

Assume that within a globule, a set of equilibrium reactions keeps the con-
centrations of (a subset of) chemicals constant. A globule is a simple functional
entity; to start with, the set of reactions can be very reduced. In the globules, no
genetic code is needed to control behaviors; no specialized “globule organelles”
are needed; not even any complex molecules like nucleic acids or amino acids are
needed in the beginning. As shown below, the liquid mixture of globule-specific
chemicals suffices to implement the basic “low-level” life functions: Surviving,
growing, multiplying.

Such globules, or “archaeocells”, are characterized by the autocatalysts that
are found in these chemical reaction vessels, determining their chemical processes
(or metabolics, if life-like terminology is employed)2. Some reactions just do not
take place if there are no necessary catalysts; but if one molecule appears in the
globule for some reason, more of it will be produced because of the latent reac-
tions that had that far been hibernating. Because autocatalysts are reproduced,
the off-spring inherits the properties (or chemical equilibrium concentrations,
and also the characteristic reactions) of its single parent — assuming that the
globules are somehow split in parts.

Assume that the globule receives chemicals from the environment; the reac-
tions proceed towards new balance. After large amounts of new chemicals are
produced, the concentrations increase; water diffuses into the globule because of
osmosis, and the globule volume grows. After becoming physically too large, so
that the surface tension cannot sustain the sphericity, the globule can constrict
into two parts. This way, the first order balance system already can “multiply,
and fill the earth”, maintaining internal integrity and order.

In the famous Miller–Urey experiments only simple amino acids were pro-
duced when a chemical soup was tormented — after that, the arrow of entropy is
against evolution of more complex peptides or proteins. Mere addition of energy
into the chaos only breaks the more complex molecules in parts. Now, on the
other hand, the globules in equilibrium are miniature laboratories where dissi-
pated energy can alter the thermodynamic destiny, offering a good testbench for
random modifications.

Autocatalysis has long been hypothesized of being the essence of life. How-
ever, even though autocatalysis seems to be the key point in the reproduction of
elementary life forms, it is intuitively not enough. Through autocatalysis, some
2 Remember how the archaeobacteria illustrate examples of non-convential metabolics

in real world



chemical can multiply — but so what? This kind of explosive behavior resembles
cancer, where some cells start multiplying with no control, resulting in destruc-
tion rather than construction of new structures. And it is structures and the
corresponding functions that are the essence in life — and structures can only
emerge in essentially stable environments. The “instability” of self-organizing
processes can start cumulating new order only if the underlying substrate sys-
tem is stable enough.

The above scenario of mere reproduction is also too trivial to cover more
sophisticated life forms. Why one globule type does not exhaust all of the avail-
able resources? First, the autocatalytic reactions are also equilibrium reactions,
and the chemicals are never completely exhausted however fast the reaction is.
But, on the more fundamental level, this question of balance among candidate
globule types is the same question that applies to all systems demonstrating
(bio)diversity (see [24]), and this question can be answered now: As presented in
[13], the variations in the environment result in a situation where there are var-
ious globule types simultaneously present in optimum state. In stationary state,
each of the interacting types has its characteristic “foraging profile” what comes
to resources (in this case, available chemicals). The less relevant types are not
simply wiped away. Because of this stability of diversity, there is no hurry: There
is enough time to wait for advantageous, a bit more complex autocatalysts to
emerge by random processes. One molecule suffices to introduce a new line of
descendants.

Why is this increased complexity an evolutionary advantage, why the more
complex (and typically slower) reactions will survive in this chemical evolution?
It is enough that there is some special chemical that can only be utilized by
the new globule type; this gives it the adequate competitive advantage. Only
if there exist alternative solutions (in terms of chemical solutions), secondary
aspects like reproduction speeds become relevant in competition.

It is easy to imagine what can happen next: Different globules or globule
groups can start exhausting each other’s surplus products, and become symbi-
otic. If the different kinds of globules are dependent of each other, they probably
grow and divide at the same rate, following the cybernetic balance [13]; this is
a rather plausible route to “multiglobular” systems. Globules without partners
starve and become outnumbered. As seen from outside, different globules rep-
resent different sets of reactions, so that functional differentiation starts taking
place. For example, within a single cell the cell organelles can be seen to still
constitute such a sub-cellular symbiotic system (mitochondria, etc.).

Symbiotic systems are so common still today that it can be assumed that
there really is a huge leap from symbiosis, or chemical cooperation, to more or-
chestrated strategies, like genetically controlled explicit cooperation. However,
assuming that a “multi-purpose” globule with various behavioral patterns once
was introduced, its “programmability” between functionalities would have a clear
evolutionary advantage outperforming the non-coordinated symbiotic alterna-
tives in complex multiglobular societies with specialization among globules; this
is studied in the next section.



Summarizing, it is clear that first-level (chemical) balance (reacting to dis-
turbances) is not enough to explain life. The cybernetic second-order balance
is needed to maintain external, inter-globular integrity and order. Without this
principle, the fastest exploding globule type would win the struggle, being the
fittest when using too simple criteria, and only structureless “cancer tissue”
would remain.

Now, finally, we are ready to express the new definition of life simply as
follows:

System striving towards the higher-order balance with its environment.

The environmental conditions vary, variations having statistically more or less
stationary distribution; a living system (ultimately) constructs a “balanced” (cy-
bernetic) model of the variations in its environment, exhausting the resources
in a greedy way. However, the balance is typically never reached. This cyber-
netic optimality pursuit extends over the scales: Subsystems follow the same
cybernetic rules.

There is a continuum from very simple to very complex life forms. At some
state, the globules can be called cells, groups of similar globules constitute tis-
sues, cybernetic groups of tissues are organs. Similarly, cybernetic groups of
organs are individuals, and cybernetic groups sharing the same genetic control
program are called species.

If life is defined in the above way, it can be assumed that some level of
life exists on all planets with stationary enough (but not constant!) conditions.
Further, neural signals are also based on concentrations of neurotransmitter
molecules: It is not difficult to imagine that intelligent life is just the next step
in the inevitable development of life forms.

4.3 Natural and artificial evolution

Whereas the null space in the chemical variable space is determined by the equi-
libria equations, the metabolic degrees of freedom revealing the cellular func-
tions, or the intracellular characteristic activity patterns, the genetic degrees of
freedom reveal the intercellular activity distribution among the cells, and the
longer-term changes in the cellular functions. The role of evolution is to adapt
the genetic structures (or the sparse coded principal subspaces) so that, as a
whole, the grid of cells balances the environmental variations in a cybernetically
motivated way.

Standard presentations about the origin of life are full of mysteries: For ex-
ample, how could the first genetic code emerge from the primordial soup? DNA
molecules — or any molecules that are capable of reproduction in fact — are
much too complex to be constructed by chance. And even if they were once
constructed, so what? It is in the processes where life resides, not in the struc-
tures — otherwise one could not tell the difference between a dead and a living
body. Qualitatively new molecules can pop up in chemical systems because of
some random events; even an extremely unprobable unique event can happen.



But such events cannot cumulate very long. This is the weak point in today’s
theories about the origin of life. The key observation is that such a new structure
should have immediately evident evolutional advantage, otherwise it will soon
be dissolved because of the laws of thermodynamics. Balance pursuit offers such
a feedback mechanism with delayless reward.

To understand evolution it is essential to recognize that there are very dif-
ferent levels of hereditary information — complete genes are not needed to start
with, no DNA molecules, not even RNA’s, or ribozymes. There is a continuum
from simple to complex mechanisms available. To study these issues, one first
needs to distinguish between two separate things: The ability to reproduce, and
the ability to modify cellular metabolics (having only the complex DNA and
RNA molecules available as examples, these capabilities seem to be mixed). It is
the autocatalysts that have the reproduction capability. Some other chemicals
can be multifunctional ones: In the lowest level, it is enough that some chemi-
cal operates in different ways in different chemical environments (for example,
toggling between inert and active state with respect to some specific reaction).
The operating modes of the cell being integrated in the chemicals themselves,
the cell functionalities are accordingly changed. When some chemical reaction
is either active or inactive in different environments (in different globules, for
example), a very simple control scheme is implemented, and structures based
on such sparse coding can emerge. Of course, it is practical if the two presented
capabilities, reproduction and multifunctionality, are combined in a single auto-
catalytic molecule.

Sooner or later, when more complex life forms are being created, more and
more sophisticated control mechanisms need to emerge, though; first this means
amino acids, later nucleic acids, these offering the best available combination of
flexibility and expressive power. When proteins are involved either as reaction
products or as catalysts (enzymes), the environmental conditions (temperature,
acidity, chemical conditions) must not change too much, otherwise the proteins
denaturate (coagulate) and become inert. To avoid such catastrophes, the con-
ditions within the cell must not change too much. Indeed, this is another mo-
tivation for the balance pursuit idea as defining evolutionary fitness: Balance is
the natural precondition for non-degeneration.

Another lesson here is that our way of distinguishing between the control
machinery and the controlled machinery is incorrect: It is a deeply coupled in-
teraction between the code (information) and the interpreter (formation) that
is taking place in a cybernetic living system; the metabolic and genetic systems
should not be studied separately. In a way, one must abandon reductionistic
thinking — the system itself is simultaneously the computer and the program
code. Or, indeed, this holism should be applied to the whole environment.

Even though structures are important in living organisms, it is functions that
are still more important. And, indeed, functions (or properties) can be inherited
without structure. The Lamarckian theories have been neglected because it has
been claimed that there are no necessary mechanisms to implement such views:
It must be all in the genes that can be inherited. However, also in the highly



developed forms of life, there are other mechanisms available. It need not be
assumed that the initial state of the stem cells is completely null; there can be
some chemicals that follow the genetic material into the gametes, being man-
ifested in the tsygote. This kind of inheritance can be called epigenetic, being
also related to genetic imprinting. However, it is not any acquired properties that
can be inherited this way; it is the commands of which of the available genes are
activated in the beginning. Another issue is that it has been recognized that the
microbial symbiotic fauna seems to be also inherited from the mother. As has
been recognized, this symbiotic inheritance can essentially affect the metabolic
processes that are activated in off-spring.

Applying the above vision, how can cell differentiation in ontogeny process be
explained? Study an embryo in the endometrium: When the conglomerate of cells
is still unordered, all cells experience the same temporal variations in the envi-
ronmental conditions, developing qualitatively in the same direction. However, as
the grid of cells becomes denser, there emerge differences in the spatial variation
profiles; when matching themselves according to their surroundings, different
sets of genes are activated, and different cells start specializing and develop-
ing in different directions, as characterized by the active processes taking place
within them. When this differentiation has started, further complexification can-
not be avoided: Activation of new processes within cells further change the local
environments, resulting in continued specialization among the cell groups.

It is still difficult to understand the diversity among cells: Why are there
so many different kinds of cells in an organism (or why are there so many
species within an ecosystem)? The balance with the environment could per-
haps be reached easier? Perhaps a solution to this question is offered by the
nature of chemical and genetic realms: When the cell tries to reach a chemical
match with its environment, no exact match can typically be found. One can-
not simply affect one chemical; typically, various other chemicals are affected as
well, determining a further adaptation task. On the other hand, there may ex-
ist various reactions almost doing the desired task, causing specific side effects,
producing different sets of further chemicals. Different approximations (sets of
reactions) are not directly summable, and all of the alternatives can flourish side
by side. Each of the alternative solutions results in another tree of further can-
didate reactions, thus resulting in a spectrum of alternatives. Another issue that
deserves attention here is that if the models presented in [13] are employed, the
system naturally strives towards diversity: Slightly differing populations seem to
differentiate further, because of the repulsive effects caused by similarities.

This discrete nature of the chemical realm needs to be studied closer. In the
genetic space there exists no continuity; it has been assumed that Darwinian
more or less random mechanisms (mutations and crossover processes) is nec-
essary to implement optimization. However, this discontinuity applies only to
genetic code; on the other hand, there is piecewise continuity in gene expression,
as explained in Sec. 3. Further, there is continuity and differentiability available
in output space (in the space of chemical concentrations) as explained in Sec.
3.1. This means that evolution needs not be completely random — there are



clear gradients visible. Even if derivatives cannot explicitly be written, better
solutions of chemical match can be searched for in a consistent manner within a
single “genetic state”.

Everybody who has tried to optimize something applying random search
strategies knows that adaptation typically is extremely slow. Still, according to
the prevailing paradigm it is assumed that natural evolution could be based
on such random optimization strategies. It is lazy thinking to assume that a
few billion years would be enough for the immensely complicated life forms to
emerge if using such strategies only. Now, not all adaptation needs to based
on random search, because local matching (tuning the gene activations) can
be carried out applying some gradient-based strategy. What is more, there is a
short-term feedback mechanism available here, meaning that optimization can
be implemented much more efficiently. Optimality of solutions is defined in a
very local and immediate fashion, there is no need to wait feedback from explicit
“goodness” evaluator, with the delay being of the order of one generation —
level of match with the surroundings suffices.

Yet another fact needs to be recognized: There is no global single fitness
criterion. Each variable is being matched more or less independently, so that,
in a sense, “parallel processing” for fitting the data is implemented, further
enhancing the adaptation speed.

Genes are modified in a Darwinian process of mutation and crossover; how-
ever, the genes are not actually optimized. Putting it boldly: When comparing
the efficiency of genetic optimization based on selection and the balance-based
matching, one can see a remarkable difference. The evolutionary processes pro-
duce the genetic mess, whereas the highly streamlined operation of cell functions
result from equilibrium processes. The balance pursuit idea can nicely comple-
ment the evolution theories. The main role of evolutionary processes is to gen-
erate variation: The goal is to supply material, a pool of alternatives, whereas
the local balances within a cell finally select the appropriate genes, revealing
the actual potential and limits of the new genetic combination. The genetic pro-
cess determines the (sparse coded) subspace in the metabolic space, and other
processes are utilized for final optimization within those subspaces. The genetic
state, as discussed in Sec. 3, can alter the activity of genes within a cell. From
this perspective, it is not strange why there are the introns left in the genetic
code: They are the archive of alternatives.

In evolution theory, one problem has been how to define the selection criterion
appropriately. It turns out that the most natural choice — fastest reproduction
— results in the simplest versions of the genetic code to prosper, thus, in fact,
resulting in degeneration rather than evolution. It may be that the Darwinian
idea of “survival of the fittest” is overrated, being utterly optimistic (for exam-
ple, see [23]); there are more efficient adaptation mechanisms available, at least
what comes to lower levels of life. The role of birth and death are very central
in Darwinian evolution theory. Now the system is more important than any in-
dividual; life is in the system, and in the population of individuals. As long as
the system survives, there is no actual death. Another point is that because the



genes only offer the pool of alternatives, the properties of an organism being
mainly determined by the environmental conditions, one specific gene combi-
nation does not have such a crucial role. The Dawkinsian “selfish gene” view
should be accompanied by the system view: Applying the balance principle, the
interactions among actors become much more peacefull and the developments
are much more gradual — world is not such a draconian place after all?

Is this match (balance) criterion compatible with the generally accepted op-
timality criteria? Applying the balance principle, adaptation process can be in-
terpreted as follows: If there is plenty of some specific resource available, or if the
supply is open-ended, this resource is exploited maximally, the system tries to
get into the “resource direction” as far as possible. This means that, as seen from
outside, the system behavior looks like standard optimization. The advantage
now is that no explicit scalar optimality criterion needs to be defined in terms
of individual resources.

Correspondingly, when applying the evolution principles in technical appli-
cations, the same considerations could be taken into account. Specially, when
studying genetic algsorithms, new intuitions are available: Rather than trying
the explicitly optimize a single, scalar but complex function, the problem case
should be implemented so that the optimum is characterized by balance. The
complexity of the function form is substituted with dimensional complexity. The
high dimensionality helps to avoid local minima (so that not so large pools of
candidate solutions are needed), and the gradient information becomes better
applicable. In the same way, perhaps the environments for artificial life research
should also be redesigned to implement environments with “integrated fitness”?

4.4 Unified models

The origins in artificial life research are similar to those of artificial intelligence:
The goal is to find strategies for surviving in changing environment, and for
exploiting the environment. And as it turns out, the cognitive functions can
at least to some extent be also interpreted as emergent functionalities in ap-
propriate cybernetic systems (see [25]). Cybernetic studies offer a higher-level
framework where the seemingly very different domain fields can be studied in a
unified manner. Indeed, this relationship between AI and AL may turn out to
be essential when the processes of the mental machinery are explained: It has
been recognized (by the Nobel laureate Eric Kandel) that the long-term memory
is based on genes becoming locally either active or inactive; this would explain
how some memories can last for a very long time. Understanding the mecha-
nisms that implement genetic flip-flops can also be interesting when explaining
cognitive phenomena.

When various cell types are being studied, etc., things soon become too
complicated. One would need methodology for capturing the substructures, or
locally linear models determined by genetic states, within a compact framework.
It turns out that the ideas presented in [14] may be applicable again: That is, the
hierarchies among structures can be characterized in terms of fractal AND/OR



blocks. In this way, one could perhaps define a language for life for describing
the cellular diversity.

It is not only the origins of artificial intelligence and artificial life that are
the same — if the cybernetic viewpoint is adopted, it may be that research of
AI and AL could be united again. More philosophical intuitions have also been
presented: According to Humberto Maturana and Francisco Varela autopoiesis
— essentially duplicating the ideas of cybernetics — is necessary and sufficient to
characterize a living system. This identification of cybernetic and living systems
results in metaphysical conclusions: For example, Maturana concludes that [16]

“Living systems are cognitive systems, and living as a process is a process
of cognition. This statement is valid for all organisms, with and without
a nervous system.”

This is perhaps an overstatement. Principles may be the same, but, however,
from the scientific point of view (being based on different kinds of taxonomies),
it is reasonable to distinguish between domain fields — substrate makes a dif-
ference. For example, in each of the cybernetic domains below, the underlying
mechanisms and agents are very different:

– Life: Cybernetic system among chemicals, emergent structures being differ-
ent kinds of tissues corresponding to metabolic functions;

– Cognition: Cybernetic system among signals, emergent structures being
chunks corresponding to features of patterns;

– Economy: Cybernetic system among humans, emergent structures being
companies having special activity profiles; and even

– Science: Cybernetic system among memes, emergent structures being the-
ories connecting concepts.

According to the definition of life in Sec. 4.2 the proposed artificial life forms
(see [8]), being based on explicit, “non-ubiquitous” pieces of code, are not forms
of life. On the other hand, societies consisting of individuals, or ecosystems
consisting of populations, etc., can be regarded as living entities! Perhaps it is
reasonable to speak of life only in cases where there is the chemical medium as
substrate. It seems that the chemical realm offers an excellent environment for
parallel processing.

When looking at today’s cybernetic systems, it is the same mystery facing
us as when discussing origin of life. When seeing only the optimized result it is
tempting to apply divine explanations. How is it possible that such magnificent
strategy once emerged? The problem of life alone, being just one example of
(extremely) complex systems, is actually simpler: It cannot be absolutely denied
that an infinitely improbable event once happened; but, looking at the wealth of
cybernetic systems around us, it is evident that this has taken place many times
in different kinds of complex systems independently. There must exist some
underlying principles beneath — why all natural systems seem to inevitably
produce life-like complexity.



4.5 Balance in perspective

As presented above, the idea of (higher-order) balance offers new insights in life
processes. This can be contrasted to the views of Ilya Prigogine: He has em-
phasized the role of instability, system being far from equilibrium, as the key
to understanding emergent structures. Indeed, it is commonly thought that the
key to understanding complex systems is through non-equilibrium state dynam-
ics (for example, see [15]). The Prigoginian approach cannot explain why some
dissipative systems get more and more disordered and some go against the arrow
of entropy (compare to ideal mixers and “idea mixers”, stirred tanks and mental
systems, respectively). These paradoxes can be explained in terms of higher-
order balance: Either the system tries to reach it, or it is beyond the Edge of
Chaos.

It should be recognized that the balance objective is not as restrictive as
it sounds. If the environment remains constant so that no changes in chemical
levels trigger further processes, the system still does not die, and the processes
do not cease in “heat death”: There also exist non-equilibrium reactions that
are irreversible. Chemicals escaping the system induce steady leakage in the
system state, resulting in processes continuing. The chemicals that are produced
in these reactions, even though they can be inert in the original environment, can
be active in other environments; this way, the system itself produces instability
that needs to be compensated by later reactions. This can be interpreted so that
a Prigoginian “dissipative system” is constructed, where energy and matter flow
through.

Of course, the role of balance has been recognized before. Such studies on
homeostasis, for example, have been more or less philosophical. Speaking of
philosophy — balance is a very old principle in Eastern medicine, and also in
the heretic Western traditions. Officially in Western medicine, one symptom and
one cure are studied at a time, ignoring the interactions, and forgetting about the
wholeness. There have been no concrete tools for approaching such holistic views,
and such views have been (aggressively) ignored by the mainstream scientific
community. However, it is not only deficiency diseases, but also the autoimmune
diseases (like multiple sclerosis, diabetes, allergy, etc.) that could be studied as
being caused by some kind of loss of metabolic balance. In the above cases it is
chemical balance, or perhaps symbiotic bacterial balance — in the case of mental
illnesses, of course, the balance with the environment is also lost. On the level
of neuronal/cognitive interactions, the mental images have no match in real life.
It is not only jargon that good life means living in balance with oneself and in
harmony with the environment!

It has been wondered how the geological, climatological, etc., processes on
Earth seem to be well suited for maintaining life here rather than wiping it away.
Such speculations are concretized in the Gaia hypothesis: The Goddess of Earth
has purposefully designed these processes to support life; or, Earth is a living
organism itself. However, after the unstable processes on Earth were exhausted
billions of years ago, only equilibrium processes (as seen in the wide scale) are
left here; and life is a subset of such processes. It is life that has adapted, not the



Earth’s processes. As explained above, stationary variations in environmental
conditions is the reason for life, rather than a risk (indeed, in the spirit of Heinz
von Foerster’s “order-from-noise” principle). Life has adapted to the variation
range in climatological and geological processes; changes in environment force
the balance systems swallow chemicals — it is a matter of interpretation whether
this forced feeding is called active intake of nourishment. In natural history, pe-
riods of placid status quo are followed by turmoil transients, where the system
overgoes from the previous equilibrium to another one. Just as is the case with
the Darwinian theory, one needs to forget about the purpose-oriented or predes-
tinated explanations and unnecessary mystification. Indeed, after adaptation it
is “the best of all possible worlds” for life developed here.

As a modeling principle, balance is an extremely powerful concept. This can
be compared to modeling of mechanical systems: The today’s modeling approach
based on symmetry (by Emmy Noether) made it possible to apply the same
ideas to very different fields (to quantum mechanics, for example). In a way,
the principles of balance and symmetry are closely related: A cybernetic system
tries to reflect its environment, or to reproduce an (anti)symmetric image of its
environment. However, note that such intuitions are far from the realm of the
deeply mathematical theory of actual symmetry groups.

5 Conclusion

When trying to understand the metabolic and genetic systems, dynamic models
are an important tool, offering the necessary intuitions. Otherwise, applying the
static snapshot-style considerations only, the operation of a living system looks
completely incomprehensible: There are no conceptual tools for understanding
the operation of local distributed control. Indeed, the seemingly goal-oriented
nature of the life processes makes the explanations sound like a very improbable
fictional story. Teleological assumptions about some elan vital seem to be nec-
essary: The wonders taking place there are just too marvellous to be explained
in any other way.

However, it may be that understanding of dynamic equilibria can substi-
tute the active creator. To be able to conceptualize the necessary intuitions,
mathematics is needed; indeed, mathematics is the Lingua Franca of tomor-
row’s philosophers. As motivated above, it turns out that in a cybernetic system
very complicated patterns of self-stabilization and self-organization can emerge.
It can be claimed that earlier the scientifically best explanation (simplest, and
containing least wild hypotheses) was creatonistic, trusting in God; the cyber-
netic studies show that the simplest and most plausible explanation for life is
non-divine.
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