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Abstract. It seems that many of the most challenging complex systems
are cybernetic. This cybernetic nature means that there are special prop-
erties about them that should also be reflected in observations that are to
be used for capturing their behaviors. It seems that the cybernetic intu-
itions offer fresh ways to attack the problems of semantics, and, further,
the mysteries of cognition, for example, can be seen in a new perspective.

1 Introduction

In ancient Greece, the philosopher Heraclitus observed that
... The way up and the way down are one and the same.

There are many ways to interpret this — already in his times, Heraclitus was

called skoteinos, or obscure. One interpretation is that if one wants to understand

phenomena in the real world, the observations have to be perceived applying the

same principles. Using the modern engineering-like terminology, one could say

that the system and its model should have the same underlying structure.
Another issue emphasized by Heraclitus was that

... Harmony consists of opposing tension, like that of the bow and the
lyre.

Complex systems are seemingly static but full of potential ready to burst out.
The world is governed by harmonies even though there are hidden tensions un-
derneath. And, as also noted by Heraclitus, the hidden harmonies are more
powerful than the visible ones. The above ideas where there is competition and
balancing between different strivings are today studied in the framework of cy-
bernetics. To make the issues still more explicit, Heraclitus states that

... All things happen because of strife and necessity.

Cybernetic studies have shown that local decisions (trying to stay alive!) truly
can result in interesting system-level emergent behaviors (see [12]).

In this paper, the above visions are put in practice. The deep but hazy Her-
aclitus aporias are given concrete semantics, and efficient tools (that is, mathe-
matics, and modern system theory) are used to functionalize the views. First, the



today’s challenges in modeling of data from complex systems are discussed, and
the cybernetic approach is presented. Linear cases are studied in detail to reach
some intuition. The results are applied to analysis of how the mental machinery
could be explained: For example, the idea of functional chunks is perhaps given
new substance.

2 Cybernetic models for cybernetic systems

When aiming towards constructing smart systems capable of autonomously re-
acting to changes in their environments, some kind of understanding of the
environment has to be implemented in those systems. Understanding cannot be
implemented without semantics. It is evident that one is facing huge challenges
here, but it turns out that the fresh intuitions from the field of cybernetics offer
us new ways to look at the age-old problems. There are two main tasks here:
First, it needs to be studied how such self-contained semantic representations
could be defined in the first place; second, to transfer this semantics to the smart
system, these representations somehow have to be coded in data.

2.1 World as complex data

After the era of rational (or, indeed, rather irrational) approaches to modeling
reality, the empiristic views are now dominating: The world is given to us as
observations only, and our task is to explain this data. There are new tools sup-
porting these data-oriented approaches — computing capacity has grown expo-
nentially, and also mathematical tools like multi-variate statistics has developed
to support data analyses and different kinds of data mining techniques.

However, it is Plato’s Cave Metaphor that still applies here: If one only
studies the data in an empiristic manner, one cannot get beyond that, and the
underlying system remains veiled. To connect observations to phenomena, an
interpreter is necessary — a human. When trying to create truly intelligent
systems that are capable of autonomously reacting to the changes in the envi-
ronment, this approach is not satisfactory.

Are there any ways to circumvent this eternal dilemma of noumena versus
phenomena? A modern approach (one of them) to attack this problem is to
employ the opposite point of view: Forget about the Platonian Ideas. Thinking
pragmatically, one can never know what is the actual structure of the system
— the structure that is grounded on data is just as good as any. In complexity
theory data takes the main role. The emergent structures that are based on the
statistical relationships among data can be used for characterizing the system.
One searches for the underlying patterns beyond the chaos of data, hoping that
computing power can reveal something interesting. But, after all, again one is
facing the vicious circle: How to tell the computer what kind of emergent struc-
tures are interesting?

The theory of complex systems is a close relative to artificial intelligence (AI)
research. In both fields one is missing concrete definitions: What kind of behavior



represents complexity and what does not? For example, a chair can be a magnif-
icent, deeply purposeful, aesthetic combination of simpler parts — is complexity
manifested in it? In a complex system, there is a delicate balance between order
and chaos: Complete order is not interesting, but neither is complete disorder.

If there are no grains of relevant information present in the data, mindless
thrashing of that data only gives trash out. Only applying computing power does
not help when one wants to implement intelligence in systems; computation
cannot restore information if it has originally been ripped off. The essence of
the system somehow has to be captured in the data. In concrete terms, when
implementing some data processing application, one has to answer the question:
Which variables to include, and which ones to ignore? This paper tries to give
some intuition here.

2.2 Challenge of semantics

A good model should reflect the system being modeled. It is not only the struc-
tures of the system and the model that should be matched, but also the functions;
one should somehow capture the essence of the system. To reach this, one needs
to study the problems of semantics. Syntax or structure alone is dead if it is not
supported by underlying semantics, or meaning.

The goal here is to define and implement semantics outside brain. In concrete
terms, this means that data and its interpretation have to be integrated. There
will be a self-contained package of data and program, or syntax and semantics,
or information and interpretation. It is evident that only a narrow view of se-
mantics can be captured in an engineering-like way — but such simplifications
are necessary to reach a solid basis for further discussions.

The only system where there is self-contained semantics today is the human
brain; perhaps this system can offer some intuition. As a starting point, it needs
to be noted that a human does not just store data in the brain. Learning is
a process of evaluating the data, assessing it, putting it in context. What are
connections and consequences of that information? All human knowledge seems
to be functional, information is stored in terms of cause/effect structures, or in
action/reaction pairs. Another way to put this is to say that human data struc-
tures are causal. This suggests a practical approach to attacking the problem of
semantics: Assume that semantics is reflected in causality.

The causal structures (in an expanded meaning) convey information of what
will result from the current situation. In this sense, such structures implement a
path in the space of states of the world, binding successive “world snapshots” (or
mental snapshots) together. The key point is the connections to other entities
and their mutual dependencies. It turns out that this view is an extension of the
ideas of naturalistic and contextual semantics from static to dynamic context.
In concrete terms, as naturalistic semantics binds entities to actual system in-
puts (sensory signals, or to signals from separate subsystems), and contextual
semantics binds the entities to each other statically, the causal semantics binds
them to each other dynamically. The spatial model has to be substituted with
a spatio-temporal model.



To capture such dynamic phenomena, it seems that some kind of dynamic
model is needed (for example, see [8]). The problem is that in high-dimensional
cases dynamic models are still more difficult to handle than static ones are: There
typically exist very many additional degrees of freedom when the parameters
are to be determined. What is more, the traditional models are too rigid —
the causal chain is not always temporal. The succession should typically be
characterized in terms of transitions rather than imposing smooth dynamics on
them. However, such event-based models models without explicit time variable
have weaker mathematical structure; it seems that more powerful views are
needed here.

2.3 Cybernetic structures and functions

One needs a framework for efficiently studying the (extended) contextual seman-
tics. It seems that the problems with dynamic models can efficiently be avoided
when the framework is turned upside down: Rather than trying to capture move-
ment, or changes in the system, let us concentrate on the balances — cases where
there is loss of any dynamics. However, to exploit the above view and still have
something non-static, the balance idea has to be interpreted in the correct way:
Balances here are dynamic equilibria. Intuitively, such balances characterize the
system by describing where the natural dynamics would finally take the system,
if enough time was available.

A good framework for this kind of studies is that of cybernetic systems. As
explained in more detail in [12], the essence of a cybernetic system is in higher-
order balances. It turns out that the nature of such systems is that the underlying
tensions are in equilibrium. Cybernetic systems offer a practical framework for
studying semantics in such a narrow semse. From the point of view of cybernetic
semantics, it can be claimed that cybernetic systems are such self-contained sys-
tems where the functions have been integrated with the structure. For examples
of cybernetic systems, see [14].

Not all systems are cybernetic — but, luckily enough, the most challenging,
and the most interesting systems are. These systems are those with “hidden
tensions” (as Heraclitus put it). A cybernetic system interacts with its environ-
ment, being in dynamic balance with it, reacting immediately to environmental
changes, searching for the new balance. After a disturbance, a cybernetic system
will typically not be the same, there is adaptation to the environment — but
the new system is again fully functional, better in the new circumstances, being
again in balance.

Another central property of (higher-order) cybernetic systems is optimality,
in terms of exhausting available resources in the best possible way (see [12]).
This optimality must be shared by all sensible systems that have survived and
prospered in the cybernetic evolution. What is more, cybernetic systems are
typically fractal, consisting of lower-level cybernetic systems. Because there is
optimality at each level, there are no superfluous structures or functions, there
is minimality in representation. And because the representations are there only
to implement functions, it can be said that in a cybernetic system syntax and



semantics are in one-to-one correspondence (in linear systems this holds only
to a certain extent, up to the principal subspace). In a fully cybernetic system
function dictates structure, and structure dictates function. This streamlined
functionality can be seen only in the holistic perspective; whereas all structural
elements contribute to the overall goal, on the local level the goals are not visible,
and the parts are not indispensable!

This all means that cybernetically optimal systems are unique to an extent.
This structure is determined by the properties of the environment visible in
data (as explained in [12], the vector u characterizing the current environment
determines the state x, and the statistical properties of u determines the system
structure ¢). The cybernetic system reflects its environment; or, indeed, it is a
mirror image of the environment.

Now there is an escape from the Platonian cave: A sensible system must
have the cybernetic structure, and within this restricted modeling framework,
the free parameters fixing the behaviors can be identified. Note that this holds
only to the system level as the single system components cannot be distinguished.
What is more, indeed, all cybernetic systems must have the same structure. It
is like in computability theory: The class of NP complete problems is such that
solving one of those problems simultaneously solves the other problems (rather
than being exponentially capacity demanding, polynomial amount of resources
suffices). Similarly, one could speak of the class of “CS complete” systems: The
intuition here is that solving the mysteries in one complex system simultaneously
gives the tools to modeling the other complex systems as well (as has always been
prophesized in complexity theory).

Still one more concrete criticism needs to be commented here — it is that of
causality: No data is enough to certainly determine the dependency structures
underlying observations. This Humean problem can be circumvented here, be-
cause one does not try to extract individual causality patterns. It is now implic-
itly assumed that there are causal connections between all entities, all variables
are related to each other in a network, balancing each other’s causal strivings.
One-signal-at-a-time analyses truly are doomed — but they are not needed.

When having the data, two kinds of cybernetic models can be constructed
applying the guidelines presented in [12], depending on the data properties:
First, if there is no underlying structure beneath the static data, one can still
have useful results; the cybernetic modeling machinery carries out (sparse coded)
principal component analysis of data, so that optimal compression in terms of
data variance is reached. But more interesting models can be reached if the
data is well-conditioned, reflecting the dynamic balances within the system. How

1 S0, is the chair a cybernetic entity? No, it is not. If a chair is scratched, there is now
self-healing capability, and gradually this “system” is ruined by the knocks coming
from outside. A chair represents temporary, “dead” balance: It has been constructed
once and for all applying external forces rather than trusting the internal ones. The
structure and function of a chair are not in one-to-one correspondence. There can
be scratches in a cybernetic system, too, but the function is changed accordingly



could structureless data carry such information, or, indeed, knowledge, about the
domain field?

2.4 Data with balance

Static data is, by definition, in balance, and the cybernetic model of such data
is balanced through associations among entities (as will be explained in more
detail later). However, if the data should represent dynamics, one is facing more
challenges.

Above, the problem of representing dynamics was already simplified applying
cybernetic intuitions: There is no need to worry how to represent the actual
trajectories, or functions of some free spatio-temporal variables as data; one
only needs to represent the eventual dynamic equilibria. In practice, there is a
dilemma: The balances cannot be easily determined. A cybernetic system itself
typically never represents the balance state; balances could be simulated if there
was a model, but to start with, there is no model — indeed, data is collected to
determine that model! What is more, there are typically many alternative routes
towards balance in complex systems, resulting in different equilibria — which
one of them to select?

Again, it turns out that turning the problem upside down helps to proceed:
Rather than looking at the hypothetical distant balance, one can make the cur-
rent state balanced. Semantics is not necessarily in actual movements but in
causal tensions causing those movements. One can also study what is the op-
posing force needed to neutralize the natural dynamic tendencies of the system.
Rather than doing global analyses, local analyses are only needed: Looking at
current state of the system and its “flow” in that state, the dynamic data can
consist of temporally local observations. From the practical point of view, there
is another advantage here — relevance: only those states that have actually been
seen are represented in data, not some hypothetical future states that probably
will never be reached.

The intuitive notion of force needs to be formalized. To do this in a consistent
way, one needs to introduce the concept of energy function. This cost criterion
defines a potential field in the state space; to move “higher” in that landscape
one needs to apply force, and this force is accumulated as potential energy level.
Indeed, the force can be defined in terms of energy that is needed to produce
a certain movement in the potential field. In mathematical terms, this can be
expressed in differential form as

Fa) = -2 ) (1)

that is, the (virtual) force is the virtual change in energy that would be needed
to cause a hypothetical movement; the minus sign reveals that the force points
against the gradient?.

2 Tt needs to be noted that coding of virtual movements is a deep philosophical prob-
lem, as manifested in the Zeno’s “arrow paradox”: During each time point an arrow



This energy function J is a central concept in discussions that follow. In dif-
ferent environments, it can have differing semantic interpretations: For example,
it can be called a fitness landscape characterizing how far the system is from (lo-
cal) minimum. Essentially, J determines the domain field; however, because the
cybernetic systems are constructivistic, typically it is a function of not only the
environment but also of the system itself, so that one has J(x,u). It needs to be
recognized that function J needs not be known explicitly, it is only important
that it can be assumed to exist. Locally, when the system is in some specific
state, the properties (gradient) of J can be directly observed in the system’s
behavior.

Assume that the system can be characterized in terms of a variable vector x.
Then the minimum-dimensional data vector containing cybernetically relevant
information of the system state (configuration, and the corresponding forces)
could be constructed, for example, as®

u= (%) . 2)

If defined so, the balance can (at least in principle) be constructed as a lin-
ear function of the variables; because the cybernetic model is essentially linear,
relevant information is now coded in the data in such a form that it can be ex-
ploited by the cybernetic modeling machinery. Because of the underlying PCA-
based multivariate modeling structures, an appropriately constructed cybernetic
model is robust against redundant variables, so that the dimension of u needs
not be explicitly minimized; formula (2) represents the minumum set of variables
that necessarily has to be included.

The above discussion proposed a generic approach towards modeling com-
plex data based on local balances. The key issues where the energy function
defining the “causal landscape”, and its (negative) gradients determining the
“causal forces”. In practice, what do the energy functions typically look like?
Such questions are studied closer in Sec. 3. The abstract discussions are made
more concrete towards the end of the paper, offering interesting new views for
Al research in Sec. 4.

is still, so that there can exist no movement at all. Similarly, each data sample is a
snapshot — and, similarly, it cannot represent dynamics? What the Greeks did not
understand was the power of mathematical concepts such as differentials. When time
interval goes to zero, and the movement during that time interval correspondingly
goes to zero, their ratio, or the velocity can still remain bounded. Just as velocity,
also force is a mathematical abstraction based on changes in variables, and thus
involving differentials. Differentials can efficiently be used to code rates of change,
even though it seems that today’s people also feel uncomfortable when facing them
Alternative sets of variables can also be selected, as long as there are some kind of
gradients involved: For example, when characterizing mechanical systems, the vector
q of generalized coordinates suffices to uniquely determine the system configuration
at any time instant; it turns out (see [6]) that when characterizing the dynamic
system state, it is exactly the vectors g and ¢ that are needed



2.5 Models of the relevant

Typically in engineering work, the global optimum of some criterion is searched
for. This applies as well to analysis, or modeling of existing systems, as to synthe-
sis, or design of new ones. In the case of complex systems one ends in problems,
because there typically exist various local minima for the criterion — one does
not know whether the search should be continued, and if so, in which direction.
What is interesting is that nature has the same problem. Evolution in nature also
has to be based on evaluation of some optimality criterion, and nature has no
better optimization methods than we have — the clever ones (those that are not
based simply on random search) being based on some kinds of gradients. Typi-
cally nature also ends in some local minimum when optimizing designs — and
if the design is repeated, the system will not be the same again (as Heraclitus
put it: “You cannot step in the same river twice”).

Indeed, the absolutely global optimum does not necessarily reflect typical
existing systems. A model, however good it is, only represents the current system
being studied. Rather, one would need a “higher-level” model over the range of
models. It seems, of course, that as a single model may be difficult to construct,
a model of models is a still more difficult goal. However, this is not necessarily
true: Just as in mathematics many problems of real analysis can easiest be solved
by extending the problem to complex domain, escaping from the real axis to the
complex space, some modeling problems can actually become simpler when one
studies the whole space of systems rather than a single individual system at a
time.

A more complete view of the variability range among the models in the envi-
ronment is given by the range of local minima — and it is these local minima of
the energy function that are being captured by the cybernetic model. A cyber-
netic model is a model over the possible solutions. For example, it seems that
a promising approach towards understanding gene expression is to think that
the set of active genes determines the “subspace”, and other metabolic processes
optimize within it, so that the system ends in the corresponding local minimum.

This issue deserves to be emphasized: A cybernetic model is a higher-level
integrated model of many local minima rather than a model of a single global
optimum. The cybernetically balanced global model is an optimized model of
local balances. It is a model of the possible, or potential rather than actual; or,
because the data comes from real observations, it is a model of the relevant. Here
it is claimed that this approach captures the fundamentally random nature of
Nature in a more consistent way than traditional approaches. Rather than pur-
suing absolute optimization (typically being an NP hard problem), one searches
for the spectrum of “nearby” solutions, trying to characterize them in a compact
way.

It needs to be noted that speaking of local minima is misleading, and does
not characterize the nature of the solutions in the correct way: At least if the
system is linear, the balance solutions are strictly optimal. It is just the environ-
ment that may change, either as a function of the location or the time. In this
sense one could speak of “spatio-temporal optima”. The optima are “parame-



terized” by the input vector u, the model mapping from the environment to the
corresponding balance.

Of course, because of their huge importance, different kinds of “models of
models” have been studied before in different environments. For example, in
Hopfield nets (for example, see [9]) the properties are similarly analyzed in terms
of energy functions, and, similarly, the contents of the associative structure are
characterized by the stable equilibria. However, Hopfield nets are only used as an
associative memory for storing distinct patterns — there is no model among the
minima, and, because the variables are typically binary, there is no continuity. In
Genetic Algorithms (see [1]), on the other hand, “fitness landscapes”, or energy
functions, are discussed, and one stores the set of candidate solutions, trying to
preserve the good candidates in the population. No higher-level model of the
solutions is created, individual models are just combined and modified to reach
better candidates; indeed, GA is yet another methodology for implementing
search for the global optimum.

3 Analyses and intuitions

The above discussions offer interesting views not only to analysis of existing
systems, but also to analysis of systems as they could be.

3.1 Nature of cybernetic models

How can cybernetic data be characterized? No matter how the data vector is
constructed, whether it contains information of the underlying forces or not,
one interpretation is that the cybernetic model spans a (locally) linear subspace
where the data samples are assumed to reside. The model consists of (locally)
linear set of features characterizing the degrees of freedom in the data. Getting
from data to model is a feature extraction problem.

Assume that a domain field is characterized in terms of linear features ¢;,
where 1 < i < n, the number of features n being lower than the data dimen-
sion m. The measurements u should be represented as a weighted sum of those
features:

ule) = Y aipi = g, 6

where the m x n matrix ¢ contains the features, and x represents the system
state. Assuming that an observation w is known, the goal is to determine the
state; because of the dimensions of ¢, this cannot generally be done exactly,
only in some approximate sense. An estimate for the state & corresponding to u
can be characterized in terms of a criterion

J@) = 5 (u—n) (u—gr). (4)



The minimum for this is given by

z=(¢"p) T (5)

As explained in [13], solution this can be interpreted as a balance where the
gradient of (4) vanishes. In this sense, the solution (5) is a cybernetic solution,
and the original feature system is a cybernetic system — in the simplest sense
(see [12]). Does the system also represent higher-order balance? In that case
there should hold

(¢70) T = (B{zz"}) T E{zuT}. (6)

Without going into details (see [13]), the uniqueness of features can only be
reached up to the principal subspace, that is, only the subspace spanned by the
features is found, not the features themselves (nonlinear cases, and sparse coding,
are another issue).

3.2 Properties of virtual data

It is interesting to study whether one can solve the inverse problem, or determine
the properties of such data that are produced by some given structure; one could
speak of “virtual data”.

Not very much can be said about data in general terms. Now, however,
following the discussions in the previous section, assume that Z can be interpreted
as a zero point of a gradient of some optimality criterion J(z,w). To proceed,
one can, for example, write the Newton algorithm for iteratively refining the
estimate for the zero point:

Z(k 4+ 1) = (k) — (&%@(@,@) Z—i@(ﬁ),u). (7)

Selecting the optimality criterion is difficult — indeed, as noted above, the whole
problem domain is characterized by this function. From the point of view of
probabilistic modeling, a well-motivated energy function form is the (inverse
of) log-likelihood criterion. For simplicity, assume that the distribution of the
multivariate data u is Gaussian, so that log-likelihood is quadratic. The second
derivative, or Hessian, of a quadratic criterion is constant:

dJ? dJ?
dxdxT (@,u) = drdxT’ (8)

Because of the probabilistic framework, one has to use expectations. In the
case of log-likelihood functions, the Hessian can be expressed in terms of the
information matriz as

E{%}:‘E{@_J) (%)T} )



Applying (9), and remembering that for a quadratic cost criterion the Newton
iteration becomes a one-step process, regardless of the initial guess Z(0), from
(7) one has

T -1
= (e{(2)(2)]) Hew 0)

This expression has a structure that is formally very near to that in (5). This
gives intuition of how the features can be interpreted: Assume that the landscape
has been characterized by the “gradient prototypes” ;, where § = ¢T: They
construct a “gradient landscape” in the space of u, so that along u; the gradient
in « space is ;. The actual gradient is a weighted sum of the gradient prototypes,
or

%(%U) = u;b;. (11)

j=1
This can be written in the matrix form

dJ

i = Ou = " u. 12
Y )= u= 6" u (12)
When integrated, one has the cost criterion J(z,u) (this is unique up to the

constant of integration):
J(x,u) = 27T u. (13)

There are two variable vectors, and one would like to simplify this expression.
The most natural assumption is that one is only interested in cybernetically
motivated, or balanced, situations, so that z(u) = Z(u); to do this, (5) has to be
taken into account:

Tw)=uT ¢ (") ¢ u. (14)

This expression reveals that the landscape is quadratic in the original input
space, the degrees of freedom being determined by the vectors ;. Variables u;
are used as indexes for selecting the appropriate combinations of the gradient
prototypes; to make (5) and (10) hold, one must have

(D)

meaning that the input space has to be covered so that E{uu’} = I. From the
log-likelihood function formulation (14) one can readily reconstruct the covari-
ance matrix characterizing the Gaussian distribution (however, note that the
matrix is uninvertible, and the data does not span the whole space of u).

In Fig. 1, simple examples of typical linear “balance landscapes” are pre-
sented: The balances, or possible fixed points of the system, are found on the
bottoms of the valleys, along subspaces that are orthogonal to the subspace
spanned by the n irreducible gradient vectors in the m dimensional input space.



- 4 .

= 5

p=-1 p=0 p=1

V=

Fig. 1. “Landscapes” for systems with n =1, m =2, and ¢ = (p 1)T

3.3 “Truth landscape”

In what follows, a more heuristic example is presented; it gives intuition, illus-
trating that one does not need to have a vector space with well-defined distance
measures to model something interesting in the cybernetic framework. Not all
locations in the space of u are now assumed to be meaningful; as an example, the
backward reasoning framework from [13] is applied. Study the simple sequence
of rules

A—B
B—C
C — D.

As shown in [13], the corresponding rule matriz containing the information for
implementing backward reasoning in the cybernetic framework (note that in this
case nonlinearity is also needed; see [13]) has the characteristic structure

-1 1
SOT = -1 ’
-1 1
and, further,
2 -1
lo=1-1 2-1
-1 2

Now, assume that there is a continuous variable x, spanning an “axis” between
A to D in the space of logical entities, so that the vector x contains (equally
spaced) discretized samples of it. Further, assume that there exists a continuous,
differentiable function J(z,.) along the axis. The derivative in B, for example, can
be expressed as

dJ J(B + Az) — J(B

4T gy = i L BEAT) = JB)

dl‘c Az—0 Az
J(B+1)—J(B)

~
~

— J(0) - J(B),



assuming that the “distance” between sampling points in the approximated
derivative is Ax = 1. Correspondingly, the second derivative in B can be ap-
proximated as

dQJ J(B4+Az)—J(B)  J(B)-J(B—-Ax)
_( ) = lim Ax Ax
dxf Az—0 Az
. J(B+ Ax)—-2J(B)+ J(B — Ax)
= lim
Az—0 Az?
_J(B+1)—2J(B)+J(B-1)

= J(A) - 2J(B)1+2 J(C).

Comparing these expressions to those of ¢ and ¢ ¢ above, one can see that the
rule matrix ¢ essentially represents the derivatives as collected together; ¢u
represents the gradient, u selecting the appropriate derivative expression from
the matrix. Matrix o7 is the (negated) Hessian.

Again, it turns out that implementing the search for steady state of the
logical problem in the proposed framework can be interpreted as Newton search
for the “truth equilibrium”. In more complex cases, when the space of the entities
cannot be written as a one-dimensional continuum, if there are branches, etc.,
one has a network of logic interactions, and the gradient interpretation has to be
abandoned (or somehow generalized). The conclusion here is that gradients seem
to pop up automatically at least in some complex enough functional knowledge
representations.

Even though the above example is highly hypothetical, there are some in-
teresting connections to real world. For example, in ant colonies, it has been
recognized that the flow of activity (the number of ants within a time period) is
approximately proportional to the pheromone gradients along that path!

3.4 Additional application fields

When employing simple models, one of the advantages is that there are more
systems and environments than there are possible model structures. This means
that there often are analogues available — one just has to interpret concepts in
another way.

Above, the discussions involved abstract information balances. The balances
can also be concrete, like mass balances, etc. Indeed, the above approaches could
directly be applied for modeling and analysis of industrial control systems. The
system state is captured in the state variables (including the states of the con-
trollers and controlled processes alike), and the force is, of course, the control
action driving the system towards the intended balance: Stabilizing control is
what is the key point in automation. This means that to model such systems in
a cybernetic way, the control and the state need to be learned together. Remem-
ber that there are always feedback loops in complex automation systems; this is
a painstaking problem from the point of view of traditional SISO (single input,
single output) approaches to system identification. Now, on the other hand, the



closed loop problem is no more an issue: The system with feedbacks is a complete
cybernetic system, and it can be modeled accordingly.

The differential-oriented interpretation of x makes it easy to see applications
also in mechanics — indeed, one could speak of “cybernetic mechanics”. Assum-
ing that elements in x can be interpreted as velocities (or angular velocities),
the energy criterion presented in [12] can have new relevance:

J(x) = %xTE{a’:iT}a: — 2TE{zuT }u. (16)

If E{zzT} is interpreted as an inertia matrix, so that masses and inertial mo-
ments are combined in the same matrix, the first term has the interpretation
of kinetic energy. Comparing to the derivations in Lagrangian mechanics (for
example, see [6]), there are differences — the latter term cannot be interpreted
in the standard way as potential enargy. If u is the vector of external forces
and torques affecting the system, the latter term defines wviscous friction. Per-
haps the cybernetic considerations can be applied for optimizing constructions
of mechanical systems?

4 Models of mental machinery

From the point of view of applying systemic thinking to modeling of cognitive
processes, one of the problems has been that modeling consists of engineering
techniques, and cognitive science consists mostly of high-level hypotheses; these
two worlds have been incompatible. Applying the modern cybernetic visions the
philosophical and pragmatic realms coincide. In this latter part of the paper, it is
illustrated what this claim means in practice. These discussions go far beyond the
original goal of only studying the properties of informative data as seen from
the strictly technical point of view; here the principles of the data processing
machinery are studied no matter if the machinery is man-made or natural.

4.1 Critique of pure data

It was explained above that cybernetic models reflect their environment. Neural
machinery is cybernetic, and so is the cognitive machinery (as will be explained
later). There is optimality (in terms of exhausting available activation reason-
ably), and this promises that the original system and the resulting model are
qualitatively equal. Now, if a “synthetic brain” is constructed applying the same
principles, the emerging data structures must again be mirror images of the
environment, and, further, they must be mirror images of the mental represen-
tations (see Fig. 2). The problem is that such functional structures cannot be
directly mapped from a domain to another, and the cybernetic contents cannot
be explicitly coded.

Heinz von Foerster coined the term second-order cybernetics, meaning that
the observer of a system must be taken into account as another cybernetic system
[5]. Indeed, if the ontology process (or generation of information in the system) is
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cybernetic, also the epistemic process (or gaining understanding of that informa-
tion) should be cybernetic. But contrary to Foerster’s vision, this second order
nature does not complicate things — it simplifies them. It seems that Foerster
thought that cybernetic systems always have to be interpreted by humans; as
discussed above, the case is completely opposite. As semantics can be linked in
the systems directly, the human can be liberated from the loop altogether: Also
the human cognitive process can be simulated outside the brain.

It seems that Immanuel Kant was the first cognition theorist — and in some
respects it seems that his intuitions have not been surpassed. He also seems
to be the founder of constructivistic approaches to cognition*. As observed by
Kant, there are not too many hardwired structures in the brain; only the princi-
ples of how new structures are constructed are fixed. Observations alone are not
enough, something has to be assumed about the world and about the processing
machinery. About the world Kant says that there are two basic dimensions of the
world, space and time, that are essential for a human to be capable of construct-
ing a perception. The observations have to be bound to such quantities to make
them mentally modellable. Indeed, this is in one-to-one correspondence with the
above studies: Spatial and temporal dimensions are manifested as relational and
causal relationships among entities. About the functionalities in the brain, Kant
proposes 12 distinct categories that are the minimum conceptual apparatus for
making sense of the world; it seems that these assumptions can be relaxed.

4.2 Associative semantics

The above visions of different kinds of semantic data need to be given more con-
tent. It was claimed that in a simple case semantics can be based on static spatial
context, and in more complex cases on dynamic spatio-temporal “extended con-
text”. First, the simpler case is studied, giving a practical example. In such a
domain where the relationships are based on connotations and associations, no
matter what is the nature of these connections, the entities can be called casual.

4 Immanuel Kant can be said to be the founder of “social cybernetics”, too: His cate-
gorical imperative defines the principle of how an agent in a cybernetic system should
behave so that the overall system behavior were cybernetically optimized (indeed,
in successful religions, like in Christianity, similar ideas of social feedback are also
emphasized)



As an example of a such system, a document modeling environment was im-
plemented [11]. In this application, contextual similarities were searched among
textual documents, and they were stored in a cybernetically optimized model.
Vectors u contained the document “fingerprints”, that is, the histograms of words
within the documents. After convergence, the columns of ¢ represented the “gen-
eralized keywords” assumedly being relevant for characterizing the documents
and distinguishing between them. In technical terms, a sparse coded represen-
tation based on principal components was constructed for the data; because of
this, the converged representations were statistically more or less independent of
each other. The elements in T revealed the relevances of those generalized key-
words when explaining a specific fingerprint u. The resulting model looked like
a higher-level table of contents into the body of documents. A practical search
engine was implemented where the above views were employed. In this appli-
cation, learning of structures was based on explicit sparsity pursuit technique
rather than on the nominal Hebbian/anti-Hebbian learning.

When seen from the semantic point of view, the network among generalized
keywords in the above case purely represented non-causal associative structures:
In this case, all entities have the same semantic “dimension”. Such semantic
networks could theoretically best be discussed in the framework of fuzzy subsets
or relevance networks (see [14]).

It can be assumed that underneath the document data there is a cybernetic
system of memes that is reflected in the terminology and contextual correlations
among documents. The grounding of semantics in this experiment was left float-
ing, there were no any actual inputs; words determined document contents —
but, on the other hand, it can be said that the contents of the documents gave
new flavour to the words, and one could have implemented a truly cybernetic
environment with words and documents determining each other, associations
balancing each other. To reach homogeneity among documents and words as in-
formation entities, the input should have been augmented with some document
identification entries (appropriately scaled).

The words and documents in the above case constitute an integrated interact-
ing associative medium where concepts and “metaconcepts” (or the documents)
determine each other’s interpretation and meaning. In [11] it is assumed that
this kind of associative network would be enough to constitute a basis for exper-
tise. However, expert knowledge is not a static model of the domain field; it is a
model with “flux structures”, where causalities and functional connections play
a central role. Reasoning is not simple associative regression.

How to make the above document model truly cybernetic so that such causal
structures were also represented? The easiest way would be to add auxiliary
information among the input data vector u: For example, the “memetic flow”
could be modeled so that only links from the newer documents to older ones
were taken into account (in the other direction it is assumed that there is no
correlation, the connections are set explicitly to zero). The flow of ideas is, of
course, also reflected in citations, or links to other documents. But, as explained
in the first part of this paper, the essence of a cybernetic system can be expressed



also in terms of tensions. Next, an example of more “expert-like” representation
is presented following this intuition.

4.3 Functional chunks

The abstract discussions in Sec. 2 can be given some semantic content best by
studying an example. In this simulation, chess configurations were stored in a
cybernetic model applying the presented guidelines.

Preliminary experiments were carried out already in [10]. The framework was
intentionally made cognitivistic there: Piece configurations on the chess board
were “shown” to the computer, and its task was to “recall” the configuration.
The underlying assumption about the recall process was that the short-term
memory (STM) contains references to chess-specific long-term memory (LTM)
elements, or chunks (for chunking, see [3]). These chunks are used to reconstruct
the piece configuration. It has been recognized that there are capacity limitations
to STM: Only some 4-8 chunks can be engaged at a time. Thus, the board cannot
be exactly reconstructed; the essence of chess expertise is that the set of chunks
is optimized so that best possible reconstruction is reached. In the computer im-
plementation, the chunks were the features ;, and they were optimized applying
the sparse coded PCA structures. The sparsity level of the representation was
determined by the assumed STM capacity. And, indeed, the simulations with
the model resulted in very similar results that have been observed with human
test subjects.

However, those simulations were plagued by the problems of insufficiently
rich data — just as is explained in Sec. 2. Real chess expertise is not about
remembering, or storing and recalling the past; it is more like constructing the
future that expertise is about! To implement functional chunks rather than static
ones, the piece configurations need to be linked with the flow of the game.

In chess, there are different possible paths from the beginning to the end, as
determined by the rules of the game. Following the above discussions, it can be
said that one starts from the top of the energy function mountain, proceeding
along the slopes, or gradients. As long as there are possibilities, or hidden ten-
sions in the piece configuration, there are slopes, or forces, so that one can get
to lower energy levels. However, the tensions never completely vanish, there are
preferred directions (even when there are only two kings left on the board). If
some moves are not reasonable, or, better, if they are not relevant, there is no
force in that direction, whereas if a move is stringent, the force is strong.

This force-based intuition can be applied to modeling chess not in a static but
in a truly expert-like way: The local balances (or balancing forces) in different
piece configurations have to be modeled. A chess expert could give good data for
modeling purposes, explicitly being capable of telling where there are major gra-
dients. However, now there is no expert available, only data from actual games.
The gradients can be locally approximated — applying mathematical intuitions
— by somehow substracting successive states, or configuration representations,
from each other. The problem is that in a single game just one path realization



takes place, no matter how stringent it is; seen from outside the difference be-
tween successive configurations gives a narrow view to the “chesslikeness” of the
move. When there is plenty of data from various more or less similar games, this
problem is not so acute: If a specific move seems to be consistently encountered,
that direction can gradually be made more emphasized in the gradient estimate.
Whereas the rules of chess determine the landscape of possible gradients, the
actual games give information of the relevant ones.

Of course, statistical approaches to modeling exclusive moves can be ques-
tioned: The gradients corresponding to alternative moves are not additive. When
modeling correlations, the OR. structures change to AND structures — rather
than selecting one alternative, the model gives the spectrum of alternatives, ap-
propriately weighted. Intuitively, this is appealing: When a visible configuration
is matched against the model, a topographic map of causal forces is associatively
constructed, revealing the “hot spots” on the board.

When implementing the simulation, “two-way gradients” were constructed,
meaning that in each location, information of from where a piece disapperars
and in where it again appears, was included in the data. The chess game is a
highly nonlinear modeling problem, and the state (current configuration) has to
be stored together with the gradient estimates. Because of efficient multivariate
techniques, data dimension is not an acute problem, and sparse wasteful codings
were used to make patterns maximally orthogonal, and to facilitate easier analy-
ses: When representing piece configuration, there was available an entry for each
of the piece types for each of the locations, meaning altogether 64 - 12 = 768
variables. The variables were binary, “1” meaning that the corresponding piece
was in that location. Similarly, the two gradient estimates were coded as 768
dimensional vectors, so that the overall data dimension was m = 3 - 768. No
further data preprocessing was applied.

The model size in the experiments was n = 100, and the sparsity level (STM
capacity) was N = 5: Each of the data samples was modeled as a linear combina-
tion of 5 most significant sparse components. Because of the extreme sparsity of
the representations, an explicit sparsity pursuit algorithm (see [11]) was applied
here, because localized (hierarchic) feature extraction is more efficient and better
controllable than the strictly distributed cybernetic implementation. The model
was linear, that is, no explicit cut function was applied (see [12]); nonlinearity
was supplied by the sparse nature of the representations. As compared to [10],
now only white moves were modeled. There were some 2500 data samples used
in the training.

In Fig. 3, one (successful) case of configuration reconstruction is illustrated.
In reconstruction, only the visible configuration was assumed to be available, and
the entries corresponding to the gradient estimates in the data vectors were not
matched — these vector elements were filled in associatively. The continuous-
valued entries in the estimated configuration have been thresholded so that val-
ues above 0.5 are interpreted as the corresponding piece being in that location,
whereas values below that are ignored (when interpreting the gradients, thresh-
old was 0.1). The model seems to propose two alternative moves: Either one can



Fig. 3. [llustration of the functional chunks in chess. The topmost image rep-
resents the board that has been shown to the “test person”, and the bottom
row shows the reconstruction results: The recalled board on the left, the “from”
pieces in the middle, and the “to” pieces on the right. This time, the two sug-
gestions both are quite reasonable

move (simultaneously) the king and the rook, performing the castling operation,
or one can move the pawn from d2 to d4. Truly, the “hot spots” are immediately
detected without extra calculations. This kind of focusing of attention reminds
the process that seems to be taking place when the real experts are involved.

However, from the point of view of assisting in real game, the reconstructions
are typically much too poor, specially as the game proceeds beyond the standard
openings (for example, the very essential bishop in Fig. 3 was ignored altogether).
But perhaps chess as a domain with very strict rules is not a very good example of
real-life expertise. The configurations cannot now be efficiently modeled applying
associative techniques, evaluations of configurations being too much dependent
of one single piece.

From the point of view of practical implementations, and also from the point
of view of cognitivist plausibility, additional gradient inputs are difficult — for
example, one needs to determine appropriate weighting among the inputs. Ex-
plicitly increasing data dimension does not sound very elegant, specially when
the property of cybernetic systems should be optimality at every level. One
should pursue light-weight solutions; causal structures can be implemented also
directly if the platform supports it — and the neural platform does. Are there
ways to reach automatic balancing for originally unbalanced observations?



4.4 Essence of “deep structures”?

Just as data, also language reflects the underlying real world in a different form.
However, modeling of language seems to be among the biggest challenges of all in
cognitive science (for example, in [2] where the unification of mental faculties is
propagated, it is still admitted that perhaps linguistic faculties need completely
different mechanisms). Still, natural language is the most natural way for hu-
mans to process and transfer structured information — providing a plausible
explanation of language is the real testbench for any cognitive theory.

In [4], it is explained how there is a difference between the surface form
of the language and the deep structures. The actual language contains com-
plex syntax to represent the structural hierarchies of the deep structures in a
“unidirectional”, linguistically representable form. What is the essence of these
underlying deep structures? The above discussions give a new answer to this
question.

Again, one needs to distinguish between two different types of semantic en-
tities. First, there is the spatially connected associative medium where the con-
cepts are grounded based on naturalistic and contextual semantics; these con-
cepts are in balance, as presented in Sec. 4.2. The second set of entities define
some kind of transitions, changes, or causal relationships; they are declarative
“on the fly” structures, explicitly “programmed”. When a new concept is de-
fined it is connected to its qualifiers. The concept of a “concept” needs to be
understood so that indeed all new connections of prior concepts are new con-
cepts here. In a way, a concept (abstract as well as concrete) is defined through
the process of ostension, defining examples and other concepts that character-
ize it. The new structures can equally well refer to established concepts in the
associative medium, or to the possibly very volatile new structures. The linked
sequence of structures defines a causal path. Whereas the associative medium is
cybernetically balanced, the newly created sequence of novel concepts is not yet.

In a way, a story defines a path in the causal semantic force field towards
lower energy, as measured in terms of uninstantiated possibilities. As compared
to the chess game, the number of alternative directions to go is immense. The
ideal story balances all opposing forces, so that finally the holes in the story get
filled. Until that, there is tension and dynamic flow within the structures. As
compared to the extremely static linguistic syntax trees, the dynamic functional
interpretation does have some added intuitive appeal (see Fig. 4).

The new concepts are also first all declarative (to facilitate further references
to them, the new concepts also need to be labeled somehow). The concepts have
arbitrary attributes, or links to other concepts. The explicitly determined at-
tributes are initially the only inputs into that concept (additionally, there is a
“-17 link to itself to assure stability). However, as soon as the new concept is
established, the Hebbian/anti-Hebbian processes are activated: If the concept is
active, and there is simultaneous activation in lower-level structures, the con-
nection is sthrengthened according to the Hebbian law; simultaneous activation
with same level entities results in inverse adaptation in the anti-Hebbian way.
This means that finally (if the concept is activated enough often) it becomes
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“swallowed” by the associative medium, interacting in the new cybernetic bal-
ance there. There also emerge direct links to lower-level “resources” — and if
there once existed a declarative succession of same-level concepts, they start
sharing those resources in a parallel manner, the temporally ordered master-
slave structure disappearing. Mutual competition means that finally there will
be only one associative concept standing for the whole sequence; this means
that the representation becomes compressed and optimized if there are concepts
with no differences whatsoever (in terms of their connections). The final disso-
lution into the associative medium takes a long time; there is a continuum from
declarative to associative representations in the universe of concepts.

Originally the connections between sequential concepts is positive, and after
adaptation the connections among concepts are negative — some kind of land-
mark in the process towards becoming “common knowledge” is perhaps when
the mutual links cross the zero level (note that the connections to lower-level
constructs become all the time stronger and stronger, so that the concept is still
firmly grounded). If there are disturbances in the balanced system (“too active”
concepts, etc.), they are soon compensated by inhibitory connections that get
stronger.

This far in this context, it seems that all interesting phenomena and processes
have been deemed as being cybernetic. So, is the deep structure of language cy-
bernetic? Surprise — the answer here is no. Deep structures what comes to
representing sequentially ordered linguistic utterances must be non-cybernetic.
After becoming associative and cybernetically balanced, the contents of a struc-
ture cannot any more be decoded and explicated.



The deep structures are not only characteristic to language: It is claimed here
that all ordered information is (originally) presented in this form, and it gives a
solid basis for implementing complex functionalities. For example, a declarative
feedforward reasoning system can be implemented in this framework (see [13]).
As another example, study learning by examples. Assume that a new concept has
been defined, but its input links have not been sufficiently instantiated (so that
the concept “fires” inappropriately); the correct substance of the concept is given
implicitly in terms of positive and negative examples of that concept. If the new
concept is not too much more complex than the prior ones on the lower level,
so that the new class is linearly separable in terms of other concepts, Hebbian
learning adapts the weights among active neurons until correct classification is
inevitably reached. To implement learning by examples, there is also no need
for any structural assumptions in addition to the hierarchically ordered deep
structure.

When the chess game is modeled in the deep structure form, the whole game
is stored as a sequence of successive configurations. Because of the links among
configurations, activating one of them simultaneously activates its successors —
thus, the representation is again functional. It is not only so that configura-
tions are linked; there is always the whole frame of reference that is stored. For
example, related feelings — enthusiasm, fear, despair — can also be activated
later in certain situations. There is also a huge number of memory units needed
to store the chess player’s memories; however, because there is only the fixed
population of units available, less relevant ones will be reused (see later). And
because it is also the associative matching that is taking place, the representa-
tions are compressed; a single unit can start representing various functionally
similar configurations.

Also non-hierarchic information may be presented in a sequential form be-
cause of the properties of the available data processing machinery and data
transfer channels. For example, the process of looking at an image consists of a
sequence of eye fixations.

4.5 Mind and brain: Towards unifying principles?

The computer paradigm has been rooted in our understanding, and this makes
us see all information procesing systems through the same viewpoint. However,
it is evident that in the brain this analogue collapses altogether: There is no
need to distinguish between hardware and software (or “wetware”), there is no
need for a “central processing unit”, or separate memory registers. Applying the
above views, it turns out that the associative medium, the deep structures, and
also the accompanying mental processes can be explained in terms of the sim-
ple (nonlinear) perceptron model implementing Hebbian/anti-Hebbian learning,
thus constituting a cybernetic system. A single neuron is the atom of semantics,
connecting other concepts into a balanced whole.

There is homogeneity what comes to mapping between the higher-level cog-
nitivist concepts and neural constructs: The same basic construct, the neuron,



is only needed. First, it needs to be noted that no structural or functional dif-
ference between declarative casual and causal structures exists; this distinction
had only a semantic role in the above discussions.

No centralized memory units are needed for any specific task, and there
is no transfer of data between “registers” — logic functions need no logistic
functions: A newly allocated neuron with its few links to prior concepts can be
seen as a short-term memory element. An STM element changes into a long-
term memory unit if it is relevant enough; and an LTM unit is “swallowed”
by the associative medium if it is bound to other concepts densely enough.
Using the traditional terminology, this process of becoming “common sense”
can be called shift from novice to expert. There is no clear distinction between
the declarative and associative representations. Indeed, all different kinds of
hypothesized memory types can be emulated in the proposed framework with
no essential extensions; the connections can be used also for explaining many Al
concepts like frames and schemas. In technical terms, a converged associative
structure is characterized by symmetric connections among entities, whereas
declarative structures are characterized originally by unsymmetric connections
(see next section).

Looking at the above discussions, it seems that some kind of an “operating
system” is needed for constantly supplying free neurons to be allocated when new
concepts are being defined. The operation of the neuro-cognitive system looks
so goal-directed that some kind of an explicit organizer seems to be necessary.
However, this is only an illusion: The operating system is distributed rather than
centralized, being an emergent property of the neuronal competition for activa-
tion. There is no centralized “winner” selection among neurons; typically, many
individual neurons can be simultaneously allocated for a single task, and only
later the representation can be optimized because of mutual competition®. This
competition for resources can be modeled applying cybernetic considerations.
Now, there is a population of neurons rather than a fixed network to start with,
just as studied in [12]. As seen from outside, the many competing entities make
the system behavior mathematically better conditioned: rather than having to
study individual, more or less random signals, only statistical average behaviors
are needed. This distributedness of neuron allocation also makes it possible that
simultaneous inputs can be given (subconscious) attention in a parallel manner.

It would seem that another task of the cognitive machinery where some
centralized control seems necessary is that of “garbage collection”, or freeing
those neurons that are no more needed. Again, no organizer is needed here:
Neurons that have too little overall activity (because of lack of active enough
or otherwise relevant links), are free to be reused. Or, indeed, the neurons are
not just passively exploited — they start actively creating new connections,
or dendrites, towards the sources of activity. When a dendrite meets another
neuron, a synapse is created in the junction (this has been shown to happen
also in reality). There is no “10% activity rule” in the brain; the neurons are all

5 This competition-like behavior among neurons was already observed by the Nobel
laureate Gerald Edelman



the time fully loaded, searching for resources. There are no “free”, completely
unconnected neurons; they may just not be well “aligned” with other ones, thus
receiving contradictory activations summing up to zero. There are also no timing
or synchronization problems in the system: Whenever a neuron is in balance with
its environment, it can start adapting according to other balanced activity levels
that it observes in its environment.

When there is no input from the senses to the neurons, the neuronal activity
pursuit makes them more sensitive, so that activity can be triggered also by
random noise. The REMaining task of the hypothetical operating machinery is
to connect neurons to other ones in a more or less random manner — and, again,

this can be explained in completely local manner®.

When studying semantically very loaded phenomena, one bangs into anthro-
pocentric connotations everywhere. For example, above the term competition
is dangerous: It sounds as if consciousness and free will were moved from the
operating system level (mind) to the agent level (neurons). However, supplied
with the Hebbian/anti-Hebbian learning principle, the neuron can do all tasks
that are needed; what is more, as a cybernetic agent, it cannot avoid adapting
accoding to the observations, no “motivations”, etc., are needed. The underlying
“Elan Vital” (why there is some adaptation instead of no adaptation) is neither
a mystery: The emergent functionalities do give the system the evolutionary ad-
vantage. In the other end, there is the question of consciousness; there is not
yet enough intuition available to say anything concrete about these higher level
control issues. According to some definitions, consciousness is “consciousness of
being conscious”: If defined in terms of self-consciousness, self-self-consciousness,
etc., one is again facing a deeply connected cybernetic feedback system.

Even though homogeneity of structures was emphasized above, it needs to
be noted that the associative medium is functionally by no means homogeneous.
There are different associative subsystems for different internally tightly cou-
pled subdomains. Again, this organized-looking nature of the structures is just
an emergent phenomenon: If different neurons are active together, as they will
be if they represent related concepts, they become connected when applying
the assumed learning principles. Actually, our way of seeing different domains
as decoupled entities is a fallacy: There is a continuum from strongly connected
neurons to less strong connections, and no strict boundaries between subsystems
exist. As an example, study the decomposition of visual patterns: The low-level
visual features constitute a tightly connected subsystem where alternative fea-
tures (line segments, etc.) compete for activity; combining these into more com-
plex feature structures is the next level — as seen by a human eye and reasoning
style. However, there is no clear-cut boundary between layers, neither there are
any well-defined “interfaces”: There can be individual connections between the
lower and highel level neurons.

5 Of course, there also exist some global mechanisms, like sleep rhythms, etc., and
different kinds of chemical levels (hormones and enzymes), controlling the behaviors
of all neurons simultaneously in the system in a global manner



Many traditional cognitivist concepts need to be given new interpretations.
For example, “STM memory capacity” is not a property of some centralized
general-purpose processing element or memory structure; now it represents the
maximum number of links that the neuron can simultneously instantiate when
it is being allocated.

4.6 Neuro-cognitive model

To implement concrete models for evaluating and utilizing the above approaches
to smart modeling of data, mathematically more compact representations are
needed. The proposed cybernetic cognitive model has practically the same struc-
ture as the neural model presented in [12]. It is a streamlined version of that
model that was presented in [13] (there the internal system dynamics could be
unstable, resulting in emphasized sparsity). As a state-space model, the new
structure looks like
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There does not exist any agent mathematics. Even though the neural/cognitive
network is not fully connected, one needs to employ the exhaustive matrix cal-
culus; this means that the matrices become sparse. There is one row for each
neuron, and matrix elements reveal how strongly it is connected to other neu-
rons and inputs; the activations of the n concepts (neurons) are collected in the
vector z. As compared to the model presented in [12], the main difference here is
the interpretation of inputs: The actual inputs u have been included in the state
vector, and there is now the augmented input vector with trivial input mapping
matrix B = I. Inputs u,, represent the actual system inputs, signals coming from
senses or other subsystems, whereas the role of x;, is to implement “handles” to
the concepts. The augmented input means that also any of the concepts can be
explicitly activated from outside; this makes “learning by being told” possible, in
addition to the associative activation that is based on matching with u,,. In the
recall phase, the inputs can be used for activating associations in the network,
so that a mental image with its connotations can be waken up: When a concept
is activated, those concepts that it is connected to also inherit some agitation,
activation thus spreading in the associative structure.

In the model (17), an additional nonlinearity, or “activation function” is in-
cluded; for the reasons explained in [13], cut function is applied. This nonlinearity
gives rise also to new problems: For example, there can be no negative values in
the output. To restore the expressional power, the output vector is decomposed
into a higher-dimensional vector so that complex classifications can better be
implemented. Indeed, the nonlinear function f represents feature extraction: In
this case this means that the positive and negative outputs have entries of their
own in the vector (see [12]). It is here assumed that there can exist two alter-
native neuron types: One is assumed to be activated with positive and one with
negative signals. When both alternatives are included in the vectors, one can




emulate the whole population of neurons with different strategies in the same
framework — only those with the most appropriate strategy will prosper”.

If there are non-associative cyclic structures, the spread of activation can take
a long time. However, only after the network has converged, after the steady-
state vectors T’s and u’s are found, adaptation of the network weights is carried
out. The correlation matrices in (17) are adapted applying the Hebbian and
anti-Hebbian principles. The connections between inputs and neurons follow the
Hebbian learning:
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Here, A is the learning parameter (“forgetting factor”). To implement the dis-
cussions above, the neuron-to-neuron learning part becomes more complicated:
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The operator ® stands for elementwise multiplication, and K and G are masking
matrices. Matrix K makes it possible to implement explicit sparsity, as well as
plain principal component analysis. It also makes it possible to switch between
Hebbian and anti-Hebbian learning, facilitating hierarchical structures among
neurons (see [12]): Negative adaptation resulting in Hebbian learning implement
forward shifting of information in a sequential manner, whereas positive adap-
tation results in anti-Hebbian competitive learning, implementing associative
structures. The lerning mode makes a big difference — that is why it is possi-
ble to have various neurons taking care of a single specific task, the signs of K
being randomly initialized; because of the competition for activation, the best
combinations survive, other neurons starving to non-existence.

As compared to [12], the matrix G is something new; its role is to extend the
model towards the declarative knowledge representations. Above it was assumed
that sequential structures eventually become associative — however, this does
not always seem to be the case: Some temporal structures seem to remain there
forever unaffected. Zeros in G (and simultaneously in K) mean that in that
synapse there is no adaptation whatsoever. This makes it possible to encapsu-
late episodic memory blocks. Note that only internally the adaptation is frozen;
links to outside system are adapted consistently. In this sense one could speak of
“superneurons”, conglomerate neuron blocks with hardwired inner structure fa-
cilitating more complex dynamics than what is possible for the basic perceptron.
An example of this is given in the following section.

Something needs to be said about how the data structures are maintained.
Within the fixed matrix structure it is not very natural to implement brain-like
neuron allocation; this can be simulated, however. If there are known to be neu-
rons with special roles, it can be taken care of when initializing the corresponding

" Because the matrix A has dimension (n 4+ m) x (2n 4 2m), the “identity matrix” in
the upper left corner has to be “squeezed” appropriately



rows and columns of the correlation matrix. The new concept neurons are con-
nected to their predecessors by filling in the corresponding slots on that row;
typically, the corresponding column will also be non-zero to facilitate bidirec-
tional two-way activations (the column elements must be non-zero and negative
to assure stability). If there is plenty of activity available in some neuronal re-
gions, diffusion among neurons can be implemented, so that self-organization
takes place (see [14]). There is no need to explicitly free unused neurons; self-
organization “pulls” neurons towards higher activity.

4.7 The way up and the way down

The Heraclitus aporia about the way up and the way down can also be given
another interpretation in the cognitive setting. It is not only so that the way “up”
is the world and its processes, and the way “down” is the perception machinery;
the idea can also be seen in an opposite direction: The way up is the process of
constructing perceptions, and the way down is how these perceptions are applied
to affect the world. This alternative interpretation means that the processing of
sensory signals and the construction of motoric signals must be based on the
same principles; these processes are, again, mirror images of each other. This
vision was studied already in [7].

Following the above neurons-based view up from observation to perception,
how could the way down to muscles be explained? This is a direct application of
the above mentioned sequential block: The key point is to master sequences of
time instances. To analyze this case more closely, one needs to remember that
delay can be modeled in terms of partial differential equations as

oz _ —v % (20)
ot o0&
Here, ¢ is the time variable, whereas ¢ is the spatial variable; z(¢, ) can be any
function of time and location as long as it can be written as a function of only
one variable, so that x(¢,£) = 2/(£ — vt), that is, the function travels at speed
v along the ¢ axis. This infinite-dimensinal model can be approximated using n
state variables as

Z1 -1 Z1 Uin
d | v 1 -1 To 0
el —— — 21
¥ S I s+ (21)
Ty 1 -1 Tn 0

If n is large, the signal u,, traverses through the grid of variables x;. Assuming
that wu,, is a start impulse initiating some sequence, any function y(t) can be
approximated to arbitrary accuracy using these basis functions:

y(t) =~ (fr- fa) 2(t). (22)

This means that any function y(¢) can be implemented as a sequence of specially
connected neurons (see Fig. 5). The delay structure does not change but the



Fig. 5. Any pattern of excitation can be implemented to arbitrary accuracy

connections from this sequential block to the outside world, that is, the weights
fi, can be adapted. This adaptation can be based on Hebbian learning: If a
muscle follows some activation pattern, the neurons learn that behavior.

5 Conclusion

If a tree falls in the forest and nobody is around to hear it, does it make a sound?
Does an objective reality exist, are there systems outside human minds?

In tomorrow’s smart systems, systems must become mature, and become
independent of humans. Clever adaptation according to the observations is nec-
essary — this means autonomous modeling of the environment in such agents.
Extending the views of Nietsche, one could say that anthropocentric modeling
practices may soon become obsolete: “Oversystems” need no more humans.

The discussions above are far from conclusive; however, it can be claimed
that such studies are a Prolegomena to any future metaphysics that will be able
to present itself as a Complex Systems Science.
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