
Lesson 1

Introduction to
Multivariate Modeling

Statistics tell the biggest lies, everybody knows that ...! — However, this is not
necessarily true. It all depends on the user who is interpreting the results: If
the statistical methods are applied appropriately, by somebody who understands
their properties, excellent results are often reached. Gaining this understanding
is the objective of this report.

1.1 About systems and models

The role of a model is to organize information about a given system. There are
various questions that need to be answered when a model is being constructed
— the selection of the modeling principle being perhaps the most significant,
affecting all subsequent analysis. First, one can start from the physical first
principles, constructing the model in the bottom-up fashion. However, this
modeling style is very knowledge-intensive, and the scarcity of the domain-area
experts is an ever increasing problem. And, what is more, the larger the system
is, the more probable it is that such a model will not really be suited for real
use, for analysis of the system behavior or for control design. To understand
this, see Fig. 1.1: What is the dimension of this constant-volume system, what
is the number of independent system state variables?

The intuition tells us that there are three independent state variables — the
concentrations in each tank needs to be represented in the system model. The
problem with qualitative analyses is that the relevance of different constructs
is not at all judged. For example, assume that one of the tanks is negligible,
so that its volume is small as compared to the other two tanks: This tank
does not contribute in the system behavior, and the nominal three-state model
is unnecessarily complex for practical use. On the extreme, all the system
time constants may be negligible as compared to the sampling interval, and,
seemingly, the system becomes static with no dynamics whatsoever. On the
other hand, assume that the mixing is not perfect: If the tanks are not ideal
mixers, the one-state-per-tank approach is no more sufficient, and one ends in

11



12 Lesson 1. Introduction to Multivariate Modeling

C1

C2

C3

C0

Figure 1.1: What is the dimension of the dynamic system?

a partial differential equation model. How many state variables are needed
to reach sufficient accuracy is dependent of the actual system. The relevant
dimension of the system can be anything between zero and infinity — and,
indeed, for partial differential equation models, one can even speak of non-
integer dimensions! Appropriate model structure is dependent of the intended
use of the model.

As compared to bottom-up methods, the multivariate statistical methods op-
erate in the top-down fashion: Plenty of data is collected and one tries to find
the relevant system properties underlying the measurements. Instead of being
knowledge-intensive, multivariate methods are data-intensive. The field of sys-
tems engineering is getting wider and wider, and the systems to be modeled
are getting more and more complicated and less structured (see Fig. 1.2). All
these trends necessitate data-oriented approaches in both ends of the systems
continuum.

Another fact is that totally new branches of research — for example, data mining
and microactuators must be based on massively parallel analysis and modeling
methods.

The field of modern multivariate methods is wide and heterogeneous. Re-
searchers in different disciplines typically have different objectives and appli-
cation fields, and certainly they do have differing terminology and notations.
What is more, the methods are still in turmoil and their overall relevance has
not yet been generally understood. Some examples:

• Since the Gaussian times, least-squares mapping has been the standard
technique in all fields of science. This methodology matured well before
any data-orientation became a hot topic, and it seems that it is not typ-
ically seen in the wider perspective, in connection to other multivariate
methods. It can be assumed that a great number of scientists and engi-
neers suffer from its deficiencies, having to force their data into an unnat-
ural least-squares-conditioned model structure, never getting acquainted
with alternatives.

• In chemical engineering, for example, where calibration of devices is of
utmost importance, a method called Partial Least Squares is routinely ap-
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Figure 1.2: Spectrum of systems to be modeled

plied. However, being based on simple matching of correlations, employing
unpenetrable algorithms, the uncompromising and ambitious mathemati-
cians and statisticians are not very impressed or interested. Their answer
to similar problems is Canonical Correlation Regression — a method that
seems to be inaccessible for a practicing engineer. The unfortunate fact
is that these mental barriers are caused simply by different terminologies
and practices in these communities: The underlying ideas turn out to be
closely related.

• The neural networks have become popular in almost all complex data
modeling applications. In these research circles there seem to exist preju-
dices against the “outdated” statistical methods — but it is not only the
“postmodernists” to blame: In the traditional school, there exist similar
scornful attitudes towards the “heuristic” neural network methods. Again,
beyond the surface, there is very much in common.

• Finally, in control engineering, dynamic models are often regarded as the
only “interesting” models. However, the dynamic models can often better
be understood when the simpler, static models are studied — indeed,
dynamic modeling is static modeling with appropriately chosen data. On
the other hand, static data samples are seldom independent of each other
and dynamic understanding can reveal additional structure beyond that
data, so that, again, it would be nice if these two approaches, static and
dynamic, could be presented in a consistent setting.

It is difficult to see the underlying relationships among different approaches.
An illustration of this heterogeneity in the field of data-oriented modeling is the
fact that there seems not to exist an engineering level treatment of all relevant
methods in a common framework. This report tries to do that: To offer a
homogeneous view over the various disciplines in multivariate analysis.
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1.2 About mathematical tools

Its is mathematics that is the natural language of nature. To fluently “think”
using the syntactical structures defined in that language, the appropriate con-
cepts need to be, not only familiar, but they have to belong to one’s active
vocabulary.

1.2.1 Challenge of high dimensions

In multivariate framework the structural complexity of the system is changed
into a problem of high dimensionality: It is assumed that when one includes
enough measurement data in the model, arbitrary accuracy concerning the sys-
tem behavior can be achieved.

One needs to keep in mind the lesson learned in “Flatland” [1]:

Assume that there existed two-dimensional creatures, being only
able to recognize their environment in two dimensions. Now, assume
that a three-dimensional ball goes through this two-dimensional world
— what the creatures perceive, is a point coming from nowhere, ex-
panding into a circle, and finally again contracting into a dot before
vanishing. This circle can emerge anywhere in the two-dimensional
space. How can the creatures understand what happened?

Figure 1.3: Cover page of E. Abbott’s “Flatland”

The answer is that this behavior exceeds the capacity of those creatures, there
is no way they could really understand it. The point is that we are bound to the
three-dimensional world — the behavior of higher-dimensional objects similarly
exceeds our capacity. Or, as J. Hadamard put it:

Give me 100 parameters and I will construct an elephant; give me
101 parameters, and I will make it wag its tail.
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This incomprehensibility is the basic problem when studying multivariate meth-
ods: The phenomena emerging in higher dimensions cannot really be visualized
as two-dimensional plots (or even three-dimensional wire models). When more
sophisticated methods are analyzed, illustrations do not help much, and com-
mon sense intuitions are of no use.

How the above problems with high data dimensionality are reflected in practice
is perhaps best illustrated by an example: Assume that behaviors of a scalar
(one-dimensional) function can be captured along a line; a two-parameter func-
tion spans the whole plane, and a three-parameter function spans the three-
dimensional space. This means that to reach the same accuracy in each case, to
cover the space equelly, the claim for data grows exponentially. To master the
dimensional complexity, it is evident that one has to make strong assumptions
to constrain the model structures.

Mathematics is a robust tool to attack the above challenges, offering stronger
concepts and grammar for discussing multivariate phenomena.

The way to reach reasonable restrictions on the model structures, is to assume
linearity. For linear models, essentially the same methodologies work no matter
what is the dimension of the problem. This means that it is linear algebra
that is the theoretical framework for studying multivariate statistics, and it
is matrix calculus that is the practical language for implementing models for
high-dimensional phenomena. Good understanding of these conceptual tools is
vital.

1.2.2 About matrices

When doing multivariate modeling, data is (hopefully) received in huge num-
bers, and some kind of standardization of representations is necessary. It is
assumed here that the only data structure that is employed is a data matrix,
following the original Matlab style course of operation. The matrices will then
have different roles: They are used as data storages, but also as frames for vec-
tor systems, and as linear operators representing linear mappings. In each case,
it is matrix operations that are applied to manipulate the data structures.

The principles of matrix calculus are not repeated here (for more information,
see, for example, [2] or [11]). It is assumed that matrix inverses, etc., are
familiar; however, let us repeat what are eigenvalues and eigenvectors, what
are singular values, and how matrix-form expressions are differentiated and how
their extrema can be found. The discussion is restricted to real-valued matrices.

Eigenvalues and eigenvectors

It turns out that, rather astonishingly, most of the major regression methods
can be presented in a homogeneous framework; this is the framework of the so
called eigenproblem. A square matrix M of dimension n × n generally fulfills
the following formula for some ξ and λ:

M · ξ = λ · ξ. (1.1)
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Here, λ is a scalar called eigenvalue and ξ is a vector called eigenvector. This
means that the eigenvector directions are, in a sense, “natural” to the matrix M :
Vectors in this direction, when multiplied by M , are only scaled, so that their
direction is not changed (later, when speaking of linear mappings, this property
will be elaborated on further). From the construction, it is clear that if ξ is
eigenvecter, then αξ also is, where α is an arbitrary scalar. For uniqueness, from
now on, it will be assumed that the eigenvectors are always normalized, so that
‖ξ‖ =

√
ξT ξ = 1 (this constraint is automatically fulfilled by the eigenvectors

that are returned by the eig function of Matlab, for example).

In those cases that we will study later the matrices will be non-defective by
construction (however, see the exercise); this means that there will exist n dis-
tinct eigenvectors fulfilling the expression (1.1). These eigenvectors ξi and cor-
responding eigenvalues θi, where 1 ≤ i ≤ n, can be compactly presented as
matrices Ξ and Λ, respectively:

Ξ =
(

ξ1 · · · ξn

)
and Λ =

⎛
⎜⎝

λ1 0
. . .

0 λn

⎞
⎟⎠ , (1.2)

where the dimension of matrices Ξ and Λ is n × n. Using these notations, it
is easy to verify that the n solutions to the eigenproblem (1.1) can now be
expressed simulateneously in a compact matrix form as

M · Ξ = Ξ · Λ. (1.3)

In those cases that we will be later studying, the eigenvectors are linearly in-
dependent, Ξ has full rank and the matrix M is diagonalizable: The above
expression equals

Ξ−1 · M · Ξ = Λ, (1.4)

or

M = Ξ · Λ · Ξ−1, (1.5)

so that M is similar to a diagonal matrix consisting of its eigenvalues. One of
the specially useful properties of the above eigenvalue decomposition is due to
the following:

M i =
(
Ξ · Λ · Ξ−1

)i

= Ξ · Λ · Ξ−1 · · ·Ξ · Λ · Ξ−1︸ ︷︷ ︸
i times

= Ξ · Λi · Ξ−1

= Ξ ·

⎛
⎜⎝

λi
1 0

. . .
0 λi

n

⎞
⎟⎠ · Ξ−1.

(1.6)

That is, calculation of matrix powers reduces to a set of scalar powers. From
this it follows that all matrix functions determined as power series can be cal-
culated using their scalar counterparts after the matrix eigenstructure has been
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determined. On the other hand, it is interesting to note that matrix functions
cannot affect the matrix eigenvectors.

The eigenvalues can be determined also as the roots of the characteristic equa-
tion

det{λ · I − M} = 0. (1.7)

Even though the eigenvalues should not be calculated this way, the roots of high-
order polynomials being numerically badly behaving, some theoretical proper-
ties can easily be proven in this framework. For example, if a matrix of a form
q · I, where q is scalar, is added to the matrix M , all of the eigenvalues are
shifted by that amount:

det{(λ − q) · I − M} = 0. (1.8)

The properties of the eigenvalues and eigenvectors will be discussed more when
we know more about the properties of the matrix M .

Singular value decomposition

The eigenvalue decomposition is defined only for square matrices (and not even
all square matrices matrices can be decomposed in such a way). The general-
ization, the singular value decomposition (SVD), on the other hand, is defined1

for all matrices M :

M = Ξ · Σ · ΨT . (1.9)

Here Ξ and Ψ are orthogonal square matrices, so that ΞT Ξ = I and ΨT Ψ = I,
and Σ is a diagonal matrix of singular values. Note that Σ does not need to be
square; if M has dimension ξ times ζ, where ξ > ζ (and analogous results are
found if ξ < ζ), the decomposition looks like

M
ξ×ζ

= Ξ
ξ×ξ

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

0 σζ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· Ψ
ζ×ζ

T . (1.10)

The singular values σi are characteristic to a matrix; they are positive real num-
bers, and it is customary to construct Σ so that they are ordered in descending
order. The singular values are close relatives of eigenvalues: Note that, because
of the orthogonality of Ξ and Ψ there holds

MT M = Ψ · ΣT Σ · ΨT = Ψ ·

⎛
⎜⎝

σ2
1 0

. . .
0 σ2

ζ

⎞
⎟⎠ · ΨT (1.11)

1Here, the Matlab convention is followed: Matrices Ξ and Psi are kept invertible (square),
meaning that generally Σ is non-square. Other ways to define SVD can be found in other
contexts
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and

MMT = Ξ · ΣΣT · ΞT = Ξ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 0

. . . 0
0 σ2

ζ

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· ΞT . (1.12)

These are eigenvalue decompositions of MT M and MMT , respectively; this
means that the (non-zero) eigenvalues of MT M (or MMT ) are squares of the
singular values of M , the corresponding eigenvectors being collected in Ψ (or Ξ,
respectively).

Generalization of functions to non-square matrices can be based in the following
matrix power definition, following the idea of (1.6):

M i = Ξ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σi
1 0

. . .
0 σi

ζ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· ΨT . (1.13)

Matrix differentiation

Corresponding to the differentiation with respect to a scalar, we can differentiate
a scalar-valued function f(·) with respect to a vector; the result is a vector called
gradient. Assume that the function f : Rζ → R is being differentiated:

d

d z
f(z) =

⎛
⎜⎝

d
d z1

f(z)
...

d
d zζ

f(z)

⎞
⎟⎠ . (1.14)

Note that now we choose that gradients to be column vectors (in literature, this
is not always the case). Assuming that the matrix M has dimension ζ × ξ, its
row dimension being compatible with z, so that there exists

zT M =
( ∑ζ

i=1 ziMi1 · · · ∑ζ
i=1 ziMiξ

)
, (1.15)

the differentiation can be carried out columnwise:

d
d z

(
zT M

)
=

⎛
⎜⎜⎝

d
d z1

∑ζ
i=1 ziMi1 · · · d

d z1

∑ζ
i=1 ziMiξ

...
. . .

...
d

d zζ

∑ζ
i=1 ziMi1 · · · d

d zζ

∑ζ
i=1 ziMiξ

⎞
⎟⎟⎠

=

⎛
⎜⎝

M11 · · · M1ξ

...
. . .

...
Mζ1 · · · Mζξ

⎞
⎟⎠

= M.

(1.16)
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This is how one would expect a linear matrix function to behave. On the other
hand, it turns out that if z is multiplied from the other side, the matrix has to
be transposed:

d

d z

(
MT z

)
= M. (1.17)

Thus, using the product differentiation rule,

d
d z

(
zT Mz

)
=

(
d

d z

(
zT Mz̄

)
+ d

d z

(
z̄T Mz

))∣∣
z̄=z

=
(
M + MT

)
z.

(1.18)

Here, M must have dimension ζ × ζ; z̄ is assumed to be a (dummy) constant
with respect to z. For symmetric M the above coincides with 2Mz, something
that looks familiar from scalar calculus.

It turns out that more sophisticated differentiation formulas are not at all needed
later in this report.

1.2.3 Optimization

Matrix expressions can be optimized (minimized or maximized) similarly as
in the scalar case — set the derivative to zero (this time, “zero” is a vector
consisting of only zeros):

d

d z
J(z) = 0. (1.19)

For matrix functions having quadratic form (like xT Ax) the minima (maxima)
are unique; this is the case in all optimization tasks encountered here. For an
extremum point to be maximum, for example, the (hemo) Hessian matrix must
be negative semidefinite:

d2

d z2
J(z) =

d

d z

(
d

d z
J(z)

)T

≤ 0. (1.20)

Note the transpose; the other gradient must be written as a row vector, so that
the final result would be a square matrix. Here “<” has to be interpreted (both
sides being matrices) so that

ξT ·
(

d2

d z2
J(z)

)
· ξ ≤ 0 (1.21)

for any (compatible) vector ξ. However, the above approach only works if there
are no constraints to be taken care of in the optimization.

Pseudoinverse (case I)

As an example, study the least squares solution when there does not exist any
exact solution.
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Assume that there holds x = θz + e, x and θ being fixed, and one wants to
solve z so that the norm of the error vector e is minimized. It is now assumed
that the dimension of z is lower that that of x; this means that the solution
generally has no exact solution. The criterion to be minimized, the square of
the norm of e is

J(z) = eT e = (x − θz)T (x − θz)
= xT x − xT θz − zT θT x + zT θT θz.

(1.22)

Differentiating one has

d

d z
J(z) = −θT x − θT x + 2θT θz = 0, (1.23)

so that one can solve

θT θz = θT x. (1.24)

This is called the normal equation — it can further be solved if explicit formula
for z is needed:

z =
(
θT θ

)−1
θT x. (1.25)

1.2.4 Lagrange multipliers

The method of Lagrange multipliers is a generic method for solving constrained
optimization problems, assuming that the functions involved are continuously
differentiable. It must be recognized that this method gives necessary, not
sufficient conditions for optimality.

Assume that one should find the maximum (or minimum) of the function f(z),
so that there holds g(z) = 0. The idea of the Lagrangian method is visualized in
Fig. 1.4: at the optimum point, the gradients of f and g must be parallel. In the
case of scalar z this means that the gradient of g at z must be a scalar multiple
of the gradient of f . For vector z, analogously, there must exist constant vector
λ so that

df(z)
dz

= λT · dg(z)
dz

, (1.26)

or, written in the standard form,

d

dz

(
f(z) − λT · g(z)

)
= 0. (1.27)

Pseudoinverse (case II)

As an example, study the least squares solution when there is a multitude of
possible solutions available.

Assume that there holds x = θz, and we want to solve z when x and θ are
fixed. Further, assume that the dimension of z is now higher that that of x; this
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Figure 1.4: Illustration of the optimality condition: in the extremal point
the gradients of f and g are parallel

means that the solution is not generally unique. To formulate a well-defined
problem, assume that out of the set of candidate solutions, we want to select
the “simplest” in the sense of vector size; that is, the criterion to be minimized
is zT z.

Now we have the optimality defined in terms of f(z) = zT z and the constraint
function is g(z) = x − θz, so that

d

dz

(
zT z − λT · (x − θz)

)
= 0 (1.28)

gives

2z + θT λ = 0, (1.29)

and, further, z = − 1
2 · θT λ. From x = θz we now get x = − 1

2 · θθT λ or
λ = (− 1

2 · θθT )−1 · x. Finally, combining this and z = − 1
2 · θT λ, one has the

least squares solution

z = θT
(
θθT

)−1 · x. (1.30)

In this section, we have found two expressions for the solution of the least-
squares problem in different cases. These can be expressed using the so called
pseudoinverse:

θ† = θT
(
θθT

)−1
, (1.31)

or

θ† =
(
θT θ

)−1
θT , (1.32)

whichever is appropriate; anyway the least-squares solution is given as z = θ†x.

Note that it is possible that neither of the above forms of pseudoinverse is
defined, both θT θ and θθT being rank deficient; in such case more general ap-
proach to defining pseudoinverse is needed. The general pseudoinverse can be
calculated utilizing the singular value decomposition (for example, see “help
pinv” in Matlab).
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Computer exercises

1. Study the Matlab commands eig and svd (command “help eig”, etc.).
Define the matrix

M =
(

0 1
0 0

)
,

and construct the eigenvalue and singular value decompositions

[XiEIG,Lambda] = eig(M);
[XiSVD,Sigma,PsiSVD] = svd(M);

Study the matrices and explain the results you have when you try

XiEIG*Lambda*inv(XiEIG)
XiSVD*Sigma*inv(PsiSVD)

Repeat the above with the matrices MT M and MMT . Comment the
results in the case where the matrix is defined as

M =

⎛
⎝ 0 1

0 0
0 0

⎞
⎠ .

2. Download the Regression Toolbox for Matlab from the Internet address
http://saato014.hut.fi/hyotyniemi/publications/01 report125.htm,
and install it following the guidelines presented on page 229. This Toolbox
will be used later for illustrating the theoretical derivations.


