
Lesson 2

About Distributions

When modeling large amounts of data, individual samples are of no special rele-
vance. To construct relevant models, one has to reach the “big picture” beyond
the surface. The relevance is captured in the statistical general properties of the
whole data set; these statistical properties are represented by probability distri-
butions. After all, it is distributions that are being modeled by the data-oriented
methods.

To find appropriate methods for data modeling, it is also necessary to first
study the properties of data distributions. Later, however, the statistical con-
siderations can be ignored: Assumptions concerning the data-generating procss
make it possible just to concentrate on some emergent distribution characteris-
tics, like variance and covariance. The existence of the underlying distributions
is reflected in the modeling methods and resulting model structures. In this
chapter, the basic model structures are motivated in statistical terms, and their
correspondence with real data is discussed.

2.1 Data mining

When facing something new, it is clever to first look it from a distance, from
different points of view. It is the same with data: Before starting any harder
labor, it is clever to gain insight. There are efficient and innovative data analysis
tools available where the computing power available today is utilized to reveal
different ways to see the data.

The diversity of data mining approaches and tools is not surveyed here. Only as
an example, in Fig. 2.1 industrial data is visualized applying the Self-Organizing
Map or SOM (see [?]; also see Sec. 8.1.1). SOM efficiently utilizes the hu-
man pattern recognition capability: The data is typically projected onto a two-
dimensional surface, so that the dependencies among data are visually mani-
fested. However, computer is notoriously bad in such pattern recognition tasks;
SOM is a good front-end for humans, but not for implementing some machine-
to-machine (or “algorithm-to-algorithm”) interaction.

Such SOM models can directly be used, and they have been used, also directly
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Figure 2.1: How the character of the data can be visualized: The SOM
approach. High-dimensional industrial data has been projedcted onto a
two-dimensional manifold or “hypersurface”, so that the topology among
the data has been maximally preserved. On the left, the 12 × 12 SOM
grid is shown: The regions of many “hits” have been printed with lighter
color. On the right, the converged SOM map itself has been projected
into the original variable space, showing its curved nature. It seems that
there are perhaps four (or more?) separate concentrations of data, or
clusters, perhaps revealing something about the variability in the oper-
ating regimes in the process

for process monitoring purposes, etc., but when implementing prediction or
control, SOM should be seen as a pre-analysis tool only. SOM implements
extreme compression, mapping data from high-dimensional continuous-valued
variable space onto a discrete set of map nodes, so that unavoidably very much
of the available information is lost. Better regression can be implemented if
the intuition offered by SOM is exploited for adjusting the more traditional
modeling methods.

It also needs to be mentioned that when the data is high-dimensional, the won-
ders of high dimensions can look too fancy for the inhabitants of Flatlands.
The higher the dimension, the more there exist alternative explanations for the
observations, at least if the evidence is interpreted in an appropriate way ...
One should remember the “Barnum effect” and recognize that You see what
you want to see.

2.2 Normal distribution

The Gaussian or normal distribution is the most important abstraction for more
or less stochastic measurement data. The famous central limit theorem states
that if a large number of independent random variables are added together, the
sum is normally distributed under very general conditions, no matter what is
the distribution of the original variables. Usually, when making process mea-
surements, it can be assumed that underlying the actual measurement values
there is a large number of minor phenomena that cannot be separately analyzed
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Figure 2.2: Visualizing the
density of the two-dimensional
Gaussian distribution: In surface
form ...

Figure 2.3: ... and as a contour
map. Here the covariance matrix
was such that r11 = r22 = 1 and
r12 = r21 = 0.8

— their net effect, according to the central limit theorem, is that the overall
distribution becomes normal.

Similarly as in the one-dimensional case, multinormality holds for multivariate
data (see Figs. 2.2 and 2.3). Let v stand for the measurement vector of length
dim{v}. Assuming multinormal distribution, the density function value (corre-
sponding to the probability; note that finite probabilities are found only when
the density function is integrated within some region in v space) for a data
sample v can be calculated as

p(v) =
1√

(2π)dim{v} det{R} e−
1
2 ·(v−v̄)T R−1(v−v̄). (2.1)

Here, v̄ stands for the center of the distribution and R is the covariance matrix,
det{R} being its determinant. This prototypical distribution can be compactly
denoted as N{v̄, R}. The distribution formula consists essentially of a (de-
caying) exponential function, making the “bell-shaped” distribution extend to
infinity in all directions; due to the normalization factor, its integral over the
whole space equals 1. The statistical properties of multinormal distributions
are not elaborated on in this context; it suffices to note that all projections of a
normal distribution are also normal, and, generally, linear functions of normally
distributed data result in normal distributions (see Figs. 2.2 and 2.3).

It needs to be noted that above it is all variables that are assumed similarly
stochastic. Traditionally when doing modeling and identification, there is a dis-
tinction between deterministic and stochastic variables; there are inputs and
outputs; there is noise and there is information. Now, the framework is ho-
mogeneous: All variables have the same stochastic nature to begin with. This
means that methodologies for analysing the variables also remain uniform. The
information is assumed to be buried in correlations among the variables.
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2.2.1 About distribution parameters

Multinormal distribution is uniquely determined by its mean and covariance. If
there are measurements v(1) to v(k) taken from the distribution, the unbiased
mean, v̄ = E{v(κ)}, can be approximated as the sample mean

v̄ =
1
k
·

k∑
κ=1

v(κ). (2.2)

The covariance matrix, R = E{v(κ)vT (κ)}, can be approximated as sample
covariance

R =
1
k
·

k∑
κ=1

(v(κ) − v̄)(v(κ) − v̄)T , (2.3)

or, if the individual sample vectors v are collected as rows in the k × dim{v}
matrix V ,

R =
1
k
· (V − V̄ )T (V − V̄ ). (2.4)

The matrix V̄ now consists of k copies of v̄T . It is assumed that the covariance
matrix has full rank and it is invertible; this means that necessarily there must
hold k ≥ dim{v} (there are at least as many data vectors as there are separate
measurements in the measurement vector) and the measurements V1 to Vdim{v}
are linearly independent.

Note that the presented estimate for covariance that is based on the estimate
of the sample mean is biased; one should take into account the reduced degrees
of freedom to find the unbiased estimate (that is, the denominator should read
k−dim{v}). However, it is not always clear what is the theoretically appropriate
normalizing factor (for example, if calculating the cross-correlation XT Y , where
X is a k×n matrix and Y is a k×m matrix). In what follows, it is assumed that
the number of measurements is so high that this bias can be neglected (that is,
k � dim{v}). Later, it turns out that it is the covariance matrix that plays
a central role when determining the model structure — and it is the structure
of the covariance matrix that is of relevance, ratios between elements, revealing
the interconnections among variables, not its scaling.

The covariance matrix is such a central data construcy in subsequent analyses
that it deserves a still closer look — it is still intuition that plays a central role
when constructing good models. Understanding the structure of the covariance
matrices, and understanding how this structure is related to data properties,
is fundamental knowledge when trying to understand multivariate statistical
methods.

As visualized in Fig. 2.3, the covariance structure can be visualized in terms of
(hyper)ellipsoids in the data space: The ellipsoids represent the “equi-probability”
surfaces in the data space. The projections of Gaussians onto lower dimensions
(also having Gaussian distribution) can be visualized es ellipses.
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Figure 2.4: Some association matrices

It is instructive to interpret the covariances in terms of concrete ellipses, end
here are some guidelines to interpret them. The variances of the individual vari-
ables that are collected on the diagonal of the covariance matrix dictate how
far the ellipsoid extends in that variable direction; zero variance means that
the ellipsoid “collapses” into a (hyper)planar structure. The non-diagonal ele-
ments in the covariance matrix reveal how much the ellipsoid is “tilted” as com-
pared to the variable axes. This “tiltedness” connects the variables together,
variables becoming dependent, and it is indeed these dependency structures,
cross correlations, that make it possible to estimate the values of some vari-
ables when some other variables only are known, making regression analysis
feasible. However, the properties of such tilted ellipsoids cannot be seen in the
original coordinate frame, and more closer analyses have to be postponed to
the eigenvalue/eigenvector analysis of the covariance matrix in Chapter 5. It
turns out that the extent of the ellipsoid in different directions (as determined
by the eigenvectors of the covariance matrix) is revealed by the square roots of
the corresponding eigenvalues; the “volume” of the ellipsoid is proportional to
the product of the eigenvalues.

2.2.2 Association matrices

The covariance matrix reveals the second-order properties of the data (variances
and co-variances) in a compact form, and it turns out that it is these second-
order properties that one concentrates on in multivariate modeling. It turns out
that determination of the model structure is based on the analysis of the data
covariances. However, there also exist other ways to capture the second-order
properties.

Covariance measures similarity between variables, and it makes it possible to
define associations among them. Generalizing slightly, rather than speaking
merely of covariance matrices, we can speak of association matrices. The idea
is the same: the second-order “nearness” properties between variables should be
captured in a compact form so that the assumedly relevant phenomena would
become tractable. Fig. 2.4 shows some common selections that are found when
the data either is centralized or it is not, and when the data either is normalized
to unit variance or it is not (there will be more about data preprocessing in the
next chapter). In all of the above cases, the association matrices are constructed
as

R =
1
k
·

k∑
κ=1

x′(κ)x′T (κ) =
1
k
· X ′T X ′ (2.5)

where x′ is the correspondingly scaled (and perhaps centered) data sample.
Again, if being theoretically orthodox, one would have problems with the nor-
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Figure 2.5: Data distributions after different preprocessing operations.
First, in a, the assumed original data distribution is shown, and in b
data is centered. In c data is additionally normalized to unit variance,
and in d, it is whitened (in addition to being centered)

malization factor: If the origin is now assumed to be the “center” of data the
degrees of freedom are not reduced?

All of the above association matrices are positive semi-definite, that is, ξT Rξ ≥ 0
for any vector ξ:

ξT Rξ =
1
k
·

k∑
κ=1

ξT x′(κ)x′T (κ)ξ =
1
k
·

k∑
κ=1

(
ξT x′(κ)

)2 ≥ 0. (2.6)

This means that all eigenvalues are non-negative. Note that when discussing
general association matrices one is violating the basic assumptions concerning
covariance matrices on purpose: One is no more analyzing the properties of the
original Gaussian distribution but some virtual distribution. “Forgetting” the
centering, for example, has major effect on the data distribution as seen by the
algorithms. In Fig. 2.5, the effects of different preprocessing operations (see
Chapter 3) on the data distribution are shown.

There are also other possibilities for constructing matrices that are related to
similarity matrices — for example, the distance matrix, where the element Rij

is the distance (Euclidean or other) between vectors Xi and Xj, can be used
for structuring the relationship between variables (note that the diagonal con-
tains zeros, making this matrix to be not positive definite); also see Sec. 7.3.3.
The Kernel matrices are yet another of representing (nonlinear) relationships
between variables (see Appendix 2). When similarity is measured in some fea-
ture space, so that one applies similarity matrices of the form E{f(x)f(x)T }
for analysis, where the features are determined through the nonlinear vector-
valued function f , one sometimes speaks of nonlinear component analysis or
kernel PCA (compare to Chapter 5). Indeed, determination of the function f ,
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or feature extraction, is discussed in the next chapter.

Depending on the situation, it can be motivated to study the connections among
samples rather than among variables, that is, rather than finding the structure
for XT X , one can search for the structure of the matrix XXT . Note that the
non-zero eigenvalues are the same in both cases.

The data can also be scaled samplewise; If there holds y(κ) = FT · x(κ), then,
for some scalar function g(x(κ), y(κ), κ), there must also hold

g y(κ) = FT g x(κ), (2.7)

and these scaled variables can be just as well be used for determining F . Even
though the expression above looks like an identity, the statistical properties of
the data may be changed remarkably when the samples are individually scaled
(see Sec. 7.3.2): This kind of “samplewise” scaling can also be justified if one
knows that different samples have different levels of reliability — or if the noise
variance level varies along the sampling; this is sometimes called heterosedastic-
ity. Specially, assume that g(κ) is a function of time index κ alone, and study
the properties of the correlation matrix:

R =
1∑

κ

·
k∑

κ=1

g(κ) v(κ)vT (κ). (2.8)

Here, the normalizing factor compensates for the scaling effect of the sequence
of the weighting factors. Further, assuming that one wants to apply expo-
nential forgetting, so that the “memory” gradually fades away, one can select
g(κ) = λk−κ, where 0 � λ < 1 is the forgetting factor, one can write the
recursive adaptation rule for the covariance estimate in the familiar-looking
form (mathematical interpretations ranging from weighted-average to convex-
combination):

R(k) = λR(k − 1) + (1 − λ) v(k)vT (k). (2.9)

2.2.3 χ2 distribution

Multivariate normal distribution (2.1) gives a probability of any point to belong
to a Gaussiann distribution. However, in a high-dimensional space the probabil-
ity of any location becomes very low — one would like to have a scalar measure
for easily studying whether an observation is characteristic to a distribution or
not, regardless of the data dimension. It turns out that the χ2 distribution is a
practical tool for this purpose.

If there are n independent, normally distributed normalized variables vi, where
1 ≤ i ≤ n, the sum of the squares, or vT v, has χ2 distribution with degrees of
freedom n. This sounds like a rare special case, but this is not so. Study the
case where Gaussian variable vectors ν are normalized so that

v(κ) = R−1/2
ν ν(κ), (2.10)
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where

Rν =
1
k

k∑
κ=1

ν(κ)νT (κ). (2.11)

Then the new variables v are Gaussian and there holds

Rv = 1
k

k∑
κ=1

v(κ)vT (κ) = R
−1/2
ν

1
k

k∑
κ=1

ν(κ)νT (κ) R
−T/2
ν

= R
−1/2
ν RνR

−T/2
ν = I.

(2.12)

This means that the familiar expression has χ2 distribution:

vT (κ)v(κ) = νT (κ)R−T/2
ν R−1/2

ν ν(κ) = νT (κ)R−1
ν ν(κ). (2.13)

This νT R−1
ν ν is a quantity that is routinely computed in multivariate analysis,

and it makes it possible to reduce the high-dimensional distribution into one
dimension. The χ2 distribution can be found, for example, in Matlab; to use the
functions there, one needs to determine the degrees of freedom, or the number
n (see Fig. 2.6). In the Regression Toolbox, there is the function regrP that is
tailored for course usage.

2.3 Motivation of modeling approaches

After this chapter, the distributions are abstracted away — one only concen-
trates on a single distribution parameter, (co)variance, forgetting about the
other distribution properties. Calculation of variance and covariance can be
carried out for any set of data, regardless of the actual distribution, and, simi-
larly, the regression models that are presented later being based on covariance
properties can be constructed. However, the Gaussianity assumption is im-
plicitly buried in the model structures: As it turns out, the adopted modeling
principles are not only pragmatically motivated, they are optimal for the Gaus-
sian distribution.
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2.3.1 Why linear models?

Let us study some special properties of the Gaussian distribution. The “most
probable” regions in the data space are determined by the formula (2.1). For
simplicity, assume that data is zero-mean, v̄ = 0. Because the exponent function
is a monotonously increasing function, the maximum of probability is reached
when the following expression reaches minimum:

J = vT R−1v (2.14)

To proceed, one has to distinguish between the roles of individual variables in v.
As explained in the next chapter, it is reasonable to separate the input variables
and output variables from each other. If it is assumed that some of the variables
in v, collected in the vector x, are known, and some, collected in y, are unknown,
so that

v =
(

x
y

)
, (2.15)

expression (2.14) can be divided in parts:

J =
(

x
y

)T (
(R−1)xx (R−1)xy

(R−1)yx (R−1)yy

)
·
(

x
y

)
, (2.16)

or, written explicitly,

J = xT (R−1)xxx + xT (R−1)xyy + yT (R−1)yxx + yT (R−1)yyy. (2.17)

Here the matrices (R−1)xx, etc., are formally used to denote the blocks of the
inverse covariance matrix; how they should actually be constructed is not of
interest here. Minimization with respect to y means solving

dJ

dy
=

d

dy

(
xT (R−1)xxx + xT (R−1)xyy + yT (R−1)yxx + yT (R−1)yyy

)
= 0,

giving a unique solution:

((R−1)xy)T x + (R−1)yxx + ((R−1)yy)T y + (R−1)yyy = 0, (2.18)

or

y =
(
((R−1)yy)T + (R−1)yy

)−1 (
((R−1)xy)T + (R−1)yx

)
x. (2.19)

This can be expressed in a very simple form

y = Mx. (2.20)

It is not of interest here to study any closer the matrices that constitute the
solution, or what is the structure of the matrix M ; these issues will be concen-
trated on later in detail. What is crucial is the basic outlook of the maximum
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likelihood (ML) solution for the regression problem: The unknown variables are
linear functions of the known ones. Within a Gaussian distribution, linear es-
timates are optimal — this is a very useful result, justifying the simple model
structures that will be applied later.

To be exact, assuming that the distribution is not zero-mean, the general max-
imum likelihood relationship between variables becomes affine:

y = Mx + c, (2.21)

where c is a constant vector. However, models will be assumed strictly lin-
ear later — the techniques to avoid problems that are faced because of this
assumption will be discussed in the next chapter.

2.3.2 Why sum-of-error-squared criteria?

Continuing from the above linear model structure, assume that there exists such
a matrix M that maps x onto y, so that (2.20) is assumed to apply, and one’s
task is to determine this mapping matrix. Typically (if k > n) exact matching
cannot be reached, so that for each sample κ there remains a residual error

e(κ) = y(κ) − Mx(κ). (2.22)

If the data is Gaussian, also this error has Gaussian distribution. Further, as-
sume that the errors in the sequence e(κ) are independent of each other, and
have identical Gaussian distribution with mean ē = 0 and covariance Re. The
best choice for the matrix M maximizes the probability that the observed se-
quence of samples has been obtained — that is, the probabilities of observing the
sequence e(κ) should be maximized. Because the individual errors were assumed
independent, the overall probability is the product of individual probabilities,
so that the likelihood function now becomes

L =
∏
κ

p(e(κ))

= 1√
2π det{Re}

e
− 1

2

∑
κ

(y(κ)−Mx(κ))T R−1
e (y(κ)−Mx(κ))

.
(2.23)

Because the logarithm function is monotonously increasing, the maximum of
the above criterion equals the minimum of the following:

J = − log L = c +
k∑

κ=1

(y(κ) − Mx(κ))T
R−1

e (y(κ) − Mx(κ)) . (2.24)

for scalar y, this reduces essentially to a sum of squared errors, J is proportional
to

∑
κ e2(κ). This all means that the criterion that makes it possible to find

solutions in a mathematically closed form, is again optimal for Gaussian data.

There are also many other reasons for selecting the error-squared criterion:
From the theoretical point of view, it is nice that the minimum of the quadratic
criterion is unique, so that no closer analyses of candidate solutions is needed;
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from the practical point of view, it is nice that this criterion has rather natural
interpretations in terms of signal powers, error squares are related to noise
variances, capturing the essence of the noise distributions, etc. However, in
some cases the emphasis on the error squares is clearly a disadvantage: This is
the case specially if there exist large spurious variations in the data (perhaps
caused by undetected outliers, etc.) — such samples are emphasized excessively
in the model construction because of the error-squared criterion.

Often errors in different variables are more critical than in others; however,
the error-squared criterion assumes that all errors are equally significant. It is
the user’s task to assure that this equality assumption is justified; this can be
carried out by appropriate scaling of the variables during the preprocessing. If
the variables are scaled up, also the errors in those variables are emphasized
accordingly.

2.4 Tackling with real-world data

Gaussianity assumption is well-motivated, due to the Central Limit Theorem.
However, despite the above optimistim, the things are not so simple in practice.

The real measurement data seldom is purely Gaussian. There are various rea-
sons for this: First, normally distributed data that goes through a nonlinear
element is no more Gaussian; second, the measurement samples may be gen-
erated by different underlying processes, constituting no single distribution at
all. All these phenomena can be explained as different kinds of nonlinearities in
the system. If the Gaussianity assumption has to be abandoned, what kind of
model structure to adopt instead?

The selection of the model structure is always a compromise between two things:
The model should fit the data well, but, at the same time, the model should
suit the user’s needs, being easily applicable and analyzable. The first of the
objectives — matching the data — generally means that complex models should
be used, but, on the other hand, the second objective favors overall simplicity.
There are no final truths available here, but it turns out that a nice conceptual
compromise between real data properties and theoretical preferences is given by
the Gaussian mixture model of data.

2.4.1 Gaussian mixture models

Non-Gaussianity of a distribution is a symptom of nonlinearity somewhere along
the data generation processes. As it was observed in the previous chapter, non-
linearity in high dimensions is a problem defying analyses. But assuming that
the nonlinearities can be locally linearized, the function can approximately be
substituted with a set of linear functions — and the complex distribution can ap-
proximately be substituted with a set of appropriately located Gaussians. Such
a collection of Gaussian subdistributions is called Gaussian mixture model. As-
suming smoothness of functions, nearby samples are related; but the farther
apart in the data space the samples are, the less they are assumed to be related,
or assumed to contribute to the same model: Thus, there are different (linear)
submodels for different clusters. In Fig. 2.1, there exist, say, 4 or 5 data clus-
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ters; It is also assumed here that these subdistributions can be approximately
characterized by Gaussians.

It seems that the typical nonlinearities can be attacked using a two-level strat-
egy: First, find the set of appropriate clusters Γ, whatever phenomenon has
given rise to such clustering, and, after that, apply linear methods for modeling
within each of the clusters c ∈ Γ separately.

However, when constructing regression models, one is not interested in the clus-
ters, but one would like to have (continuous) mappings between variables. Gaus-
sianity (or, indeed, any compact distribution model) as the model for subdis-
tributions gives a consistent way of getting back from discretized (clustered)
coding of data to smooth and continuous (nonlinear) input/output functions.
Assume that pc(κ) is the probability of sample number κ to belong in the sub-
distribution κ, as revealed by (2.1), with mean v̄c and covariance Rc determined
using the samples belonging to that distribution, and assume that ŷc is the
output estimate determined by the cluster c. Then, the maximum likelihood
estimate that combines the clusterwise sub-estimates in a probabilistically rea-
sonable way, weighting the individual estimates by the appropriate probability,
is given by

ŷ(κ) =
∑
c∈Γ

pc(κ)∑
c′∈Γ pc′

ŷc(κ) (2.25)

The normalization factor in the denominator is needed to assure that the total
probability of the sample to belong to some of the clusters is 1.

It is clear that if data only is available, determination of the cluster structure is
a difficult task ... In Appendix A, some (more or less heuristic) approaches to
determining the cluster structure are presented.

2.4.2 Example: Types of “Natural Data”

The class of nonlinear functions in real processes is hopelessly large, and cap-
turing all alternative behavioral patterns within a single model structure is not
possible. However, it turns out that just a few special types of nonlinearities
usually exist in measurement data, and these classes of nonlinearity can nicely
be captured by the Gaussian mixture model (see 23]). Let us study little closer
those nonlinearities that we would assume to detect in a typical system to be
modeled. The first type of structural nonlinearities is reflected as separate clus-
ters (see Fig. 2.7). During different periods, different conditions in the process
apply (sometimes a pump is on, sometimes it is off; sometimes ore is coming from
one mine, sometimes from another mine, etc.), and the qualitatively differing
process conditions are typically seen in the data in a specific way, the samples
being clustered around the cluster centers. Within the operating regimes, how-
ever, no structural changes take place, meaning that within the clusters the
Gaussianity assumption holds. This means that linear analysis can be carried
out for each cluster separately.

The second typical source of distribution non-Gaussianity are the continuous
nonlinearities (see Fig. 2.8). It is common in practice that this kind of behavior
is approximated using piecewise linearized models around the operating points;
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Figure 2.7: Clusters of Type I:
Different operating regimes

Figure 2.8: Clusters of Type II:
Continuous nonlinearities

this means that separating data in clusters and modeling each operating point
separately, useful models are again reached. It is a nice coincidence that this
piecewise linearity approach is also well compatible with current engineering
practices: Smooth nonlinearities are typically linearized around the operating
points in control engineering models.

2.4.3 Outliers

A rather special reason giving rise to separate degenerate data clusters is the
existence of outliers in the data. Outliers are more or less “lonely” samples,
being typically not caused by real process originated phenomena but by spurious
measurement errors, device or communication failures, etc. Often outliers are
located alone far from other samples. However, the normal distribution extends
to infinity — there exist no straightforward criteria for distinguishing between
valid and outlier samples, and it is more or less visual inspection by a domain-
area expert that is needed.

Because it is the error squared criterion that is typically used in modeling, sam-
ples far from the more typical ones have a considerable effect on the subsequent
modeling. There are two opposite risks:

1. Including outliers among the modeling data may totally ruin the model,
the far-away sample dominating in the final model.

2. On the other hand, too cautious selection of samples, neglecting too many
samples, also affects the final model: It is those samples that are far from
others that carry the most of the fresh information — of course, assuming
that these samples carry information rather than disinformation.

As all clusters seemingly existing in the data should be checked separately to
assess their overall validity, this is specially true in the case of outliers. Detect-
ing outliers is knowledge-intensive, and special expertise on the domain-area,
measurement devices, etc., is needed. Often a missing measurement variable is
replaced by the measurement machinery by zero (or some other predetermined
value), and such outliers can easily be detected, but this is not always the case.

Typically, if there is no scarcity of data, sample vectors with missing values
can be simply ignored and eliminated from the data set. If only some of the
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measurements are missing, all other measurements within a sample being valid,
however, it may be reasonable to utilize that sample anyway: Then, the missing
values have to be somehow fixed before the sample is used (see “missing values”
in Appendix B).

2.5 Excursion: Networks and power law

Some of the “hottest” areas of research — like chaos and complexity theory —
seem to be very far from the age-old statistical approaches. Specially, linearity
seems to be completely out of the question: Interesting behaviors emerge only
in nonlinear environments. However, looking the applications in more detail, it
seems that there are connections.

It has been observed that there exist peculiar similarities among very different
kinds of complex systems. For example, it has been claimed [?] that distributions
in self-organized complex networks follow the power law, that is, there generally
holds

y = cxf (2.26)

for scalars y, x, and constant f . Here, x stands for the free variable, and y
is some emergent phenomenon related to the probability distribution of x; for
example, if x is the “ranking of an Internet page”, and y represents “number of
visits per time instant”, the dependency between these variables follows power
law: There are some very popular pages, whereas there are huge numbers of
seldom visited pages. As compared to Gaussian distribution, the power law
distribution has “long tails”; the distribution does not decay so fast1.

In the multivariate spirit, one can extend the single-variable formula (2.26) by
including more variables; if there is only one variable xi changing at a time, the
new formula corresponds to a set of n simultaneous power laws:

y = xf1
1 · · · · · xfn

n . (2.28)

Now, if one takes logarithm on both sides of the formula, one has

log y = f1 log x1 + · · · + fn log xn, (2.29)

1It is interesting to note that the power law distribution is closely related to another
modern concept, namely fractal dimension. Assuming that the variable x represents some
kind of “yardstick”, determining the scale factor, and y represents the level of self-similarity,
so that when one zooms the original pattern by the factor of 1/x, there exist y copies of the
original pattern (and this zooming process can be repeated infinitely), the fractal dimension
of that pattern can be defined as

dim =
log y

log x
. (2.27)

When the pattern is simple, this definition coincides with the traditional ideas concerning
dimension, but for complex patterns, non-integer dimensions can exist. Now, it is easy to
see that, after taking logarithms, the parameter f in (2.26) closely corresponds to the fractal
dimension for the networked system
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or

y′ = f1 x′
1 + · · · + fn x′

n + c, (2.30)

where x′
i = log xi, etc. It turns out that the multiplicative dependency has be-

come globally linear — by only preprocessing the variables appropriately. There
are also other approaches towards reaching a linear (local) model structure: Dif-
ferentiate (2.29) around the nominal values x̄i, so that there holds

(
Δy

ȳ

)
= f1

(
Δx1

x̄1

)
· · · · · fn

(
Δxn

x̄n

)
. (2.31)

Now the variables Δxi/x̄i are the relative deviations from the nominal state.
This kind of variables are assumedly more robust that the log-variables. It is
evident that very much can be done by appropriately conditioning the data;
these issues are studied closer in the next chapter.

As a final note here, study the outlook of the multivariate fractal distribution.
variable y′ in (2.30) is a sum of assumedly large number of assumedly indepen-
dent stochastic variables f1x

′
1. Because nothing more accurately about these

variables is known, it can be assumed (again according to the Central Limit
Theorem) that y′ = log y has normal distribution:

p(log y) =
1√
2πσ

exp
(
− (log y − μ)2 /2σ2

)
. (2.32)

Taking logarithms,

log(p(log y)) = c − (log y − μ)2 /2σ2. (2.33)

This means that the multivariate fractal distribution is parabolic rather than
linear on the log/log axis, the three parameters being c, μ, and σ2. Indeed, this
is in conflict with “traditional modern” network intuition!
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Computer exercises

1. Try the dataClust command in the Regression Toolbox. Define one-
dimensional data of two Gaussian clusters, both containing 1000 samples
and centers being 10 units apart, with the command

[X] = dataClust(1,2,1000,10);
hist(X,50);

Modify data, summing variables that have this same distribution:

X = X + X(randperm(length(X)));
hist(X,50);

Repeat the above steps sufficiently many times. What happens with the
data clusters? Why natural data still typically is clustered — what is the
difference in the data production processes?

2. Search for examples of observed distributions in complex networks that
have been published in Internet. Applying some search engine, use key-
words like

power law distribution
fractal dimension

Study the distributions; observe how the claimed linear dependencies on
the log/log scales (as resulting from the single-variable fractal dependency)
can often indeed better be matched against a parabola (as resulting from
the multivariate fractal dependency assumption).


