
Lesson 3

Understanding Data

As it will turn out, the multivariate modeling procedures are extremely math-
ematical, powerful, but rather mechanical procedures: There is not very much
left for the user to do after the machinery has been started. But there is one
thing that is common to statistics and computer programs: if you put trash in,
you get trash out — and when these two, statistics and computers, are com-
bined, as is the case in multivariate modeling, the risks only cumulate. The value
of the modeling results is completely dependent of the quality of the modeling
data; this data validity has to be ascertained by the user of the modeling tools.
Whether the quality really was good, can only be assessed afterwards, when the
constructed model is tested. It is preprocessing of data and postprocessing of
models where expertise is truly needed (see Fig. 3.1).

3.1 From intuition to information

Statistical analysis methods can only do data modeling, not actual system model-
ing. The statistical analysis only looks for and utilizes the observed correlations
between measurements. On the other hand, the mathematical tools always op-
erate only within some selected model structure. It is the user’s responsibility
to connect this data crunching to real system modeling. When aiming at use-
ful models, the user has to utilize his understanding in all levels of statistical
modeling.

The data preprocessing and model postprocessing tasks — to be discussed later
in this Lesson — are more or less quantitative. Before there are any numbers to
be processed, however, some qualitative analyses are needed: The chaos of data
has to structured. In this section, these preliminary analysis tasks are briefly
discussed.

3.1.1 Some philosophy

It is perhaps interesting to recognize that systems modeling is closely related
to those activities that have been studied by the philosophers since the dawn of
history. The age-old questions of what the world is really like, and what we can
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Figure 3.1: Role of knowledge in model construction

possibly know about it, are studied within two branches of philosophy, namely
ontology and epistemology, respectively.

The Platonian idealism, where it is assumed that fundamentally there are some
ideas, perfect objects underlying our observations, has become outdated — it
has turned out that the empiristic approach is more fruitful. According to
the Kantian view, it is assumed that it is only through our senses that we
can receive information from our environment, and from these observations we
construct our subjective world view, trying to find a coherent (sub-conscious)
explanation for all of it. We can only hope that our mental machinery and senses
are constructed so that they are capable of perceiving the essential phenomena
in our environment and drawing relevant conclusions.

Loosely speaking, these two opposite views, idealistic and empiristic, correspond
to the qualitative, first principles approach and the multivariate statistical ap-
proach to system modeling, respectively. It is now the mathematical machinery
that is in the role of the human: Its subjective “world” is determined by those
sensor signals that it is let to receive. It is not the human that is put in the
center of this chaos of sensations, but it is the computer, and it is we that are
like Gods in the universe of measurements giving the computer its senses and
all those tools it has for making some sense in the chaos.

The questions of “applied ontology and epistemology” become to questions of
what are the system’s real properties, and how can one get information about
them. What is valuable information in the measurements, and what is only
noise? It is our task to make the (assumed) real system structure as visible as
possible to the modeling machinery. The algorithms start from “tabula rasa”,
the only hardwired structures determining the construction of the data model
being fixed by the organization of the measurements and the selected modeling
method.

The problems of prior data analysis and manipulation, and those of model
validation, are always knowledge-intensive. These tasks cannot be automated;
there are just good practices that often seem to work. Because these tasks are
based on expert intuition, there are no methodologies that would always work
— that is why, this chapter gives various examples, hopefully visualizing the
questions from comprehensible points of view.
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3.1.2 Implementing structure on the data

One of the disadvantages when using data-oriented techniques is that it is dif-
ficult to integrate such models with expert understanding. However, to find
the best possible model, one should utilize the available knowledge somehow.
The only way to do this is to first partition the complex modeling problem
into subtasks, in an engineering-like reductionistic way, exploiting the domain-
area expertise in this partitioning task, and apply appropriate methods to the
subproblems. If some parts of the process are known beforehand, their contri-
bution can hopefully be eliminated from the remaining unknown behavior (see
Appendix B).

To reach practical models, the data needs to be structured. This structuring
should reflect the intended use of the model, but it should also support the
human ways of perceiving the system.

Causality is one of the basic mechanisms that characterizes human cognition;
on the other hand, statistical methods cannot see causalities (or any kinds of
dependency structures) from data. This is the first, crucial task of the expert
doing modeling: Determine the inputs and outputs of the system. The whole
idea of regression models concentrates on modeling the relation between action
and reaction.

The determination of the causal structure must be done by a human having
some “common sense” — mathematical machinery can analyze data, revealing
co-occurrences, but these dependencies are correlation, not causation. Con-
structing a causal structure that is based on false premises can result in a useless
(and fallacious) model1. Study the following example:

It has been recognized that taller children outperform smaller ones
in almost all tasks, not only in physical contests, but also in cognitive
tests. And this observation is true, however unjust it may sound.
The correlation, however, vanishes, if only children of the same age
are studied! There is no causation between size and mental capac-
ity; rather, there is causal relation from age to both child size and
capacity.

In concrete terms, to achieve causal structuring among data, the roles of different
variables in the data vector v need to be studied. From now on, we assume that
the input variables are denoted xi, where 1 ≤ i ≤ n, n being the number of
input variables. The measurements are assumed to be linearly independent, so
that none of the variables can be expressed as a weighted sum of the other ones.
An input measurement sample can be presented as a data vector

x =

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ . (3.1)

Correspondingly, the output variables yj , where 1 ≥ j ≥ m, are collected in the
1However, this is again very much dependent of the intended use of the model: Non-causal

correlations can be useful if aiming at simple prediction models, but they are not suited for
control design purposes
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Figure 3.2: The assumed system outlook

output vector

y =

⎛
⎜⎝

y1

...
ym

⎞
⎟⎠ . (3.2)

The assumption is that the process output variables can be calculated as y =
f(x), where f(·) is a linear, vector-valued function, so that f : Rn → Rm (see
Fig. 3.2). The linearity assumption (motivated in the previous chapter) means
that the mapping from input to output can be represented using the matrix
formulation:

y = FT · x, (3.3)

where the dimension of F is n×m. Further, assume that one has measured sets
of k data vectors, from x(1) to x(k) and from y(1) to y(k), respectively. These
observations are written in matrices (following Matlab practices) as

X
k×n

=

⎛
⎜⎝

xT (1)
...

xT (k)

⎞
⎟⎠ and Y

k×m
=

⎛
⎜⎝

yT (1)
...

yT (k)

⎞
⎟⎠ . (3.4)

Again, the mapping between these matrices can be written compactly (note that
changes in ordering and the transpositions are necessary to make the dimensions
match) as

Y = X · F. (3.5)

No structure can also be seen in the data — the structure is imposed on the data
by the domain area expert. The modeling machinery will match the data against
this structure, finding the best possible parameters within that framework. For
pragmatic reasons, depending on the application, it can sometimes be reasonable
to apply some physically non-meaningful structure for the data. For example,
it can be motivated to apply a causally incorrect structure: If there is need for a
model for estimating some quantity based on measurements of other variables,
the observed correlations can be exploited regardless of the actual causality
structures. The model structure should follow this intended model usage, so that
the variables that are used for estimation are collected in x, and the estimated
variables in y. However, it is necessary to stick to the real causality structures,
if one wants to apply the models not only for prediction but also for control,
etc.
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3.1.3 Experiment design

Experiment design studies how maximum information can be extracted by car-
rying out minimum number of (expensive) experiments. If data can be measured
under optimal conditions, many of the problems that will be discussed later are
automatically solved. However, a more challenging case is such that one can
only observe the system, without being able to dictate the process inputs. At
least if the system is large, this assumption typically holds.

No matter whether one can carry out an explicit experimenting procedure or
not, there are some necessary requirements to be taken care of before data ac-
quisition. It needs to be noted that the algorithms only see the data that is
delivered to them; in this sense, one must trust on the “benevolence of nature”,
so that it is not explicitly trying to fool the observer! It is, of course, quite pos-
sible that all samples happen to be located in just a narrow region of the whole
operating range of the system, thus misleading the analyses, giving incorrect
mean values, etc.; but it is the law of large numbers promising that in the long
run the observed mean value, for example, should be unbiased, assuming that
lots of representative data containing fresh information is collected. But this
optimism is justified only if there is not some agent acting (more or less con-
sciously) in the opposite direction, explicitly ruining the quality of data! One
of such mechanisms efficiently deteriorating the quality of data is feedback.

In the traditional modeling, one of the most important guidelines is that if
there are some feedback loops, they should be opened before data acquisition.
Otherwise, the causality chains become blurred: The physical output, if used
for feedback control, effectively becomes an input signal. Study the following
example:

Assume that the process acidity is being controlled. Because of
some unmodeled disturbance, the pH value tends to fluctuate. Pro-
portional control law is used, that is, when the acidity is too low,
more acid is added, and vice versa. If the process acidity is analyzed
statistically, it seems that high amounts of added acid correlate with
low acidity. In this case, of course, this paradox is easily explained:
The actual process dynamics being slow and noisy, it is essentially
the inverse process, the feedback loop that is being modeled; when
the process is non-acidic, the acid flow is increased. Against intu-
ition, the “cause” now is the process acidity, the acid flow being the
“effect”.

However, the above view (“open all loops!”) is becoming challenged in the
multivariate real world. First, there are the pragmatic reasons: During on-line
operation of the plant the feedbacks simply cannot be opened — and, specially
when complex systems are to be analyzed, not all feedback structures can even
be detected, not all dependency structures are known. And, after all, one would
like to know the typical behaviors in the process, not the artificially induced
experiments. It is the undisturbed operation of the whole plant that is actually
of interest — one should model the working plant with appropriate feedbacks
closed. Indeed, the system should be seen as a “pancausal” network, where
all variables are tightly interconnected. The consequences of this new kind of
thinking are studied closer in Chapter 11.
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3.2 Selection of variables

It is assumed that all relevant information that is assumed to contribute in the
model construction can be stored in the sample vectors. No matter what is the
origin of that data, it is, after all, static mappings among sample variables in
v(κ) that are constructed. One sample, or one unit of information, is assumed
to be isolated from the other pieces of information, with no memory whatsoever.
Model construction tries to combine such (contradictory) pieces of information
v(κ) for different values of κ to reach a representation that can cover them all
as well as possible — what this means is studied in detail in later chapters.

3.2.1 Feature extraction

As a basic rule, all information that is relevant for a model must be available
at the same time, in a single vector v(κ). All process phenomena should be
captured as a set of stati(sti)c quantities. What is more, this data has to fulfill
the structural assumptions, like linearity. Here, some guidelines are presented:
How to select variables so that they would characterize the system appropri-
ately. These variables are not necessarily the measurements directly: They are
functions of the measurements that represent features characterizing the sys-
tem appropriately. There are no unambiguous variable combinations to choose.
Fortunately, the more sophisticated regression methods to be presented after
Chapter 4 will efficiently solve this problem of high dimensionality, and then we
can say that it is clever strategy to include all available information there exists
and different kinds of features characterizing the model in the beginning (the
excessive variables can be pruned later).

As an example, study how nonlinearities can be avoided by (formally) introduc-
ing approriate features.

Often it is so that a nonlinear function can be modeled in a linear form when the
input dimension is augmented — that is, when additional features are included.
This is the idea beyond, for example, basis functions (see later). For example,
if one knows the functional form of the nonlinearity, this nonlinearity can be
included among the input data: If there holds yi = FT f(x), where f is the
known classa of nonlinearity, it is possible to introduce the new input vector

x′ =
(

x
f(x)

)
. (3.6)

However, when doing data-based modeling, such a priori knowledge often can-
not be assumed to exist. A generic way to extend the linear framework is to
apply some kind of parameterized family of prototypical nonlinearities: For ex-
ample, it is known that smooth functions can be approximated by their Taylor
expansions that consist of a power series. Unknown nonlinearity forms can also
be approximated using truncated power series expansions. If the linear term
of variable xi does not suffice, arbitrary number of higher-order terms can be



3.2. Selection of variables 45

included among the data:
⎛
⎜⎜⎜⎝

xi

x2
i
...

xξ
i

⎞
⎟⎟⎟⎠ . (3.7)

When the nonlinear prototypical features are included among the input data, it
is the task of the modeling machinery to select among the relevant components
and determine their weights. More complex multivariate nonlinearities can be
handled in the similar manner, applying the multiple-variable Taylor expansion,
so that if one wants to be prepared for quadratic dependencies among variables
xi and xj , the input data vector can be augmented by the following three
variables: x2

i , x2
j , and xixj .

3.2.2 Special challenge: Dynamic systems

In systems engineering applications, it is often the dynamic properties that are
of special interest. However, if dynamic phenomena are to be modeled, one
is facing a problem: Static, instantaneous features are not enough to capture
the dynamics that is characterized by memory, or inertia, coupling variables
together also along the time axis. The basic trick is to use time series data, that
is, prior variable values, xi(κ), xi(κ−1), etc. all have separate entries in the data
vector — this is the standard approch, for example, in system identification,
where the dynamic system also needs to be expressed in a static form (see
Sec. 10.4). System theory assures that if the system memory extends back n
time steps, behaviors of a n’th order dynamic system can be captured. However,
this definition of data vectors means that successive samples are overlapping,
there are copies of the same variable values in different samples; this overlap
and redundancy among samples can cause numerical problems (see Lesson 10).

If the dynamic system is infinite dimensional, sometimes the data representation
can be simplified: For example, if there are delays, etc., the data can first be
synchronized.

The above time series approach can be applied for capturing the fast dynamics in
the system. However, it is not necessarily these high-frequency phenomena that
are always of special interest; sometimes it is the stationary behaviors rather
than the immediate transients of more or less random signal realizations that
should be captured to reach some statistical relevance of features. The emphasis
can be put on different frequency ranges, for example, by low-pass/band-pass
filtering of the signals. Filtering of signals affects the weighting among frequency
bands; this idea can be extended when one closer studies how information is not
only distributed among frequencies but buried in the observations.

Signal smoothing is still not the only alternative to enhance the data: When
filtering, it may be that relevant information is inevitably lost. Statistically rel-
evant phenomena can be captured, for example, by matching the signals against
some basis function families. The frequency-domain studies can be motivated
also in this framework: If the signals are matched against the orthogonal set of
harmonic functions, one receives spectra corresponding to the frequency content
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in the signals. These spectral components can be used for characterizing the
dynamic properties of the system, and the data vector x can be constructed cor-
respondingly. Whereas the spectra represent long-term phenomena, other func-
tion families can be applied to capture short-term ones: For example, wavelets
have been proposed for this purpose. Wavelets also span a family of orthogonal
functions, but having a rather limited range, they can be applied to characterize
spurious peaks in signals, etc.

Powerful features can be constructed when observations are matched against as-
sumed model structures, nonlinear or dynamic, and when it is the fitted model
parameters that are used to characterize the system. For example, in cellu-
lar phones voice coding applies this strategy: The formants characterizing the
voiced phonemes can efficiently be captured in the auto-regressive (AR) model
parameters, and when only the dynamic model parameters are employed the
amount of transmitted data can be radically reduced. The overall system be-
havior can be represented as a collection of local behaviors, as characterized
by lower-level local model parameters within some structural framework. To
implement more complicated feature extraction strategies, different approaches
can be further combined: For example, time-domain (time series) structures can
be combined with temporally local feature extraction techniques for modeling
variability of behavioral properties between time windows.

In short, when defining features to characterize dynamic phenomena, one should
avoid trusting some individual phenomena, absolute time points, etc., and use
some invariant quantities or perhaps statistical cumulants characterizing signal
properties. The features should be valid for different sets of signals with dif-
ferent noise realizations: No minimum/maximum values, etc., but averages or
probabilities. Integral-based criteria (ISE, ITSE, etc.) are typically smoother-
behaving than some perhaps visually well-motivated criteria2.

Sometimes it is possible to abstract the time axis away altogether, consentrating
exclusively on the higher-level quality measures directly [??]. The higher-level
measures one extracts from the data, the farther the quantities are from the
original measurements, and the nearer they are qualities characterizing the sys-
tem. There is also no clear distinction between the “quantifying variables” and
the “qualifying variables” — also this structure is not determined by the system
itself, but by the model designer.

There are some intuitions offered also by the studies concerning cybernetic sys-
tems: The key point in such systems is balance, and the cybernetic model
essentially is a model over the spectrum of balances. To capture this essence,
one has to code these balances already in the data; that is, the tensions keeping
the system in balance need to be represented by the data. In concrete terms,
this means that not only the process state but also the balancing forces, or
control signals, need to be included in data.

2For example, the settling time, traditional measure characterizing system responses, re-
vealing when the oscillation after a transient has decayed below the level of, say, 5% of the
original, turns out to behave in a curious, non-continuous manner: It is either after the first
oscillation cycle, or after the second (or third, ...), when the criterion level is no more crossed
— it turns out that as system parameters are varied the possible locations of these time points
are not continuously distributed but more or less clustered along the time axis
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3.3 Data preprocessing

After the set of variables has been selected, they need to be conditioned to reveal
the information they carry in an optimal way. The most typical tasks here are
centering and scaling. First, however, more challenging situations are studied.

3.3.1 Reaching “well-behavedness” of data

Often, the distribution of the variables is more or less peculiar. Sometimes it can
be motivated to normalize the distribution — remember that it was assumed
that data being modeled is Gaussian.

Qualitative data

Qualitative data here means data that does not have continuous distribution:
For example, there can be binary data concerning process operating mode, etc.
A single status bit can have crucial effects on the interpretations: The roles of
the variables can change altogether depending of the operating mode. In prin-
ciple, such qualitative data gives rise to clustering, so that each combination
of qualitative variables defines a cluster of its own. However, the number of
clusters explodes exponentially if there exist various qualitative variables, and
this should not be done without closer analysis of data. As was discussed in
Sec. 2.4.3, introducing new clusters too hastily may weaken the overall infor-
mation content that is available for modeling the individual clusters. Further,
there are the problems of mastering the “model library”: There is a separate
model for each cluster.

Assume that one allocates a separate (binary) variable for each of the qualitative
values. Very often it turns out that the effects of the individual binary data
become abstracted away, so that they sum up to a more or less continuous
distributions.

There are different types of qualitative variables, not all are binary. Some qual-
itative variables can rather naturally be quantified: For example, alternatives
along a continuum (like “hot” — “medium” — “cold”) can be fuzzified by a
domain-area expert, so that those variables can be coded in numeric form after
all (and, as will be seen also when discussing neural networks, the “modern”
methods should not be seen as alternatives of statistical methods, but as com-
plementary techniques) .

Logistic regression

Sometimes one has variables that are limited to a certain range. For example,
assume that the variable pi (being interpreted as some “probability”) ranges
originally between 0 and 1. The problem here is that linear models cannot
easily be constrained to only deliver results obeying such range limitations. It
turns out that by appropriately modifying the variables, such problems can be
(virtually) avoided.
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Figure 3.3: The idea of histogram deformation: The original data den-
sities (on top) can be changed by stretching and contracting the data
axis appropriately. This modification is applied to all of the variables
separately

Assume that one computes pi/(1 − pi) — this way, the range can be extended
from 0 to infinity. Additionally, if one defines

vi = log
pi

1− pi
, (3.8)

there holds for the new variable −∞ < vi <∞. If such a data data deformation
is carried out before modeling, one sometimes speaks of logistic regression. Note
that extreme values pi = 0 and pi = 1 are equally illegal when applying the
deformation.

Histogram equalization

In some cases there is no real physical reason to assume that the data should be
non-Gaussian in the first place. It may be that the anomalies in the distribution
are caused by some external factors, whereas the original distribution really
was normal (see Sec. 3.6.1). In such cases one can equalize or “renormalize”
the virtual distribution by nonlinear modifications of the variable scale: Data
density is deformed when the samples are distributed on a differently scaled axis
(see Fig. 3.3).

This deformation of the data axis must be remembered when applying the model
that is constructed for renormalized data: All variables have to be deformed
correspondingly. Indeed, this need for restoring the original data properties
applies to all data preprocessing.

3.3.2 “Operating point”

Look at the regression formula (3.3): It is clear that the regression hyperplane
always goes through the origin of the data space, so that x = 0 means y = 0.
This must be taken into account during the data preprocessing: One has to
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select one point (explicitly or implicitly) where the regression hyperplane will
be anchored. This is simple if there is some physical knowledge available: For
example, if the point x̄ is known to correspond to ȳ, one has to apply such a
transformation that this point becomes the origin of the modified data; that is,
x← x− x̄ and y← y− ȳ. This transformation must, of course, be remembered
every time when the model is used, eliminating x̄ from xest during run-time
application, and after the yest has been found, the transformation must be
inverted by adding ȳ to the result to receive the answer in original coordinates.

Often, there is no a priori knowledge of the values x̄ and ȳ. The normal
approach in such cases is to assume that the regression line goes through the
data center, that is, one selects x̄ = 1

k ·
∑k

κ=1 x(κ) and ȳ = 1
k ·

∑k
κ=1 y(κ), and

eliminates this mean from the data. This procedure is called mean centering of
data. Note that, even though this approach is commonly used, it is still quite
heuristic3.

In principle, there is another way to avoid this affinity problem caused by un-
known operating point: One can include some constant among the measurement
signals, so that, say, x0(κ) ≡ 1; the resulting mapping y = FT x + F0 does not
have the above constraints. Here this approach is not recommended, though:
The problem is that the signal covariance matrix would become singular, one
of the variables being constant, and some of the methods that will be discussed
later could not be applied at all.

In some cases one can eliminate the effects of biases by differentiation, that is,
one can define x′(κ) = x(κ)−x(κ− 1) and y′(κ) = y(κ)− y(κ− 1). It turns out
that when using x′(κ) and y′(κ) rather than the original variables, the constant
term vanishes from the model:

y(κ) = FT x(κ) + F0

− y(κ− 1) = FT x(κ− 1) + F0

y′(κ) = FT x′(κ).
(3.9)

It may also be so that the values x̄ and ȳ change continuously. For example,
linear trends are common in practice. Elimination of the trends (or other de-
terministic components) is more difficult than compensating constant biases,
because the behaviors rarely remain constant ad infinitum.

Finally, study an example: If mean centering is forgotten, and no other appro-
priate method is applied, the results can be catastrophic, specially if the data
mean dominates over the variance: The center of the virtual distribution lies
always in the origin, extending symmetrically in the “negative” direction (see
Fig. 3.4). The resulting model is intuitively incorrect: If x goes up, also y goes
up according to the model — even though this is evidently incorrect.

3.3.3 Data scaling

The role of variable scaling is to make the relevant features optimally visible in
the data. Study an example:

3If the center is determined blindly from the data, the degrees of freedom become lower;
when calculating covariance matrices, for instance, this should be taken into account (by
dividing with k − n rather than with k), but here it is assumed that the number of samples k
is so large that ignoring this does not matter too much
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Figure 3.4: The original data distribution, on the left, and the virtual
distribution if the centering is “forgotten”, on the right

Assume that there are temperature values in the range from 100◦C to
200◦C and pressure values in the range from 100000 Pa to 200000 Pa
among the measurement data. The variation range in temperature
(ignoring units) is 100 and in pressure it is 100000. It turns out
that in the mathematical analysis the role of the temperature will be
neglected because the variation range is so narrow: The error-square
criterion concentrates on minimizing the more significant variations,
emphasizing the pressure measurements exclusively.

The “equalization” of variable visibility can be carried out using data scaling.
Scaling can be formally expressed using weighting matrices WX and WY: If
data X is to be scaled, for example, one has X = XWX. Often, WX and WY

are diagonal matrices with the corresponding elementwise scaling factors on the
diagonal.

It is customary to assume (if there is no additional knowledge) that data given in
different units should carry the same level of information. This heuristic means
that all variables should have about the same variation range to be equally
emphasized in the error-squared based algorithms (see Sec. ??). To accomplish
this normalization, the weighting matrix should be selected as

WX =

⎛
⎜⎜⎜⎝

1√
var{x1}

0

. . .
0 1√

var{xn}

⎞
⎟⎟⎟⎠ , (3.10)

and similarly for the output data. For each variable there then holds 1
k ·XT

i Xi =
1/(k · var{xi}) · XT

i Xi = 1. However, there are also other ways to define the
scaling (see Appendix B), and there are no general guidelines for scaling that
would always give optimal results exist.

However, it seems that if the data comes from a strictly cybernetic system [9.11],
the rigid model structure proposes some guidelines. If the variables represent
“deformations” in the cybernetic system as defined by the interaction between
a system and its environment, variance normalization is explicitly motivated;
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further, in such systems mean values are not necessarily eliminated in the pre-
processing phase.

After the above steps it is now assumed that the data in X and Y are valid,
and the system properties are (more or less) optimally visible in the data. In
the subsequent chapters, the construction of the matrices X and Y is no more
concentrated on.

3.4 Model construction and beyond

In the beginning of the chapter it was claimed that there is no room for exper-
tise during the actual regression model construction phase. However, this is not
exactly true. First, the selection of the modeling method is a question of what
one expects there to be found in the data. Second, many of the more sophisti-
cated methods are more or less interactive, so that the final model refinement
(like determining the model order) is left to the user.

3.4.1 Analysis and synthesis

When using the more sophisticated methods, to be discussed in later chapters,
the modeling procedure can be roughly divided in two parts, in analysis and in
synthesis. In analysis, the mathematical machinery is used to reveal some kind
of latent structure hidden among the observed data dependencies. The data
being numeric, there are typically no clear-cut absolutely correct answers to the
question of the underlying structure; the machinery just makes the data better
comprehensible, so that the final decisions can easier be made by the user. This
structure visualization is typically carried out so that the most fundamental
data properties of the high-dimensional data are compressed into sequences of
scalars measuring the relevance between the structural constructs. Generally, it
is the model dimension selection that is left to the user.

After the analysis, in the synthesis phase, the analyzed structure is reconstructed
in another form; when discussing regression models, this new structure empha-
sizes the mapping from input to output.

Note that in synthesis and in analysis the data preprocessing can be carried
out in different ways — that is, the selection of the association matrix form
studied in the previous chapter is an independent task from final mapping model
construction. Generally, in analysis, when only the latent structure is searched
for, there is more freedom; on the other hand, in synthesis, one has to be able
to somehow “invert” the data deformations to construct the output mapping.

It turns out that optimizing the model is often rather simple (at least if the
optimality criteria are selected in a sensible way). However, it also turns out
that sometimes the “best” is an enemy of “good”. It is not only the accuracy
but also the robustness or generalization capability of the model that should be
taken into account: How the model behaves when the data is somewhat different
as compared to the training data?
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3.4.2 Validating the model

After a model has been constructed, the knowledge is needed in interpreting
the results: What has actually been carried out, does the model do what it
was intended to do. In principle, the model validity should be checked using
statistical significance tests, etc. However, these methods often turn out to have
more theoretical than practical value and they are not studied in this context;
a more pragmatic approach to model validation is taken.

It is fair to apply the same criterion for evaluating the model as was used
when the model was constructed, that is, the sum-of-squared-errors criterion4.
However, there is a catch: A good measure for checking the model robustness,
applicable to all models, is to see what is the average prediction error size for
independent data that has not been used for training. If the error matrix is
defined as E = Ytest − Ŷtest, where Ytest is the correct output and Ŷtest is the
estimate given by the model, the following Mean-Square Error (MSE) measure
can be applied for each output separately:
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Without independent data, if only the data fit is measured, one can only speak
of modeling data. If the model works fine for independent validation data, one
can assume that the model also captures the actual behaviors. A still more
challenging goal is to find a model that would represent the system. Whereas
validation data is typically collected from the system in the same environmental
conditions as the training data was, the testing data is collected in different
conditions, in different time. If the correspondence between the model and the
real system still is good, one can be satisfied — at least for some time: The
properties of the systems typically change over time.

Because the properties of the models are determined in the preprocessing phase,
but the model validity can be seen only afterwards, it is evident that the cycle
between preprocessing and model construction becomes iterative. Indeed, it is
clever to construct different types of models, using different kinds of prepro-
cessings for different sets of input data, and compare the results. Rather than
employing the computing capacity for complex parameter fitting for complex
models once and for all, the repetitive approach is here preferred: The designs
become more transparent and analyzable in this way. Because of this iterative
nature of model design, it is important that the model construction can be car-
ried out in an efficient way — and the toolbox of methods to be presented later
all share this efficiency (linearity) goal.

4Remember that the selection of the validation criterion is not quite straightforward: For
example, note that the (otherwise clever) information theoretic criteria like Final Prediction
Error criterion (FPE), Akaike Information Criterion (AIC), or Minimum Description Length
(MDL) criterion are not suited here. They only employ training data in the formulas, measur-
ing the model applying a priori structural assumptions; robustness, being due to unanticipated
disturbances, cannot be captured. Typically, it would be the basic least-squares method that
would win
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3.4.3 Cross-validation

A practical way to evaluate the model validity, at least if there is scarcity with
data, is cross-validation. The basic idea is to leave one sample (or sequence
of samples) out at a time from the data set, construct regression model using
other remaining training samples, and check how well the missing sample can
be predicted using this truncated model. When this procedure is repeated for
all samples (or all sequences), a rather reliable view of how well the modeling
method can abstract the data is found. On the other hand, large cross-validation
errors may also reveal outliers that can be eliminated during the next modeling
cycle.
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3.5 Summary: Modeling procedures

The above discussion can be summarized as follows (note that the steps below
illustrate the typical procedure, not always being implemented exactly in that
way):

Constructing the model

1. Construction of the features, classification of data, search of primary Gaus-
sian distributions, outlier detection, determination of training sets X and
Y, and the corresponding test sets Xtest and Ytest.

2. Determination of the data scaling matrices WX and WY using data in X
and Y.

3. Preprocessing, data transformations, centering and scaling, giving X =
(X − X̄)WX and Y = (Y − Ȳ)WY, and Xtest = (Xtest − X̄)WX and
Ytest = (Ytest − Ȳ)WY.

4. Model structure refinement, if appropriate, giving θ = gθ(X ′, Y ′).

5. Model construction, giving F = gF (X, Y, θ).

6. Model validation, comparing XtestF against Ytest.

Note that in Steps 4 and 5 different preprocessing procedures may be used, so
that the data X ′ and Y ′ need not be the same as X and Y . The semantics of
“functions” gθ and gF will be concentrated on in subsequent chapters (see page
80).

Using the model

1. Construction of the features, classification of data, selection of the primary
Gaussian distribution, outlier detection, giving Xest.

2. Preprocessing, data transformations, centering and scaling, giving the final
data Xest = (Xest − X̄)WX.

3. Model use, giving Ŷest = XestF .

4. Inverse transformations, denormalization and decentering; reconstruction
of the final estimate by inverting all preprocessing operations that were
carried out for the output data: Ŷest = (ŶestW

−1
Y ) + Ȳ.
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3.6 Case studies

In this section two examples of modern process data preprocessing are presented.
In both cases the information is acquired in the form of digital camera images.
One reason for increased general interest in machine vision is the intuition: Hu-
mans looking at complex processes often can recognize valuable information —
why not automate such a measuring process? However, whereas perceiving im-
ages is easy for humans, but pattern recognition is very difficult for computers.
Assuming that there are, say, 512 × 512 pixels of raw data in these images,
multivariate methods are clearly needed for sensor fusion — but without ap-
propriate preprocessing of the data, the relevant information would still remain
hidden.

These examples illustrate how difficult it is to give any general guidelines on how
the data should be preprocessed; it is always a matter of domain area expertise.
In 2005, both of these process analyses are still being carried out and further
modeling is still continuing.

3.6.1 Analysis of the paper machine dry line

The first example illustrates the modern development work at a paper mill.
This modeling effort is currently taking place at Stora-Enso Kaukopää plant in
Imatra, Finland. The discussion here is somewhat streamlined, simplifying the
problem to some extent; more detailed discussions can be found, for example,
in [4].

The paper machine consists of the “wet end”, where the liquid-form pulp is
processed, and the “dry end”, where the more or less solid-form paper (or card-
board) is received. The connection point between these two processing phases
is the wire, where the pulp is spread from the headbox. The wire being a sparse
fabric, excessive water is filtered through it, whereas the fibres remain on the
wire, constituting the final paper formation. The wire runs continuously, taking
the moist paper to the drying section.

The drying section consists of dozens of steam-heated cylinders; the important
processes governing the final paper properties take place on the wire, but the
results can today be measured only in the end of the dry end, causing a consid-
erable delay in the control loop. It would be excellent if the properties of the
final paper could be estimated already on the wire; this would make the control
loops much faster. And, indeed, there seems to be room for improvement: The
location on wire where the slush pulp turns from thick liquid into moist paper
affects the paper formation and thus the final paper properties; in this transi-
tion region the mirror reflectance of the pulp surface turns into diffuse. This dry
line has traditionally been utilized by the operators for more or less intuitive
manual process control. Installing a camera beside the wire and determining
the dry line from the digital image, one could perhaps mimic the expert actions
(see Figs. 3.5 and 3.6).

Before some kind of control based on the dry line measurements can perhaps be
implemented, the problem that remains is that the connection between the dry
line measurements and quality properties at the dry end (mainly final humidity
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Figure 3.5: Paper machine headbox and wire
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Figure 3.6: Paper machine dry line as seen by the camera. The edge
detection algorithm has determined the “most probable” location of the
wet/dry transition

and total mass) should be determined. It is the profile that is the most relevant
now: The distribution of the fibres is determined on the wire. This means that
the variations in “cross direction” (CD) in the dry and wet ends of the machine
should be connected using statistical methods.

There are many technical problems in the camera imaging, concerning illumi-
nation, etc.; here we assume that these problems are solved and a high-quality
digitized image is available. The pixel matrix first has to be deformed to com-
pensate for the perspective distortions caused by the nonoptimal camera in-
stallation. An edge detection algorithm is applied to find the locations where
the gradient of the pixel intensity is maximum: When these maximum gradient
points are connected, an estimate for the dry line is achieved.

The dry line is analyzed every 18 seconds, extracting 71 dry line measurement
values along the width of the wire, constituting the original data vector x(κ).
When data is collected during several hours, the data matrix X can be con-
structed. Similarly, in the dry end, a traversing sensor measures the quality
properties, constituting the output data Y.
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Figure 3.7: Dry line behavior in time. Some 1000 samples of all profile
points (71) are plotted; samples #194 and #898 seem to be outliers

The first task in preprocessing is to make the input data and output data com-
patible. Because it takes (for the cardboard type being produced) 1.5 minutes to
proceed from the wire to the dry end sensors, the output block must be shifted
so that corresponding data values are aligned: The number of shifts in this case
is five (because 90 sec / 18 sec = 5).

The outliers have to be eliminated from the data (see Fig. 3.7. These outliers
are due to failures in pattern recognition — these problems may be caused
by, for example, an operator walking by the wire, confusing the edge detection
algorithm! Of course, the outlier data rows have to be eliminated in input and
output blocks simultaneously to keep the data structures aligned. After this,
some 1000 valid data points were left in data.

Next, the distribution of dry line points is analyzed (see Fig. 3.8). It seems that
the measured dry line points seem to be distributed rather strangely, wide “un-
active” regions existing between areas of frequent hits. Closer analysis reveals
that this is (partly) caused by the suction boxes: a negative pressure under the
wire is applied to increase the efficiency of pulp drainage. There is no real physi-
cal reason why the dry line should have non-Gaussian distribution, and it can be
assumed that these anomalies are caused by the external suction. That is why,
the normality of the distribution is restored by using histogram equalization
techniques. Note that histogram equalization has to be carried out for the data
still in absolute coordinates (because the effects of the suction boxes, of course,
are always visible in the same coordinates), so that necessarily equalization has
to precede any other manipulation affecting the numerical measurement values.

Because only profile shapes are now of interest, the changes in the dry line
average have to be eliminated. This means that the instantaneous dry line
mean (in cross-direction) is eliminated from the measurement sample: x′

i(κ) =
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Figure 3.8: Paper machine dry line histograms as a contour plot (wire
running upwards). The lighter a point is in this image, the more hits
there are, meaning that the measured dry line is most probably located
there in the long run

xi(κ) − 1
71 ·

∑71
i=1 xi(κ). However, this seemingly straightforward data modi-

fication procedure introduces surprising additional problems: Note that after
this modification the variables become linearly dependent, the last variable (or
any of the variables) being negative of the sum of the other ones, so that, for
example, x′

71(κ) = −∑70
i=1 x′

i(κ) — otherwise they would not add to zero! The
easiest way to circumvent this new problem is to simply ignore the last, redun-
dant variable, so that effectively we have n = 70. The linear independence of
the variables (or the invertibility of the covariance matrix) was assumed before,
and it is the prerequisite for many of the regression methods.

Only after these steps, the standard operations of mean centering and scaling
are carried out (now in MD, or “machine direction”, that is, κ running from 1
to 1000). Now, because all input variables have the same interpretation, it is
natural to simply normalize the variances to unity before the model construction
phase.

3.6.2 Modeling of flotation froth

Flotation is used in mineral processing industries for separation of grains of
valuable minerals from those of side minerals. In the continuous flow flotation
cell (see Fig. 3.9), air is pumped into a suspension of ore and water, and the
desired mineral tends to adhere to air bubbles and rises to the froth layer where
the concentrate floats over the edge of the cell; the main part of other minerals
remains in the slurry. The separation of minerals requires that the desired
mineral is water-repellent: In zinc flotation, this can be reached by conditioning
chemicals like copper sulphate CuSO4.

Flotation is one of the most difficult and challenging processes in mineral pro-
cessing industry. This characteristic of the process mainly arises from the in-
herently chaotic nature of the underlying microscopic phenomena; there are no
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Figure 3.9: An array of two flotation cells in series

good models available that would capture the behaviour of the particles. Addi-
tional problems are caused by the fact that todays measurement technology is
not able to provide with a description of the current state of the process that
would be accurate and reliable enough. It is the froth surface that dictates the
quality of the outflowing concentrate; the properties of the froth are reflected in
its texture, movement, and colour. No standard measurement devices, however,
can capture the outlook of the froth. Thus, most of the chemical reagents that
are used to increase the efficiency of flotation are controlled by the human op-
erators. The operators usually determine the suitable levels of the reagents by
analysing the visual appearance of the froth; the control strategies they apply
are expert knowledge.

Perhaps the limited capacity of the operator to monitor cells continuously (the
operator is usually responsible for various circuits consisting of several cells)
could be increased by machine vision (see Fig. 3.10)? This idea was studied
during the Esprit long term research project ChaCo (Characterization of Flota-
tion Froth Structure and Colour by Machine Vision); for example, see [25].
There were various lines in this research project; however, in this context only
those studies are explained where the machine vision system was used to help
the human operators in their task, analyzing the froths for process monitoring
and supervision purposes.

The status of the flotation froth cannot be uniquely characterized; there are
just a few measurements that can be explicitly defined and determined (like
the froth level and thickness), whereas most of the factors that characterize the
froth properties are more or less conceptual having no explicit definition. To
construct “soft sensors” for the unmeasurable quantities, operator interviews
were first carried out to find out what are the most relevant phenomena to be
studied in the froth. It turned out that the trivial features — like “big bubbles”,
“small bubbles”, etc. — are only used by novices, not the real experts. The
operator interviews revealed that the most interesting (more or less fuzzy) froth
types in zinc flotation are the following5:

5Note that classification can be seen as a special case of regression. Each of the classes has
an output of its own in the regression model; this variable has value “1” if the sample belongs
to that class. Using regression, the calassification results are not binary — the output values
reveal how certain the classifications are
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Figure 3.10: The automatic froth monitoring system helping the operator

1. “Wet” froth is characterized by “empty bubbles”, meaning that not all
bubbles are covered with the concentrate; it also seems that most of the
bubbles are tiny whereas some of them may grow excessively. The bubbles
do have a rather high tendency to burst.

2. “Dry” froth has a rather even tessellation, bubbles being of equal size
and all being covered by concentrate; because of the uniformity, the bub-
bles are often hexagonal. This seems to be the category characterizing
optimal production conditions, both froth speed and quality of concen-
trate being high.

3. “Stiff” froth is “porridge-like”, the bubble forms becoming distorted and
finally being substituted for layered concentrate rafts; this kind of froth
floats rather unevenly, sometimes stopping altogether. In the extreme,
stiffness can make the froth collapse, so that no concentrate floats out;
these pathological cases should be avoided at any cost.

These characterizations are conceptual and there are no exact mathematical
definitions for them (see Fig. 3.11). The role of image data preprocessing is
to somehow make the classes distinguishable. First, it was noticed that static
images are not enough: Many of the characterizations involve dynamic phenom-
ena. Second, there is need for both frequency-domain and spatial segmentation
approaches, as well as for pixel-wise analyses:

• Dynamic phenomena were captured by analysing image pairs having
0.2 sec time interval; this way, the changes between the images revealed
information about the bubble collapse rate (how well the aligned images
match each other) and froth speed (the average speed being determined
as the maximum point in the image pair cross-correlation matrix — this
can be calculated in the frequency space, that is, the tgwo-dimensional
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Figure 3.11: Different “conceptual categories” as seen by experts

FFT transform is applied to both images, and these transformed images
are multiplied pixelwise, revealing the matches among shifted images).
The variation in speed was measured by how high the average maximum
cross-correlation peak was as compared to neighboring values.

• Frequency domain methods (in practice, based on the two-dimensional
fast Fourier transform) were used to analyze the directional orientedness
and non-sphericity of the bubbles; also the above cross-correlation matri-
ces were calculated using FFT.

• Segmentation techniques (based on the so called “watershed tech-
nique”) were used to extract the properties of individual bubbles; the
bubble size distributions were determined this way, as well as average
“roundness” of the bubbles.

• Pixel-wise analyses were carried out, for example, to determine the
“emptiness” or transparency of the bubbles. The bubbles covered with
concentrate only reflect light in a diffuse manner, whereas uncovered bub-
bles typically have bright total reflectance points on top; the number of
maximum intensity pixels in the image can be used as a measure for the
number of empty bubbles.

Finally, there are some few dozen variables characterizing the froth state, a new
set of variables being calculated after every twenty seconds; this data is then
mean-centered and normalized.

After all the above steps the data is ready for further model building — whatever
that happens to mean. These questions will be concentrated on in subsequent
chapters.
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Computer exercises

1. You can check how deformed, non-Gaussian data looks like after the
“equalization” of the histogram:

DATA = regrDataClust(1,2,100,5,3);
hist(DATA); % Matlab histogram command
defmatrix = regrForm(DATA);
X = regrDeForm(DATA,defmatrix);
hist(X,10);
hist(X,30); % Note the changed resolution!

2. Load data by running the m-file dataEmotion. There are five different
signal sources (or, actually, five different “modes” of the same source!)
collected in the columns of the matrix DATA. To have some intuition into
the signals, you can try, for example

sound(DATA(:,1),16384);

You are now asked to search for such features that these signal sources
could be distinguished from each other. First divide the signals in shorter
sequences of, say, a few hundred samples each, and analyze these sequences
separately. Are there some invariances between sequences coming from the
same source as compared to the other sources?

In addition to the time-domain features, you should experiment with, for
example, frequency domain features (use fft), AR-type (auto-regressive)
model parameters, etc. — and you can combine these, defining new fea-
tures that are based on how fast the “first-order” features change. How
robust do you think your features are — would the same phenomena be
detected in other samples from the same sources?


