
Lesson 4

“Quick and Dirty”

Since its introduction by C. F. Gauss in the early 1800’s, the least-squares pa-
rameter matching technique has penetrated to all fields of research and practical
engineering work, and it still seems to be among the only ones that are routinely
used. However, there are some probloms that are not easily detected — these
problems become evident only in the complex modeling tasks, where there is
plenty of data that is necessarily not optimally conditioned. In this chapter,
the least-squares regression method is first derived, and modifications are pre-
sented; finally, the fundamental problem (so called multicollinearity) plaguing
this method is explained, giving motivation to search for more sophisticated
methods.

4.1 Linear regression model

As presented in the previous chapter, assume that the measurement data is
collected in the matrices X of dimension k × n and Y of dimension k × m. It
is assumed that there are (much) more measurement samples than what is the
dimension of the data, that is, k � n. One would like to find the matrix F so
that

Y = X · F (4.1)

would hold. Finding a good matrix F is the main emphasis from now on. Even
though the modeling problem can be formulated in such a simple way, in a
multivariate system the task is far from trivial. There are n ·m free parameters
in the model, and the optimum is searched for in this parameter space.

4.1.1 Least-squares solution

To start with, first study a model of just one output signal Yi, so that m = 1.
The parameter matrix reduces to a vector Fi:

Yi = X · Fi. (4.2)
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Solving for Fi in (4.2) means that somehow X should be inverted; however, X
is not invertible, and because k > n, generally no exact solutions can be found.
To find the best approximation, the model needs to be extended to include the
modeling errors as

Ỹi = X · Fi + Ei, (4.3)

where Ei is a k× 1 vector containing the reconstruction error for each measure-
ment sample k. It is only these noisy measurements ỹ that are assumed to be
available for modeling; in what follows, the sloppy notation y will for brevity
still be used to denote the noisy data. Now there are more unknowns than there
are constraints, and the problem can be transformed into a form where opti-
mization is being carried out. It needs to be recognized that the formulation in
(4.3) is just a model representing the coupling of uncertainty in the system. The
variables ei(κ) do not represent any real noise signals in the system, they only
stand for the match between the model and the data. In this sense, minimizing
this uncertainty is a justified objective.

The errors can be solved from (4.3) as Ei = Yi − XFi; these errors should be
somehow simultaneously minimized. It turns out that the easiest way to proceed
— and also theoretically well motivated, as shown in the previous chapter —
is to minimize the sum of error squares. The sum of the squared errors can be
expressed as

ET
i Ei = (Yi − XFi)

T (Yi − XFi)
= Y T

i Yi − Y T
i XFi − FT

i XT Yi + FT
i XT XFi.

(4.4)

This (scalar) can be differentiated with respect to the parameter vector Fi:

d
(
ET

i Ei

)
dFi

= 0− XT Yi − XT Yi + 2XT XFi. (4.5)

Because

d2
(
ET

i Ei

)
dF 2

i

= 2XT X > 0, (4.6)

this extremum is minimum, and because the extremum of a quadratic func-
tion is unique, setting the derivative to zero (vector) gives the unique optimum
parameters:

−2XT Yi + 2XT XFi = 0, (4.7)

resulting in

Fi =
(
XT X

)−1
XT Yi. (4.8)

The estimate for yi is found as

ŷest,i = FT
i xest = Y T

i X
(
XT X

)−1
xest. (4.9)
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This result can be intuitively interpreted also in terms of correlation matrices:
First, covariance structure in x is eliminated (multiplication by

(
1
kXT X

)−1
),

and after that the “whitened” data is mapped onto y utilizing the cross-correlation
structure (as revealed by 1

kXT Y ).

4.1.2 Piece of analysis

In what follows, some theoretical analyses that can be used to evaluate the
above least squares model are presented. More analysis can be found in various
sources, for example, in [35].

Model consistency

Because the model construction was an optimization process based on stochastic
data, the model parameters cannot be assumed to be quite accurate. Indeed,
for the parameter estimates one can write

F̂i =
(
XT X

)−1
XT Yi

=
(
XT X

)−1
XT (XFi + Ei)

= Fi +
(
XT X

)−1
XT · Ei.

(4.10)

Here, F̂i are the estimates, whereas Fi is assumed to contain the “true” noiseless
parameter values. From this one can write the expression for parameter errors:

F̃i = Fi − F̂i =
(
XT X

)−1
XT · Ei. (4.11)

The expected parameter error is zero, assuming that X and Ei do not correlate
(this issue is studied later):

E{F̃i} =
(
XT X

)−1
XT E{Ei} = 0. (4.12)

If this uncorrelatedness assumption does not hold, there will be bias. If X is
deterministic and E has zero mean, as was assumed, there will be no problem;
however, these assumptions cannot always be fulfilled (see Section 4.2.1).

Parameter sensitivity

The reliability of the regression model (4.8) can be approximated, for example,
by checking how much the parameters vary as there are stochastic variations in
Ei. The parameter vector covariance matrix becomes, applying (4.11)

E{F̃iF̃
T
i } = E

{((
XT X

)−1
XT Ei

)((
XT X

)−1
XT Ei

)T
}

=
(
XT X

)−1
XT · E {

EiE
T
i

} · X (
XT X

)−1

=
(
XT X

)−1
XT σ2

eI X
(
XT X

)−1

= σ2
e

(
XT X

)−1
.

(4.13)
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The noise variance σ2
e can be approximated as the variance of the reconstruction

error Ỹi = Yi−Ŷi = Yi−XF̂i. The parameter variance is also intimately related,
not only to the noise properties determined by the error variance σ2

e , but also
to the properties of the matrix XT X — see Sec. 4.3 for more analysis.

The estimate for the parameter error can be applied, for example, when as-
sessing the relevance of the input variables xj . For example, assume that a
least-squares model is constructed, and the corresponding diagonal element in
the model parameter covariance matrix is E{F̃ 2

jj} = σ2
jj . Now, assuming that

the probability density function form for the error is known (Gaussian?), one
can approximate the probability that the parameter Fjj , rather than being the
estimated F̃ii, actually has zero value. This would mean that there is no con-
tribution of that variable in the model, and it could be ignored.

Without going into details, it turns out that the expression for parameter co-
variance (4.13) reaches the Cramer-Rao lower bound, meaning that for Gaussian
data the least-squares model implements the best possible, or efficient, estima-
tor for the parameters.

Measures of fit

To evaluate how well the regression model matches the training data, the so
called R squared criterion can be applied: how much of the real output variance
can be explained by the model. That is, one can calculate the quantity

R2 = 1 − SSE

SST

, (4.14)

where, for the i’th output,

• The “error sum of squares” is defined as

SSE = (Yi − Ŷi)T (Yi − Ŷi) = (Yi − XFi)T (Yi − XFi). (4.15)

• The “total sum of squares” (for zero-mean data) is

SST = Y T
i Yi. (4.16)

So, R2 measures how much of the total variation in the output can be explained
by the model. This quantity has value 1 if all the variation in the output can
be exactly predicted, and lower value otherwise.

This R2 is a traditional measure for characterizing least-squares fitting. How-
ever, it needs to be emphasized here that it is not a good approach for evaluating
model goodness. It simply measures data fit, not model goodness: It uses the
same data for evaluation that was used for model construction. Applying this
criterion for comparing model structures, the least-squares model would always
outperform the other structures (to be studied later), no matter how sensitive
the model is to noise!
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4.1.3 Multivariate case

If there are various output signals, so that m > 1, the above analysis can be
carried out for each of them separately. When collected together, there holds

⎧⎪⎪⎨
⎪⎪⎩

F1 =
(
XT X

)−1
XT Y1

...
Fm =

(
XT X

)−1
XT Ym.

(4.17)

It turns out that this set of formulas can simultaneously be rewritten in a
compact matrix form, so that

F =
(

F1 · · · Fm

)
=

(
XT X

)−1
XT · ( Y1 · · · Ym

)
. (4.18)

This means that the multilinear regression (MLR) model from X to estimated
Y can be written as

FMLR =
(
XT X

)−1
XT Y. (4.19)

The MLR solution to modeling relationships between variables is exact and op-
timal in the sense of the least squares criterion, implementing the pseudoinverse
of the matrix X . However, in Sec. 4.3 it will be shown that one has to be care-
ful when using this regression method: In practical applications and in nonideal
environments this MLR approach may collapse altogether. The problem is that
trying to explain noisy data too exactly may make the model sensitive to indi-
vidual noise realizations. In any case, in later chapters, the above MLR model
is used as the basic engine to reach mappings between variables; the deficiencies
of the basic approach are taken care of separately.

The basic MLR solution can be extended and modified in many ways. For
example, assuming that not all samples are assumed to be equally informative,
one can define the weighted cost criterion for output i as

Ji =
k∑

κ=1

w(κ) · e2
i (κ) = ET

i WEi, (4.20)

where the k × k matrix W contains the weighting factors on the diagonal. then
the solution (as expanded to multiple outputs) as

F =
(
XT WX

)−1
XT WY. (4.21)

The parallel structure of the multivariate problems can be utilized also more
generally for extending formulas to multivariate cases. For example, the expo-
nentially weighted (so that w(κ) = λk−κ with the forgetting factor 0 � λ¡1)
recursive least-squares algorithm [?] corresponding to (4.21) can be extended to
multiple outputs, so that m > 1, as

F (k) = F (k − 1) + (R(k))−1
x(k)

(
y(k) − FT (k)x(k)

)T

R(k) = λR(k − 1) + x(k)xT (k).
(4.22)
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4.2 “Colored noise”

The above MLR formula will be the standard approach to implementing the
mapping between two sets of variables in later chapters. As was observed, it
is optimal and efficient — but only if the mapping problem is appropriately
conditioned. There are two basic problems that will be discussed during the
rest of this chapter. Both of the problems become acute in multivariate cases
where the quality of the high-dimensional data cannot be assured.

From the practical point of view, the first problem is caused by the incompatible
model structure assumption; this issue is studied in this section. In Section 4.3,
it is the robustness problem that is studied.

4.2.1 Error in variables

In the beginning, it was assumed that the nature of the variables is heteroge-
neous: It was assumed that Y only is stochastic, noise E being added to it, and
X was assumed to be deterministic. To understand the problem of deterministic
vs. stochastic variables, study an example.

Now, study a familiar-looking case: Assume that system dynamics is to be
modeled:

y(k) = FT · x(k) + e(k), (4.23)

where

x(k) =

⎛
⎜⎝

ỹ(k − 1)
...

ỹ(k − n)

⎞
⎟⎠ =

⎛
⎜⎝

y(k − 1) + e(k − 1)
...

y(k − n) + e(k − n)

⎞
⎟⎠ . (4.24)

When the input x is defined so that the former outputs are “recirculated” into
input, one is identifying the auto-regressive (AR) model structure. It is clear
that the assumption of x being deterministic collapses; what is more, X becomes
correlated with E, so that the model in (4.11) becomes biased.

Clearly, it has to be assumed that X measurements can also contain uncertainty.
The model matching problem becomes very different if both X and Y blocks
are regarded as equally stochastic data values and errors in all variables should
be taken into account (see Fig. 4.1). This assumption results in the so called
Error In Variables (EIV) model.

There exists a wide variety of different ways to implement the data homogeneity
in the models. As an example, below, one approach is presented for circumvent-
ing the problems of correlated noise. A more concise treatment is carried out in
the next chapter, where the problem is attacked from a fresh point of view1.

1In chapter 11, a method called Total Least Squares is presented that also addresses Errors
in Variables
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Figure 4.1: Normal least-squares matching principle, on the left, assum-
ing that only the y variables contain noise, and the total least squares
principle, assuming that errors in all variables are equally meaningful,
on the right. For visualization purposes only one x and y variable is
employed

4.2.2 Instrumental variables

When constructring linear regression models, after all, it is all about invert-
ing the mapping: Starting from XF = Y solve the mapping matrix F . The
challenge is caused by the uninvertibibility of the matrix X . However, if the
original model holds, there must also hold X T Y = X T XF , where X is some
k × n matrix. Now, assuming that the matrix X T X is invertible, one can solve

F =
(X T X

)−1 X T Y. (4.25)

As in (4.10), one can find the correspondence between the noise and the param-
eter matrix

F̂ = F +
(X T X

)−1 X T E, (4.26)

and, further, for the parameter error one has

F̃ =
(X T X

)−1 X T E. (4.27)

It is interesting here that it is no more the correlation between X and E that
determines the model bias: To minimize the model error, there should be high
correlation between X and X , and low correlation between X and E. Naturally,
the first objective is reached for X = X , resulting in the nominal MLR, but when
the other objective is also emphasized, non-trivial alternatives can be proposed.
The variables in § are called instrumental variables.

How to reach good properties for the instruments, is dependent of the situation.
For example, if in y(κ) = fT x(κ) the x(κ) data vector consists of the past values
of (scalar) y(κ), as shown in (4.24), meaning that AR modeling of a dynamic
system is being carried out, different choices have been studied a lot. A good
choice for instruments in such case would be to use the correct (noiseless) val-
ues of y(κ) as collected in §(κ): This would be the optimal choice, and, indeed,
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Figure 4.2: Collinearity visualized in two dimensions

this can be approximately implemented. When using the model, in the recon-
structed values of y the noise realization has (hopefully) been abstracted away,
and these estimates can be used as instruments: Select §(κ) = x̂(κ), where x̂(κ)
vector consists of the past values of ŷ(κ). When the cycle of first determining
a preliminary model and thereafter refining the instruments is repeated, the
model parameters finally converge to unbiased values.

4.3 Collinearity

In the previous section, the problem of data heterogeneity was discussed. The
deficiencies of MLR become even more painstaking when dimensional complex-
ity is faced.

The MLR regression model is optimal2. In simple cases it is difficult to see why
optimality is in contrast with usability. Today, when the problems to be modeled
involve large amounts of poor data, the problems of MLR have become evident.
The main problem plaguing MLR is caused by (multi)collinearity. What this
means can best be explained using an example.

4.3.1 Example: When variables are redundant

Assume that one can observe two variables x1 and x2, so that x = ( x1 x2 )T .
Further, assume that these variables are not strictly independent; they can be
written as x1(κ) = ξ(κ) + ε1(κ) and x2(κ) = ξ(κ) + ε2(κ), where the sequences
ε1(κ) and ε2(κ) are mutually uncorrelated, both having the same variance σ2.
This can be interpreted so that we have two noisy measurements of the same
underlying variable ξ, and together these measurements should give a more
reliable estimate for it.

2of course, only in the least-squares sense; but, because of the mathematical benefits, the
same criterion will be applied later, too
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Let us check what this collinearity of x1 and x2 means in practice. First, calcu-
late the matrix XT X that has an essential role in the regression formula

XT X =
( ∑

κ x2
1(κ)

∑
κ x1(κ)x2(κ)∑

κ x1(κ)x2(κ)
∑

κ x2
2(κ)

)

≈ k ·
(

E{ξ2} + σ2 E{ξ2}
E{ξ2} E{ξ2} + σ2

)
.

(4.28)

To understand the properties of the regression formula, let us study the eigen-
values of the above matrix. It turns out that the solutions to the eigenvalue
equation

det
{

λ · I2 − k ·
(

E{ξ2(κ)} + σ2 E{ξ2(κ)}
E{ξ2(κ)} E{ξ2(κ)} + σ2

)}
= 0 (4.29)

are {
λ1 = 2k · E{ξ2(κ)} + kσ2, and
λ2 = kσ2.

(4.30)

The theory of matrices reveals that the condition number of a matrix determines
its numerical properties — that is, the ratio between its largest and smallest
eigenvalue dictates how vulnerable the formulas containing it are to unmodeled
noise. As the condition number grows towards infinity the matrix becomes
gradually uninvertible. In this case, the matrix XT X has the condition number

cond{XT X} = 1 + 2 · E{ξ2(κ)}
σ2

, (4.31)

telling us that the smaller the difference between the variables x1 and x2 is (σ2

being small), the higher the sensitivity of the regression formula becomes.

The above result reveals that when using regression analysis, one has to be
careful: It is the matrix XT X that has to be inverted, and problems with in-
vertibility are reflected in the model behavior. There only need to exist two
linearly dependent measurements among the variables in x, and the problem
instantly becomes ill-conditioned. In practice, it may be extremely difficult to
avoid this kind of “almost” collinear variables — as an example, take a system
that has to be modeled using partial differential equation (PDE) model (say, a
rod that is being heated). PDE models are often called “infinite-dimensional”;
that is, one needs very high number (in principle, infinitely many) measurements
to uniquely determine the process state. It is not a surprise that temperature
readings along the rod do not change rapidly, or nearby measurements deliver al-
most identical values, variables becoming linearly dependent; a regression model
trying to utilize all the available information becomes badly behaving. When
aiming towards accuracy, the model robustness is ruined!

To see an example of what collinear data looks like in a two-dimensional space,
see Fig. 4.2: the data points in the figures are created using the above model,
where E{ξ2(κ)} = 1.0 and σ2 = 0.01, the sequences being normally distributed
random processes. The data points seem to be located along a line; they do not
really seem to “fill” the whole plane. Intuitively, this is the key to understanding
the ideas of further analyses in later chapters.
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The TLS approach by no means solves the above collinearity problem — on
the contrary, even more severe problems emerge. Note that the last principal
component essentially spans the null space of the covariance matrix, that is, if
there is linear dependency among the variables, this dependency dominates in f ′.
Assuming that the linear dependency is between, say, input variables xi and xj ,
the parameters f ′

i and f ′
j have high values, all other coefficients being near zero.

Now, if (11.21) is applied, the parameter f ′
y (having negligible numerical value)

in the denominator makes the model badly conditioned. The main problem with
TLS is that while solving a minor problem (error in variables), it may introduce
more pathological problems in the model.

4.3.2 Patch fixes

Because of the practical problems caused by collinearity, various ways to over-
come the problems have been proposed. In what follows, two of such proposi-
tions are briefly presented — more sophisticated analyses are concentrated on
in next chapters.

Orthogonal least squares

Because the basic source of problems in linear regression is related to inversion of
the matrix XT X , one can try to avoid the problem by enhancing the numerical
properties of this matrix. Intuitively, it is clear that if the input variables were
mutually orthogonal, so that XT X = I, the numerical properties would be nice.
Indeed, one can construct new variables Z so that this orthogonality holds using
the so called Gram-Schmidt procedure: Corresponding to all indices 1 ≤ i ≤ n,
define Zi by

Z ′
i = Xi −

i−1∑
j=1

XT
i Zj · Zj , (4.32)

and normalize it,

Zi = Z ′
i/

√
Z ′T

i Z ′
i, (4.33)

starting from Z1 = X1/
√

XT
1 X1. These data manipulation operations can be

presented in a matrix form

Z = X · M, (4.34)

where M is an upper-triangular matrix3. It is easy to see that there holds

ZT
i Zj =

{
1, if i = j, and
0, otherwise, (4.35)

3Actually, the so called QR factorization of X that is readily available, for example, in
Matlab, gives the same result (note that the resulting R matrix is the inverse of our M . The
inversions of the triangular matrix are, however, nicely conditioned)
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so that ZT Z = I. Using these intermediate variables one has the mapping
matrix from Z to Y as

F =
(
ZT Z

)−1
ZT Y = ZT Y, (4.36)

or returning to the original variables X , the Orthogonal Least Squares (OLS)
formula becomes

FOLS = MZT Y. (4.37)

Of course, reformatting formulas does not solve the fundamental problems —
the inversion of the matrix is implicitly included in the construction of M .
However, it turns out that reorganizing the calculations still often enhances the
numerical properties of the problem.

Ridge regression

Ridge Regression (RR) is another (ad hoc) method of avoiding the collinearity
problem — the basic idea is to explicitly prevent the covariance matrix from
becoming singular. Ridge regression belongs to a large class of regularization
methods where the numerical properties of the data — as seen by the algo-
rithms — are somehow enhanced. The idea here is not to minimize exclusively
the squared error, but to include weighting for parameter size in the optimiza-
tion criterion: The badly-behaving nature of models is reflected in excessive
parameter values. Instead of (4.4), the criterion that is really minimized is

ET
i Ei + FT

i QiFi =
Y T

i Yi − Y T
i XFi − FT

i XT Yi + FT
i XT XFi + FT

i QiFi,
(4.38)

where Qi is a positive definite weighting matrix. Differentiation yields

d
(
ET

i Ei

)
dFi

= 0− XT Yi − XT Yi + 2XT XFi + 2QiFi. (4.39)

Setting the derivative to zero again gives the optimum:

−2XT Yi + 2XT XFi + 2QiFi = 0, (4.40)

resulting in

Fi =
(
XT X + Qi

)−1
XT Yi. (4.41)

In the multi-output case, assuming that Qi = Q is the same for all outputs, one
can compactly write

FRR =
(
XT X + Q

)−1
XT Y. (4.42)

Usually there is no a priori information about the parameter values and the
weighting matrix Q cannot be uniquely determined. The normal procedure is
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q1

q2

Figure 4.3: The “virtual” distribution of collinear data as seen by the
ridge regression algorithm for different values of q

to let Q be diagonal; what is more, it is often chosen as Q = q · I, where q > 0
is a small number. This approach efficiently prevents the matrix being inverted
from becoming singular.

The key point here is that the matrix Q is added to the (unscaled) data covari-
ance matrix. Study the eigenvalues; another way to determine the eigenvalues
is to solve the determinant expression

∣∣(XT X + q · I) − λI
∣∣ =

∣∣XT X − (λ − q) · I∣∣ . (4.43)

When adding q I to the matrix XT X , its all eigenvalues are shifted up by the
amount q, so that originally zero eigenvalues will have numerical value q > 0.
The condition number also goes down. The model parameters are typically
more conservative than in the nominal MLR case.

Note that the same ridge regression behavior in standard MLR is achieved also
if white noise with covariance 1

k q I is added to data: If this added noise does
not correlate with X — this assumption is easily fulfilled because the noise is
artificial, being added in the algorithm — the noise-corrupted data covariance
matrix is 1

k

(
XT X + q I

)
. This regularization approach is often explicitly used,

for example, when training neural networks.

It seems that there are essentially two ways to enhance the invertibility of the
matrix XT X , and thus the MLR regression model properties:

1. Either, one can ignore information by leaving the “redundant” variables
out. The problem here is that there are typically no variables with no
information at all, even though this information can be highly redundant,
and such variable elimination necessarily makes the model ignore available
information.

2. Or, one can introduce disinformation by adding noise in the variables.
This is effectively done when implementing regularization.

Just think of it: Either information is ignored, or noise is deliberately added
to data just to make the model better behaving! There is an uneasy feeling
of heuristics here, and something more sophisticated is clearly needed — the
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modeling method should be matched with the data, not vice versa. Alternatives
to MLR are presented in the following chapters.

Computer exercises

1. Check how the MLR sensitivity is affected when the data properties are
changed; that is, try different values for the parameters k (number of
samples), n (data dimension), dofx (true degrees of freedom), and σx (de-
viation of the noise) below, and calculate the covariance matrix condition
number:

k = 20;
n = 10;
dofx = 5;
sigmax = 0.001;
X = dataXY(k,n,NaN,dofx,NaN,sigmax);
Lambda = eig(X’*X/k);
max(Lambda)/min(Lambda)

2. Study how robust the different regression algorithms are. First generate
data, and test the methods using cross-validation (try this several times
for fresh data):

[X,Y] = dataXY(20,10,5,5,3,0.001,1.0);
E = regrCrossVal(X,Y,’regrMLR(X,Y)’);
errorMLR = sum(sum(E.*E))/(20*5)
E = regrCrossVal(X,Y,’regrTLS(X,Y)’);
errorTLS = sum(sum(E.*E))/(20*5)
E = regrCrossVal(X,Y,’regrOLS(X,Y)’);
errorOLS = sum(sum(E.*E))/(20*5)
E = regrCrossVal(X,Y,’regrRR(X,Y,0.001)’); % Change this!
errorRR = sum(sum(E.*E))/(20*5)


