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Lesson 5

Tackling with Redundancy

The collinearity problem is essentially caused by redundancy in the data: Mea-
surements are more or less dependent of each other. However, none of the
measurements is completely useless, each of them typically delivers some fresh
information. Qualitative analyses cannot help here — on the other hand, when
the quantitative approach is adopted, powerful methods turn out to be readily
available.

5.1 Some linear algebra

Linear algebra is a highly abstract field of systems theory. In this context, it
suffices to concentrate on just a few central ideas, and theoretical discussions
are kept in minimum; these issues are studied in more detail, for example, in
[15] or [33].

5.1.1 On spaces and bases

To have a deeper understanding of how the mapping from the “space” of input
variables into the “space” of output variables can be analyzed, basic knowledge
of linear algebra is needed. The main concepts are space, subspace, and basis.
The definitions are briefly summarized below:

The set of all possible real-valued vectors x of dimension n consti-
tutes the linear space Rn. If S ∈ Rn is a set of vectors, a subspace
spanned by S, or L(S), is the set of all linear combinations of the
vectors in S. An (ordered) set of linearly independent vectors θi

spanning a subspace is called a basis for that subspace.

Geometrically speaking, subspaces in the n dimensional space are hyperplanes
(lines, planes, etc.) that go through the origin. The number of linearly indepen-
dent vectors in the subspace basis determines the dimension of the subspace.
The basis vectors θ1 to θN can conveniently be represented in a matrix form:

θ =
(

θ1 · · · θN

)
. (5.1)
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This basis matrix has dimension n × N , assuming that the dimension of the
subspace in the n dimensional space is N . Given a basis, all points x in that
subspace have a unique representation; the basis vectors θi can be interpreted as
coordinate axes in the subspace, and the “weights” of the basis vectors, denoted
now zi, determine the corresponding “coordinate values” (or scores) of the point:

x =
N∑

i=1

zi · θi. (5.2)

The elements in θi are called loadings of the corresponding variables. In matrix
form, the above expression can be written as

x = θ · z. (5.3)

Further, if there are various data vectors, the matrix formulation can be written
as

X = Z · θT . (5.4)

There is an infinite number of ways of choosing the basis vectors for a (sub)space.
One basis of special relevance is the so called “natural” basis: fundamentally,
all other bases are defined with respect to this natural basis. For the space of
n measurements the natural basis vector directions are determined directly by
the measurement variables; formally speaking, each entry in the data vector can
be interpreted as a coordinate value, the basis vectors constituting an identity
matrix, θ = In.

However, even though this trivial basis is easy to use, it is not necessarily math-
ematically the best representation for the data (as was shown in the example
about collinearity above). Next we see how to change the basis.

5.1.2 About linear mappings

The matrix data structure has been adopted here for various purposes — this
is partly duw to the role of Matlab as the assumed basic tool: There (at least
originally) the matrix was the only one data structure available. The matrix
can have various roles. It can be used as a collection of data values (as X and
Y above, for example), or it can be used as a frame for a vector system (as in
the case of basis vectors); but perhaps the most important role of a matrix is its
use as a means of accomplishing linear transformations between different bases
of (sub)spaces.

Whereas all matrix operations can be interpreted as linear transformations, now
we are specially interested in mappings between different bases. The transfor-
mations from a given basis to the natural basis are straightforward: applying
(5.3) gives the transformed coordinates directly. The question that arises is how
one can find the coordinate values z for a given x when the new basis θ is given.
There are three possibilities depending on the dimensions n and N :
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• If n ≡ N , matrix θ is square and invertible (because the linear indepen-
dence of the basis vectors was assumed). Then one can directly solve

z = θ−1 · x. (5.5)

• If n > N , the data point cannot necessarily be represented in the new
basis. Using the least squares technique (see the first lesson) results in an
approximation

ẑ =
(
θT θ

)−1
θT · x. (5.6)

• If n < N , there are an infinite number of exact ways of representing the
data point in the new basis. Again, the least squares method offers the
solution, now in the sense of minimizing zT z, that is, finding the minimum
numerical values of the coordinates (see page 20):

z = θT
(
θθT

)−1 · x. (5.7)

All of the above cases can be conveniently presented using the pseudoinverse
notation:

z = θ† · x. (5.8)

If the basis vectors are orthonormal (orthogonal and normalized at the same
time, meaning that θT

i θj = 0, if i �= j, and θT
i θj = 1, if i = j) there holds

θT θ = IN (or θθT = In, whichever is appropriate). Thus, all the above formulas
(5.5), (5.6), and (5.7) give a very simple solution:

z = θT · x, (5.9)

or, corresponding to (5.4),

Z = X · θ. (5.10)

The above result visualizes the benefits of basis orthonormality; there are ad-
ditional advantages that are related to the numerical properties of orthogonal
transformation matrices (manipulations in an orthonormal basis are optimally
conditioned)1.

5.1.3 Data model revisited

To enhance the basic regression method, a more sophisticated scheme is now
adopted (see Fig. 5.1). Speaking informally, we search for an “internal structure”
that would capture the system behavior optimally; this internal structure is
assumed to be implemented as a linear subspace. The data samples are first

1Note that the orthogonality condition is always fulfilled by the basis vectors that are
generated by the PCR and PLS approaches that will be presented later. Furthermore, when
using Matlab, say, for calculating the eigenvectors, they will be automatically normalized; this
means that the practical calculations are rather straightforward



80 Lesson 5. Tackling with Redundancy
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Figure 5.1: The dependency model y = f(x) refined

projected onto the internal basis, and from there they are further projected
onto the output space, the final projection step being based on MLR regression.
Note that because all of the mappings are linear, they can always be combined
so that, seen from outside, the original “one-level” model structure is still valid:
Y = (XF 1)F 2 = X(F 1F 2) = XF .

Now there are approximate mappings instead of only one, as in the MLR case.
Is it not so that the regression model will become even more sensitive to noise?
However, it is not so. It is not the number of mappings, it is the properties
of these mappings that matter — and now, as it turns out, the mapping from
input to the latent variables and the mapping from latent variables to output
can be made well-conditioned.

The overall regression model construction becomes a two-phase process, so that
there are the following tasks:

1. Determine the basis θ.

2. Construct the mapping F 1 = θ
(
θT θ

)−1.

3. Calculate the “latent variables” Z = XF 1.

4. Construct the second-level mapping F 2 =
(
ZT Z

)−1
ZT Y .

5. Finally, estimate Ŷest = XestF = XestF
1F 2.

Here Z stands for the internal coordinates corresponding to the training data
X and Y . In special cases (for example, for orthonormal θ) some of the above
steps may be simplified. The remaining problem is to determine the basis θ so
that the regression capability would be enhanced.

How the internal structure should be chosen so that some benefits would be
reached? When the rank of the basis is the same as the number of degrees
of freedom in the data (normally meaning that there are n basis vectors rep-
resenting the n dimensional data), the data can be exactly reconstructed, or
the mapping between data and the transformed representation can be inverted.
This means that also the random noise that is present in the samples will always
remain there. A good model, however, should only represent the relevant things,
ignoring something, hopefully implementing this compression of data in a clever
way. In concrete terms, this data compression means dimension reduction, so
that there are fewer basis vectors than what is the dimension of the data, or
N < n.

Let us study this a bit closer — assume that the dimension of input is n,
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the dimension of output is m, the dimension of the latent basis is N , and the
number of samples is k. The nominal regression model, matrix F mapping input
to output contains n · m free parameters; there are k · m constraint equations.
This means that on average, there are

k · m
n · m =

k

n
(5.11)

constraints for each parameter. The higher this figure is, the better the estimate
becomes in statistical sense, random noise having smaller effect. On the other
hand, if the latent basis is used in between the input and output, there is first
the mapping from input to the latent basis (n ·N parameters) and additionally
the mapping from the latent basis to the output (N ·m parameters). Altogether
the average number of constraints for each parameter is

k · m
n · N + N · m =

k

N
(
1 + n

m

) . (5.12)

Clearly, if N � n, benefits can be achieved, or the model sensitivity against
random noise can be minimized — of course, assuming that these N latent
variables can carry all the relevant information.

How an automatic modeling machinery can accomplish such a clever thing of
compression, or “abstracting” the data? There are different views of how the
relevant phenomena are demonstrated in the data properties. Speaking philo-
sophically, it is the ontological assumption that is left to the user: The user has
to decide what are the most interesting features carrying most of the informa-
tion about the system behavior. Concentrating on different aspects and utilizing
the statistical properties of the data accordingly results in different regression
methods.

5.2 Principal components

The hypothesis that will now be concentrated on is that data variance carries
information. This is the assumption underlying Principal Component Analysis
(PCA), also known as Karhunen–Loeve decomposition, and the corresponding
regression method PCR. In brief, one searches for the directions in the data
space where the data variation is maximum, and uses these directions as basis
axes for the internal data model. Whereas noise is (assumed to be) purely
random, consistent correlations between variables hopefully reveal something
about the real system structure.

Assume that θi is the maximum variance direction we are searching for. Data
points in X can be projected onto this one-dimensional subspace determined by
θi simply by calculating Zi = Xθi; this gives a vector with one scalar number
for each of the k measurement samples in X . The (scalar) variance of the
projections can be calculated2 as E{z2

i (k)} = 1
k · ZT

i Zi = 1
k · θT

i XT Xθi. Of

2Here, again, maximum degrees of freedom existent in the data is assumed; for example,
if the centering for the data is carried out using the sample mean, the denominator should be
k − 1. However, this scaling does not affect the final result, the directions of the eigenvectors
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course, there can only exist a solution if the growth of the vector θi is restricted
somehow; the length of this vector can be fixed, so that, for example, there
always holds θT

i θi = 1. This means that we are facing a constrained optimization
problem (see Sec. 1.2.4) with{

f(θi) = 1
k · θT

i XT Xθi, and
g(θi) = 1 − θT

i θi.
(5.13)

Using the the method of Lagrange multipliers, the optimum solution θi has to
obey

d J(θi)
dθi

=
d

dθi
(f(θi) − λi · g(θi)) = 0 (5.14)

or

2
1
k
· XT Xθi − 2λiθi = 0, (5.15)

giving

1
k

XT X · θi = λi · θi. (5.16)

Now, the variance maximization has become an eigenvalue problem with the
searched basis vector θi being an eigenvector of the matrix R = 1

k · XT X . The
eigenvectors of the data covariance matrix are called principal components.

Because of the eigenproblem structure, if θi fulfills the equation (5.16), so does
αθi, where α is an arbitrary scalar; it will be assumed that the eigenvectors are
always normalized to unit length, so that θT

i θi = 1.

The solution to the variance maximization problem is also given by some of
the eigenvectors — but there are n of them, which one to choose? Look at the
second derivative:

d2 J(θi)
dθ2

i

=
2
k
· XT X − 2λi · I. (5.17)

To reach the maximum of J(θi), there must hold d2 J(θi)/dθ2
i ≤ 0, that is,

the second derivative matrix (Hessian) must be semi-negative definite: For any
vector ξ there must hold

ξT ·
(

2
k
· XT X − 2λi · I

)
· ξ ≤ 0. (5.18)

For example, one can select ξ as being any of the eigenvectors, ξ = θj :

θT
j · ( 2

k · XT X − 2λi · I
) · θj

= 2
k · θT

j · XT X · θj − 2λi · θT
j θj

= 2λj · θT
j θj − 2λi · θT

j θj

= 2λj − 2λi ≤ 0.

(5.19)

This always holds regardless of the value of 1 ≤ j ≤ n only for the eigenvector
θi corresponding to the largest eigenvalue.
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5.2.1 Eigenproblem properties

Let us study closer the eigenvalue problem formulation (5.16).

Symmetricity and non-negativity of eigenvalues

It seems that the matrix R = 1
k · XT X (or the data covariance matrix) deter-

mines the properties of the PCA basis vectors, and, indeed, these properties
turn out to be very useful. First, it can be noted that R is symmetric, because
there holds

RT =
(

1
k
· XT X

)T

=
1
k
· XT X = R. (5.20)

Next, let us multiply (5.16) from left by the vector θT
i (note that, of course, this

vector is rank deficient, and only “one-way” implication can be assumed):

1
k
· θT

i XT · Xθi = λi · θT
i θi. (5.21)

This expression consists essentially of two dot products (θT
i XT ·Xθi on the left,

and θT
i · θi on the right) that can be interpreted as squares of vector lengths.

Because these quantities must be real and non-negative, and because k is positive
integer, it is clear that the eigenvalue λi is always real and non-negative.

Orthogonality of eigenvectors

Let us again multiply (5.16) from left; this time by another eigenvector θT
j :

θT
j Rθi = λi · θT

j θi. (5.22)

Noticing that because R is symmetric (or R = RT ), there must hold θT
j R =

(RT θj)T = (Rθj)
T = λjθ

T
j , so that we have an equation

λj · θT
j θi = λi · θT

j θi, (5.23)

or

(λi − λj) · θT
j θi = 0. (5.24)

For λi �= λj this can only hold if θT
j θi = 0. This means that for a symmetric

matrix R, eigenvectors are orthogonal (at least if the corresponding eigenvalues
are different; for simplicity, this assumption is here made). Further, because of
the assumed normalization, the eigenvectors are orthonormal.

The above orthogonality property is crucial. Because of orthogonality, the eigen-
vectors are uncorrelated; that is why, the basis vectors corresponding to the
maximum variance directions can, at least in principle, be extracted one at a
time without disturbing the analysis in other directions.
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5.2.2 Analysis of the PCA model

Let us study the properties of the variables in the new basis. There are n
eigenvectors θi corresponding to eigenvalues λi; from now on, assume that they
are ordered in descending order according to their numerical values, so that
λi ≥ λj for i < j. This is possible because it was shown that the eigenvalues are
real and positive (note that the eig function in Matlab does not implement this
ordering automatically). When the eigenvectors and eigenvalues are presented
in the matrix form

Θ =
(

θ1 · · · θn

)
and Λ =

⎛
⎜⎝

λ1 0
. . .

0 λn

⎞
⎟⎠ , (5.25)

where the dimension of Θ and Λ is n × n, the eigenproblem can be expressed
compactly as

1
k

XT X · Θ = Θ · Λ. (5.26)

It was shown that the vectors constituting Θ are orthonormal; this means that
the whole matrix Θ also is, so that ΘT = Θ−1. Noticing that XΘ = Z is the
sequence of variables as presented in the new latent basis, one can write

1
k
· ZT Z =

1
k
· ΘT XT XΘ = ΘT Θ · Λ = Λ. (5.27)

What this means is that the new variables are mutually uncorrelated (because
their covariance matrix Λ is diagonal); what is more, the eigenvalues λi directly
reveal the variances of the new variables. Let us elaborate on this a bit closer.

var{z1} + · · · + var{zn}
= λ1 + · · · + λn

= tr{Λ} Definition of matrix trace
= tr{ 1

k · ΘT XT · XΘ}
= tr{ 1

k · XT X · ΘΘT } (See below)
= tr{ 1

k · XT X} Orthonormality of Θ
= 1

kx2
1 + · · · + 1

kx2
n

= var{x1} + · · · + var{xn}.

(5.28)

The matrix trace used above returns the sum of the diagonal elements of a
square matrix. The change of the multiplication order above is motivated by
the trace properties: Note that for all square matrices A and B there must hold

tr{AB} =
nA∑
i=1

nB∑
j=1

AijBji =
nB∑
j=1

nA∑
i=1

BjiAij = tr{BA}. (5.29)

The above result (5.28) means that the total variability in x is redistributed in
z. It was assumed that variance directly carries information — the information
content is then redistributed, too. If the dimension is to be reduced, the optimal
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approach is to drop out those variables that carry least information: If an N < n
dimensional basis is to be used instead of the full n dimensional one, it should
be constructed as

θ =
(

θ1 · · · θN

)
, (5.30)

where the vectors θ1 to θN are the directions of the most variation in the data
space. If one tries to reconstruct the original vector x using the reduced basis
variables, so that x̂ = θz, the error

x̃ = x − x̂ = x −
N∑

i=1

zi · θi =
n∑

i=N+1

zi · θi (5.31)

has the variance

E{x̃T (k)x̃(k)} =
n∑

i=N+1

λi. (5.32)

This reveals that the the eigenvalues of R = 1
k · XT X give a straightforward

method for estimating the significance of PCA basis vectors; the amount of data
variance that will be neglected when basis vector θi is dropped is λi.

As an example, study the case of Sec. 4.3 again. The eigenvalues of the data
covariance matrix are{

λ1 = 2 · E{ξ2(κ)} + σ2

λ2 = σ2,
(5.33)

and the corresponding eigenvectors are

θ1 =
1√
2
·
(

1
1

)
and θ2 =

1√
2
·
( −1

1

)
. (5.34)

These basis vectors are shown in Fig. 5.2 (on the right); in this example, the
data variance was E{ξ2(k)} = 1 and the noise variance was σ2 = 0.01. In this
case, the ratio between the eigenvalues becomes very large, λ1/λ2 ≈ 200; the
basis vector θ1 is much more important as compared to θ2. When a reduced
basis with only the vector θ1 is applied, all deviations from the line x2 = x1 are
assumed to be noise and are neglected in the lower-dimensional basis. The data
collinearity problem is avoided altogether.

5.2.3 Another view of “information”

In the beginning of the chapter it was claimed that it is variance maximization
that is the means of reaching good data models. But why does this seemingly
arbitrary assumption really seem to do a good job?

It must be recognized that the main goal in the data compression is to enhance
the signal-to-noise ratio, so that the amount of misleading disinformation would
be minimized as compared to the valuable real information. And it is here that
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Figure 5.2: Illustration of the “natural” and the PCA bases for the
collinear data

the assumptions about “noise ontology” are utilized: The distribution of the
noise hopefully differs from that of real information. Typically the underlying
basic assumption is that the noise is “more random” than the real signal is; this
assumption can have different manifestations:

1. Truly random signals fulfill the assumptions of central limit theorem, so
that noise distribution is more Gaussian than that of real information
(this starting point is elaborated on in Chapter 7).

2. If one assumes that noise signals are uncorrelated with other signals, the
noise is distributed approximately evenly in different directions in the n
dimensional space.

The second assumption is utilized in PCA: It is assumed that the same informa-
tion is visible in various variables, so that the information introduces correlation
in the data, whereas noise has no correlations or preferred directions in the data
space (see Figs. 5.3 and 5.4). Specially if the data is normalized to unit variance,
the variance pursuit of PCA changes to covariance pursuit, trying to capture
the dependencies among variables. The noise variation remaining constant re-
gardless of the direction, the maximum signal-to-noise ratio is reached in the
direction where the signal variation is maximum — that is, in the direction of
the first principal component. PCR is strongest when MLR is weakest — in
large-scale systems with high number of redundant measurements.

Note that PCA gives tools also for further data analysis: For example, if one
of the variables varies alone (just one variable dominating in the loadings),
this variable seemingly does not correlate with other variables — one could
consider leaving that variable out from the model altogether (however, see the
next section).

5.2.4 Selection of basis vectors

How to determine the dimension of the latent basis? For normalized data∑n
i=1 λi = n; a crude approximation is to include only those latent vectors

θi in the model for which there holds λi > 1 — those directions carry “more
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Figure 5.3: Why PCA works: It is assumed that covariation reveals some
underlying phenomena, whereas noncorrelating variation is measurement
noise

that average amount” of the total information (being manifested in the vari-
ances). However, the overall behavior of the eigenvalue envelope should be
taken into account: That is, plot the eigenvalues in descending order; if there
is a significant drop between some of them, this may suggest where to put the
model order.

As a rule, it can be argued that the directions of largest eigenvalues are the
most important, the dependency relations between variables being concentrated
there, whereas the effects of noise are pushed to the later principal components.
However, analysis of the components may also reveal some pecularities in the
system operation, like outlier data, etc., and the basis selection should not
be completely automated. Often the first few eigenvectors represent general de-
pendencies within data, but they may start representing individual disturbances
out from the nominal behaviors if these outliers are dominant enough; this all
is dependent of the numerical ratios between different phenomena.

If the first principal component dominates excessively, it may be reasonable to
check whether the data preprocessing has been successfull: If the data is not
mean-centered, it is this mean that dominates in the model rather than the true
data variation, specially if the numerical data values are far from origin. The
absolute minimum eigenvalue is zero, meaning that the set of measurements is
linearly dependent; this can happen also if there are too few measurements, so
that k < n; note, however, that PCA type data modeling can still be carried out
in such case, whereas MLR would collapse. In general, the more there are good-
quality samples as compared to the problem dimension, that is, if k 
 n, MLR
often given good results, whereas the latent basis methods outperform MLR if
the number of samples is low (and random variations are visible in data).

If there exist eigenvectors with exactly equal eigenvalues in the covariance ma-
trix, the selection of the eigenvectors is not unique; any linear combination of
such eigenvectors also fulfills the eigenvalue equation (5.16). This is specially
true for whitened data, where the data is preprocessed so that the covariance
matrix becomes identity matrix; PCA can find no structure in whitened data
(however, see Chapter 7).

It needs to be noted that the PCA results are very dependent of scaling: The
principal components can be turned arbitrarily by defining an appropriate or-
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Figure 5.4: Two views of the “directional” information vs. the “undirec-
tional” noise: Five-dimensional data projected onto the first two principal
components, on the left, and the corresponding PCA eigenvalues on the
right (note that adding a matrix q · I, the noise covariance, to the data
covariance matrix shifts all eigenvalues up by the amount q). Relatively
the most of the noise seems to be concentrated in the directions of lowest
overall variation

thogonal transformation matrix D. Assume that X ′ = XD; if there holds
Λ = 1

k · ΘT XT XΘ, then

Λ =
1
k
· ΘT D · X ′T X ′ · DT Θ, (5.35)

so that the new set of eigenvactors is DT Θ — directions being freely adjustable.

figure ”InfoNoise”

5.3 Practical aspects

Below, some practical remarks concerning the PCA method are presented. For
more theoretical discussions, for the validity of the principal components model,
etc., the reader should study, for example, [3].

5.3.1 Regression based on PCA

The PCA approach has been used a long time for data compression and clas-
sification tasks. In all applications the basic idea is redundancy elimination —
this is the case also in regression applications.

Summarizing, it turns out that the eigenvector corresponding to the largest
eigenvalue explains most of the data covariance. The numeric value of the
eigenvalue directly determines how much of the data variation is contained in
that eigenvector direction. This gives a very concrete way of evaluating the
importance of the PCA basis vectors: One simply neglects those basis vectors
that have minor visibility in the data. Using this reduced set of vectors as the
internal model subspace basis θPCA, principal component regression (PCR) is
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directly implemented3. Because of the orthogonality of the basis vectors there
holds Z = XF 1 = XθPCA, and the general modeling procedure (see page 80)
reduces into the expression

FPCR = F 1F 2

= θPCA

(
θT
PCAXT XθPCA

)−1
θT
PCAXT Y

= θPCA (kΛN )−1
θT
PCAXT Y.

(5.36)

5.3.2 Other applications

Principal component analysis has routinely been used for data compression
tasks, in all kinds of applications where huge amounts of data are being pro-
cessed. For example, in neural networks the input data is often preprocessed in
this way to reach manageable adaptation in the network weights — no matter
how “outdated” the statistical methods are claimed to be in that community.

PCA has also been applied in more ambitious tasks, hoping that the compression
of data would reveal some underlying hidden phenomena. For example, there
exist plenty of applications in fault diagnosis and process monitoring. A rather
new solution to these problems is called multivariate statistical process control
(SPC), where the traditional approach of observing individual variables at a
time is extended to analysis of variation structures of multiple variables (see
Fig. 5.5).

5.3.3 Analysis tools

The numerical values of the principal component loadings reveal the dependen-
cies (covariances) between different variables, and they also give information
about the relevances of different input variables in the regression model. As-
suming that θi,j is the j’th element in the basis vector i, the contribution of
variable zi when explaining variance in xj is λiθ

2
i,j , and the overall relevance of

this variable is Ê{x2
j} =

∑N
i=1 λiθ

2
i,j , expressing the total amount of variance in

xj that can be reconstructed by the selected latent variables; for normalized xj

this gives a measure for estimating the “value” of that input variable. This kind
of analysis is important specially when the model structure is iteratively re-
fined: Non-existent weighting of some of the inputs in all of the latent variables
suggests that these inputs could perhaps be excluded from the model altogether.

The PCA model can be analyzed against data in various ways in practice. One
can for example calculate the measure for lack of fit, the parameter called Q.
This is simply the sum of error squares when a data sample is fitted against
the reduced basis, and then reconstructed. Because z(κ) = θT x(κ) and x̂(κ) =
θz(κ), there holds x̂(κ) = θθT x(κ), so that the reconstruction error becomes

3Even if the basis would not be reduced, the orthogonality of the basis vectors already en-
hances the numeric properties of the regression model: in a non-orthogonal basis, the different
coordinates have to “compete” against each other (heuristically speaking), often resulting in
excessive numeric values
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Figure 5.5: Idea of process monitoring using multivariate SPC: It is not
always the measurements that are farthest away from the nominal values
of the variables that indicate problems in the process

x̃(κ) = (In − θθT ) · x(κ). The sum of error squares is then

Q(κ) = x̃T (κ)x̃(κ)
= xT (κ) · (In − θθT

)T (
In − θθT

) · x(κ)
= xT (κ) · (In − 2θθT + θθT θθT

) · x(κ)
= xT (κ) · (In − θθT

) · x(κ),

(5.37)

because due to orthonormality of θ there holds θ ·θT θ ·θT = θθT . The Q statistic
indicates how well each sample conforms to the PCA model telling how much
of the sample remains unexplained.

Another measure, the sum of normalized squared scores, known as Hotellings
T 2 statistic, reveals how well the data fits the data in another way: It measures
the variation in each sample within the PCA model. In practice, this is revealed
by the scores z(κ); the T 2(κ) is calculated as a sum of the squared normalized
scores. Because the standard deviation of zi to be normalized is known to be√

λi, there holds

T 2(κ) = zT (κ) · Λ−1
N · z(κ) = xT (κ) · θΛ−1

N θT · x(κ). (5.38)
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Figure 5.6: The difference between the T 2 and Q criteria: The former
data point can be represented within the assumed model, whereas the
latter one resides in the subspace that is orthogonal to that model

Roughly speaking, the smaller both of these Q(κ) and T 2(κ) turn out to be,
the better the data fits the model. There are essential differences, though: For
example, inflating the basis, or letting N grow, typically increases the value of
T 2(κ), whereas Q(κ) decreases (see Fig. 5.6). Closer analyses could be carried
out to find exact statistical confidence intervals for these measures; however,
these analyses are skipped here.

5.3.4 Calculating eigenvectors in practice

There exist very efficient methods for calculating eigenvalues and eigenvectors,
available, for example, in Matlab. However, let us study such a case where the
dimension n is very high, and only few of the eigenvectors are needed.

Assuming that the measurement signals are linearly independent, the (unknown)
eigenvectors of the covariance matrix span the n dimensional space, that is, any
vector ξ can be expressed as a weighted sum of them:

ξ = w1θ1 + w2θ2 + · · · + wnθn. (5.39)

If this vector is multiplied by the covariance matrix, each of the eigenvectors
behaves in a characteristic way:

Rξ = λ1 · w1θ1 + λ2 · w2θ2 + · · · + λn · wnθn. (5.40)

Further, if this is repeated k times:

Rkξ = λk
1 · w1θ1 + λk

2 · w2θ2 + · · · + λk
n · wnθn. (5.41)

If some of the eigenvalues is bigger than the others, say, λ1, finally it starts
dominating, no matter what was the original vector ξ; that is, the normalized
result equals the most significant principal component θ:

lim
k→∞

{
Rkξ

‖Rkξ‖
}

= θ1. (5.42)

Assuming that the eigenvalues are distinct, this power method generally con-
verges towards the eigenvector θ1 corresponding to the highest eigenvalue λ1 —



92 Lesson 5. Tackling with Redundancy

but only if w1 �= 0. Starting from a random initial vector ξ this typically holds.
However, one can explicitly eliminate θ1 from ξ, so that

ξ′ = ξ − θT
1 ξ · θ1. (5.43)

Now there holds

θT
1 ξ′ = θT

1 ξ − θT
1 ξ · θT

1 θ1 = 0, (5.44)

meaning that θ1 does not contribute in ξ′, and necessarily wi = 0. If the
power method is applied starting from this ξ′ as the initial guess, the iteration
converges towards the eigenvector direction corresponding to the next highest
eigenvalue λ2. Further, after the second principal component θ2 is found, the
procedure can be continued starting from ξ′′ were both θ1 and θ2 are eliminated,
resulting in the third eigenvector, etc. If only the most significant eigenvectors
are needed, and if the dimension n is high, the power method offers a useful
way to iteratively find them in practice (in still more complex cases, where the
matrix R itself would be too large, other methods may be needed; see Sec.
8.3.1).

Of course, numerical errors cumulate, but the elimination of the contribution of
the prior eigenvectors (5.43) can be repeated every now and then. The elimi-
nation of basis vectors can be accomplished also by applying so called deflation
methods for manipulating the matrix R explicitly.

5.4 New problems

The PCR approach to avoiding the collinearity problem is, however, not a
panacea that would always work. To see this, let us study another simple
example.

Again, assume that we can observe two variables x1 and x2, so that x =
( x1 x2 )T . This time, however, these variables are independent; and to sim-
plify the analysis further, assume that no noise is present. This means that the
covariance matrix becomes

1
k · XT X = 1

k ·
( ∑k

κ=1 x2
1(κ)

∑k
κ=1 x1(κ)x2(κ)∑k

κ=1 x1(κ)x2(κ)
∑k

κ=1 x2
2(κ)

)

≈
(

E{x2
1(κ)} 0
0 E{x2

2(κ)}
)

.

(5.45)

The eigenvalues are now trivially λ1 = E{x2
1(κ)} and λ2 = E{x2

2(κ)}, and the
eigenvectors are θ1 = ( 1 0 )T and θ2 = ( 0 1 )T , respectively. If either of
the eigenvalues has much smaller numerical value, one is tempted to drop it out
(as was done in the previous PCA example). So, assume that θ2 is left out.
What happens if the underlying relationship between x and y can be expressed
as y = f(x2), so that x1 (or θ1) is not involved at all? This means that a
regression model that uses the reduced PCA basis will fail completely.
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5.4.1 Experiment: “Associative regression”*

It is evident that one has to take the output into account when constructing the
latent variables — so, what if we define

v(κ) =
(

x(κ)
y(κ)

)
, (5.46)

and construct a PCA model for this — then the input and output variables
should be equally taken into account in the construction of the latent variables.
The corresponding covariance matrix becomes

1
k
· V T V =

1
k
·
(

XT X XT Y
Y T X Y T Y

)
, (5.47)

so that the eigenproblem can be written as

1
k
·
(

XT X XT Y
Y T X Y T Y

)
·
(

θi

φi

)
= λi ·

(
θi

φi

)
. (5.48)

Here, the eigenvectors are divided in two parts: First, θi corresponds to the input
variables and φi to outputs. The selection of the most important eigenvectors
proceeds as in standard PCA, resulting in the set of N selected eigenvectors

(
θ
φ

)
. (5.49)

The eigenvectors now constitute the mapping between the x and y variables,
and the matrices θ and φ can be used for estimating y in an “associative way”.
During regression, only the input variables are known; these x variables are fitted
against the “input basis” determined by θ, giving the projected z variables4:

Z = X · θT (θT θ)−1. (5.50)

The output mapping is then determined by the “output basis” φ: Because the
coordinates z are known, the estimate is simply

Ŷ = Z · φ. (5.51)

Combining these gives the regression model

FASS = θT (θT θ)−1φ. (5.52)

This should work, at least if the dimension of input n is much higher than that
of output m. The problem of loosely connected input and output variables still
does not vanish: The correlated variables dominating in the eigenvectors can
be in the same block, that is, they may both be input variables or they may
both be output variables. Modeling their mutual dependency exclusively may

4Note that, whereas the eigenvectors of the whole system are orthogonal, the truncated
vectors in θ are not
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ruin the value of the regression model altogether. What one needs is a more
structured view of the data; the roles of inputs and outputs need to be kept clear
during the analysis, and it is the regression models duty to bind them together.
This objective is fulfilled when applying the methods that are presented in the
following chapter.

It needs to be noted that when concentrating on specific details, something
always remains ignored. Now we have seen two methods (MLR and PCA)
that offer the best possible solutions to well-defined compact problems. In what
follows, MLR will routinely be used when it is justified, and PCA will be used for
data compression tasks, understanding their deficiencies; the problems they may
possibly ignore are then solved separately. It is expert knowledge to have such a
mental “theoretical toolbox” for attacking different problems using appropriate
combinations of basic methods depending on the situation at hand.
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Computer exercises

1. Study how the data properties affect the principal component analysis;
that is, change the degrees of data freedom and noise level (parameters
dofx and sigmax, respectively):

dofx = 5;
sigmax = 0.5;
X = dataXY(100,10,NaN,dofx,NaN,sigmax);
regrPCA(X);

2. Compare the eigenvectors and eigenvalues of the matrix R = 1
k · XT X

when the data preprocessing is done in different ways; that is, create data
as

DATA = dataClust(3,1,100,50,5);

and analyze the results of

regrShowClust(X,ones(size(X))); hold on; plot(0,0,’o’);
regrPCA(X)

when the following approaches are used:

X = DATA;
X = regrCenter(DATA);
X = regrScale(DATA);
X = regrScale(regrCenter(DATA));
X = regrCenter(regrScale(DATA));
X = regrWhiten(DATA);
X = regrWhiten(regrCenter(DATA));

Explain the qualitative differences in the eigenvalue distributions. Which
of the alternatives is recommended for PCR modeling?


