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Lesson 6

Bridging Input and Output

In the previous chapter it was shown that (one) thing plaguing PCA is its
exclusive emphasis on the input variables. The next step to take is then to
connect the output variables in the analysis. But, indeed, there are various
ways to combine the inputs and outputs. In this chapter, two strategies from
the other ends of the scientific community are studied — the first of them,
Partial Least Squares, seems to be very popular today among chemical engineers.
This approach is pragmatic, usually presented in an algorithmic form1. The
second one, Canonical Correlation Analysis, has been extensively studied among
statisticians, but it seems to be almost unknown among practicing engineers.
However, both of these methods share very similar ideas and structure — even
though the properties of the resulting models can be very different.

6.1 Partial least squares

The Partial Least Squares (PLS)2 regression method has been used a lot lately,
specially for calibration tasks in chemometrics [31],[38]. In this section, a dif-
ferent approach to PLS is taken as compared to usual practices, only honoring
the very basic ideas. The reason for this is to keep the discussion better com-
prehensible, sticking to the already familiar eigenproblem-oriented framework.

6.1.1 Maximizing correlation

The problem with PCA approach is that it concentrates exclusively on the input
data X , not taking into account the output data Y . It is not actually the data
variance one wants to capture, it is the correlation between X and Y that should
be maximized.

The derivation of the PLS basis vectors can be carried out as in the PCA case,

1PLS is sometimes characterized as being one of those “try and pray” methods; the reason
for this is — it can be claimed — that a practicing engineer simply cannot grasp the unpene-
trable algorithmic presentation of the PLS ideas. He/she can just use the available toolboxes
and hope for the best

2Sometimes called also Projection onto Latent Structure
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Figure 6.1: The dependency model y = f(x) refined

now concentrating on correlation rather than variance. The procedure becomes
slightly more complex than in the PCA case: It is not only the input X block
that is restructured, but the internal structure of the output Y block is also
searched for. The regression procedure becomes such that the X data is first
projected onto a lower dimensional X oriented subspace spanned by the basis
vectors θi; after that, data is projected onto the Y oriented subspace spanned
by the basis vectors φi, and only after that, the final projection onto the Y
space is carried out.

The objective now is to find the basis vectors θi and φi so that the correlation
between the projected data vectors Xθi and Y φi is maximized while the lengths
of the basis vectors are kept constant. This objective results in the constrained
optimization problem (1.27) where

⎧⎨
⎩

f(θi, φi) = 1
k · θT

i XT · Y φi, when
g1(θi) = 1− θT

i θi and
g2(φi) = 1− φT

i φi.
(6.1)

There are now two separate constraints, g1 and g2; defining the corresponding
Lagrange multipliers ηi and μi gives the Hamiltonian

1
k
· θT

i XT · Y φi − ηi

(
1− θT

i θi

)− μi

(
1− φT

i φi

)
, (6.2)

and differentiation gives

{
d

dθi

(
1
k · θT

i XT · Y φi − ηi(1− θT
i θi)− μi(1− φT

i φi)
)

= 0
d

dφi

(
1
k · θT

i XT · Y φi − ηi(1− θT
i θi)− μi(1− φT

i φi)
)

= 0,
(6.3)

resulting in a pair of equations

{
1
k ·XT Y φi − 2ηiθi = 0
1
k · Y T Xθi − 2μiφi = 0.

(6.4)

Solving the first of these for θi and the second for φi, the following equations
can be written:{

1
k2 ·XT Y Y T Xθi = 4ηiμi · θi
1
k2 · Y T XXT Y φi = 4ηiμi · φi.

(6.5)

This means that, again, as in Sec. 5.2, the best basis vectors are given as solu-
tions to eigenvalue problems; the significance of the vectors θi (for the X block)
and φi (for the Y block) is revealed by the corresponding eigenvalues λi = 4ηiμi.
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Figure 6.2: What is usu-
ally meant by “PLS”: The
Algorithm

Because the matrices XT Y Y T X and Y T XXT Y are symmetric, the orthogo-
nality properties again apply to their eigenvectors. The expression (5.36) can
directly be utilized; the internal basis θPLS consists of a subset of eigenvectors,
selection of these basis vectors being again based on the numeric values of the
corresponding eigenvalues. In practice, the basis vectors φi are redundant and
they need not be explicitly calculated (see Sec. 6.3.3). Because the rank of a
product of matrices cannot exceed the ranks of the multiplied matrices, there
will be only min{n, m} non-zero eigenvalues; that is why, the PCR approach
may give higher dimensional models than PLS (when applying this eigenproblem
oriented approach).

It should be recognized that the PLS model is usually constructed in another
way (for example, see [31]); this “other way” may sometimes result in better
models, but it is extremely uninstructive and implicit, being defined through
an iterative algorithm (see Fig. 6.2). It can be shown that the two approaches
exactly coincide only what comes to the most significant basis vector; other
basis vectors can differ. For example, applying the approach based on the
eigenvectors, the number of non-zero eigenvalues cannot exceed the number
of variables in either input or the output — this means that the latent basis
dimension is restricted so that N ≤ m. Such constraint does not apply to the
iterative PLS approach.

Let us study the example that was presented in the previous chapter, now in the
PLS framework. The output is scalar; it is assumed that it is linearly dependent
of the second input variable, so that y(κ) = f · x2(κ), where f is a constant.
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The matrix in (5.45) becomes

1
k2 ·XT Y Y T X

= 1
k2 ·

( ∑
κ x1(κ)y(κ)

∑
κ x1(κ)y(κ)

∑
κ x1(κ)y(κ)

∑
κ x2(κ)y(κ)∑

κ x1(κ)y(κ)
∑

κ x2(κ)y(κ)
∑

κ x2(κ)y(κ)
∑

κ x2(κ)y(κ)

)

≈
(

E2{x1(κ)y(κ)} E{x1(κ)y(κ)} · E{x2(κ)y(κ)}
E{x1(κ)y(κ)} · E{x2(κ)y(κ)} E2{x2(κ)y(κ)}

)

=
(

0 0
0 f2 ·E2{x2

2(κ)}
)

,

because x1 and y are not assumed to correlate. This result reveals that the
maximum eigenvalue is f2·E2{x2

2(κ)} corresponding to the second input variable
— no matter what is the ratio between the variances of x1 and x2. This means
that the basis always includes the vector ( 0 1 )T — and according to the
assumed dependency structure, this is exactly what is needed to construct a
working regression model. As a matter of fact, it can be seen that the eigenvalue
corresponding to the first input variable is zero, reflecting the fact that x1 has
no effect on y whatsoever.

6.2 Continuum regression

6.2.1 On the correlation structure

Let us study the correlation between input and output from yet another point
of view. The correlation structure is captured by the (unnormalized) cross-
correlation matrix

XT Y. (6.6)

The eigenvalues and eigenvectors are already familiar to us, and it has been
shown how useful they are in the analysis of matrix structures. Perhaps one
could use the same approaches to analysis of this correlation matrix? However,
this matrix is generally not square and the eigenstructure cannot be determined;
but the singular value decomposition, the geralization of the eigenvalue decom-
position exists (see Sec. 1.2.2)

XT Y = ΘXY ΣXY ΦT
XY . (6.7)

Here ΘXY and ΦXY are orthogonal matrices, the first being compatible with X
and the other being compatible with Y ; ΣXY is a diagonal matrix, but if the
input and output dimensions do not match, it is not square. Multiplying (6.7)
by its transpose either from left or right, the orthonormality of ΘXY and ΦXY

(so that ΘT
XY = Θ−1

XY and ΦT
XY = Φ−1

XY ) means that there holds

XT Y Y T X = ΘXY ΣXY ΣT
XY Θ−1

XY (6.8)

and

Y T XXT Y = ΦXY ΣT
XY ΣXY Φ−1

XY . (6.9)
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Because ΣXY ΣT
XY and ΣT

XY ΣXY are diagonal square matrices, these two ex-
pressions are eigenvalue decompositions (1.5) of the matrices XT Y Y T X and
Y T XXT Y , respectively. This means that there is a connection between the
singular value decomposition and the above PLS basis vectors: The matrices
ΘXY and ΦXY consist of the (full sets) of PLS basis vectors θi and φi. The di-
agonal elements of ΣXY , the singular values, are related to the PLS eigenvalues
in such a way that σi = k · √λi.

What is more, one can see that the SVD of the input data block X alone is
similarly closely related to the PCA constructs:

XT = ΘXΣXΦT
X , (6.10)

so that

XT X = ΘXΣXΣT
XΘ−1

X , (6.11)

meaning that, again, the singular value decomposition does the trick, principal
components being collected in ΘX and singular values being related to the
eigenvalues through σi =

√
k · λi.

6.2.2 Filling the gaps

What if one defines the matrix3

(XT )αX (Y )αY , (6.12)

so that both of the analysis methods, PCA and PLS, would be received by
selecting the parameters αX and αY appropriately (for PCA, select αX = 1 and
αY = 0, and for PLS, select αX = 1 and αY = 1), and applying SVD? And,
further, why not try other values for αX and αY for emphasizing the input and
output data in different ways in the model construction? Indeed, there is a
continuum between PCA and PLS — and this is not the whole story: Letting
the ratio αX/αY go towards zero, we go beyond PLS, towards models where
the role of the output is emphasized more and more as compared to the input,
finally constructing an singular value decomposition for Y alone (or eigenvalue
decomposition for Y T Y ).

It is only the ratio between αX and αY that is relevant; we can eliminate the
other of them, for example, by fixing αX = 1. Representing the problem in the
familiar eigenproblem framework, multiplying (6.12) from left by its transpose
and compensating the number of samples appropriately one has the eigenprob-
lem formulation for the Continuum Regression (CR) basis vectors defined as4

1
k1+α

·XT
(
Y Y T

)α
X · θi = λi · θi. (6.13)

3The powers of non-square matrices being defined as shown in Sec. 1.2.2
4These eigenproblems should not be solved directly in this form: The matrix XXT has

dimension k × k, even though there are only n non-zero eigenvalues (or singular values)
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Figure 6.3: Schematic illustration of the relation between regression ap-
proaches

Correspondingly, the “dual” formulation becomes

1
k1+1/α

· Y T
(
XXT

) 1
α Y · φi = λ′

i · φi. (6.14)

When α grows from 0 towards∞, the modeling emphasis is first put exclusively
on the input data, and finally exclusively on the output data (see Fig. 6.3); some
special values of α do have familiar interpretations:

• If α = 0, the PCA model results, only input being emphasized.

• If α = 1, the PLS model results, input and output being in balance.

• If α→∞, an “MLR type” model results, only output being emphasized5.

Which of the regression approaches, MLR, PCR, or PLS, is the best, cannot be
determined beforehand; it depends on the application and available data. All of
these methods have only mathematical justification; from the physical point of
view, none of them can be said to always outperform the others. It may even be
so that the ultimate optimum model lies somewhere on the continuum between
PCR, PLS, and MLR (it may also lie somewhere else outside the continuum).

In Figs. 6.4 and 6.5, the CR performance is visualized: There were 30 machine-
generated data samples with 20 input and 20 output variables; the number of
independent input variables was 10 and the “correct” dimension of the output
was 5; relatively high level of noise was added. And, indeed, it seems that
when the cross-validation error is plotted as the function of latent variables N
and continuum parameter α as a two-dimensional map, interesting behavior is
revealed: Starting from α = 0, the minimum error is reached for about N = 12
whereas the overall optimum is found near MLR with N = 6.

6.2.3 Further explorations*

It needs to be emphasized again that there are typically no absolutely correct
methods for determininf physically optimal latent basis vectors. As in the whole
report, the goal here is to show that there is plenty of room for experimenting

5Note that MLR is not based on basis vectors; that is why, the correspondence is somewhat
artificial (the first basis vector of the CR model explaining the first principal component of
the output data, thus explaining maximum amount of the output variance)
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Figure 6.4: Continuum regres-
sion performance for different pa-
rameter values N and α

Figure 6.5: Continuum regres-
sion performance as a “mountain
view”

and research (after all, the history of CR is less than ten years long; by no means
one should assume that the final word has been said). For example, a whole
class of methods can be defined that share the idea of continuum regression.
Let us study a slightly different approach.

MLR can be interpreted as modeling the covariance structure of the estimated
output Y . The problem that emerges is that the output space usually does
not have the same dimension as the input space has; that is why, the output
variations need to be somehow presented in the input space to make this ap-
proach compatible with the other ones, PCR and PLS. The outputs can be
projected into the input space by applying MLR in the “inverse direction”, that
is, X̂ = Y · (Y T Y )−1Y T X , so that the covariance to be modeled has the form

1
k · X̂T X̂ = 1

k ·XT Y (Y T Y )−1 · Y T Y · (Y T Y )−1Y T X
= 1

k ·XT Y (Y T Y )−1Y T X.
(6.15)

Actually, this formulation gives a new “latent structure” oriented view of MLR.
Assuming that all eigenvectors are utilized, the normal MLR results (of course,
this is true for all latent variables based methods if all latent variables are
employed), but if a lower dimensional internal model is constructed, the output
properties are preserved based on their “visibility” in Y . It turns ot that if one
defines the latent vectors θi as

1
k1+α1(1+α2)

·XT
(
Y

(
Y T Y

)α2
Y T

)α1

X · θi = λi · θi, (6.16)

all of the above regression methods can be simulated by appropriately selecting
the parameters α1 and α2:

• PCR is given by α1 = 0, whereas parameter α2 can have any value;

• PLS results if α1 = 1 and α2 = 0; and

• MLR is found if α1 = 1 and α2 = −1.
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Figure 6.6: Two alternative feasible function forms (see text)

We would like to have a single parameter α spanning the continuum between
the approaches, so that α = 0 would give MLR, α = 1/2 would give PLS, and
α = 1 would give PCR (note that the range of α is now from 0 to 1). There is
an infinity of alternative options — for example, the following definitions fulfill
our needs:

1. α1 = −2α2 + α + 1 and α2 = 2α− 1, or

2. α1 = 3
2 − α− |α− 1

2 | and α2 = − 1
2 + α− |α− 1

2 |.

The outlooks of these functions are presented in Fig. 6.6. As an example, select-
ing the option 1 above, the latent vectors of CR can be calculated as solutions
to the following eigenproblem:

1
kβ
·XT

(
Y

(
Y T Y

)2α−1
Y T

)−2α2+α+1

X · θ = λ · θ. (6.17)

Here, the parameter β can be selected as β = −4α3 + 2α2 + 2α + 1 to compen-
sate for the changes in the number of samples. It needs to be noted that the
outer matrix that one has to calculate the power function of may be very large
(dimension being k × k); however, there are only m eigenvalues different from
zero, meaning that (in principle) only m power functions have to be calculated.
The matrix power is best to calculate using the singular value decomposition.

The basis θCR is again constructed from the selected eigenvectors; because of
the symmetricity of the matrix in (6.17), the basis is orthonormal.

6.3 Canonical correlations

Another approach to modeling the dependency structure between the input and
the output is offered by Canonical Correlation Analysis (CCA) [32].

6.3.1 Problem formulation

Again, one would like to find the latent basis vectors θi and φi so that the
correlation between the input and output blocks would be maximized. The
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criterion to be maximized is again

f(θi, φi) =
1
k
· θi

T XT Y φi, (6.18)

but the constraints are modified slightly:

{
g1(θi) = 1

k · θi
T XT Xθi = 1

g2(φi) = 1
k · φi

T Y T Y φi = 1.
(6.19)

Note the difference as compared to the PLS derivation: It is not the basis vector
θi itself that is kept constant size; it is the projected data vector size Zi = Xθi

that is regulated, θi
T XT · Xθi being kept constant. The same applies also in

the output block: The size of φi
T Y T · Y φi is limited.

Again using the Lagrangian technique the following expression is to be maxi-
mized:

1
k
· θi

T XT Y φi + ηi · (1− 1
k
· θi

T XT Xθi) + μi · (1− 1
k
· φi

T Y T Y φi).(6.20)

This expression can be minimized with respect to both θi and φi separately:{
1
k · d

dθi

(
θT

i XT Y φi − ηi(1− θT
i XT Xθi)− μi(1 − φT

i Y T Y φi)
)

= 0
1
k · d

dφi

(
θT

i XT Y φi − ηi(1− θT
i XT Xθi)− μi(1− φT

i Y T Y φi)
)

= 0,

resulting in a pair of equations{
XT Y φi − 2ηiX

T Xθi = 0
Y T Xθi − 2μiY

T Y φi = 0.
(6.21)

Solving the first of these for θi and the second for φi, the following equations
can be written (assuming invertibility of the matrices):

{
XT Y (Y T Y )−1Y T Xθi = 4ηiμi ·XT Xθi

Y T X(XT X)−1XT Y φi = 4ηiμi · Y T Y φi,
(6.22)

or {
(XT X)−1XT Y (Y T Y )−1Y T X · θi = 4ηiμi · θi

(Y T Y )−1Y T X(XT X)−1XT Y · φi = 4ηiμi · φi.
(6.23)

This means that, again, the best basis vectors are given as solutions to eigenvalue
problems; the significance of the vectors θi (for the X block) and φi (for the
Y block) is revealed by the corresponding eigenvalues λi = 4ηiμi (note the
equivalences of the corresponding eigenvalues in different blocks). If either XT X
or Y T Y is not invertible, either one of the generalized eigenvalue problems in
(6.22) can directly be solved.

It needs to be recognized that data must be explicitly scaled in the CCA case6:
The property 1

k · θT XT Xθ = I is not automatically guaranteed by the eigen-

6This kind of extra scaling is not needed in the above PCA and PLS approaches: By
construction, the eigenvectors were assumed to be normalized to unit length
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problem formulation. The matrix is diagonal (see the next section), but the
diagonal elements are ones only after appropriate scalings:

θi ← θi/

√
1
k
· θT

i XT Xθi. (6.24)

6.3.2 Analysis of CCA

If the former equation in (6.22) is multiplied from left by θT
j , one has

θT
j XT · Y (Y T Y )−1Y T ·Xθi − λi · θT

j XT ·Xθi = 0. (6.25)

When rearranged in the above way, one can see that the matrix Y (Y T Y )−1Y T

is symmetric — meaning that (as in Chapter 5) the eigenproblem can be read
in the “inverse” direction, and the following must hold

(
θT

j XT · Y (Y T Y )−1Y T
) ·Xθi − λi · θT

j XT ·Xθi

= λj · θT
j XT Xθi − λi · θT

j XT Xθi

= (λj − λi) · θT
j XT ·Xθi

= 0,

(6.26)

meaning that Xθi and Xθj must be orthogonal if i �= j so that θT
i XT Xθj = 0

(remember that for i = j it was assumed that θT
i XT Xθj = 1). The same

result can be derived for the output block: The projected variables are mutually
uncorrelated. Further, if the equations in (6.21) are multiplied from left by θT

j

and φT
j , respectively, one has

{
θT

j XT Y φi = 2ηi · θT
j XT Xθi

φT
j Y T Xθi = 2μi · φT

j Y T Y φi.
(6.27)

Observing the above uncorrelatedness result, one can conclude that also for
the cross-correlations between the projected input and output blocks the same
structure has emerged: Only for j = i there is correlation, otherwise not; this
correlation coefficient is 2ηi = 2μi =

√
λi. The above results can be summarized

by showing the correlation structure between the latent input and output bases:

(
XΘ Y Φ

)T (
XΘ Y Φ

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√

λ1

. . .
. . .

1
√

λn√
λ1 1

. . . . . .√
λn 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(6.28)

For notational simplicity, it is assumed here that n = m (otherwise, the non-
diagonal blocks are padded with zeros). The basis vectors θi and φi are called
canonical variates corresponding to the canonical correlations

√
λi. The very
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elegant structure of (6.28) suggests that there must be going on something more
important — the dependencies between the input and output blocks are chan-
nelled exclusively through these variates. Indeed, it has been recognized that the
canonical variates typically reveal some kind of real physical structure underly-
ing the observations, and they have been used for “exploratory data analysis”
already in the 1960’s. The underlying real structure will be concentrated on
more in the next chapter.

Note that, because of the non-symmetricity of the eigenproblem matrices, the
bases are now generally not orthogonal! This is one concrete difference between
CCA and PCA/PLS. It can be claimed that whereas PCA and PLS are math-
ematically better conditioned, CCA is often physically better motivated — the
underlying real structures seldom represent orthogonality.

Despite the very similar starting points, PLS and CCA bases are truly very
different. For example, if Y is substituted with X in the formulas, it turns out
that PLS equals PCA (because the eigenvectors of XX are the same as those
of

(
XT X

)2, and the eigenvalues become squared), whereas CCA cannot at all
distinguish between directions in the data space — check this by substituting
Y with X in (6.23).

6.3.3 Regression based on PLS and CCA

In Fig. 6.1, it was explained that regression is a three-step procedure with two
latent bases. However, it needs to be noted that this cumulating complexity is
only illusion, presented in this form only to reach conceptual comprehensibility.
In practice, it is only the first mapping from X to Z1 where the data compression
takes place, the step between Z1 to Z2 introducing no additional information
loss — thus, the same functionality as in the “stepwise” procedure is reached if
one maps the data directly from Z1 to Y , discarding the level Z2. With PLS,
the structure of the regression model reduces into the same expression as with
PCR (see page 80):

FPLS = θPLS

(
θT
PLSX

T XθPLS

)−1
θT
PLSX

T Y. (6.29)

With CCR, however, the basis vectors are not orthogonal but the projected
data score vectors are — see (6.28). That is why, there is again reduction to
the algorithm presented on page 80, but the result looks very different7:

FCCR = θCCAθT
CCAXT Y. (6.30)

6.3.4 Further ideas*

There are various benefits when all methods are presented in the same eigenprob-
lem-oriented framework — one of the advantages being that one can fluently

7Note the similarity between these regression formulas and the expressions (4.19) and
(5.36): It is always the correlation between X and Y , or XT Y , being the basis for the
mapping between input and output; how this basic structure is modified by the additional
matrix multiplier is only dependent of the method
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combine different approaches. For example, it turns out that if one defines

RCR2 =
1
kβ
· (XT X

)2α−1
(
XT Y

(
Y T Y

)2α−1
Y T X

)1−α

, (6.31)

the methods from CCR to PLS and PCR are found for α = 0, α = 1
2 , and

α = 1, respectively!8 Parameter β can be selected as β = 2α − 1 + (1 −
α)(2α − 1) = −2α2 + 5α − 2. MLR could also easily be included somewhere
along the continuum when using another choice of expressions for the exponents
There is one drawback, though — only for the distinct values α = 1

2 and α =
1 the eigenvectors are orthogonal, as compared with the standard continuum
regression.

Study yet another idea: Observe the combination of matrices in the CCA solu-
tion

(XT X)−1XT Y (Y T Y )−1Y T X. (6.32)

Note that this can be divided in two parts: The first part can be interpreted as
a mapping X from input to Ŷ , and the second part maps Ŷ to X̂ :

X̂ = X · F 1F 2, (6.33)

where

F 1 = (XT X)−1XT Y, and
F 2 = (Y T Y )−1Y T X.

(6.34)

That is, CCA can be interpreted as modeling the behaviors of the mappings
when data X is first projected onto output Y and from there back to input.
This introduces yet another (CCA oriented) way of constructing the latent basis:
One can study what are the statistical properties of this “twice projected” data
in the PCA way, that is, the orthogonal basis vectors can be defined trough the
eigenproblem

X̂T X̂ · θi = λi · θi, (6.35)

or

XT Y (Y T Y )−1Y T X(XT X)−1XT Y (Y T Y )−1Y T X · θi = λi · θi. (6.36)

8In this case, all the matrices that are involved are low-dimensional and the powers are
easily calculated; also note that in the PLS case the square root of the nominal formulation
is used for notational simplicity — the eigenvectors, however, remain invariant in both cases
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Computer exercises

1. Study the robustness of the different regression methods trying different
values for parameter k (number of samples):

k = 20;
[X,Y] = dataXY(k,5,4,3,2,0.001,1.0);

E = regrCrossVal(X,Y,’mlr(X,Y)’);
errorMLR = sum(sum(E.*E))/(k*4)
E = regrCrossVal(X,Y,’mlr(X,Y,pca(X,3))’); % Try different
errorPCR = sum(sum(E.*E))/(k*4)
E = regrCrossVal(X,Y,’mlr(X,Y,pls(X,Y,2))’); % Try different
errorPLS = sum(sum(E.*E))/(k*4)
E = regrCrossVal(X,Y,’mlr(X,Y,cca(X,Y,2))’); % Try different
errorCCR = sum(sum(E.*E))/(k*4)

2. If installed on your computer, get acquainted with the Chemometrics
Toolbox for Matlab, and PLS Toolbox. Try the following demos:

plsdemo;
crdemo;


