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Lesson 7

Towards the Structure

During the previous discussions, the role of the latent structure has become
more and more emphasized. And, indeed, now we are taking yet another leap
in that direction: It will be assumed that there really exists some underlying
structure behind the observations (see Fig. 7.1)1. The observations x are used
to determine the internal phenomena taking place within the system; the output
variables are calculated only after that. Truly knowing what happens within
the system no doubt helps to pinpoint the essential behavioral patterns, thus
promising to enhance the accuracy of the regression model. In the earlier chap-
ters the latent structure was just a conceptual tool for compressing the existing
data, now it takes a central role in explaining the data.

As has been noticed, the methods presented this far do not offer us intuitively
appealing ways to find the real structure: If simple scaling can essentially change
the PCA model, for example (see (5.35), it cannot be the physical structure
that is being revealed. On the other hand, somehow the idea of continuity
between the methods (as utilized in CR) does not promise that a uniquely
correct structure would be found. The mathematically motivated structure is
not necessarily physically meaningful.

It is an undeniable truth that the underlying primary structure cannot be de-
termined when only observations of the behavior are available. We can only
make optimistic guesses — if we trust the benevolence of Nature these guesses
are perhaps not all incorrect. However, remember Thomas Aquinas and his
theories of “First Cause”:

“... And so we must reach a First Mover which is not moved by
anything; and this all men think of as God.”

1Note that the causal structure is now assumedly different as it was before: If both X
and Y are only reflections of some internal system structure, so that no causal dependence is
assumed between them, the applications of the final models should also recognize this fact.
This means that control applications are somewhat questionable: If x values are altered in
order to affect the y values according to the correlations as revealed by the model, it may be
that the intended effects are not reached. On the other hand, different kinds of soft sensor
applications are quite all right: The observed correlations justify us to make assumptions
about y variables when only x has been observed (assuming invariant process conditions)
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112 Lesson 7. Towards the Structure
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Figure 7.1: Yet another view of signal dependency structure

7.1 Factor analysis

An age-old method for feature extraction, or finding the underlying explanations
beyond the observations is Factor Analysis. It has been applied widely in social
sciences, etc. The basic model is familiar:

x(κ) = θz(κ), (7.1)

or

X = ZθT . (7.2)

The goal is to find the basis θ and the scores Z (factors) so that the residual
errors E = X − ZθT would be minimized. Nothing strange here — actually
the goal sounds identical with the PCA problem formulation. However, now
we have an additional uncorrelatedness constraint for the residual: The residual
errors Ei should be uncorrelated2:

E{e(κ)eT (κ)} =
1
k
· ET E =

⎛
⎜⎝

var{e1(κ)} 0
. . .

0 var{en(κ)}

⎞
⎟⎠ . (7.3)

All dependencies between data should be explained by the factors alone. As-
suming that the residual errors and factors are uncorrelated, the data covariance
matrix can be written as

1
k · XT X = 1

k · (θZT ZθT + θZT E + ET ZθT + ET E
)

1
k · θZT ZθT + 1

k · ET E.
(7.4)

From this it follows that, if one defines

θ′ = θM
Z ′T Z ′ = M−1ZT Z(MT )−1,

(7.5)

the same residual errors are received for different factor structure; the new model
is also equally valid factor model as the original one was for any invertible matrix
M . This means that the results are not unique. Factor analysis is more like art
than science; there are more or less heuristic basis rotations that can be applied
to enhance the model. These algorithms will not be studied here.

2Note that this uncorrelatedness property is not fulfilled by the PCA basis
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Note that the uniqueness of the PCA model (at least if the eigenvalues are
distinct) is caused by the assumed ordering of the basis vectors according to their
relevance in terms of explained variance; in the factor analysis model, this kind
of ordering is not assumed and uniqueness is not reached in the same manner.
As long as the rotations just operate in the same subspace, the selection of the
factors does not affect the accuracy if regression model is to be implemented.

7.2 Independent components

Above, factor analysis tried to find the original sources by emphasizing uncorre-
latedness — but the results were not quite satisfactory, uniqueness of the results
remaining lost. Could we define more restrictive objectives that would fix the
problems of traditional factor analysis? The key question here, again, is that of
ontological assumptions: Just as in the case of information vs. noise (chapter
5), now one has to determine how the structure is manifested in the data.

And, indeed, the answer to the question whether structure can be characterized
in a reasonable way or not is yes: During the last decade, it has turned out
that the independence of sources is a good starting point. This approach is
called Independent Component Analysis (ICA), and it has lately been studied
specially in the neural networks community. It has been successfully applied for
blind source separation, image coding, etc. (see [16], [28]).

7.2.1 Why independence?

Intuituively, the original sources are those that are independent of other sources.
Finding the underlying structure can be based on this idea: Search for data that
is maximally independent. In mathematical terms, two variables x1 and x2 can
be said to be independent if there holds3

E{f1(x1(κ))f2(x2(κ)} = E{f1(x1(κ))} · E{f2(x2(κ)}. (7.6)

According to the above formulation, it can be said that maximizing indepen-
dence between signals simultaneously minimizes the mutual information be-
tween them.

In a way, the idea of ICA is to invert the central limit theorem: When various
independent variables are mixed, the net distribution more or less approximates
normal distribution. So, when searching for the original, unmixed signals, one
can search for maximally non-normal projections of the data distribution!

7.2.2 Measures for independence

Probability distributions can uniquely be determined in terms of moments or
cumulants. Gaussian distribution is determined by the first order cumulant

3Note that independence is much more than simple uncorrelatedness, where the formula
(7.6) holds only when both of the functions are identities, f1(x1) = x1 and f2(x2) = x2.
Because independence is so much more restricting condition than what uncorrelatedness is,
one is capable of finding more unique solutions than what is the case with traditional factor
analysis
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(mean value) and the second order cumulant (variance) alone; for this distribu-
tion, all higher order cumulants vanish. This means that the “non-normality”
of a distribution can be measured (in some sense) by selecting any of the higher
order cumulants; the farther this cumulant value is from zero (in positive or
negative direction), the more the distribution differs from Gaussian. For ex-
ample, non-normality in the sense of “non-symmetricity” can be measured us-
ing the third-order cumulant skewness. In ICA, the standard selection is the
fourth-order cumulant called kurtosis that measures the “peakedness” of the
distribution:

kurt{xi(κ)} = E{x4
i (κ)} − 3 · E2{x2

i (κ)}. (7.7)

For normalized data this becomes

kurt{xi(κ)} = E{x4
i (κ)} − 3. (7.8)

If the data is appropriately normalized, the essence of kurtosis is captured in
the fourth power properties of the data; this fact will be utilized later.

After the ICA basis has been determined somehow, regression based on the inde-
pendent components can be implemented (this method could be called “ICR”).
Note that the expressions are somewhat involved because the basis vectors are
non-orthogonal.

7.2.3 ICA vs. PCA

Figs. 7.3 and 7.2 illustrate the difference between the principal components and
the independent components in a two-dimensional case. The data is assumed
to have uniform distribution within the diamond-shaped region, and in these
figures, ICA and PCA bases for this data are shown, respectively. It really
seems that independence means non-Gaussianity: Note that the trapetzoidal
marginal distributions in the non-independent PCA case are much more Gaus-
sian than the “flat”, negatively kurtotic uniform distributions in the ICA case.
The “mixing matrix” (using the ICA terminology) in the case of Fig. 7.3 is

θ =
(

1/
√

2 1
1/

√
2 0

)
, (7.9)

meaning that x = θz. Note that, as compared to the Gaussian distribution,
uniform distribution is rather “flat”; in this case the kurtosis is maximally neg-
ative in the directions of the original sources, other projections having smoother,
more Gaussian distributions.

7.3 Eigenproblem-oriented ICA algorithms

Normally independent component analysis is carried out in an algorithmic, it-
erative framework [16]; there are good reasons for this, but in this context we
would like to bring ICA into the same eigenproblem-oriented framework as all
the other approaches before.
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Figure 7.2: The ICA basis vectors, or “independent components”. Know-
ing the value of z1(κ), say, nothing about the value of z2(κ) can be said.
The distribution remains intact, or p(z2(κ)) = p(z2(κ)|z1(κ)), and the
two projected variables really are independent (compare to the PCA
case below: information about z1(κ) affects the posteriori probabilities
of z2(κ))
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Figure 7.3: The PCA basis vectors, or “principal components”: the first
of them captures the maximum variance direction, and the other one is
perpendicular to it. Variables are not independent
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In what follows, kurtosis (or, equally, the fourth moment of data, as shown
in (7.8)) as a measure of independence is concentrated on (even though other
contrast functions can also be defined). The problem with the eigenproblem
framework is that it naturally emerges only when the second-order data prop-
erties, covariances and correlations, are studied. It is now asked whether the
higher-order statistical properties like kurtosis could somehow be captured in
the same way. And, indeed, the tensor methods for ICA have been found4. In
principle, the tensors are linear operators just as normal matrices are, and the
eigenstructure can be defined also for the four-dimensional tensors; however,
the procedures are computationally involved, tensors consisting of n · n · n · n
elements, and also the mathematical theory is cumbersome (the “eigenvectors”
now being n × n matrices!). Here the excessive growth of search space (and
the sophisticated mathematics) is avoided and some alternative approaches are
studied.

7.3.1 Data whitening

The key point is to modify the data distribution so that the structural features
— as assumedly being revealed by the fourth-order properties — become visible.
To reach this, the lower-order properties have to be compensated, because they
typically outweight the higher-order properties:

• First-order properties are eliminated by only studying mean-centered data,
that is, E{xi(κ)} = 0 for all i;

• Third-order properties (or “skewness”) vanish if one assumes that the
distributions are symmetric, so that E{xi(κ)xj(κ)xl(κ)} = 0 for all i, j, l;
and

• Second-order properties are eliminated if the data is whitened.

The data whitening means that the data is preprocessed so that its covariance
matrix becomes an identity matrix. This can be accomplished by

x(κ) =
(√

E{x(κ)xT (κ)}
)−1

· x(κ), (7.10)

where the square root of a matrix is here defined so that M =
√

M
T√

M . After
this modification there holds E{x(κ)xT (κ)} = I. No matter what kind of addi-
tional preprocessing is needed, the above elimination of lower-order statistics is
assumed in what follows5.

We are again searching for a basis θ so that x(κ) = θz(κ), signals zi now hope-
fully being independent; and, again, we assume that in the whitened data space

4Note that the first-order statistical properties of a distribution are captured by the one-
dimensional mean value vector, and the second-order properties are captured by the two-
dimensional covariance matrix — similarly, the fourth-order properties can be captured by
the four-dimensional tensor

5If one is capable of finding some structure in the data after this prewhitening, this structure
cannot be dependent of the measurement scaling, thus reflecting the real structure in a more
plausible way — this dependency of the scaling was one of the arguments against the PCA
model
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the basis is orthogonal (of course, when expressed in the original coordinates,
the orthogonality does not hold — see Fig. 7.2).

7.3.2 Deformation of the distribution

One way to reduce the fourth-order properties to second-order properties is to
explicitly change the distribution. In Fourth-Order Blind Identification (FOBI)
the data is preprocessed (after first being whitened) so that the samples are
either stretched or contracted about the origin. This can be accomplished as

x′(κ) = f(‖x(κ)‖) · x(κ), (7.11)

where f is some function. For example, selecting f(‖x‖) = ‖x‖ means that
analyzing the variance properties of x′ the fourth order properties of the original
x are modeled. This can be seen when the new covariance matrix is studied:

E{x′(κ)x′T (κ)} = E{x(κ)xT (κ) · ‖x(κ)‖2}
= E{Θz(κ)zT (κ)ΘT · zT (κ)ΘT Θz(κ)}
= Θ · E{z(κ)zT (κ) · zT (κ)z(κ)} · ΘT .

(7.12)

This formulation is justified because one assumes that there exists an orthogonal
basis Θ and independent signals zi. Let us study the matrix E{z(κ)zT (κ) ·
zT (κ)z(κ)} closer. The element i, j has the form

E{zi(κ)zj(κ) · zT (κ)z(κ)}
= E{zi(κ)zj(κ) · (z2

1(κ) + · · · + z2
n(κ))}

= E{zi(κ)zj(κ) · (z2
1(κ)} + · · · + E{zi(κ)zj(κ)(z2

n(κ)}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E{z4
i (κ)} + E{z2

i (κ)} · ∑l �=i E{z2
l (κ)} = E{z4

i (κ)} + n − 1,

if i = j, and
E{z3

i (κ)zj(κ)} + E{zi(κ)z3
j (κ)}+

E{zi(κ)zj(κ)} · ∑l �=i,l �=j E{z2
l (κ)} = 0,

otherwise.

The above simplifications are justified because of the assumed independence of
the signals zi — for example, E{zξ

i (κ)zζ
j (κ)} = E{zξ

i (κ)} · E{zζ
j (κ)} for i �= j.

Also, because of centering, E{zi(κ)} = 0, and because of whitening, E{z2
i (κ)} =

1. Additionally, taking into account the assumed orthogonality of Θ (in the
whitened data space), there holds ΘT = Θ−1, and

E{x′(κ)x′T (κ)}

= Θ ·

⎛
⎜⎝

E{z4
1(κ)} + n − 1 0

. . .
0 E{z4

n(κ)} + n − 1

⎞
⎟⎠ · ΘT

= Θ · Λ · Θ−1.

(7.13)

This means that the right hand side can be interpreted as the eigenvalue de-
composition of the covariance matrix of the modified data. The diagonal el-
ements in the eigenvalue matrix are directly related to the fourth-order prop-
erties of the (assumed) independent components. The cumulant maximiza-
tion/minimization task (for whitened data) is also transformed into the variance
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Figure 7.4: The original mixture of signals (200 of the original 1000
samples are shown as time series). Can you see any structure here?

maximization/minimization task for the modified variable6. This means that
the standard PCA approach can be applied; simultaneously as the covariance
structure of x′ is analyzed, so is the kurtosis structure of the original variables
x. However, contrary to the standard PCA, now the principal components car-
rying the least of the variance may be equally interesting as the first ones are
— depending on whether one is searching for the latent basis of maximal or
minimal kurtosis. The eigenvalues reveal the kurtoses of the signals zi so that
kurt{zi(κ)} = E{z4

i (κ)} − 3 = λi − n − 2.

As an example, study the four-dimensional data samples as shown in Fig. 7.4.
Here, the data sequence is interpreted as constituting a continuous signal; how-
ever, note that this signal interpretation is only for visualization purposes. Using
the above scheme, the underlying signals can be extracted — with no additional
information, just based on the statistical properties of the samples (see Fig. 7.5)!

The exclusively input-oriented approach for determining the latent structure
can again be extended: Note that the regression structure y = FT x remains
formally intact if both sides are multiplied by the same factor, so that there
holds yf(x, y) = FT xf(x, y). This means that extensions towards the directions
of PLS and CCR, for example, can be proposed where both input and output
data are preprocessed prior to determination of the latent structure; it seems
that such possibilities have never been explored.

It is important to note that the curve continuity and periodicity, properties that
are intuitively used as criteria for “interesting” signals, are not at all utilized
by the ICA algorithms — indeed, the samples could be freely rearranged, the
continuity and periodicity vanishing, but the analysis results would still remain
the same. In fact, the traditional methods like some kind of harmonic analy-
sis could reveal the underlying periodic signal structure, but ICA is specially

6Note that if the signals zi are independent, kurtosis can be maximized/minimized using
this algorithm even if the distributions are skewed, that is, E{z3

i (κ)} �= 0
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Figure 7.5: The extracted sources and their distributions

powerful when such periodicity or continuity properties cannot be assumed.

However, even though the above approach seems promising, it has to be rec-
ognized that in many cases the distribution properties are only visible on the
local scale, they cannot be attacked applying global methods like PCA. For
example, see Fig. 7.6: there it is shown how the peculiar data distribution is
deformed in the data processing. The key observation here is that even after
the data deformation (last image), the covariance properties remain identical in
orthogonal directions, meaning that none of the directions can be selected by
the PCA-based approaches. Typically, algorithmic approaches to ICA are su-
perior, because locally there still exist gradients in the kurtosis-oriented design
criterion.

7.3.3 Further explorations*

One of the disadvantages of the above algorithm is that it cannot distinguish
between independent components that have equal kurtosis7. Let us try to find
another approach offering more flexibility.

First, study the basic properties of the fourth power of the data point norm:

‖x‖4 =
(√

x2
1 + · · · + x2

n

)4

=
(
x2

1 + · · · + x2
n

)2

= x4
1 + · · · + x4

n + 2x2
1x

2
2 + 2x2

1x
2
3 + · · · + 2x2

n−1x
2
n.

(7.14)

7Note that the non-uniqueness problem is the same with PCA if there are equal eigenvalues;
however, in this case when we are searching for the real explanations beneath the observations,
not only some compression of information, this problem is more acute
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Figure 7.6: Modifications of the data distribution. The covariance struc-
tures are shown as ellipses (circles) in the figures

Let us define a modified (n2 + n)/2 dimensional data vector as follows:

x′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1
...

x2
n√

2 · x1x2

...√
2 · xn−1xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.15)

containing all possible second order cross-products between the x elements. Us-
ing this kind of modified data vector one can express the fourth moment of the
original data vector simply as

‖x‖4 = ‖x′‖2 = x′T · x′. (7.16)

Now in the x′ space one can project the point onto an axis l as x′T l, and, further,
it is possible to express the fourth moment of this projected data as

lT · x′x′T · l. (7.17)

One should find such an axis l that the average of this quantity over all the modi-
fied samples x′(κ), where 1 ≤ κ ≤ k, would be maximized (or minimized). First,
construct the expression for the average of projected fourth moment values:

1
k
· lT ·

k∑
κ=1

x′(κ)xT (κ) · l =
1
k
· lT · X ′T X ′ · l, (7.18)
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Figure 7.7: The basis vectors cor-
responding to l of lowest kurto-
sis. Note that only first two are
“correct” signals, these sources
being sub-Gaussian

Figure 7.8: The basis vectors cor-
responding to l of highest kurto-
sis. Only the first two are cor-
rect, these sources being super-
Gaussian

where the modified data vectors are written in the matrix form. Letting ‖l‖ = 1,
Lagrangian constrained optimization problem results:

J(l) =
1
k
· lT · X ′T X ′ · l + λ · (1 − lT l

)
, (7.19)

so that

d J(l)
d l

=
2
k
· X ′T X ′ · l − 2λ · l = 0, (7.20)

again resulting in an eigenproblem:

1
k
· X ′T X ′ · l = λ · l. (7.21)

Substituting (7.21) in (7.19) one can see that the eigenvalue equals the cost
criterion value, that is, λ is the average of the projected fourth moments of
the samples. Note that here the least significant eigenvector can be more im-
portant than the most significant one, depending whether one is searching for
sub-Gaussian or super-Gaussian distribution. This principal component is now
presented in the high-dimensional x′ space, and to make it useful as a basis
vector, one needs to approximate it in the lower-dimensional space of x vectors.
For this purpose, remember what is the interpretation of each of the elements
in l:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 ∼ x2
1

...
ln ∼ x2

n

ln+1 ∼ √
2x1x2

...
l(n2+n)/2 ∼ √

2xn−1xn,

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 ∼ l1
...

x2
n ∼ ln

x1x2 = x2x1 ∼ 1√
2
· ln+1

...
xn−1xn = xnxn−1 ∼ 1√

2
· l(n2+n)/2,
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Figure 7.9: Another (more difficult) example of underlying structure:
Positive kurtosis in the basis that is suggested by the structure of the
distribution (on the left), and zero kurtosis using PCA (two equal pro-
jections of normal distributions summed together). In this case, for ex-
ample, the PCA analysis hides the underlying structure altogether — all
samples belonging to different distribution regions are mixed up. How-
ever, for this distribution the independence assumption also collapses (see
text)

These are not expectation values, but they still tell something about the con-
nections between the variables for some hypothetical data; from the elements of
l one can construct an association matrix

R =

⎛
⎜⎜⎜⎜⎝

l1
1√
2
· ln+1 · · · 1√

2
· l2n−1

1√
2
· ln+1 l2
...

. . .
1√
2
· l2n−1 ln

⎞
⎟⎟⎟⎟⎠ . (7.22)

Using this matrix, one can determine the n dimensional basis vectors θi that
best can span the higher-dimensional space; the answers must be given by the
principal components of R. Note that the eigenvalues may now be negative,
as well as the diagonal elements; this could be explained assuming that data
is complex-valued. However, because the matrix is symmetric (in this case,
actually, Hermitian) the eigenvalues and vectors are real-valued.

7.4 Beyond independence

Study the distributions in Fig. 7.9: The intuitively correct basis vectors fulfill
the non-Gaussianity goal, the marginal distributions being peaked, or positively
kurtotic. However, note that the variables z1 and z2 are in this case not inde-
pendent: knowing, for example, that z1 has high value, one immediately knows
that z2 must be near zero, whereas low values of z1 leave much more freedom
for z2; in a way, these variables are rather mutually exclusive than indepen-
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Figure 7.10: Three basis vectors in a two-dimensional space: The basis
set is overcomplete

dent, either of them telling very much about the other one. The independence
objective does not seem to always work when searching for good basis vectors.
What kind of alternatives do exist?

7.4.1 Sparse coding

It turns out that in those types of distributions that seem to be characteristic
to measurement data and that we are specially interested in, meaning mixture
models as studied in Sec. 2.4, this mutual exclusiveness is more like a rule rather
than exception: If a sample belongs to some specific subdistribution, the other
subdistributions do have no role in explaining it. And there are more surprises:
It may be so that the correct number of latent structures is higher than what is
the dimension of the data space (see Fig. 7.10). Perhaps it is this exclusiveness
that could be taken as starting point? And, indeed, this approach results in a
framework that could be called Sparse Component Analysis (SCA).

In sparse coding it is assumed that a sample x is represented in latent basis
so that most of the scores are zeros. Sparse coding is a rather general frame-
work: For example, the various submodels constituting a mixture model can be
presented within the same sparse structure. But sparse models are more gen-
eral than the mixture models are: Whereas the constructs in mixture models
strictly belong to one submodel only, in the sparse framework the components
may be shared, so that the submodels can have common substructures. This
exchange of substructures is the key to the expressional power of sparse models.
Unfortunately, this power also suggests that there exist no explicit algortihms
for constructing sparse models8. Also the varimax, quartimax, and infomax ro-
tation algorithms resemble sparse coding; these approaches are commonly used
within the factor analysis community for maximizing the score variance, thus
distributing the activity in more specialized factors).

As compared to the modeling methods discussed before, ICA is typically not
seen as a compression technique; rather, it carries out data reorganization, so
that the z vectors often do have the same dimension as x. In the sparse coding

8However, various iterative approaches exist; for example, see next chapter
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X YZ +

Figure 7.11: The structure of a sparse model

case, the goal is still different: The model may even be inflated, so that the num-
ber of constructs is higher than the data dimension, hoping that the structural
phenomena become better visible when the data is less compactly packed.

One of the implicit general objectives in modeling is simplicity, in the spirit of
Occam’s razor. Now this simplicity objective has to be interpreted in another
way: Usually, “model of minimum size” means minimum number of substruc-
tures; in sparse coding it means minimum number of simultaneously active units
(see Fig. 7.11).

Regression based on a sparse model is nonlinear; however, the nonlinearity is
concentrated on the selection of appropriate latent vectors among the candidates
— after they are selected, the model is linear. The latent variables can be
selected so that together they can explain the data sample as well as possible.
The abrupt switching between latent structures means that the model behavior
is discontinuous if no additional measures are applied.

When the most specialized constructs are only used, it seems that sparse rep-
resentations often seem to be “easily interpreted”, being sometimes connected
to intuitive mental (subsymbolic) constructs. There is some evidence that the
human brain organizes at least sensory information in this way: In visual cor-
tex, there are areas, groups of neurons that have specialized in very narrow
tasks, like detecting tilted lines in the visual image. The observed image is
mentally reconstructed using the low-level visual features — and what is more,
it seems that similar principles may be governing the higher level perception,
too. There is perhaps room for fruitful cooperation between cognitive science
and multivariate statistics.
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Computer exercises

1. Study the robustness of the eigenproblem-formulated ICA by iteratively
running the two commands below with different selections of parameter
alpha (here α denotes the power used in data preprocessing: x′ = ‖x‖α ·x.
Note that the default value α = 1 resulting in the nominal strictly kurtosis-
oriented algorithm is not necessarily the best choice — for example, try
α = −1 for this data):

X1 = dataIndep;
regrICA(X1,alpha);

Define data as

X2 = dataIndep(1000,...
’randn(1000,1)’,...
’sign(randn(1000,1)).*(rand(1000,1)<1/3)’);

regrICA(X2);

and analyze the independent components. Change the threshold value
(the peak probability; value “1/3” above) between 0 and 1, and explain
the results.

2. Download the FastICA Toolbox for Matlab through the Internet address
http://www.cis.hut.fi/projects/ica/fastica/, and install it. Apply
the FastICA algorithm to the above data sets.


