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Lesson 8

Regression vs. Progression

In the earlier chapters, methods were discussed that are based on “traditional”
statistical approaches. On the other hand, lately the so called soft computing
methods have become popular, seemingly shadowing the more traditional mod-
eling methods. In this chapter, the new methodologies are briefly discussed
exclusively focusing on neural networks. This paradigm consists of a wide vari-
ety of different approaches and methods, but there are some common features
— the methods are data-based, iterative, and massively parallel. And, what is
more, the intended applications are typically extremely complex and nonlinear
(see [5], [13], [7], and [36]).

However, neural networks and statistical methods are not competing method-
ologies for data analysis, and the aim of this chapter is to discuss the connections
between these two seemingly very different approaches. It is shown how under-
standing the (linear) statistical phenomena help in understanding the operation
of the more complex algorithms — it is statistical properties between data that
there only exist, no matter what is the analysis method, after all.

Neural networks research is a quite diverse field of methods originating from
different kinds of intuitions. Three different branches of neural networks research
are discussed here separately: The first branch is unsupervised neural clustering
methods and regression based on them, and the second branch is perceptron
networks and regression. Finally, it is shown how the statistical methods are not
only related to artificial neural networks but also to natural neuron structures.

8.1 Neural clustering

For practically any statistical data processing method, there exist a neural coun-
terpart. When clustering, for example, is done using the neural networks al-
gorithms, there are typically some benefits: The robustness of the clustering
process can be enhanced, and as a bonus, some kind of “topology” can be found
between clusteres, making it easier to gain intuition about the data properties.
But, on the other hand, there are drawbacks, like the longer execution time of
the algorithms.
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128 Lesson 8. Regression vs. Progression

8.1.1 Self-organizing maps

The celebrated Self-Organizing Map (SOM) algorithm by Teuvo Kohonen [27]
performs nonlinear dimensonality reduction using competitive learning. It ac-
complishes data clustering in such a way that the topology of the input space is
somehow preserved, that is, nearby data in the input space are mapped into clus-
ters (now called “nodes”) that are near each other also in the low-dimensional
grid1.

The self-organizing map consists of N nodes, each of which is characterized by
an n dimensional prototype vector x̄c, where 1 ≤ c ≤ N , standing for the cluster
centers. The batch SOM algorithm that iteratively organizes the map can be
expressed as follows:

1. Choose a set of original node prototypes x̄1, . . . , x̄N arbitrarily.

2. Assign the k samples to the N nodes using the minimum distance rule,
that is, sample x(κ) belongs to node c(κ) such that

c̄(κ) = argmin
c∈[1,N ]

(x(κ) − x̄c)T (x(κ) − x̄c). (8.1)

3. For all pairs of center c̄(κ) and node c calculate the “distance measure”
(for explanation of the parameters, see below):

hc(κ) = exp
(
−d2(c, c̄(κ))

2σ2(κ)

)
. (8.2)

4. Compute new node prototypes, that is, for all 1 ≤ c ≤ N :

x̄c ←
k∑

κ=1

hc(κ) · x(κ)/
k∑

κ=1

hc(κ). (8.3)

5. If any of the node prototypes changes, return to step 2, otherwise, stop.

Above, in Step 4, the value of the neighborhood parameter hc(κ) determines the
behavior of the adaptation process. This parameter determines the net topology,
giving large values if the node c and the best matching node c̄(κ) are “near” each
other in the net, and smaller values otherwise. In (8.2) the parameter d(c, c̄(κ))
gives the distance between nodes c and c̄(κ) in the grid of network neurons,
and σ(κ) determines the “width” of the neighborhood. This parameter can be
time-varying, starting from a relatively large value, but getting smaller (the
neighborhood “shrinking”) as the adaptation continues, making the adaptation
more local. When the algorithm has converged, the node prototypes x̄c contain
the cluster centers being arranged within a grid structure.

The selection (8.2) for hc(κ) gives a Gaussian form for the neighborhood effect.
As shown in [18], this parameter can be interpreted as probability for a sample
to belong to a specific node; that is, the net can be interpreted again as a
Gaussian mixture model for the data, and the algorithm tries to adjust the
Gaussian centers to best match the data.

1Now we are not specially interested in the mapping, or the visual properties of the data,
but on the clusters in the input space as generated by the algorithm. The topological ordering
is reached as a side-effect
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8.1.2 “Expectation Maximizing SOM”

The SOM algorithm is related to the K-means clustering, because in both cases
the Gaussian distributions are assumed to have identity covariance matrix. As
in the case of the EM algorithm, the above algorithm can also be extended to
“EMSOM”:

1. Choose a set of original node prototypes x̄1, . . . , x̄N arbitrarily, for ex-
ample, using the SOM algorithm; the cluster covariances are originally
identity matrices, that is, Rc = I for all 1 ≤ c ≤ N .

2. Assign the k samples to the N nodes using the minimum (balanced) Ma-
halanobis distance rule:

c̄(κ) = argmin
c∈[1,N ]

ln(det{Rc}) + (x(κ) − x̄c)T (Rc)−1(x(κ) − x̄c). (8.4)

3. Calculate the neighborhoods for all node/sample pairs according to

hc(κ) = exp
(
−d2(c, c̄(κ))

2σ2(κ)

)
. (8.5)

4. Compute new node prototypes, that is, for all 1 ≤ c ≤ N :

x̄c ←
k∑

κ=1

hc(κ) · x(κ)/
k∑

κ=1

hc(κ). (8.6)

5. Correspondingly, update covariance estimates

Rc ←
k∑

κ=1

hc(κ) · (x(κ) − x̄c)(x(κ) − x̄c)T /
k∑

κ=1

hc(κ). (8.7)

6. If any node prototypes changes, return to step 2, otherwise, stop.

The algorithm can be stabilized by introducing some gradual forgetting in (8.7).
Note that if the number of clusters N is high, this algorithm typically behaves
better than the original EM algorithm: The Rc matrices do not become singular
as easily.

When doing neural networks modeling, it is typical that very little is assumed
about the data. In Chapter 2, it was (optimistically) assumed that the data
distributions can be expressed as combinations of Gaussian subdistributions.
When doing data modeling with SOM-type algorithms, the philosophy is very
different: All assumptions about the underlying distribution structure are dis-
carded, one just tries to capture the data density as exactly as possible. The
Gaussian formulas that are used in the self-organization algorithms are used
only as basis functions for spanning the observed data density, they do not
stand for separately distinguishable clusters. That is why the number of nodes
in SOM does not usually match the number of real clusters in data (if there
exists some) but is considerably higher, each condensation of data being repre-
sented possibly by various nodes. This generity makes it possible to model very
complex data distributions having no a priori information about the nature of
the distributions.
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8.1.3 Radial basis function regression

It turns out that nonlinear regression can be realized directly based on the
clustered data model2. This kind of regression methods are studied under the
name of radial basis function networks.

For example, one can assume that if the sample is explained exclusively by some
specific subdistribution c, the correct (constant) output vector is Ȳ c. Limiting
the y values to one constant in a distribution sounds to be a harsh limitation
— but, as can be seen later, this is not true for a mixture model (see Fig. 8.1).
When the distributions are weighted in a reasonable way, according to their
probabilities of explaining the measured sample, continuity is achieved.

To apply basis function regression, one first has to find the probabilities for a
sample x being represented by a specific subdistribution. The estimated value
for the output is (in a maximum likelihood sense) a weighted sum of the can-
didate outputs; these weighting parameters are the probabilities of the corre-
sponding subdistributions, so that

ŷ =
N∑

c=1

p̄c(x) · Ȳ c, (8.8)

where the normalized probabilities are calculated as

p̄c(x) =
pc(x)∑N

c′=1 pc′(x)
(8.9)

with the individual densities being determined as Gaussian distributions

pc(x) =
1√

(2π)n det{Rc} · e
− 1

2 ·(x−x̄c)T (Rc)−1(x−x̄c). (8.10)

If using K-means or SOM for clustering, the covariance is Rc = σ2 · I for all
1 ≤ c ≤ N . If there are k samples x(κ) and y(κ) available for constructing
the model, one has to optimize the values Ȳ c to fit the regression curve with
the observations X and Y . The above normalized probabilities can be collected
(in the familiar way) into the k × N matrix P̄ (X), and the optimal prototype
outputs for the clusters can be calculated in the MLR style as

Ȳ =
(
P̄T (X)P̄ (X)

)−1
P̄T (X) · Y, (8.11)

so that the final nonlinear regression model becomes

Ŷest = P̄ (Xest) · Ȳ
= P̄ (Xest) ·

(
P̄T (X)P̄ (X)

)−1
P̄T (X)Y.

(8.12)

2Note that we are assuming that the data density is now represented by (ovelapping)
Gaussian distributions, no matter whether there really exist separate clusters or not
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Figure 8.1: The effects of different basis distribution sizes in one di-
mension. For very narrow distributions, the regression curve becomes
stepwise, representing only N distinct values, one for each cluster; when
the distribution becomes wider, the curve becomes smoother, but abrupt
changes cannot any more be modeled
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Figure 8.2: Introducing more and more latent variables ...!

8.2 Feedforward networks

This far, we have been mainly interested in linear models, assuming that non-
linearities can be circumvented by appropriate preprocessing of data, clustering
or variable selection. However, this is not always enough, specially if the system
structure is unknown, and more general methods may sometimes be needed.
Nonlinear regression

y = g(x) (8.13)

can be accomplished in a variety of ways. The key question is: How to param-
eterize the function g?

As compared to linear models, the nonlinear regression problem is much more
complex. First, there is the model structure selection problem, and even if the
type of the nonlinearity has been determined, the algorithms for finding the best
parameters are complicated. Only iterative methods exist. The multilayer feed-
forward perceptron networks (MLP’s) are taken here as a prototype of nonlinear
regression models. The overall “layered” MLP regression structure is depicted
in Fig. 8.2.
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Figure 8.4: A layer of perceptrons: z = g(FT u), now g : Rn1 →Rn2

8.2.1 Perceptron networks

Within the neural networks paradigm, it is customary to construct the over-
all nonlinearity from simple nonlinear units called perceptrons (see Fig. 8.3).
These perceptrons are independent computing elements trying to mimic the in-
formation processing of the biological nerves. Various outputs can be realized
when more perceptrons are used in a layer; more sophisticated functions can be
implemented by connecting several layers after each other (Figs. 8.4 and 8.5).

As shown in Fig. 8.6, MLP’s are general-purpose, flexible, nonlinear models
that, given enough hidden neurons and enough data, can approximate virtually
any function to any desired degree of accuracy. In other words, MLP’s are
universal approximators. MLP’s can be used when there exists little a priori
knowledge about the form of the relationship between the input and output
variables. MLP’s are especially useful because the complexity of the model can
be varied easily.

However, if no assumptions are made about the structure of nonlinearity, there
are too many degrees of freedom to fix the model using some training data
(remember the “Flatland”!). That is why, in practice, the assumption about
function smoothness is made. This assumption is not well suited for modeling
functions with abrupt changes.

8.2.2 Back-propagation of errors

The original multilayer perceptron training method was back-propagation of
errors. The basic backpropagation algorithm is a gradient method, where the
weights are adapted in the negative error gradient direction, thus being relatively
inefficient. Later, various enhancements have been proposed, but in this context
only the original version is presented. The training algorithm can be divided in
two parts, forward regression and backward adaptation:
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Figure 8.5: The complete perceptron network (note the additional “bias
input” in each layer

1. Neural regression: For each neuron layer i, where 1 ≤ i ≤ N , apply the
following:

(a) Augment the input (note that ẑ0(κ) = x(κ)):

ui(κ) =
(

ẑi−1(κ)
1

)
. (8.14)

(b) Calculate the weighted sum of the inputs:

ζi(κ) = (F i)T · ui(κ). (8.15)

(c) Apply the ouput function for all 1 ≤ j ≤ Ni:

ẑi
j(κ) = gi

(
ζi
j(κ)

)
. (8.16)

2. Error back-propagation: If the weights are to be adapted, assuming
that the “correct” output y(κ) is available, do the following:

(a) Calculate the error ei(κ) = zi(κ) − ẑi(κ). Only for the last layer
this can be carried out explicitly, because zN(κ) = y(κ) is known.
All other errors can only be approximated; a heuristic approach is
to forget about the nonlinearities, etc., and back-propagate the error
from the outer level, assuming that the appropriate “error distribu-
tion” between the inner level neurons is determined by the weighting
matrix F i:

ei−1(κ) = (F i)T · ei(κ). (8.17)

(b) Calculate the error gradients for all 1 ≤ i ≤ N and 1 ≤ j ≤ Ni (that
is, i is the layer index, and j is the neuron index within a layer). The
idea is to calculate the effect of one output at a time on all of the
inputs:

d(ei
j)

2

dF i
j

(κ) =
d(zi

j−ẑi
j)

2

dF i
j

(κ)

= −2ei
j(κ) · dẑi

j

dF i
j

(κ)

= −2ei
j(κ) · dgi(ζi

j)

dF i
j

(κ)

= −2ei
j(κ) · dgi

dζ (ζi
j(κ)) · dζi

j

dF i
j

(κ)

= −2ei
j(κ) · dgi

dζ (ζi
j(κ)) · d((F i

j )T ui)

dF i
j

(κ)

= −2ei
j(κ) · dgi

dζ (ζi
j(κ)) · ui(κ).

(8.18)

(c) Update the parameters applying the gradient descent algorithm (γ
being the step size). The whole column is updated simultaneously:

F i
j ← F i

j − γ · d(ei
j)

2

dF i
j

(κ). (8.19)

This process of forward and backward propagation is repeated for different
training samples until the network converges.
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It needs to be noted that training a nonlinear neural network, or finding the
values of the parameters in the matrices F i, is a much more complicated thing
than it is in the linear case. First, the results are very much dependent of
the initialization of the parameters; and during training, there are the problems
caused by local minima and neuron saturation effects, not to mention overfitting
problems, etc.

Typically, the nonlinear perceptron activation function gi is selected as hyper-
bolic tangent (or “tansig”):

gi
tansig(ζ) =

2
1 + e−aζ

− 1, (8.20)

so that the derivative becomes

dgi
tansig

dζ
(ζ) =

2ae−aζ

(1 + e−aζ)2
, (8.21)

where a is some constant (see Figs. 8.8 and 8.9). In some cases, linear neurons
may be used3. It is reasonable to let at least the outermost layer have linear
activation function, otherwise (in the case of gtansig) the network output would
be limited between −1 < ŷj < 1:

gi
linear(ζ) = aζ, (8.22)

so that

dgi
linear

dζ
(ζ) = a. (8.23)

The selection of the number of hidden layer neurons is a delicate matter. Note
that if there are Ni neurons on the previous level and Nj neurons on the next
level, Ni ·Nj free parameters are introduced (plus the additional bias term). Too
many degrees of freedom may make the model useless (see Fig. 8.7); however,
the results are very dependent of the training method, too.

8.2.3 Relations to subspace methods

Nonlinear versions of PCA and PLS can also be constructed using the feedfor-
ward perceptron network (see Fig. 8.10). The key point is that there is a layer
i of relatively low dimension Ni, no matter how complicated layers there are
before and after this layer. If the dependency between input and output can be
compressed, these lower-dimensional hidden layer activations can be interpreted
as latent variables.

3Note that successive linear layers can be “collapsed”; various linear layers do not expand
the expressional power as compared to a single linear layer. If all gi are linear, the whole
network, no matter how complex, can be presented as a single matrix multiplication — and
because the cost criterion is identical (minimization of squared error average) the result of
training must be the same as in the case of linear regression!
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It must be recognized that this kind of results are seldom unique, and the re-
sults are often difficult to interpret: It is no more only linear subspaces that
are spanned. For example, see Fig. 8.11: It turns out that the functions being
modeled are symmetric, so that yi = fi(x) = fi(‖x‖) for i = 1, 2, and this can
efficiently be utilized in compression — see Fig. 8.12. Only the positive part
needs to be modeled, the negative region being taken care of automatically be-
cause of the latent variable construction. The network for reaching appropriate
behavior was as simple as N1 = 2, N2 = 1 (the latent layer), N3 = 2, and
N4 = 2 (the output layer). It is no wonder that the algorithms often fail in this
kind of complex tasks (see Exercise 2); typically the training becomes more and
more complex as the number of the layers grows.

Again, if all neurons are linear, variables z span the same linear subspace as in
normal PCA/PLS; this gives us a new, iterative way to determine the latent
basis. In the linear case, again, only one layer of neurons is needed to achieve the
required mappings, so that z = (F 1)T x and y = (F 2)T z. However, it has to be
recognized that the same ordering as in standard PCA/PLS cannot generally be
reached: None of the hidden layer neurons start uniquely representing the first
principal component, etc., and the latent variables are linear combinations of
the actual PCA/PLS latent variables that would be derived using the methods
presented in earlier chapters.

8.3 “Anthropomorphic models”

Of course, all artificial neural networks do have their underlying ideas in neuro-
physiology, the power of brains having boosted the interest. But typically it is
only the network structure that is copied, the functional characteristics being
simplified to extreme. However, long before the research on artificial neural
networks started, some fundamental phenomena of the neural functions were
noticed by Donald O. Hebb [14]:

Neurons seem to adapt so that the synaptic connections become
stronger if the neuronal activation and its input signals correlate.

This general idea of Hebbian learning has later become one of the basic paradigms
in unsupervised learning where there is no external training.

8.3.1 Hebbian algorithms

In unsupervised learning the only thing that the adaptation algorithm can do
is to try to find some statistical structure within the input signals. According
to the Hebbian principle, it is correlation that should be maximized — this
goal sounds distantly familiar, and as it will turn out, the results will also look
familiar.

In the simplistic technical implementation, as compared to the earlier discus-
sions, the Hebbian neuron is a linear perceptron without bias, that is, the acti-
vation (output) of the neuron can be expressed as

z(κ) = fT · x(κ). (8.24)
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The parameters in f are interpreted as synaptic weights connecting the neuron
to other neurons. According to the Hebbian rule the change in the weights can
be expressed as

Δf = γ · z(κ)x(κ), (8.25)

where z(κ)x(κ) denotes the correlation between the neuronal activation and
input, so that

f(κ + 1) = f(κ) + γ · z(κ)x(κ). (8.26)

Here γ is a small adaptation factor. The change in the vector f is determined
essentially by the match between input x(κ) and the contents of the Hebbian
neuron f .

One thing plaguing the extremely simplified linear Hebbian neuron is that above
learning law (8.26) is not stable but boosts the parameters in f without limits.
To enhance the basic Hebbian model, let us prevent f from exploding. A simple
solution to this (as proposed by Erkki Oja) is to normalize the length of f to
unity after each adaptation step. Assume that, to begin with, ‖f(κ)‖ = 1, and
this normality is returned after each iteration as follows:

f(κ + 1) =
f(κ) + γ · z(κ)x(κ)
‖f(κ) + γ · z(κ)x(κ)‖

=
f(κ) + γ · z(κ)x(κ)√

(f(κ) + γ · z(κ)x(κ))T (f(κ) + γ · z(κ)x(κ))

=
f(κ) + γ · z(κ)x(κ)√

fT (κ)f(κ)− 2γ · z(κ)xT (κ)f(κ) +O{γ2}
=

f(κ) + γ · z(κ)x(κ)√
1 + 2γ · z2(κ) +O{γ2} .

(8.27)

Assuming that γ is small, terms including powers of γ higher than two can be
ignored. Here one can further approximate the square root by noticing that for
small values of α there holds

1√
1 + α

≈ 1− 1
2
· α, (8.28)

giving (again forgetting terms containing γ2)

f(κ + 1) = (f(κ) + γ · z(κ)x(κ)) · (1− γ · z2(κ)
)

≈ f(κ) + γ · z(κ)x(κ)− γ · z2(κ)f(κ). (8.29)

The “stabilized” Hebbian algorithm also becomes

f(κ + 1) = f(κ) + γ · (z(κ)x(κ)− z2(κ) · f(κ)
)
. (8.30)

In addition to the nominal correlation-motivated factor z(κ)x(κ), another non-
linear term has emerged, preventing the algorithm from growing excessively.

Assuming that the algorithm converges to some fixed f (indeed, it does; for
example, see [13]), this parameter change trend Δf(κ) = f(κ+1)−f(κ) should
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vanish. One can study the properties of this fixed state by taking expectation
values on both sides:

E{Δf(κ)} = γ · (E{x(κ)z(κ)} − E{z2(κ)} · f)
= γ · (E{x(κ)xT (κ)} · f − E{z2(κ)} · f)

.
(8.31)

It turns out that in the fixed state there must hold

E{x(κ)xT (κ)} · f = E{z2(κ)} · f, (8.32)

where E{x(κ)xT (κ)} is the data covariance matrix. This means that the above
formula has the same structure as the PCA problem has, the eigenvector of the
data covariance matrix being f and the eigenvalue being λ1 = E{z2(κ)} �= 0. It
also turns out that the Hebbian algorithm converges to the principal component
(the most significant one; see [13]), so that one can redefine θ1 = f . Further,

λ1 = E{z2(κ)}
= E{θT

1 x(κ)xT (κ)θ1}
= θT

1 ·
(
E{x(κ)xT (κ)} · θ1

)
= θT

1 · λ1 · θ1

= λ1 · ‖θ1‖.

(8.33)

When λ1 is eliminated on both sides, it turns out that the eigenvector is auto-
matically normalized by this Hebbian algorithm:

‖θ1‖ = 1. (8.34)

So, it is no wonder that correlation maximization results in the principal com-
ponents of the data. What is interesting, is that this seems to be happening
also in the brain!

8.3.2 Generalized Hebbian algorithms

Assume that the contribution of θ1 is eliminated from the data, so that

x′(κ)← z(κ) · θ1. (8.35)

Note that after this operation the modified input vector is orthogonal to θ1:

θT
1 · x′(κ) = θT

1 · (x(κ) − z(κ) · θ1) = z(κ)− z(κ) · 1 = 0. (8.36)

Applying the Hebbian algorithm using this modified x′(κ) as input extracts the
most significant principal component that is left after the elimination of the first
principal component — that is, now f converges towards θ2. This procedure
can be continued, and the resulting Generalized Hebbian Algorithm (GHA) can
be used to iteratively extract as many principal components that is needed; if
the procedure is formalized as a N layer network, the algorithm to be applied
for all 1 ≤ i ≤ N (note that x1(κ) = x(κ)) becomes

xi(κ) = xi−1(κ)− zi−1(κ) · f i−1(κ) for layers i > 1
zi(κ) = (xi)T (κ) · f i(κ)

f i(κ + 1) = f i(κ) + γ · zi(κ) · (xi(κ)− zi(κ) · f i(κ)
)
.

(8.37)
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After the iteration has converged, the principal components are

(
θ1 · · · θN

)
=

(
f1 · · · fN

)
. (8.38)

Note that the algorithm (8.37) does probably no more have any connection to
operations taking place in the brain; it is just an extension of the basic Hebbian
idea for easily extracting the principal component structure from the data. The
structures of the Hebbian algorithms are so simple that they can be easily
implemented; there is no explicit reference to their neural background, and this
is an example of how the new paradigms can give important contribution to
other branches of research.

Note that when using the Hebbian algorithms, the covariance matrix never needs
to be explicitly constructed — that is why, the Hebbian approach may be useful
in specially high-dimensional data analysis tasks.

8.3.3 Further extensions

The generalized Hebbian algorithm can still be extended. For example, take
the anti-Hebbian learning, where, in addition to maximizing the correlation
with the inputs, the correlations with other outputs is minimized. The goal is
to make the neurons as independent from each other as possible; as we have
seen, this kind of independence often reveals underlying structure in the data.
The explicit decorrelation between outputs results in sparse coding as shown in
[8]. However, the correlation maximization/minimization structure is recursive,
and the training algorithms are rather inefficient.

Another extension towards multiple mixture models is the Generalized General-
ized Hebbian Algorithm (GGHA) [24]. The idea is to explicitly assume sparsity
in the data; that is, there are various trains of candidate principal components,
and only one of these candidate sequences is selected at a time (using the “best
match” principle). When the selected components are eliminated from data, as
in GHA, the rest is explained by the remaining components. This algorithm
has been applied to a number of high-dimensional feature extraction problems.

8.4 Cybernetic neurons*

Cybernetics is a branch of complex systems research, where it is assumed that
the observed complex functionalities can be explained in terms of interactions
and feedbacks among the underlying local “agents”. Specially, in neocybernetics
the approaches are made very concrete: In the spirit of multivariate models, it is
assumed that understanding of high dimensionality and dynamic structures can
help in explaining the emergent functionalities. Furthermore, there are some
very stringent assumptions: First, it is assumed that there is dynamic balance
on all levels in a complex hierarchical system; second, model structures are
kept as simple as possible — one could speak of linearity pursuit. Despite the
constraints, it seems that non-trivial systems can be modeled in this way (see
[?]).



8.4. Cybernetic neurons* 139

These guidelines can be exploited on different levels of modeling the neuronal
system, and analysis of a Hebbian neuron grid is carried out here. First, one
can study the synaptic level: The stabilization of the synaptic weight can be
accomplished not only applying nonlinearity, as is done when following Oja’s
rule, but also applying linear feedback. So, assume that instead of (14) one
defines

Δf = γ · z(κ)x(κ)− αf (8.39)

for some scalar α. It turns out that, assuming stationarity of the input, the
synapse finds a stable value that is proportional to the correlation between
the input and the neuronal activity. In the matrix form, the steady state of all
synaptic weights can be expressed (β being some scalar) using an (unnormalized)
correlation matrix

W = βE{zxT }. (8.40)

To reach some added value, the neocybernetic intuitions can be applied also
on the next level, or to the analysis of the whole neuron grid. Assume that
the behavior of the grid of individual Hebbian neurons is orchestrated again by
linear feedback, so that some of the synapses are between neurons — this means
that one has a dynamic structure of the form

dz

dt
= −Az + Bx. (8.41)

Here, the matrices A and B contain the synaptic weights of W as divided
according to their roles: synapses between inputs and neurons are collected in
B, whereas the inter-neuronal connections are represented by the matrix A. In
front of A there is the “−” sign to explicitly emphasize the negative feedback
nature of these “anti-Hebbian” connections. The adaptation of the neuronal
activities is presented here in the continuous-time form, and it is assumed that
dynamics of this internal loop is much faster than the dynamics of the input x,
so that one can solve for the steady state

z̄ = FT x = A−1B x, (8.42)

where now

A = βE{z̄z̄T}, and B = βE{z̄xT }. (8.43)

Note that because A represents the covariance matrix of the state vector, all
eigenvalues being non-negative, dynamics determined by the matrix −A always
remains stable. The covariance matrix estimates can be adapted, for example,
using a continuous-time algorithm for some time constant τ 	 1/β as

d Ê{z̄xT }
dt

= −1
τ
Ê{z̄xT }+

1
τ

z̄xT . (8.44)

Because the neocybernetic studies concentrate on balances on all levels, it is of
interest to see what are the stationary properties of x̄. One has

E{z̄z̄T} = A−1B E{xxT }BT A−1

= E{z̄z̄T}−1E{z̄xT }E{xxT }E{z̄xT }T E{z̄z̄T }−1,
(8.45)
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or, when simplified

E{z̄z̄T}3 = E{z̄xT }E{xxT }E{z̄xT }T . (8.46)

Taking the linearity of the model into account, there holds

(
FE{xxT }FT

)3
= F

(
E{xxT })3

FT . (8.47)

The solution for the mapping matrix is non-trivial, if the dimension of the
input x is higher than that of the state z̄, that is, N < n. It turns out that
the columns of F span the principal subspace of the input data, that is, they
are linear combinations of the N most significant principal components. It
also turns out that the neocybernetic principles are enough to implement self-
regulation and self-organization (in the sense of PCA), even though the local
synapses only are capable of reacting to their immediate environment, knowing
nothing about the global situation. From the technical point of view, it is nice
that explicit covariance matrices in the assumedly high-dimensional space of x
vectors is not needed — one essentially operates in the low-dimensional space
of z vectors. However, the process is necessarily highly iterative as the final
balances z̄ are not known before adaptation.

Looking at the structure of the mapping matrix F , it is evident that one can
implement reconstruction of the input in the least-squares sense in a straight-
forward way:

x̂ = E{z̄xT }T E{z̄z̄T}−1 z̄ = F z̄. (8.48)

This means that the internal state z̄ can be interpreted as some kind of “mirror
image” of the environment as represented by x.

Further, one can also implement normal principal component regression exploit-
ing the principal subspace (see Fig. 8.13):

ŷ = E{z̄yT }T E{z̄z̄T }−1 z̄ = E{z̄yT }T E{z̄z̄T }−2E{z̄xT } x. (8.49)

It seems that the dynamic systems understanding can give new intuitions for
studying regression models. Also, as it turns out in what follows, understanding
of the static regression models can help to better exploit the dynamic models.
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Computer exercises

1. Construct data as follows:

X = 20*rand(100,1)-10;
Y = [cos(X/2),abs(X)/5-1];
Xtest = [-15:0.1:15]’;

Study the behavior of the radial basis regression for different values of N
(number of clusters) and σ (width of the distributions):

[clusters] = regrKM(X,N);
[rbfmodel] = regrRBFN(X,Y,clusters,sigma);
Ytest = regrRBFR(Xtest,rbfmodel);

2. Assuming that you have the Neural Network Toolbox for Matlab avail-
able (version 3.0.1, for example) study the robustness of training the multi-
layer feed-forward perceptron network. Using the same data as above,
construct the model as

structure = [2 1 2 size(Y,2)];
outfunc = {’tansig’, ’tansig’, ’tansig’, ’purelin’};
net = newff([min(X);max(X)]’,structure,outfunc);
net = train(net,X’,Y’);

In principle, these commands reproduce the example presented in Figs. 8.12
and 8.11. What can you say about reliability? For model simulation use
the commands

Ytest = sim(net,Xtest’);
net.outputConnect = [0 1 0 0]; % Second layer output
Ztest = sim(net,Xtest’);

Try also different network structures (that is, change the structure and
outfunc parameters). For example, using only one hidden layer, what
is the minimum number of hidden layer units that can accomplish the
mapping?
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a b

c d

Figure 8.6: Visualization of the generality of feedforward perceptron net-
works as approximators of smooth functions. In this example, only two
input signals is assumed (x1 and x2), and in the figures, the outputs
of neurons are plotted as functions of these inputs in a two-dimensional
(x1, x2) plane. First, see a: this kind of output function is character-
istic to the nonlinear neuron; adjusting the weights of the inputs and
the bias, the location, orientation, and depth of the “transition barrier”
can be freely adjusted (note that z = g(w1x1 + w2x2 + b)). Similarly, if
yet another neuron is connected to the same input using the same ratio
between the input weights, the new transition barrier is parallel to the
previous one, yet shifted. Figure b results if the outputs of these two neu-
rons are added together — the height of the bump can be freely adjusted
by changing the weights. Using another set of two neurons, another (not
parallel) bump can be constructed, and if the outputs of these four neu-
rons are added together, the result looks something like the surface in
c. The peak can be emphasized (see d) if this signal is connected to a
second-layer neuron. It turns out that using four first-layer neurons, a
peak can be created anywhere in the plane; if there are enough neurons,
a large number of such peaks can be constructed. These peaks can be
applied as basis functions (compare to radial basis function networks),
and any continuous function can be approximated to arbitrary accuracy.
To summarize, a two-layer network with enough hidden layer neurons
can approximate any function
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Figure 8.7: Number of neurons — matter of expertise. A two-level feed-
forward perceptron network (hyperbolic tangent / pure linearity) with
different numbers N1 of hidden layer neurons has been trained using the
dotted points as training samples. As the number of free parameters
grows, the matching error becomes smaller, but, at the same time, the
curve outlook becomes less predictable. Note that the results can vary
from simulation to simulation
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Figure 8.10: Neural network based “nonlinear PCA” (output x) and
“nonlinear PLS” (output y). After training, the impact from the input
to the output gets channelled through the variables z of lesser dimension.
If the mapping from x to x or y still can be done, it must be so that the
information has been successfully compressed
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Figure 8.11: Two functions to be
modeled (shown as circles), ap-
proximations shown using solid
line type (see Fig. 8.12)

Figure 8.12: An intuitively rea-
sonable nonlinear latent variable
behavior, recognizing the sym-
metry of the signals in Fig. 8.11
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Figure 8.13: “Structure of “cybernetic regression”. Note that the nota-
tions differ from those employed in [?]


