
Lesson 9

Application to Dynamic
Models

All the above discussions assumed static dependency between the input and
the output, so that the value of y should be directly determined by the value
x. In systems engineering, the models are usually dynamic — there is some
“inertia” in the system, or “memory” between inputs and responses. Past affects
the future, and successive measurements become interlinked. In principle, this
makes the models considerably more complicated. However, the derived models
can readily be extended to dynamic domains.

9.1 Representing dynamics

It turns out that basically static multivariate methods can be extended also to
the determination of dynamic model parameters. The procedure is as follows:
First, determine the state sequence, then compress the state space (using the
familiar methods), and, finally, solve for the system matrices. To accomplish
this, some basic theory is needed.

9.1.1 Capturing history

In the chapter 3, it was explained how structural complexity can be changed into
dimensional complexity. A specially interesting form of structural complexity is
caused by dynamic nature in the system being studied. How to determine the
features to represent the dynamic phenomena as data?

In dynamic systems, there is inertia — it is not only the input but also the
history that affects the current and future behaviors of the system. This infinite
history can be captured in a finite set of time-series samples: System theory says
that behaviors of a d’th order discrete-time dynamic system can be represented
in terms of d past samples:

y(κ) = f (y(κ − 1), . . . , y(κ − dmax), u(κ), . . . , u(κ − dmax)) . (9.1)

143

144 Lesson 9. Application to Dynamic Models

This means that the dynamic features in the data vector should be more or less
delayed measurements of the signals. Assuming that the system input u goes
through the system causing the output y, one can express the information in
the input sample vectors and in the output sample vectors collectively as the
state vector

x(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(κ)
...

u(κ − dmax)
y(κ − 1)

...
y(κ − dmax)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.2)

That is, there are overlapping windows over the past time-series data. If the
dynamics is assumed linear, there holds

y(κ) = FT x(κ) (9.3)

for some parameter matrix F . Here, it is assumed that the system dimension is
not known beforehand, it is only assumed that dimension cannot exceed dmax.
Note that high dimensionality and excessive redundant variables is not assumed
to be a problem — now it can be assumed that (preliminary) state x contains
all information back to the maximum length of system memory.

Indeed, high dimensionality is not a problem if appropriate latent variable meth-
ods are applied when the regression model between x and y is constructed.
Again, assume that the latent variable, or the reduced minimum state, is de-
noted z(κ). The preliminary state x(κ) is first projected onto this minimum
state z(κ) and from there to output y(κ).

So, nothing new here. In principle, the above scheme is already a working solu-
tion for implementing determination of dynamic models. The problem here is
that x(κ) needs to be reconstructed at each time point κ separately — a more
streamlined approach would be beneficial. What is more, more tailored formu-
lations make it possible to employ the very powerful theory of linear dynamic
systems. The rest of this chapter devoted to the challenges of writing the above
model in the standard dynamic model form.

9.1.2 State-space models

There are various ways to represent dynamic systems in a mathematically com-
pact way. In this context we only study state-space models. The basic idea here
is that the history of the system is coded in the state vector z, as explained
above, and the time-domain behavior of this state is coded in the model. To-
gether with the future inputs the state determines the future outputs. The
linear discrete-time state-space model can be written in the following general
form:

{
z(κ + 1) = Az(κ) + Bu(κ) + ε(κ)
y(κ) = Cz(κ) + Du(κ) + e(κ). (9.4)

9.2. Subspace identification 145

Vector u(κ) is the system input (dimension nu × 1), z(κ) is the state vector
(dimension N ×1), and y(κ) is the output (dimension m×1); matrices A, B, C,
and D have compatible dimensions. Even if the model is written here using the
minimum-dimensional state vector, the state sequence is by no means unique,
and the state model representation is by no means optimal in terms of available
parameters. Vectors e(κ) and ε(κ) represent white noise sequences so that

E{ε(κ1)εT (κ2)} =
{

Rzz, if κ1 = κ2

0, otherwise, (9.5)

and

E{e(κ1)eT (κ2)} =
{

Ryy, if κ1 = κ2

0, otherwise, (9.6)

are the state noise and the measurement noise covariances matrices, respec-
tively. Additionally, assume that ε(κ) and e(κ) are mutually correlated:

E{ε(κ1)eT (κ2)} =
{

Rzy, if κ1 = κ2

0, otherwise. (9.7)

Note that this system model is a generalization of what has been studied this
far: If matrices A, B, and C are ignored, matrix D directly corresponds to the
static regression model FT . From this it is easy to see that there are much more
degrees of freedom in the dynamic model as compared to the static one.

The above state-space system structure is used, for example, by the Kalman
filter, and a wide variety of analysis and control design methods are readily
available for models that are presented in this form. If one were able to find all
the system matrices directly from data, such method would be very useful —
and finding such a technique is our objective now.

9.2 Subspace identification

The solution to the above problem is given by subspace identification (complete
coverage can be found in [?]). This branch of research is rather new, developed
mainly in the 1990’s (yet having its roots in realization theory dating back to
1960’s), and the texts discussing this material are typically difficult to follow
for non-experts. However, the ideas are again very simple. It needs to be
kept in mind that this presentation only explains the bare bones, and various
enhancements could be (and have been) implemented.

9.2.1 Stochastic models

There exist various modifications of the basic model (9.4) that can be useful
in different applications. For example, discarding the input u, assuming that
the process is run exclusively by the noise, one faces the so called stochastic
realization problem: What is the underlying succession of unmeasurable states z,
together with the model structure, that best can explain the observed outputs y?
This problem setting is characteristic to filtering problems, where measurements
are corrupted by noise and the original variables should be recovered.

146 Lesson 9. Application to Dynamic Models

State sequence

The simplified system model that is exclusively driven by the noise processes
becomes

{
z(κ + 1) = Az(κ) + ε(κ)
y(κ) = Cz(κ) + e(κ). (9.8)

Now the available data only consists of output time series samples. Assume
that the block of k successive data samples extends from time point k0 = 1 to
time k. Define vector of past outputs as follows:

ypast
dmaxm×1

(κ) =

⎛
⎜⎝

y(κ − 1)
...

y(κ − dmax)

⎞
⎟⎠ . (9.9)

The future signals are, correspondingly,

yfuture
dmaxm×1

(κ) =

⎛
⎜⎝

y(κ + dmax − 1)
...

y(κ)

⎞
⎟⎠ .

The data matrices Ypast and Yfuture are constructed as before, stacking transposed
sample vectors on top of each other, the indexes running from dmax + 1 to
k − dmax + 1. Note that the matrices have k − 2dmax + 1 rows rather than the
original k. The preliminary state variable can be constructed immediately:

X =
(

Ypast

)
. (9.10)

The dimension of the preliminary system state is high and the states are highly
redundant — but the main thing here is that the originally dynamic problem
has been transformed into a static one, and all of the tools that have been pre-
sented in the previous chapters for dealing with static models can be utilized
for dimension reduction, or for determining the latent vector matrix Z contain-
ing the N dimensional minimum state vectors. According to system theoretic
understanding, one should select N = d.

Compressing the state

There is still plenty of freedom. One can compress the state space utilizing the
state sequence X exclusively, or one can take into account the fact that there
should be a mapping from the state to the future states and outputs. These
alternative viewpoints give rise to approaches of PCA/PLS/CCA type. Further,
applying some independent component approach to the state selection should
be something new in this field (see Exercises). Here, the PLS option is briefly
studied.

One should determine the compressed state so that mapping from this state to
next state and to the output could be accomplished.

9.2. Subspace identification 147

Define X− as a submatrix of X , where the last row is eliminated (the newest
state vector), and, similarly, define X+ as a submatrix, where the first row is
eliminated (the oldest state vector):

X− =

⎛
⎜⎝

xT (1)
...

xT (k − 2dmax)

⎞
⎟⎠ and X+ =

⎛
⎜⎝

xT (2)
...

xT (k − 2dmax + 1)

⎞
⎟⎠ .(9.11)

These matrices stand for the succession of states, that is, elements in X+ are
the next state variables corresponding to the state variables in X−. Further,
define (dimensionally and causally matching) output matrix

Y =

⎛
⎜⎝

yT (dmax)
...

yT (k − dmax − 1)

⎞
⎟⎠ , (9.12)

consisting of altogether k − 2dmax rows. Now the intended mapping can be ex-
pressed so that the virtual input data and the virtual output data, respectively,
are

X =
(

X−)
and Y =

(
X+ Y

)
. (9.13)

When the PLS model is constructed for this problem, and the latent variables are
determined, it is this sequence of latent variable vectors (in the input-oriented
subspace) that can be selected as the compressed state sequence, so that Z = Z.

Typically, the selection of the state dimension will not be unique, so that the
system order is more or less uncertain. Note that this uncertainty is an inherent
property of real distributed parameter systems — the exact system dimension
is just a mathematical abstraction that has been approved as there are no al-
ternatives for representing the system behavior in such a compact form.

System matrices

To proceed, the resolved compressed state matrix Z needs to be restructured.
This is done as in (9.11): Define Z− as a submatrix of Z, where the last row
is eliminated (the newest compresswed state vector), and, similarly, define Z+

as a submatrix, where the first row is eliminated (the oldest compressed state
vector):

Z− =

⎛
⎜⎝

zT (1)
...

zT (k − 2dmax)

⎞
⎟⎠ and Z+ =

⎛
⎜⎝

zT (2)
...

zT (k − 2dmax + 1)

⎞
⎟⎠ .(9.14)

These matrices stand for the succession of states. Also, define the output matrix
as in (9.12).

When the state sequence is now known, the subsequent steps of subspace iden-
tification nicely illustrate the power of linear machinery — the final model (9.8)

148 Lesson 9. Application to Dynamic Models

can be constructed by matching the parameters against the now known state
variables. Because the system model can be written as

(
z(κ + 1)

y(κ)

)
=

(
A
C

) (
z(κ)

)
, (9.15)

there holds

(
Z+ Y

)
=

(
Z−) · (AT CT

)
. (9.16)

The matrices A and C can be solved in the least squares sense:

(
A
C

)
=

(
Z+ Y

)T · (Z−) ((
Z−)T · (Z−))−1

, (9.17)

where the individual system matrices can be identified as partitions of the re-
sulting matrix the first N × N elements being allocated for A.

Noise covariances

The mismatch between data and the model gives the estimates for the noise.
Because the state and output sequences estimated by the model can be written
as

(
Ẑ+ Ŷ

)
=

(
Z−) · (AT CT

)
, (9.18)

the estimation error becomes

E =
(

Z+ Y
) − (

Ẑ+ Ŷ
)

=
(

Z+ Y
) − (

Z−) · (AT CT
)
,

(9.19)

and the noise covariances can be mechanically solved from this. The approxi-
mations for the covariances are again found as partitions of

(
Rzz Rzy

RT
zy Ryy

)
=

1
k′ · ET E. (9.20)

Here, the normalization factor k′ = (k − 2dmax + 1)− (N + m) is the number of
data samples minus the overall data dimension. Again, in typical applications
(like when doing Kalman filtering, see below), it is the ratio between Rzz and
Ryy that is the most important information, not the absolute scalings.

Assuming that the input signal exactly can explain the output, the error covari-
ances are zero matrices. In such cases one is facing the deterministic realization
problem; it turns out that the realization problem is solved as a special case of
the more general subspace identification problem. The above discussion can be
further extended.

9.2. Subspace identification 149

9.2.2 Stochastic-deterministic models

A more complicated case is faced when the complete model (9.4) is employed.
Now define sequences of past inputs and outputs as follows:

upast(κ) =

⎛
⎜⎝

u(κ − 1)
...

u(κ − dmax)

⎞
⎟⎠ and ypast(κ) =

⎛
⎜⎝

y(κ − 1)
...

y(κ − dmax)

⎞
⎟⎠ (9.21)

The future signals are, correspondingly,

ufuture(κ) =

⎛
⎜⎝

u(κ + dmax − 1)
...

u(κ)

⎞
⎟⎠ and yfuture(κ) =

⎛
⎜⎝

y(κ + dmax − 1)
...

y(κ)

⎞
⎟⎠ .

The data matrices Upast, Ufuture, Ypast, and Yfuture are again constructed in the
same way as above.

To find a good model for the data in this more complicated case, one should
distribute the burden of explaining the future behaviors appropriately among
the two sources of information — the known history, and the unknown future
inputs. One has to apply the mathematical theory of oblique projections. To
give an idea of what this means, construct matrices

X =
(

Ypast Upast Ufuture

)
(9.22)

and

Y =
(

Yfuture

)
, (9.23)

so that there should exist a mapping from X to Y. Indeed, this can be con-
structed using least squares matching, giving a prediction model for the future:

Yest = Xest ·
(X TX)−1 X TY

=
(

Ypast,est Upast,est Ufuture,est

) · (X TX)−1 X TY.
(9.24)

In practice, the invertibility of X TX may be poor, specially id dmax has too high
value as compared to the system dimension, and some dimension reduction
technique may again be needed.

The values of Ufuture,est are not known at time κ, and to make this model useful,
it has to be divided in parts:

Ypast + Yfuture =
(

Ypast,est Upast,est 0
) · (X TX)−1 X TY

+
(

0 0 Ufuture,est

) · (X TX)−1 X TY.
(9.25)

The variables in Ypast can be interpreted as containing all available information
about the system past. Based on this, one can define the “refined” data matrix
where the contribution of the future inputs is eliminated:

X = Ypast =
(

Ypast,est Upast,est 0
) · (X TX)−1 X TY. (9.26)

150 Lesson 9. Application to Dynamic Models

It is possible to choose this data as constituting the preliminary system states.
The determination of the reduced state matrix Z can be accomplished exactly
as was done before.

Again, the resolved state matrix Z is restructured into Z− and Z+ parts. Fur-
ther, define (dimensionally matching) input and output matrices

U =

⎛
⎜⎝

uT (dmax)
...

uT (k − dmax − 1)

⎞
⎟⎠ and Y =

⎛
⎜⎝

yT (dmax)
...

yT (k − dmax − 1)

⎞
⎟⎠ , (9.27)

consisting of altogether k − 2dmax rows. Now, because the system model can be
written as(

z(κ + 1)
y(κ)

)
=

(
A B
C D

) (
z(κ)
u(κ)

)
, (9.28)

there holds

(
Z+ Y

)
=

(
Z− U

) ·
(

AT CT

BT DT

)
. (9.29)

The matrices A, B, C, and D can be solved in the least squares sense:
(

A B
C D

)
=

(
Z+ Y

)T · (Z− U
)

·
((

Z− U
)T · (Z− U

))−1

,

(9.30)

where the individual system matrices can be identified as partitions of the result-
ing matrix (again, note the possible invertibility problems). The reconstruction
errors give the estimates for the noise. Because the state and output sequences
estimated by the model can be written as

(
Ẑ+ Ŷ

)
=

(
Z− U

) ·
(

AT CT

BT DT

)
, (9.31)

the estimation error becomes

E =
(

Z+ Y
) − (

Ẑ+ Ŷ
)

=
(

Z+ Y
) − (

Z− U
) ·

(
AT CT

BT DT

)
,

(9.32)

and one has(
Rzz Rzy

RT
zy Ryy

)
=

1
k′ · ET E. (9.33)

9.3 Practical aspects

Subspace identification differs much from traditional identification methods, and
its properties are also different from what one is familiar with. Understanding
these boundary conditions is necessary to effriciently exploit the techniques.

9.3. Practical aspects 151

Process

y k()u k()

Model

y k()

e k()

x k()

B

A

Cdelay

K

^

^

Figure 9.1: Making the process behaviors transparent

9.3.1 Comparisons

As this subspace identification approach is compared to the standard black-box
identification procedures, some clear benefits can be seen:

• The selection of the system dimension needs not be done beforehand as
in traditional black-box identification; the algorithms give tools for appro-
priate on-line determination of the dimension.

• The models are naturally applicable to multi-input/multi-output (MIMO)
systems, whereas traditional identification only studies systems of one
input and one output.

• Coloured noise becomes modeled without additional efforts, whereas stan-
dard techniques have to rely on complicated nonlinear, iterative methods.

The dynamical phenomena that are visible in the data are all integrated in
the model structure itself, no matter where those phenomena originate from.
Indeed, the properties of observed noise are also characteristic to the system
and it is natural that this information is also coded in the model in a consistent
way. Some state variables may be allocated for presenting the noise — if this
dynamics is relevant enough.

However, there are also some drawbacks as the dynamic modeling approach is
compared to the static approach. The model is more sophisticated, and there are
more quality requirements concerning the data: Longer sequences of valid data
are needed, as no outlier or missing data samples can be dropped from within
the sequence. For the same reason, also model validation becomes problematic,
because longer continuous sequences of validation data are needed; the leave-
one-out cross-validation (with one sample being dropped at a time) cannot be
implemented.

9.3.2 Emulating the process

A natural way to exploit the models given by subspace identification is reached
through state estimation: When the process state is known, all state-based
analysis and design methods are available. Typically, one can only measure the

152 Lesson 9. Application to Dynamic Models

inputs and outputs of a complex process; now, one can implement a process sim-
ulator, and this simulator, rather than being a black-box system, is a white-box
system with explicitly known structure and measurable state. When simulator
has the same dynamics as the process, and when it is given the same inputs
as the actual process has, the behaviors of the simulator and the process itself
should be equal (see Fig. 9.1). The feedback matrix K is used for correcting the
state according to the observed error e(k) = y(k) − ŷ(k), or difference between
process and model outputs.

The Kalman filter is a natural companion of models derived by subspace iden-
tification: The feedback matrix K can be optimally determined based on the
observed system and noise properties [?]. The model structure with the ma-
trices A, B, C, and D are explicitly given by subspace identification, and even
the noise properties Rxx, Ryy, and Rxy, are solved, making the determination
of the Kalman filter a straightforward task.

Often, specially when the system dimension is high, determining all the system
matrices is a difficult task using traditional techniques — and the matrices Rzz

and Ryy are typically used as tuning parameters only, typically chosen to be
simply diagonal. Now, using subspace identification, all these data structures
are determined to optimally match the data. However, as it turns out in the
next chapter, optimality and robustness are different things also in this case.
Understanding the nature of the problem — again caused by the multivariate
nature and collinearity — makes it possible to attack the problems.

9.3.3 Preprocessing and postprocessing

When applying subspace identification, model construction can be affected again
by appropriately scaling of the data samples. In addition to the normal scalings,
etc., there also exist other ways to affect the modeling results. Specially, be-
cause of the dynamic nature of the problem, or because there is a time-domain
succession of the samples, one can apply frequency weighting to emphasize (or
attenuate) variations in some frequency ranges. Here, one would not like to
affect the model construction process itself (compare to [?]) — the goal is to
implement the frequency weighting directly in the data.

Assume that there exists some linear dynamic model between inputs and out-
puts, so that the mapping matrix F (q−1) contains delay operator polynomials

y(k) = FT (q−1)u(k). (9.34)

Now, the model remains valid if the left-hand side and the right-hand side
are further filtered by the operator polynomial h(q−1); because of the linearity
assumption, the operators are commutative:

h(q−1)y(k) = h(q−1)FT (q−1)u(k) = FT (q−1)h(q−1)u(k). (9.35)

If one defines the new data as u′(κ) = h(q−1)u(κ) and y′(κ) = h(q−1)y(κ), for
this new data the original model still applies:

y′(k) = FT (q) · u′(k). (9.36)

9.4. Case study: Towards “smart devices” 153

The system structure, and also the state-space model, can be determined for
the modified data as well as for the original data. Nominally there is no change
in the system — however, as always when modeling is based on the variance
properties, the results change as errors are weighted in different ways in different
frequency bands, depending on the ratios between information and noise along
the frequency axis. In practice, one can apply low-pass, band-pass, band-stop,
or high-pass filtering, as studied below.

It is very common in real processes that the levels of the signals can vary,
even though the dynamic properties essentially remain intact. If one applies
the standard mean-centering for training data, this mean does not necessarily
remain constant, and the biased model can become invalid. A simple way to
avoid this problem is to apply “on-line centering”, or high-pass filtering, so that
the zero-frequency properties are eliminated altogether:

h(q−1) = 1 − q−1, (9.37)

meaning that the differentiated variables (variable vectors) in time domain are
defined as

Δy(κ) = y(κ) − y(κ − 1). (9.38)

However, assuming that there exists high-frequency noise in the system, differ-
entiation emphasizes such noise signals. It can be reasonable to define some
upper limit frequency for the filter, for example, by further filtering

y′(κ) = λ y′(κ − 1) + (1 − λ) Δy(κ). (9.39)

This lead-lag compensator can also be applied for inputs and outputs alike, and
subspace identification is applied for those signals. However, when the model is
used for estimation, data preprocessing has to be ripped off by applying inverse
postprocessing to reach the actual signal estimates. First, the differentiated
signal estimates are found by inverting (9.39):

Δŷ(κ) =
1

1 − λ
ŷ′(κ) − λ

1 − λ
ŷ′(κ − 1). (9.40)

In principle, the differentiation within these signals can be eliminated by inte-
gration — however, no pure integrators should be applied, as biases in signals
would increase during this process. It is motivated to introduce a “leaking
integrator” that eventually tends towards the actual measurements:

ŷ(κ) = μ (ŷ(κ − 1) + Δŷ(κ)) + (1 − μ) y(κ). (9.41)

Here, the parameters λ and μ are forgetting factors to be adjusted appropriately
to fit the signal and process properties. The pure discrete-time derivator in (??)
should also be modified to match the inverse operation (9.41).

9.4 Case study: Towards “smart devices”

Here, an example is presented where the above tools are being experimented
and exploited. This research and development work is currently being carried

154 Lesson 9. Application to Dynamic Models

out in the industrial scale. It is clear that the full potential of the new methods
cannot yet be seen.

9.4.1 Data based data reconciliation

In process industries knowing the contents of processed materials is of utmost
importance. An X-ray fluorescence analyzer is an efficient tool when doing
such analyses in mineral processing. The X-ray fluorescence analyzer excites
the atoms and measures the emitted photons: The emission spectra are unique
to the atoms, and, in principle, the atom contents can be solved by analyz-
ing the spectral peaks. However, because of the environmental conditions and
because of the physical reasons, the results are corrupted by noise and other
stochastic phenomena. To enhance the estimates, one needs calibration models
to map between the measured spectra to actual concentration estimates. The
superposition of individual spectra is a linear process, and it is plausible that
linear multivartiate methods can efficiently be used for this calibration purpose.
And, indeed, such developments have been taking place recently (for example,
see [?]).

Even though the static mapping models from the intensities to concentrations
could be appropriately constructed, there is need for closer studies. It does not
help if the sample could be analyzed exactly, if that sample is not representa-
tive. The random samples do not necessarily reflect the overall contents of the
slurry — this is due to the changes in slurry densities and grain size distribu-
tions. To dampen the variability in the measurements, different kinds of filtering
techniques have been applied. The traditional approach is exponential filtering
with some forgetting factor: That is, one only partly trusts the measurements,
keeping the prior average level of estimates as the starting point. If there are
some consistent changes in the slurry properties, such filtered estimate becomes
delayed, as the average level only slowly follows the changes. There is a trade-
off between accuracy and smoothness of estimates. It is not the variability that
should be dampened, if it reclects the reality; but there is no way to locally
determine whether some change in the measurement values is relevant or not.
Are there other ways to enhance the estimates?

Data reconciliation is a bunch of techniques for employing the system structure
for enhancing the noisy measurements. Typically, data reconciliation is based
on mass or volume balances: If the inputs and outputs of some process struc-
ture are recorded, the mass/volume flows should compensate each other. For
example, a flotation cell (or a bang of cells) is such a vessel: The two outgoing
flows (concentrate and gangue flows) have to balance the incoming slurry flow.
Because of the practical challenges, data reconciliation is often carried out stat-
ically, for steady-state levels, so that the flows compensate each other only in
the long run.

However, often the structures or dependencies within a complex process are
not known, and there exist no explicit constraint equations. And even if the
constraints were known, there may be no measurements: For example, an X-ray
analyzer is such an expensive device that measurements are carried out only in
the most informative locations in the process. But, after all, data reconciliation
is based on the redundancy among data, and if the measurements are cut to

9.4. Case study: Towards “smart devices” 155

Figure 9.2: The an-
alyzer is already the
“heart” of the process
— make it also the
“brain”

minimum, the crucial measurements closing the logical loops may be missing.
Still, there most probably exist some interdependencies between signals. How to
implement the idea of data reconciliation as a robust enough scheme, applicable
in such a complex environment — and, what is more, how to extend data
reconciliation to dynamic cases?

The presented ideas of statistical multivariate modeling, and specially the ideas
of subspace identification, make it possible to implement “data based data rec-
onciliation”. As an example case, again study the Pyhäsalmi concentrator plant
(see chapter 3).

The zinc circuit alone is a rather complicated network (see Fig. 9.2), different
recirculations having been implemented to enhance the recovery rate and purity
of the concentrate. The current structures in the process are a result of an
evolutionary process, and they are characteristic to this unique process plant.
In addition to the physical feedforward and feedback flows, there is yet another
level of information flows, being caused by the control structures, making the
overall system fully connected and “pancausal”. Indeed, the degrees of freedom
in the system are reduced by the interconnected variables, and the remaining
variation assumedly takes place only in a rather low-dimensional subspace. Even
if all the constraints cannot be explicitly tracked, it can be assumed that in the
cybernetic system the balance around the steady-state average is maintained,
and it suffices to capture the properties of the “emergent model” (see chapter
11). Because of the balance and assumed minimization of signal variations,
local linearity can be assumed, at least if no structural changes take place in
the process.

The concentrations in the most relevant flows are measured: Slurry samples
are taken to the centralized analyzer unit, where the samples are analyzed one
after the other in a sequence, the whole cycle lasting some 20 minutes. However,
significant changes can take place in the process during these time intervals, and
to implement efficient control and monitoring applications, it would be of utmost
importance to be capable of reliably estimating the signal behaviors during the

156 Lesson 9. Application to Dynamic Models

130 140 150120

50

52

54

56

58

Sample index

Zinc content, measurements and filtered estimates

Zn+ out

Figure 9.3: Original unfiltered
measurements are shown as dots;
the “50% smoothened”, expo-
nentially filtered estimates are
shown along dashed lines, and
the model-based estimates are
along the solid lines. The new
filtering scheme is considerably
faster

periods of “blindness”. One should implement soft sensors based on process
models; to construct the models that utilize the available measurements, one
has to implement sensor fusion. It is clear the slurry concentrations in different
parts of the process are interrelated, and utilizing these relationships, behaviors
“downstream” can be estimated. Rather than concentrating on the individual
signals, one should find the overall dependencies — this global-level state of the
whole zinc circuit can be exploited for estimation. The correlations between
measurements are rather low, but if many pieces of evidence are combined in a
clever way, useful models can still be found.

What is this clever way, then? It is evident that subspace identification, as
accompanied by the appropriate Kalman filter, is the method of choice: As
the high dimensionality is no problem, the various measurent channels can be
efficiently exploited, and also the minor pieces of correlation information can be
extracted. Depending on the available information, different model structures
are possible:

1. Stochastic model. The measurements constitute the output vector y,
and the task is to determine the system state vector z, assuming that the
changes in the system state are driven by noise. The internal system model
makes it possible to enhance the “downstream” estimates by exploiting the
“upstream” observations.

2. Stochastic-deterministic model. As explained in chapter 3, there are
also cameras installed on top of the flotation cells: The features extracted
from the camera images can be employed as causally preceding informa-
tion, giving delayless data of the froth outlook (color, “thickness”, etc.)
that is assumedly related with the concentrate properties.

It is a closed-loop system that is being implicitly identified. The causalities are
blurred, one cannot distinguish between the process and the controls. If further
feedbacks or process re-design is to be implemented, the derived models have to
be interpreted by a domain-area expert.

In Fig. 9.3, results are shown when the zinc concentrate from the “Cleaning”
cell is estimated utilizing also the measurement information from the “High
Grade” cell (see Fig. 9.2). The preliminary experiments with the subspace
identification schemes are promising, and faster reactions to changes in con-
cetrate properties can be reached. When the estimates are “calibrated” after
each measurement, the signals can be estimated during the inter-sample peri-
ods using the model. However, it turns out that the data quality needs to be

9.4. Case study: Towards “smart devices” 157

emphasized: Just as global information is exploited for local estimation, local
problems become global, perhaps ruining the whole plant operation. The outlier
values need to be detected and fixed reliably on-line, so that new challenges are
faced.

9.4.2 Connections to AI*

The discussion of “clever” data analyses can be extended.

In Artificial intelligence (AI) one tries to implement “intelligent-looking” func-
tionalities in computers. Traditionally, AI approaches are symbolic, meaning
that the constructs, declarative or procedural, need to be explicitly programmed:
There is then no connection to data, and there is no possibility of adaptation.
Human is needed as an interface between the system and its environment. Real
intelligence can be defined as ability of appropriate reacting to its environment
and adapting according to it, and fixed structures are necessarily deficient.

The neural netwroks, etc., have been exploited to reach data-orientedness and
associative reasoning, and they can be applied to accomplish complicated pat-
tern recognition tasks. However, something essential seems to be missing: The
structures themselves are still fixed, non-adaptive. How to find a good compro-
mise, a structural framework where adaptation is possible?

Structures that characterize human cognition are causal, meaning that human
mind naturally organizes observations in cause/effect hierarchies. Such causal-
ity structures cannot be seen in the data — but, again, one can do assumptions
of how the structures are reflected in data. If it is assumed that correlation
structures can be used to represent causalities, temporal ordering among data
can be found applying the techniques presented above. When the data dimen-
sion is high and redundant, the challenge of the modeling method is to cope
with the high dimensionality, and detect the appropriate connections — getting
“wiser” is about ignoring irrelevant connections. After adaptation the dynamic
state models become “numeric inference models” — when given the current
state, the system can predict what happens afterwards. Many philosophical
problem settings become very concrete: Questions concerning ontologies and
semantics are wiped away, as everything is based on contextual semantics de-
fined in terms of similarities, or correlation structures among variables. As the
“numeric concepts”, or the state variables, have continuous values, the problems
of “hermeneutic circles”, or the convergence properties of infinite recursions can
be studied mathematically. In this way, it seems that multivariate modeling can
offer new possibilities for research in AI.

On the other hand, models derived in the field of AI can perhaps give new tools
for extending the dynamic model structure beyond linearity. For example, the
sparse coding schemes derived for cognitive tasks can perhaps be extended to
dynamic applications.

158 Lesson 9. Application to Dynamic Models

Computer exercises

1. Study the properties of the subspace identification algorithm; try different
parameter values in the following:

[U,Y] = dataDyn(3,2,1,100,0.001);
regrSSI(U,Y,5);

2. Analyze the different compression techniques in state dimension reduction.
First, define time series data as

[u,y] = dataDyn(1,0,1,100,0.1);
X = [y(1:96),y(2:97),y(3:98),y(4:99),y(5:100)];
Xminus = X(1:size(X,1)-1,:);
Xplus = X(2:size(X,1),:);

Compare the first principal component basis vector to the system transient
behavior:

thetaPCA = regrPCA(X,1)

Compare PLS and CCA. How can you explain the differences in the eigen-
value behavior? How about the latent vectors?

[thetaPLS,phiPLS] = regrPLS(Xminus,Xplus)
[thetaCCA,phiCCA] = regrCCA(Xminus,Xplus)

What happens to the independent components in a dynamic system? Can
you explain the results?

U = dataIndep(1000,’f1’,’f2’);
[U,Y] = dataDyn(2,U,3);
X = [Y(1:999,:),Y(2:1000,:)];
thetaICA = regrICA(regrWhiten(X),-1)

