
Lesson 10

Relations to Systems
Engineering

This far we have been exclusively interested on data, and on models that are
constructed directly from that data. It seems that the traditional control engi-
neering practices that are usually based on first principles models would not have
very much to do with these discussions. However, finally it is numeric data that
flows through these physical models, too, even if the model construction had
been based on qualitative studies; the structure of the model determines how
the data is manipulated in the system, directly dictating how nice behavioral
properties that system has. In this chapter we study how the multivariate ideas
and approaches can be applied for analysis and manipulation of existing system
models so that the expected behavior of the hypothetical data being processed
in the system is taken into account.

In this context, some specially important aspects of modern control engineer-
ing will be concentrated on, among them balanced model reduction and state
estimation.

10.1 MIMO vs. SISO systems

Traditional control design has been based on SISO (single input, single output)
models, meaning that complex plants are reduced to simple control loops. This
is natural, because the SISO systems are easily comprehensible for the system
designers as well as for field operators. Yet, it is clear that local optimization of
single control loops does not result in optimal behavior of the larger plant, and
there is need to be able to design and analyze more complex models of multiple
interconnected inputs and outputs (MIMO systems).

Because of the intuitive understandability and long tradition of SISO systems,
the main paradigm in MIMO control design has been to somehow extend the
SISO design ideas to the multivariate cases, or, rather, to make the MIMO
systems look like sets of SISO systems.

159

160 Lesson 10. Relations to Systems Engineering

One usually starts from the transfer function matrix

G(s) =

⎛
⎜⎝

G11(s) · · · G1,n(s)
...

. . .
Gm,1(s) Gm,n(s)

⎞
⎟⎠ , (10.1)

that characterizes a linear, dynamic multivariate system of nu inputs and m
outputs in Laplace (frequency) domain; the algebraic dependency L{y(t)}(s) =
G(s) · L{x(t)}(s) governs the behavior of the Laplace transformed input and
output signal vectors L{u(t)}(s) and L{y(t)}(s). Sustituting s → jω in (10.1),
the transfer properties of sinusoidals of angular frequency ω are directly given,
the absolute value revealing the amplitude and the angle of the complex-valued
number revealing the phase of the output sinusoidal. Now, it is immediately
clear that the interconnections between different inputs and outputs can be min-
imized if the matrix (10.1) is somehow diagonalized, and, indeed, constructing
the singular-value decomposition, this can be done:

G(jω) = Ξ(ω) · Σ(ω) · ΨH(ω), (10.2)

the matrix Σ(ω) containing the Hankel singular values σi(jω) (to be discussed
more later) on the diagonal. This means that if the measured Laplace-domain
output signals are multiplied by ΨH(ω) and the constructed control signals by
Ξ(ω), the system looks like a set of separate SISO systems, and direct SISO
design is possible for all input-output pairs. However, note that the matrices
Ξ(ω) and Ψ(ω) are complex valued, and they are functions of ω; using constant
(real) matrices, this diagonalization can only be approximate. To easily get rid
of complex factors, the diagonalization is typically optimized for zero frequency.

The frequency domain stability and sensitivity analysis techniques (stability
margins, etc.) are also originally developed for SISO systems. These techniques
can easily be extended to the multivariate case, if one is only interested in the
worst-case behavior: The above Hankel singular values σi(jω) reveal the system
gains, and studying the largest of them, the principal gain σ̄i for all frequencies,
gives information about the maximum possible system response, given the most
pathological input signal. Constructing controllers concentrating on the open-
loop principal gains, it is possible to assure system stability in all situations and
for all inputs (for example, see [30]).

10.2 Dimension reduction

The traditional way to apply multivariate techniques (as discussed above) are
somewhat crude, not really taking into account the dynamic nature beneath the
numbers, but forcing the complex systems into the SISO framework. In what
follows, more sophisticated approaches discussed.

10.2.1 About state-space systems

The basis of modern systems engineering is the state-space model; as compared
to the models in the previous chapter, now we start with its deterministic version

10.2. Dimension reduction 161

of it: {
x(κ + 1) = Ax(κ) + Bu(κ)
y(κ) = Cx(κ) + Du(κ). (10.3)

Here, u and y are the system input and output of dimension nu and m, respec-
tively, and x is the state of dimension d. It needs to be noted that, from the
input/output behavior point of view, the state realization is not unique: For
example, if there is an invertible matrix L of size d × d, one can define another
state vector x′ = Lx so that the following state-space model fulfills the same
relationship between u(κ) and y(κ):

{
x′(κ + 1) = LAL−1x′(κ) + LBu(κ)
y(κ) = CL−1x′(κ) + Du(κ). (10.4)

Intuitively, the strength of the state-space model is that the real internal phe-
nomena within the system can also be included in the model. In such cases,
when the model has been constructed starting from first principles, the state
representation for the system may be unique, and state transformations in the
above way are meaningless. However, when the modern controller construction
approaches like robust or optimal control theory are applied, the resulting con-
troller is also given in the state-space form — but now the states are constructed
by the mathematical machinery and they do no more have any physical rele-
vance. The only thing that counts is the input-output behavior of the controller.

The question that arises is: How should we define the state vector of the model
so that some of the model properties would be enhanced? Or, more specifically,
how should the matrix L be selected so that the essence of the state components
would be revealed1?

When the controller is constructed using robust or optimal control theory, the
resulting controller is usually high-dimensional. There are practical difficulties
when using this kind of controllers — it may take long time to calculate the
control actions and it may take a long time before the controller reaches the
correct operating state after startup. In many cases, the models need to be
simplified for practical purposes.

It is typical that some of the states are more relevant than the others. Could
we reduce the number of states without losing too much, without essentially
changing the dynamic behavior of the model? It sounds plausible that the
methodologies presented in the previous chapters could be applied for this pur-
pose, and, indeed they can. Now it is the most relevant dynamic modes that we
would like to retain, while ignoring the less significant ones. We would like to de-
termine the transformation matrix L so that the relevance of different variables
would be easily assessed in the resulting state vector2.

1What is this “essence” in the data — again, it can be noted that mathematical machinery
cannot judge the real relevance of the phenomena. But if we are less ambitious, useful results
can be reached

2A traditional way to solve this model reduction problem was to concentrate on the most
significant modes, those that are nearest to the unit circle, thus being slowest and decaying
last, and simply “forget” about the less significant modes altogether. Often this approach
works — the slowest decaying modes are visible longest and determine the overall system
behavior. However, pole-zero studies miss one crucial point: The gains of the modes cannot

162 Lesson 10. Relations to Systems Engineering

10.2.2 Preliminary experiments

For a moment, study the following simplified system model:

{
x(κ + 1) = Ax(κ)

y(κ) = Cx(κ). (10.5)

Assume that A can be diagonalized, so that there exists a matrix of eigenvecors
Θ so that there holds

A = Θ · Λ · Θ−1. (10.6)

Defining x′ = Θ−1x, the model (10.5) can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′(κ + 1) = Λx′(κ) =

⎛
⎜⎝

λ1

. . .
λd

⎞
⎟⎠ · x′(κ)

y(κ) = CΘ · x′(κ).

(10.7)

Now it is evident that all modes have been separated — each of the state ele-
ments xi(κ) only affects itself; furthermore, the eigenvalues λi determine their
decay rates. However, there are problems. First, the matrix A may not be di-
agonalizable; what is more, when the general model (10.3) is studied, this diag-
onalization of the matrix A alone cannot guarantee independence of the modes:
It is the matrix B that routes the exogenous input u(κ) into the system, and
depending on the connections between the state elements as determined by B,
the modal structure gets blurred, state elements becoming mutually correlated;
this approach clearly does not solve the problem.

Of course, one possibility would be to analyze again the state covariance ma-
trix 1

k ·∑k
κ=1 x′(κ)x′T (κ) = L · 1

k ·∑k
κ=1 x(κ)xT (κ) · LT in the same way as in

the previous chapters, defining the state transformation matrix L so that the
covariance becomes identity matrix. This procedure separates the states — but
there are various problems: First, the output is not taken care of in the con-
struction of x′; second, this kind of transformation is not determined exclusively
by the system structure but also by the input signal properties — this kind of
dependency of the external conditions is not what is needed.

Something more sophisticated needs to be done. What one would like to have is
a state reduction technique that would find a realization that is only dependent
of the system structure, and that would be somehow balanced between input
and output.

be seen if only the locations of the transfer function roots are studied. There may be a mode
that is located far from the unit circle but having so high gain that — even though decaying
fast — its transients start from such high values that they are still most significant. On the
other hand, the qualitative pole-zero analyses cannot reveal the role of interactions between
the modes: A nearby zero can essentially shadow the effects of some otherwise relevant pole.
What is needed is a numerical methodology for reducing the system order

10.2. Dimension reduction 163

10.2.3 Balanced realizations

It turns out to be a good strategy to study how the signal energy is transferred
through the system; how the past inputs affect the future outputs through the
system state variables [10].

Let us study how the state x at time κ relays the signal energy from input to
output in the model (10.3). First, calculate the contributions of the past inputs
on the current state (assuming system stability):

x(κ) = Bu(κ − 1) + ABu(κ − 2) + A2Bu(κ − 3) + · · ·

This can be expressed as

x(κ) =
(

B AB A2B · · ·) ·
⎛
⎜⎝

u(κ − 1)
u(κ − 2)

...

⎞
⎟⎠

= MC ·

⎛
⎜⎝

u(κ − 1)
u(κ − 2)

...

⎞
⎟⎠ ,

(10.8)

where MC is the (extended) controllability matrix. On the other hand, the effect
of the current state x(κ) on the future outputs can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(κ) = Cx(κ) Output at time κ
y(κ + 1) = CAx(κ) Output at time κ + 1
y(κ + 2) = CA2x(κ) Output at time κ + 2

...

(10.9)

This can be written in a compact form using the (extended) observability matrix
MO:

⎛
⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

C
CA
CA2

...

⎞
⎟⎟⎟⎠ · x(κ) = MO · x(κ). (10.10)

These two expressions (10.8) and (10.10) can now be combined, resulting in the
expression for signal that goes from input to output through the single state
x(κ):

⎛
⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞
⎟⎟⎟⎠ = MOMC ·

⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠ . (10.11)

The matrix H = MOMC is known as the Hankel matrix. For a discrete system,
the Hankel matrix has a close connection to the system properties, and it can

164 Lesson 10. Relations to Systems Engineering

be constructed simply from its pulse response: The element on the i’th row and
j’th column in the Hankel matrix is the i+ j− 1’th element of the system pulse
response.

The total power of the output (summing the powers of all output signals to-
gether) can be expressed as

yT (κ)y(κ) + yT (κ + 1)y(κ + 1) + yT (κ + 2)y(κ + 2) + · · ·

=

⎛
⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠

T

· MT
C MT

OMOMC ·

⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠ .

(10.12)

In the static case, structuring of data was reached through maximization of
(co)variance; similarly, it turns out that the power transfer properties can be
structured through an optimization procedure: Now the goal is to maximize the
power in output when the total input power is fixed (but the power in input
may be arbitrarily distributed):

uT (κ − 1)u(κ − 1) + uT (κ − 2)u(κ − 2) + · · ·

=

⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠

= 1.

(10.13)

The criterion to be maximized also becomes

Maximize

⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠

T

· MT
C MT

OMOMC ·

⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠ ,

when

⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝

u(κ − 1)
u(κ − 2)
u(κ − 3)

...

⎞
⎟⎟⎟⎠ = 1.

(10.14)

The method of Lagrangian multipliers can again be applied, and it turns out
that, again, an eigenproblem is found:

MT
C MT

OMOMC · ui = λi · ui. (10.15)

Elements of vector ui have the same interpretation as the elements in the infinite
dimensional input signal vectors above; the problem now is that the infinite

10.2. Dimension reduction 165

dimensional eigenproblem is slightly questionable! However, there is a nice
trick available here: Multiply (10.15) from left by the matrix MC , so that

MCMT
C MT

OMO · MCui = λi · MCui. (10.16)

It turns out that the vector MCui must now be the eigenvector of the finite-
dimensional matrix MCMT

C MT
OMO, the eigenvalues remaining the same as in

the original eigenproblem. Note that this equality of eigenvalues holds only for
the nonzero ones; the higher-dimensional problem of course has high number
of additional eigenvalues, but they are all zeros. The matrix MCMT

C · MT
OMO

consists of two low-dimensional parts:

• The Controllability Gramian contains only the input-related factors:

PC = MCMT
C =

∞∑
κ=0

AκBBT (AT)κ

= BBT + ABBT AT + A2BBT A2T + · · ·
(10.17)

• The Observability Gramian contains only the output-related factors:

PO = MT
OMO =

∞∑
κ=0

(AT)κCT CAκ

= CT C + AT CT CA + A2T CT CA2 + · · ·
(10.18)

It is easy to show that the Gramians satisfy the linear matrix equations

APCAT − PC = −BBT

AT POA − PO = −CT C.
(10.19)

Gramians are closely related to the controllability and observability properties
of a system: If PC is positive definite, the system is controllable, and if PO

is positive definite, the system is observable. Compared to the standard con-
trollability and observability matrices, the Gramians offer a more quantitative
method to studying the system properties.

If some similarity transform is applied to the system states, so that A′ = LAL−1,
B′ = LB, and C′ = CL−1, the Gramians will be modified as

P ′
C = LPCLT and

P ′
O = L−T POL−1.

(10.20)

It is also possible to change the Gramians by selecting the state transformation
matrix L appropriately. However, it turns out that the product of the Gramians

P ′
CP ′

O = L · PCPO · L−1 (10.21)

is a similarity transtorm of the original Gramian product PCPO; regardless of
the state transformation the eigenvalues of

P ′
CP ′

O · MCui = λi · MCui (10.22)

166 Lesson 10. Relations to Systems Engineering

remain invariant. It is possible to select L so that the new Gramian product
P ′

CP ′
O becomes diagonal by diagonalizing it using eigenvalue decomposition:

P ′
CP ′

O =

⎛
⎜⎝

λ1

. . .
λn

⎞
⎟⎠ =

⎛
⎜⎝

σ2
1

. . .
σ2

n

⎞
⎟⎠ . (10.23)

The parameters σi are very important system characterizing constants, and they
are called Hankel singular values, being the singular values of the corresponding
Hankel matrix. As was shown, Hankel singular values are invariant in a system
under state-space representation. The Hankel singular values also determine, in
a way, the “maximum gain” and the “minimum gain” of the system; the largest
of the Hankel singular values is called the Hankel norm of the system.

The system realization where the state transformation has been selected in this
way is said to be in the balanced form (the signals should also be appropriately
normalized). In the balanced realization each of the state components is inde-
pendent of the others; what is more, each state component is as well “visible”
in the output as it is “excitable” from the input.

10.2.4 Eliminating states

The above discussion gives us concrete tools for state reduction: Drop those
state components from x′ that have the least importance in signal power transfer
between input and output; these state components are exposed by the lowest
Hankel singular values.

Noticing that x = L−1x′, it can be recognized that the most of the input-output
mapping is transferred through those states in x′ that correspond to those rows
of L−1 standing for the largest Hankel singular values. If dimension reduction is
to be carried out using the balanced realization, the state mapping matrix θT is
constructed from these rows of L−1. Note that because PCPO is not generally
symmetric, the eigensystem is not orthogonal; that is why, the reduced system
matrices cannot be constructed as A′ = θT Aθ, etc., but one first has to calculate
the full matrices A′ = L−1AL, B′ = L−1B, and C′ = CL, and only after that
eliminate the rows and columns that correspond to the eliminated state elements
in z = x′. The matrix D is not affected in the reduction process.

It needs to be recognized that there are some practical limitations what comes
to balanced system truncation. First, the system has to be asymptotically
stable (otherwise the Gramians do not remain bounded). Second, again, one
fact needs to be kept in mind: Mathematical optimality does not always mean
good design3.

3For example, for physical reasons, we may know that the overall system gain should
be unity; state truncation in the above way does not assure that this system property is
maintained — see Exercises

10.3. State estimation 167

10.3 State estimation

Another example of the surprises that one can attack using “multivariate think-
ing” is taken from the field of state estimation: Given the system structure and
the measurement signals, the problem is to determine the system state. Now, it
is assumed that the system model has the form of (9.4), also containing stochas-
tic components. Further, assume that only the output y(κ) can be measured,
and, of course, u(κ) is known. The goal is to find out x(κ) using only these past
system inputs and outputs:

{
x(κ + 1) = Ax(κ) + Bu(κ) + ε(κ)
y(κ) = Cx(κ) + Du(κ) + e(κ). (10.24)

The state estimators generally has the (recursive) form

x̂(κ + 1) = Ax̂(κ) + Bu(κ) + K(κ) · (y(κ) − ŷ(κ)) , (10.25)

where

ŷ(κ) = Cx̂(κ) + Du(κ). (10.26)

The expression y(κ)− ŷ(κ) represents the error in the model output as compared
to the real system output. The state estimate follows the assumed system model,
but if there is error in the model output, the estimate is corrected appropriately.
Our goal is to determine the matrix K(κ) so that the actual state would be
recovered as well as possible using the observed system behavior. It is reasonable
to define this “goodness” in terms of the state estimation error

x̃(κ) = x(κ) − x̂(κ). (10.27)

The goal is now to minimize the covariance matrix E{x̃(κ)x̃T (κ)}. This is
accomplished by the so called Kalman filter.

10.3.1 Kalman filter

The solution to the state estimation problem is based on induction: Assume
that P (κ) is the minimum error covariance having been found using the mea-
surements that were available before the time instant κ. The matrix K(κ) is
now determined so that the covariance at the next time point also is minimal.

Subtract the state estimator, as given by (10.25), from the system state, as
defined in (10.24):

x̃(κ + 1) = x(κ + 1) − x̂(κ + 1)
= (A − K(κ)C) x̃(κ) + ε(κ) − K(κ)e(κ). (10.28)

Multiply both sides by their transposes and take the expectation values — on
the left hand side, one has the next step estimation error covariance matrix to

168 Lesson 10. Relations to Systems Engineering

be minimized:

P (κ + 1)
= E{x̃(κ + 1)x̃T (κ + 1)}
= (A − K(κ)C)P (κ)(A − K(κ)C)T

+ Rxx + K(κ)RT
xy + RxyKT (κ) + K(κ)RyyK

T (κ)

= AP (κ)AT + Rxx

− (AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1 (
AP (κ)CT + Rxy

)T
+
(
K(κ) − (AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1
)
·(

CP (κ)CT + Ryy

) ·(
K(κ) − (AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1
)T

.

The last part of the equation above (last three rows) is a quadratic form and
the matrix in the middle CP (κ)CT + Ryy is positive semidefinite. This means
that the minimum for the overall expression is reached if this last part is made
zero, or if one selects

K(κ) =
(
AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1
. (10.29)

In this case the minimum covariance becomes

P (κ + 1) = AP (κ)AT + Rxx

− (AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1 ·(
AP (κ)CT + Rxy

)T
= AP (κ)AT + Rxx − K(κ) · (AP (κ)CT + Rxy

)T
.

(10.30)

Often in time-invariant environments a constant gain matrix is used instead:

K̄ =
(
AP̄CT + Rxy

) (
CP̄CT + Ryy

)−1
, (10.31)

where P̄ is the positive semidefinite solution to the Riccati equation

P̄ = AP̄AT + Rxx

− (AP̄CT + Rxy

) (
CP̄CT + Ryy

)−1 (
AP̄CT + Rxy

)T
.

(10.32)

10.3.2 Optimality vs. reality

The above solution to the state estimation problem is also optimal. However,
let us study what may happen in practice — assume that the system is one-
dimensional, with only one input and two outputs as

⎧⎨
⎩

x(κ + 1) = ax(κ) + bu(κ) + ε(κ)(
y1(κ)
y2(κ)

)
=
(

1
1

)
· x(κ) +

(
e1(κ)
e2(κ)

)
,

(10.33)

10.3. State estimation 169

so that essentially the scalar state is measured two times. Intuitively, this should
of course enhance the estimate, or, at least, it should not have any catastrophic
effects. However, study the resulting steady-state gain matrix:

K̄ =
(
ap̄ · (1 1

)
+ Rxy

) ·(
p̄ ·
(

1 1
1 1

)
+
(

E{e2
1(κ)} E{e1(κ)e2(κ)}

E{e1(κ)e2(κ)} E{e2
2(κ)}

))−1

,
(10.34)

so that the properties of the estimator are essentially dictated by the invertibility
of the matrix

p̄ ·
(

1 1
1 1

)
+
(

E{e2
1(κ)} E{e1(κ)e2(κ)}

E{e1(κ)e2(κ)} E{e2
2(κ)}

)
. (10.35)

Clearly, the first term is singular regardless of the numeric value of the scalar p̄
— the whole sum becomes uninvertible, at least, if there holds e1(κ) = e2(κ).
If the same variable is measured, most probably the different measurements are
correlated — if the measurements happen to be exactly identical, the whole esti-
mator explodes, and even if they are not, the matrix may still become arbitrarily
badly conditioned.

Consider some sensor fusion tasks, for example: The Kalman filter is often
used for combining more or less reliable measurements, and often the number
of measurements is very high — for example, take the weather models, where
thousands of measurements are used to gain information about atmospheric
phenomena. Blindly trusting the Kalman filter is dangerous: Even though it is
optimal it may sometimes work against intuition4.

10.3.3 Reducing the number of measurements

The above uninvertibility problem was caused again by the collinearity of the
measurements. It is not a surprise that the multivariate analysis techniques turn
out to offer valuable tools for attacking this kind of problems. So, assume that
we want to reduce the output dimension so that redundancies are eliminated.
We search for the directions where the measurements are most informative as
determined by the symmetric, positive semidefinite matrix

CP̄CT + Ryy. (10.36)

What is “informative” is again a matter of taste; if the PCA type approach is
chosen, the task is to find the eigenvectors corresponding to the largest eigen-
values in(

CP̄CT + Ryy

) · θi = λi · θi. (10.37)

Assume that the dimension is reduced by, say, the PCA technique. The reduced
basis is assumed to be θ and the corresponding eigenvalues are on the diagonal
of Λ; then one can write

CP̄CT + Ryy ≈ θ · Λ · θT . (10.38)
4In practice, there is no exact information about the noise properties, and to avoid prob-

lems, the covariance matrices are usually assumed diagonal ... but the optimality of the
estimator is of course ruined when the system model is incorrect!

170 Lesson 10. Relations to Systems Engineering

Now Λ is low-dimensional and well-conditioned, so that its inverse is easily
calculated; approximately there holds

(
CP̄CT + Ryy

)−1 ≈ θ · Λ−1 · θT . (10.39)

Substituting this in (10.31) gives

K̄ ≈ (AP̄CT + Rxy

) · θΛ−1θT
(
AP̄CT θ + Rxyθ

)
Λ−1θT , (10.40)

so that the estimator becomes

x̂(κ + 1) =
Ax̂(κ) + Bu(κ) +

(
AP̄CT θ + Rxyθ

)
Λ−1θT · (y(κ) − Cx̂(κ) − Du(κ)) .

This formulation efficiently helps to avoid anomalies caused by the measurement
redundancy.

10.4 SISO identification

Finally, yet another systems engineering application field is studied where the
multivariate problem setting becomes relevant. We will study the prediction
error methods for black-box identification (see [29], [26]). The traditional ap-
proaches that are still the mainstream technology (for example, see the System
Identification Toolbox for Matlab) suffer from the problems that have been
demonstrated in previous chapters, and analogous solutions to the problems can
be proposed. Note that for practical parameter estimation purposes in dynamic
systems, subspace identification (as explained in Chapter 9) is recommended.

10.4.1 Black-box model

The behavior of a linear, strictly proper, d’th order discrete time system can be
expressed as a difference equation

y(κ) = a1y(κ − 1) + · · · + ady(κ − d)
+ b1u(κ − 1) + · · · + bdu(κ − d), (10.41)

where u(κ) denotes the (centered) scalar process input and y(κ) the scalar out-
put at time instant κ. Using vector formulation, this can be written (following
the earlier notations) as

y(κ) = xT (κ) · f, (10.42)

where

x(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(κ − 1)
...

y(κ − d)
u(κ − 1)

...
u(κ − d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ad

b1

...
bd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.43)

10.4. SISO identification 171

This means that the dynamic nature of the process has been transformed into a
representation where virtually static time series samples are used; the dynamic
complexity has been changed to dimensional complexity.

The structure of the linear dynamic system is assumed to be extremely simple,
consisting of one input and one output signals; further, it is assumed that the
dynamic dimension of the system is exactly known. If it is still assumed that the
signals are persistently exciting, and no unmodeled noise is present, identifying
the parameters of the model should be a trivial task. This is what standard
theory says; however, in practice, problems often emerge. These problems can
again be studied in the framework of statistical data analysis.

10.4.2 Recursive least-squares algorithm

The parameter vector f can be solved off-line, as a batch for some set of data; in
this way, the methods presented in earlier chapters can directly be utilized (in
practice, it seems to be customary to stick to the basic MLR or its derivations).
However, in many cases measurements are obtained one at a time, and it is
reasonable to rearrange the calculations so that the computational load would
be minimized. To derive the on-line recursive identification algorithm, define
the exponentially weighted cost criterion as

J(k) =
k∑

κ=0

λk−κ · e2(κ), (10.44)

where the prediction error is defined as

e(κ) = y(κ) − xT (κ)f. (10.45)

The exponential weighting emphasizes the newest measurements, that is, if the
forgetting factor λ has value less than one, old measurements are gradually
forgotten. Note that the so called ARX system structure is chosen, again essen-
tially assuming that the error is summed only to the output; otherwise the noise
becomes colored and algorithms give biased estimates. Minimizing the criterion
can be carried out as follows:

d J(k)
d f = −2 ·∑k

κ=0 λk−κ · x(κ) · (y(κ) − xT (κ)f
)

= −2 ·∑k
κ=0 λk−κx(κ) · y(κ) + 2 ·∑k

κ=0 λk−κx(κ)xT (κ) · f
= 0,

or

k∑
κ=0

λk−κx(κ)xT (κ) · f =
k∑

κ=0

λk−κx(κ) · y(κ), (10.46)

so that the parameter estimate can be solved as

f̂ =

(
k∑

κ=0

λk−κx(κ)xT (κ)

)−1

·
k∑

κ=0

λk−κx(κ) · y(κ). (10.47)

172 Lesson 10. Relations to Systems Engineering

However, this is not yet in the recursive form, so that the new parameter es-
timate f̂(k) would be received from the old estimate f̂(k − 1) by updating it
using some fresh information. To reach such a formulation, define

Rxx(k) =
∑k

κ=0 λk−κx(κ)xT (κ)
= x(k)xT (k) + λ ·∑k−1

κ=0 λk−κx(κ)xT (κ)
= x(k)xT (k) + λ · Rxx(k − 1)

(10.48)

and

Rxy(k) =
∑k

κ=0 λk−κx(κ)y(κ)
= x(k)y(k) + λ ·∑k−1

κ=0 λk−κx(κ)y(κ)
= x(k)y(k) + λ · Rxy(k − 1).

(10.49)

Formula (10.46) can be expressed using these matrices as Rxx(k)·f̂(k) = Rxy(k),
so that the new parameter estimate can be written as

f̂(k) = R−1
xx (k) · Rxy(k)

= R−1
xx (k) · (x(k)y(k) + λ · Rxy(k − 1))

= R−1
xx (k) ·

(
x(k)y(k) + λ · Rxx(k − 1) · f̂(k − 1)

)
= R−1

xx (k) ·
(
x(k)y(k) +

(
Rxx(k) − x(k)xT (k)

) · f̂(k − 1)
)

= f̂(k − 1) + R−1
xx (k) ·

(
x(k)y(k) − x(k)xT (k) · f̂(k − 1)

)
= f̂(k − 1) + R−1

xx (k) · x(k) ·
(
y(k) − xT (k) · f̂(k − 1)

)
.

Rewriting this and collecting the results together (and defining R = Rxx), the
final Gauss-Newton type identification algorithm becomes

f̂(k) = f̂(k − 1) + R−1(k)x(k) ·
(
y(k) − xT (k)f̂(k − 1)

)
R(k) = λR(k − 1) + x(k)xT (k).

(10.50)

The matrix inversion lemma could be applied here to make the algorithm more
efficient in practice; however, in this context overall comprehensibility of the
algorithm is preferred. On the first line, the parameter estimate vector is up-
dated; the size of the update step is determined by the prediction error, whereas
the update direction is determined by the matrix R(k). What is this matrix,
then — this can be seen if one studies the expectation values:

E{R(k)} = λ · E{R(k − 1)} + E{x(k)xT (k)}, (10.51)

where E{R(k)} = E{R(k − 1)} = E{R}, so that

E{R} =
1

1 − λ
· E {xxT

}
. (10.52)

This means that R is the (scaled) data covariance matrix estimate — sounds
familiar ...!

10.4. SISO identification 173

Figure 10.1: A figure illustrating the fact that short sampling intervals
(shown on the left) make the successive samples mutually dependent:
They have almost equal values, or, at least, assuming smooth signal
behavior, they are almost on the same line, thus being collinear

10.4.3 Structure of dynamic data

The data x(κ) was constructed from successive signal measurements. However,
there are peculiar dependencies between the delayed signals that are not taken
into account by the standard SISO identification algorithms. The problems are
(as in the MLR case) concentrated on the invertibility of the data covariance
matrix R.

The successive samples are most probably highly correlated because they should
represent continuous dynamic evolution. This redundancy between the signal
samples is the main reason for the structural identifiability problems — the
data is collinear, and this linear dependency between variables becomes more
and more dominating when the sampling interval is made smaller (see Fig. 10.1).

The numerical problems inherent in the data are emphasized by the recursive
“forgetting” of the algorithms: Older information gets ignored as time evolves,
and it may be that the numerical properties of the data covariance matrix are
gradually ruined, the identification process becoming badly behaving.

Because of the relevance of the robustness issues in practical approaches, various
more or less heuristic approaches have been proposed, including different kinds
of constant trace, regularization, or variable forgetting algorithms (see [19] and
[21], for example). A close relative of Ridge Regression (as written in recursive
form) is the so called Levenberg-Marquardt identification algorithm that keeps
R invertible by adding a minor positive definite factor to it during each step:

f̂(k) = f̂(k − 1) + R−1(k)x(k) ·
(
y(k) − xT (k)f̂(k − 1)

)
R(k) = λR(k − 1) + x(k)xT (k) + q · I2d.

(10.53)

It can be shown that as q varies from zero to higher values, the continuum from
Gauss-Newton and simple gradient method is spanned.

Another family of identification methods (or, actually, data preprocessing meth-
ods) is found when the system parameterizations are studied. The dynamic na-
ture of a system can be captured in an infinite number of ways; even though the
above time series approach is rather natural, it is only one alternative — and
not a very good choice, as it has turned out. As an example, study Fig. 10.1:

174 Lesson 10. Relations to Systems Engineering

Using the traditional shift operator q formalism (or, equivalently, using delay
operators q−1) all systems finally become integrators as the sampling period h
goes towards zero! A very simple alternative to the standard parameterization
is the δ parameter formalism [12]; the idea is that rather than taking the mea-
surements themselves as a basis, the differentiated signals are used: Differences
between successive samples are analyzed rather than the original signal values.
It has been shown that this parameterization enhances the numerical proper-
ties of many algorithms (not only identification algorithms). More sophisticated
parameterizations are studied, for example, in [9] and in [20]5.

10.4.4 Further analysis: System identifiability*

The properties of the data covariance matrix are, of course, determined by
the data properties themselves — but not exclusively. As was seen above, the
system dynamics dictates what is the relation between successive measurements,
and this is reflected also in the data covariance. Now study the structural
identifiability properties of a dynamic system. This analysis was carried out
originally in [22].

Differentiating (10.42) with respect to f , one has

d y

d f
(κ) = x(κ), (10.54)

so that the data covariance matrix can be written as

E
{
x(κ)xT (κ)

}
= E

{(
d y

d f
(κ)
)(

d y

d f
(κ)
)T
}

. (10.55)

What are these signal derivatives? One can differentiate the response y(κ) in
(10.41) with respect to all the parameters, so that a set of difference equations
is found:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂y

∂ai
(κ) =

d∑
j=1

ajq
−j · ∂y

∂ai
(κ) + q−i · y(κ)

∂y

∂bi
(κ) =

d∑
j=1

ajq
−j · ∂y

∂bi
(κ) + q−i · u(κ).

(10.56)

Neglecting the initial conditions, these 2d difference equations of order d can be
written in a 2d-dimensional state space form

x′(κ + 1) = A′x′(κ) + B′u(κ) (10.57)

5In the multivariate framework, one straightforward approach to enhancing the matrix
invertibility properties would be to reduce the dimension of R, just as has been done so many
times this far. However, now it cannot be assumed that the properties of data remain invariant
— the original reason to use recursive algorithms was to be able to react to changing system
properties — and the matrix R does not remain constant: The eigenvalue decomposition
should be computed, in principle, during each step, and the computational burden would
become excessive

10.4. SISO identification 175

defined by the matrices

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 · · · ad

1 0
. . .

1
b1 b2 · · · bd a1 a2 · · · ad

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This state-space system will here be called the “sensitivity system” correspond-
ing to the model (10.41). The control signal in this system is the original input
u(k), but the state vector is

x′(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂y

∂b1
(κ)

...
∂y

∂bd
(κ)

∂y

∂a1
(κ)

...
∂y

∂ad
(κ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
d y

d f
(κ). (10.58)

The motivation for these definitions is that the covariance structures for the
data vector x and the state vector x′ must be identical; and the behavior of
the dynamic system state can be easily analyzed. The data covariance matrix
(10.55) can also be written as

E

{(
dy

df
(κ)
)(

dy

df
(κ)
)T
}

= E
{
(B′u(κ − 1) + A′B′u(κ − 2) + · · ·) ·

(B′u(κ − 1) + A′B′u(κ − 2) + · · ·)T
}

= ru(0) · (B′B′T + A′B′B′T A′T + A′2B′B′T A′2T + · · ·)
+ ru(1) · (A′B′B′T + B′B′T A′T + · · ·)

+ ru(2) · (A′2B′B′T + B′B′T A′2T + · · ·)
+ · · ·

= ru(0) · M ′
C

+ ru(1) · (A′M ′
C + M ′

CA′T)
+ ru(2) · (A′2M ′

C + M ′
CA′2T

)
+ · · ·

(10.59)

It turns out that the matrix M ′
C equals the Controllability Gramian for the

sensitivity system; additionally, the input signal autocorrelation function values

176 Lesson 10. Relations to Systems Engineering

are involved here:

ru(0) = E{u2(κ − 1)} = E{u2(κ − 2)} = · · ·
ru(1) = E{u(κ − 1)u(κ − 2)} = E{u(κ − 2)u(κ − 3)} = · · ·

= E{u(κ − 2)u(κ − 1)} = E{u(κ − 3)u(κ − 2)} = · · ·
ru(2) = E{u(κ − 1)u(κ − 3)} = E{u(κ − 2)u(κ − 4)} = · · ·

= E{u(κ − 3)u(κ − 1)} = E{u(κ − 4)u(κ − 2)} = · · ·
...

This gives us a possibility of estimating the “efficiency” of the input signal
what comes to its capability of helping in the parameter identification. On
the other hand, optimization of the input can also be carried out: One can
determine the autocorrelation function values so that (10.59) becomes easily
invertible, and after that construct realizations of such a signal applying spectral
factorization. However, note that there are physical constraints what comes to
the autocorrelation function — for example, ru(0) must always be the largest
of all ru(i) for the signal to be realizable.

More anqalysis is needed here: Formal identifiability differs from actual identifi-
ability. To avoid the problems that are inherent to traditional model structures,
new model structures need to be introduced. Such efforts are illustrated in the
last chapter.

10.4. SISO identification 177

Computer exercises

1. Study the power of the dimension reduction technique; run the following
command sequence various times. Select (interactively) the number of
states in different ways — what kind of non-physicalities are seen in the
approximations?

d = 10;
A = randn(d,d); A = A/(1.1*norm(A));
B = randn(d,1);
C = randn(1,d);
regrBal(A,B,C);

Construct a discrete-time system for implementing a pure delay of d time
steps, and try to reduce the model:

d = 10;
A = zeros(d,d); A(2:d,1:d-1) = eye(d-1);
B = zeros(d,1); B(1,1) = 1;
C = zeros(1,d); C(1,d) = 1;
[Ared,Bred,Cred] = regrBal(A,B,C);

What is the problem? In this special case, that specific problem can
be circumvented by the following modifications without altering the in-
put/output behavior. However, what can you say about all possible “op-
timal” model reductions now?

A = 0.9*A;
B = B/0.9^d;

2. Study the robustness of recursive identification: Check how much the
behavior of the parameter estimates changes as the underlying system
structure varies by running the following commands various times. Also
try the effects of the forgetting factor λ.

lambda = 0.99;
u = randn(100,1);
[u,y] = dataDyn(3,u,1);
regrIdent(u,y,3,lambda);

