
Lesson 11

Conclusion:*
About “Emergent Models”

Statistical methods seem to be efficient tools for data analysis. But will these
methods always be inferior to first-principles models — are they only describing
surface-level reflections of internal phenomena, can they ever capture the true
essence of systems?

What is this “essence”, then? Modeling is about hiding details and concen-
trating information, one has to abstract away irrelevant details. Again, when
determining what is irrelevant, one is facing ontological assumptions. We al-
ready know how to model simple systems, but when studying complex systems,
new ways of thinking are needed.

This final chapter tries to illustrate the possibilities that may someday come
true. It is shown here how the multivariate statistical methods can perhaps
offer new conceptual tools for mastering the complexity in systems. It is the
differences that make a difference: If there exist phenomena that cannot be seen
in observations, they can be ignored. And it is the multivariate methods that
can capture such phenomena — if the way of looking at systems is adjusted in
an approprite way. The traditional methods only capture narrow projections
of the behavioral wealth, whereas the multivariate methods can give a more
holistic view. This view is presented in closer detail in [?]; here, only excerpts
from there are reviewed.

11.1 Capturing semantics in data

To make it possible to apply multivariate methods for capturing the system
essence, the data needs to be defined so that the phenomena of relevance are
represented there. The key question is: How to capture the essential infor-
mation, or domain-area semantics in the data? To define data so that the
important features are available there for further modeling, one needs a con-
crete application area. Here, the application area throughout this chapter is the
realm of chemical systems.
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11.1.1 What is “semantics”?

The model should be an interface between the system and outside world, pro-
viding best possible information transfer. The model structure should be a
compromise between the properties of the system and the properties of the ap-
plications. What are the model structures like that support the new tools and
new ways of thinking, simultaneously taking into account the system itself?

When searching for good models, philosophical questions cannot be avoided: It
is such modeling issues that have been studied for millennia — what is the
nature of systems, and and how they should be represented. Indeed, what there
is, what one can we know about them, these problem fields are called ontology
and epistemology, respectively. Earlier in this report, ontological questions have
been discussed in simple terms — now these discussions need to be extended
slightly. Here all these mutually related issues are collected under the common
concept of semantics: What is the essence of a system, and how this essence
should be interpreted?

Semantics conveys meaning. Traditionally, it is thought that semantics cannot
exist outside human brain. However, to reach “smart models” that can adapt
in new environments, one needs to make this meaning machine-readable and
machine-understandable. Otherwise, no abstraction of relevant vs. irrelevant
phenomena can be automatically carried out. Indeed, one is facing a huge
challenge here, but something can be done.

Just as was done earlier when ontologies were studied, now this semantics is
formalized: This very abstract concept is given here very concrete contents,
compromizing between intuitions (what would be nice) and reality (what can
be implemented in reality). It can even be said that a good model formalizes
the semantics of the domain field, making it visible. Now there are two levels of
semantics to be captured:

1. Low-level semantics. The formless complexity of the underlying sys-
tem has to be captured in concrete homogeneous data. The “atoms”
of semantics constitute the connection between the numeric representa-
tions and the physical realm, so that the properties of the system are
appropriately coded and made visible to the higher-level machineries. In
concrete terms, one has to define “probes” and put them in the system
appropriately. The measurements delivered by the probes still need to be
interpreted, or features need to be extracted from the measurements by
applying appropriate data preprocessing.

2. Higher-level semantics. The high number of structureless low-level
features have to be connected into structures of semantic atoms. As-
suming that the semantic atoms are available, this higher-level task is
simpler, being more generic. In our numbers-based environments, a prac-
tical approach towards such contextual semantics, where relevant lower-
level structures are to be appropriately combined, is again offered by
correlations-based measures. As has been shown before, assuming that
information is conveyed in co-variations among data, structuring of lower-
level data can be implemented by the mathematical machinery without
need of outside expert guidance.
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Indeed, analyses of this higher-level semantics processing have been carried out
already a lot in this report, and they can be implemented implicitly by the pre-
sented multivariate statistical tools. But representation of the low-level domain-
area features is domain-area specific, and needs to be studied separately in each
case. To have a solid grounding, one somehow needs to limit the overwhelming
diversity of available measurements by applying some assumptions concerning
the nature of systems being studied.

11.1.2 Neocybernetic starting points

The traditional models need to be explicitly controlled by the domain area
expert, and the structure needs to be determined before the machinery (iden-
tification algorithms, etc.) take over. When modeling complex systems, the
structure is hidden, it is not known beforehand. The objective is automatic
abstraction, letting the structures automatically emerge. And the statistical
tools naturally carry out abstraction: Individual observations are not assumed
to be significant, only phenomena that remain consistent over the long-term
observation periods.

To use statistical methods in a plausible way, the observations need to have
statistical relevance. To reach this, the observations need to be stationary, that
is, there need to exist some consistent statistical structure in the data. To make
this possible, to be able to collect stationary data from a complex process, there
has to be balance, at least as seen in the wider scale.

To find general ways of modeling, something has to be assumed. It turns out that
such a rigid enough structural modeling framework where there is possibility of
individual structures to emerge is that of neocybernetics: One assumes dynamic
balance in the system where the internal interactions and feedbacks implement
tensions that maintain the system integrity. One can forget the underlying
interaction structures if they are just capable of providing appropriate stabilizing
internal controls.

In the neocybernetic framework, one does not study all mathematically possible
systems — only the physically reasonable ones that are in balance with their en-
vironment. Natural systems typically fulfill this assumption, and one would like
the industrial systems to fulfill this assumption. What is more, good controls,
however they are implemented, keep the system near its setpoint, regardless of
the environmental disturbances: This means that linearity of the models can
reasonably be assumed.

So, to apply multivariate methods, one has to concentrate on such (thermo)dynamic
balances. The data needs to be selected so that is reflects this framework to
make it possible to later determine appropriate models. As it turns out, the
domain of chemical systems offers a compact framework for such studies.

11.1.3 Modeling chemical systems

Study a hypothetical example reaction, where there are α reactants on the left
hand side, being denoted as Ai, 1 ≤ i ≤ α, and the β products on the right
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hand side are Bj , 1 ≤ j ≤ β:

a1A1 + · · · + aαAα
kB⇔
kA

b1B1 + · · · + bβBβ , ΔH. (11.1)

Processes are typically reversible, so that the reaction can take place in both
directions (kB being the reaction speed in forward and kA in backward direction).
Symbol ΔH denotes the change in enthalpy, or inner energy, when the reaction
takes place.

One needs a mathematically more compact representation for chemical reac-
tions. How to “cybernetize” chemical reaction models applying the neocyber-
netic principles?

Information representation

The first problem is to represent such a chemical reaction formula in a practical
numeric form. It seems that a practical way to code the reactions in a mathe-
matically applicable form is to employ the vector formulation: Define a vector
C containing all chemical concentrations so that all Ai and Bj are represented
there among the elements. The “chemical state” can assumedly be captured
in this vector, and individual reactions determine equations in that chemical
space: If the coefficients −ai and bj from (11.1) corresponding to the chemicals
are collected in the vector G, one can express the total concentration changes
in the system as

ΔC = Gζ. (11.2)

Here, ζ is a scalar that reveals “how much” (and in which direction) that reaction
has proceeded. When there are many simultaneous reactions taking place, there
are various vectors Gi; the weighted sum of reaction vectors ζiGi reveals the
total changes in chemical contents, the weighting factors being collected in the
vector ζ.

Using the above framework, metabolic systems can in principle be modeled: If
one knows the rates of reactions, or the scalars ζi, the changes in the chemical
contents can be determined. This idea of invariances within a chemical system
have been widely applied for metabolic modeling; the key term here is flux
balance analysis (FBA) (for example, see [?]). However, the rates x are not
known beforehand, and, what is more, the reactions are typically not exactly
known.

In many ways, the model structure (11.2) is not yet what one is looking for. The
main problem there is that the flux balances only capture the stoichiometric,
more or less formal balance among chemicals. It does not capture the dynamic
balance, whether or not the reactions actually take place or not. Luckily, there
exist also other ways to represent the chemical realm.

Thermodynamic balance

There is a big difference between what is possible and what is probable, that is,
even though something may happen in principle, it will not actually happen. To
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understand the dynamic balance, the reaction mechanisms need to be studied
closer.

Assume that it takes a1 molecules of A1, a2 molecules of A2, etc., according to
(11.1), for one unit reaction to take place. This means that all these molecules
have to be located sufficiently near to each other at some time instant for the
forward reaction to take place. The probability for one molecule to be within the
required range is proportional to the number of such molecules in a volume unit;
this molecular density is revealed by consentration (when the unit is mole/liter;
by definition one mole always contains 6.022 · 1023 particles). Assuming that
the locations of the molecules are independent of each other, the probability
for several of them being found within the range is proportional to the product
of their concentrations. On the other hand, the reverse reaction probability is
proportional to the concentrations of the right-hand-side molecules. Collected
together, the rate of change for the concentration of the chemical A1, for exam-
ple, can be expressed as a difference between the backward reaction and forward
reaction rates:

dCA1

d t
= −kBCa1

A1
· · · Caα

Aα
+ kACb1

B1
· · · C

bβ
Bβ

. (11.3)

In equilibrium state there holds d CA1
d t = 0, etc., and one can define the constant

characterizing the thermodynamic equilibrium (for example, see [?]):

K =
kB

kA

=
Cb1

B1
· · · C

bβ
Bβ

Ca1
A1 · · · Caα

Aα

. (11.4)

Linearity objective

One of the neocybernetic objectives is that of linearity. Clearly, the expression
(11.4) is far from being linear — indeed, it is purely multiplicative. It turns out
that applying a purely syntactic trick, linearity of the structures can be reached:
Taking logarithms on both sides there holds

log K ′ = b1 log CB1 + · · ·+ bβ log CBβ
− a1 log CA1 + · · · − aα log CAα

.(11.5)

To get rid of constants and logarithms, it is also possible to differentiate the
expression:

0 = b1
ΔCB1

C̄B1

+ · · · + bβ

ΔCBβ

C̄Bβ

− a1
ΔCA1

C̄A1

+ · · · − aα
ΔCAα

C̄Aα

, (11.6)

where the variables ΔCi/C̄i are deviations from the nominal values, divided by
those nominal values, meaning that it is relative changes that are of interest.
The differentiated model is only locally applicable, valid in the vicinity of the
nominal value.

Multivariate representation

A single reaction formula can also be expressed in a linear form when the vari-
ables are appropriately selected. However, to model complex systems consisting
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of various reactions, the data representation needs to be extended: The differing
data vectors containing different sets of variables (the reactions employing dif-
ferent chemicals) have to be embedded in the same vector space to make them
compatible.

Assume that the vector v is a vector containing all relevant variables captur-
ing the state of the environment and the system itself, including, for example,
relative changes in all chemical concentrations. This means that the vector Γi

representing a single reaction can contain various zeros, assuming that the cor-
responding chemicals are not contributing in the reaction i. If the vectors Γi are
collected as columns in the matrix Γ, one can write the individual expressions
in (11.6) in the matrix form where one row is allocated to each of the reactions:

0 = ΓT v. (11.7)

This expression needs to be compared to flux balance analysis: Now one only
needs to study levels of concentrations, not changes in them. This is indeed
essential in complex chemical systems, where the energy and matter flows can-
not be exactly managed. The key point to observe here is that analysis of
complicated reaction networks can be avoided: No matter what has caused
the observed chemical levels, only the prevailing tensions in the system are of
essence. The underlying assumption is that the system is robust and redun-
dant: Individual pathways are of no special importance as there exist various
alternative routes in the network.

It turns out that reactions can in principle be characterized applying linear al-
gebra in the space of chemical concentrations, being compatible with the multi-
variate methods. However, the results still need to be interpreted appropriately.
Nothing mathematically very special is being done — as there seldom is in the
field of linear theory! — but when seen from the appropriate point of view, new
conceptual tools for modeling of complex systems can be available.

11.2 From constraints to degrees of freedom

As shown above, the domain-area information can be captured in data. How-
ever, this representation feels somewhat hollow, and it is difficult to believe
that domain-area knowledge could ever be captured this way. However, it can
be claimed that freedoms-oriented way of modeling is just as natural as the
constraints-oriented approach is. To understand the meaning of this claim,
closer analyses are needed.

11.2.1 Constraint-based models

Traditional models are typically based on constraints. This means that system
properties are captured by formulas of the general form

0 = f(v), (11.8)

where f is some scalar or vector-valued function of the variable vector v. For
example, the chemical model in (11.7) is a special (linear) case consisting of
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various independent equations or constraints in a matrix form. What is more,
the linear multivariate models that have been studied in previous chapters, or
the models of the form y = FT x, can be written as 0 = FT x − y, so that when
one defines

Γ =
(

F
−I

)
, and v =

(
x
y

)
, (11.9)

this is again of the form (11.7), and simultaneously a special case of (??). Note
that such models are not unique — the vectors Γi can be freely scaled without
affecting the validity of the equations. So, to make such a presentation less
ambiguous, from now on assume that the vectors in Γ are normalized to unit
length, so that ΓT

i Γi = 1.

To better understand the structure of models that are presented in such constraints-
oriented form, study a single-output case, so that yi is scalar, and Γi is a vector.
Whereas yi = FT

i x defines a one-dimensional null-space in the high-dimensional
variable space of v, and because the inner product ΓT

i v between the data and
the vector Γi is zero, this vector defines a unit vector that is orthogonal to this
subspace.

Further, to illustrate the above fact, for a moment study a case where the input
data also is scalar, so that there holds y = ax for some scalar a. This case is
shown in Fig. 11.1: As the variable x varies, the variable y follows it following the
linear dependency. When the x–y pairs are projected onto the normal vector,
the projection length for variable pairs that fulfill the constraint is always zero.
However, because of noise, this seldom exactly holds, and one has e = ΓT v
for some non-vanishing e. Because of the orthonormal nature of Γi, the dot
product ΓT

i v directly tells the distance between the data point v and the model.
This gives an explicit solution to the error-in-variables problem presented in
chapter 4: All variables have similar roles, all containing noise. Indeed, cleverly
minimizing this model error gives yet another regression strategy, and this will
be briefly studied in what follows.

11.2.2 Total Least Squares

One approach to implementing the EIV model (see Sec. 4.2.1) is the Total Least
Squares (TLS) algorithm [11]. Following the idea presented above, search for
such a regression hyperplane that when data points are orthogonally projected
onto this plane, the (squared) distances reach minimum.
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Here we continue with the single-output study for output yi, so that

yi = FT
i x = Fi,1x1 + · · · + Fi,nxn, (11.10)

equalling

0 = ΓT
i v (11.11)

for

Γi =

⎛
⎜⎜⎜⎝

Fi,1

...
Fin

−1

⎞
⎟⎟⎟⎠ , and v =

⎛
⎜⎜⎜⎝

x1

...
xn

yi

⎞
⎟⎟⎟⎠ . (11.12)

The dimension of the “augmented” data space of v, and the length of the vector
Γi, is n + 1. As was observed above, Γi is orthogonal to the subspace that
is “allowed” by the model. Further assuming that Γi is normalized, so that
‖Γi‖ = 1, the dot product e = ΓT

i v directly tells the shortest distance (positive
or negative) from the point v to the regression hyperplane (for points lying
exactly on the plane this measure, of course, giving 0, according to the model).
the average of squared distances for a set of points v(1) to v(k) can be expressed
as

1
k
·

k∑
κ=1

e2(κ) =
1
k
·

k∑
κ=1

(
ΓT

i v(κ) · vT (κ)Γi

)
=

1
k
· ΓT

i · V T V · Γi, (11.13)

where

V
k×n+1

=
(

X Yi

)
. (11.14)

To minimize this with the requirement that the normal vector must be normal-
ized,

Minimize 1
k · ΓT

i · V T V · Γi

when ΓT
i Γi = 1,

(11.15)

leads to the Lagrangian formulation (see page 20) where one has
{

f(Γi) = 1
k · ΓT

i · V T V · Γi, when
g(Γi) = 1 − ΓT

i Γi.
(11.16)

The cost criterion becomes

J(Γi) =
1
k
· ΓT

i V T V Γi + λi(1 − ΓT
i Γi). (11.17)

This results in

d

d Γi

(
1
k
· ΓT

i V T V Γi + λi(1 − ΓT
i Γi)

)
= 0, (11.18)
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giving

1
k
· 2V T V · Γi − 2λi · Γi = 0, (11.19)

or

1
k
· V T V · Γi = λi · Γi. (11.20)

The distance minimization has become an eigenvalue problem with the searched
normal vector Γi being an eigenvector of the data covariance matrix R = 1

k ·
V T V . However, as compared to principal component analysis, the searched
normal vector is given by the principal component corresponding to the least
significant eigenvalue — zero eigenvalue meaning exact match with the assumed
model structure: In such a case, there must exist an exact linear dependency
between the variables, and this dependency can be extracted as the model.
Remembering the definition of the vector Γi, the final regression formula solved
as

yi =
Γi,1

Γi,n+1
· x1 + · · · + Γi,n

Γi,n+1
· xn. (11.21)

For a multivariate system, the same analysis can be repeated for all outputs
yi separately; note that the eigenproblem is generally different for all outputs.
However, one needs to be careful: In the derivation yi was interpreted as any of
the other input variables, meaning that it is not the output that was explicitly
being explained (as is the case with MLR). This means that the TLS model not
necessarily gives a good regression model for estimating the output.

This TLS method can also be called “last principal component analysis”, as
compared to PCA, where the solution (to the problem of maximizing variance
rather than minimizing variation) is given in terms of the most significant prin-
cipal components. This is an indication of the need for new thinking, indeed,
inverse thinking: Rather than concentrating on the null space, or the con-
straints, one concentrates on freedoms, what is left outside, where there still
exists non-nullified information.

TLS is an example of experiments when trying to rehabilitate the old way of
thinking. However, the problems of very high dimensions are not solved. If there
is a high number of redundant variables, many of the eigenvalues are practically
zero. Which of the minor eigenvectors to select, then? This selection becomes
very sensitive: With another data with another noise realization the ordering
can become very different — giving a completely different model. This means
that the noise sensitivity of the TLS model is increased unreasonably. And,
as observed before, it is this noise sensitivitity that is a crucial matter when
constructing good regression models.

11.2.3 Emergent models

Mathematically speaking, if there are n separate variables, there are n degrees
of freedom in the data space, but each (linear) constraint decreases the number
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Figure 11.2: Schematic illustration of the covariance structure among
data when there are few constraints (on the left), and when there are
many constraints (on the right). The simplest presentation for the system
properties changes as the number of constraints increases, or when the
remaining degrees of freedom accordingly decrease

of degrees of freedom by one — specially, if there are ν linearly independent
constraints, the number of remaining degrees of freedom is only N = n − ν.
Summarizing: The linear constraints constitute a null space within the data
space: This means that in these directions there is no variability. The remaining
N directions in the data space constitute a linear subspace where all variation
among variables is concentrated.

What do these degrees of freedom mean in practice? Originally, if there were
completely separate unconnected variables (subsystems), there would be the
maximum number of freedoms. When subsystems become connected, when
interactions between them are established, the variables become coupled, thus
reducing the number of free variables. Further, when feedbacks are introduced,
the remaining inputs and outputs of the subsystems can still be connected. It
is specially typical in cybernetic systems where this scenario holds: Ability to
recover after disturbances is a manifestation of tightly interconnected system.
In such systems it is only a few degrees of freedom that remain more or less
loosely controlled.

The key point here is that essentially the same dependencies among variables
can be captured in terms of degrees of freedom as with constraints. At some
point, when the number of constraints increases, the most economical represen-
tation changes: The simplest model with the least parameters is no more the
constraints-oriented model but the freedoms-oriented model (whatever it will
be). According to the Ockham’s razor, one needs to switch to emergent models
when the system is cybernetic enough. In Fig. 11.2, the covariance structure
of the data space is schematically depicted: When the null space of constraints
is dead and dull, all interesting behaviors are concentrated in the directions of
remaining freedoms.

It is difficult to escape the traditional ways of thinking: Traditional methods
for analysis (modeling) and design (synthesis) are always based on models that
are based on constraints.
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it is the multivariate statistical methods that directly attack the degrees of free-
dom, abstracting away the structural details, that help to escape the constraints.
Even though this opposite view of modeling sounds unintuitive, it turns out that
the freedoms-oriented models are more intuitive than the constraints-oriented
models, being based on the explicit time-domain features, as visualized below.

11.2.4 Examples

To visualize the freedoms-oriented model structures, exploit dynamic intuitions:
Assume that the available variables are successive measurements of some signal
y, so that samples are indexed as y(κ), y(κ−1), etc. Originally, it is assumed that
these samples are independent of each other — it is the task of the (dynamic)
model to connect the variables together. Assuming that the constraint-oriented
model is

y(κ) = ay(κ − 1), (11.22)

there is a direct connection to Fig. 11.1. Constructing the augmented data space
as

v(κ) =
(

y(κ − 1)
y(κ)

)
, (11.23)

the whole data space S is spanned by the constraint vector and the freedom
vector together:

S =
(

Γ θ
)

=

(
a√

1+a2
1√

1+a2
−1√
1+a2

a√
1+a2

)
. (11.24)

The freedom-oriented way of describing the model is also

θ =
(

a
−1

)
/
√

1 + a2. (11.25)

It is difficult to see here anything that would outperform the original model.
However, now assume that there are three variables that are connected together
by a model:

{
y(κ) = ay(κ − 1)
y(κ + 1) = ay(κ). (11.26)

This exactly corresponds to the model (11.22) where there are redundant vari-
ables. The key point here is that one does not know beforehand whether some of
the variables are redundant — when modeling complex systems, this is typically
the case. The data vectors are now

v(κ) =

⎛
⎝ y(κ − 1)

y(κ)
y(κ + 1)

⎞
⎠ . (11.27)
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In this case, the constraint vectors without normalization are

Γ =

⎛
⎝ a 0

−1 a
0 −1

⎞
⎠ . (11.28)

The constraints span a two-dimensional subspace in the three-dimensional vari-
able space – the remaining degree of freedom can be solved by orthogonalization,
for example applying the Gramm-Schmidt procedure. To start with, one can take
any linearly independent vector:

⎛
⎝ a 0 1

−1 a 0
0 −1 0

⎞
⎠ →

⎛
⎜⎝ a a2

1+a2
1

1+a2

−1 a3

1+a2
a

1+a2

0 −1 0

⎞
⎟⎠

→

⎛
⎜⎝ a a2

1+a2
1

1+a2+a4

−1 a3

1+a2
a

1+a2+a4

0 −1 a2

1+a2+a4

⎞
⎟⎠ .

(11.29)

This means that the model becomes

θ =

⎛
⎝ 1

a
a2

⎞
⎠/√1 + a2 + a4. (11.30)

The “axis of freedom” clearly has an exponential outlook in the data space. This
is in exact correspondence with the actual time-domain behavior of a system
that is characterized by a model of the form (11.22). Indeed, the degrees of
freedom determine “behavioral fragments”, so that the actual observations can
be constructed as combinations of them. The patterns can be scaled arbitrarily
to optimize the match — these scaling factors are the latent variables in z.

When working on simple cases, the approach is not crucial. But when new
variables are introduced, each of them typically comes with an accompanying
constraint, and it is only the degrees of freedom that truly reflect the essential
dependency structures in the system. When modeling complex systems, it is
assumed that the number of variables should not be limited artificially: Each of
the new variables can contain some fresh information — the “accdompanying
constraint” does not necessarily reduce the degrees of freedom in the augmented
space exactly by one. Whereas the constraints-oriented modeling approach be-
comes a unmanageable mess, the freedoms-oriented models become clearer and
clearer as the data dimension increases. The higher the number of variables is,
the more appropriate is the pattern-based representation seems to become.

How about the interpretations when there is a higher number of remaining
degrees of freedom? Study the model

y(κ) = a1y(κ − 1) + a2y(κ − 2), (11.31)

or

0 = a0y(κ) − a1y(κ − 1) − a2y(κ − 2). (11.32)



11.3. Case studies 191

Now there is one constraint in the three-dimensional space, and two remaining
degrees of freedom:

Γ =

⎛
⎝ a0

a1

a2

⎞
⎠ and v(κ) =

⎛
⎝ y(κ)

y(κ − 1)
y(κ − 2)

⎞
⎠ . (11.33)

The degrees of freedom for such a dynamic system have always the same in-
terpretation: Typically, if there is considerable inertia in the system, the most
significant principal component stands for a filter for finding the average mo-
mentary value of y, as being revealed by the latent variable z1(κ), and the second
principal component stands for the trend prototype: The latent variable z2(κ)
reveals the rate of change in the signal (see exercises). In this sense, there again
exist very natural interpretations for the model structures.

In this kind of rather simple cases, there is a trade-off between approaches.
The constraints-based model is stronger when it comes to analysis of dynamic
phenomena (as the roots of the coefficient polynomial reveal the dynamic modes
beyond the signal), whereas for the freedoms-oriented model such time-domain
analyses need to be separately carried out (as presented in chapter 9), meaning
that a heavier machinery needs to be employed.

The freedoms-oriented model is based on features taht constitute patterns that
together explain the observations in the data space, assuming that there are
some dependencies and redundancies in the behaviors. Determination of the
system state becomes a pattern recognition task. Specially, when in the case
of chemical systems, it is “chemical pattern matching” that is being carried
out — and this is carried out automatically by the underlying thermodynamic
processes.

11.3 Case studies

To illustrate the above approaches, two practical application examples are pre-
sented, where the “chemical semantics” is appropriate. Both of these complex
processes are being currently studied at HUT Control Engineering Laboratory.

11.3.1 Characterizing the state in practical processes

To apply the ideas, the theoretical derivations still need to be extended towards
practice. The data vector v needs to be further studied to make it possible
to capture all internal tensions in complex chemical systems. As it turns out,
the following extensions can, for example, be implemented without ruining the
linear structure among the variables:

• Temperature. According to the Arrhenius formula, the reaction coeffi-
cients are functions of the temperature, reactions becoming faster as the
temperature rises, so that k ∝ exp(c/T ). This means that when this is
substituted in the formulas, and when logarithms and differentiations are
carried out, the model remains linear if the new variable is defined as
vT = ΔT/T̄ 2.
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• Acidity. The pH value of a solution is defined in terms of a nonlinear
formula: pH = − lg CH+ . Because it is essentially logarithm taken of
a concentration variable, one can directly include the changes in the pH
value among the variables, vpH = ΔpH.

• Voltage. In electrochemical reactions, one should characterize the the
“concentration of electrons”. However, it turns out that acording to the
Butler-Volmer theory [?], the amount of free electrons is exponentially
proportional to the voltage. This means that, after taking the logarithms,
the “electron pressure” can be characterized by the variable ve− = ΔU .

• Dissipation. It has been assumed that the systems being studied are in
thermodynamic balance. This homeostasis can be extended, however: The
steady state can be determined not only in terms of the variables, but also
in terms of their derivatives. This means that one can study dissipative
systems, where the rate of change remains constant, a constant flow of
chemical flowing into or out from the system. Looking at the formula
(11.3), it is clear that model linearity is not lost if one has variables like
vĊ = ΔĊ/ ¯̇C.

• Mass flows. The concentration-oriented variables can be transformed
into masses (molarities) when multiplied by volumes, meaning that after
taking logarithms, the structure is linear. Similarly, the volumetric dissi-
pation rates change into mass flows; further, surface phenomena (coating,
etc.) are related to the surface area, so that if the volumes or areas change,
one can include variables of the form vA = ΔA/Ā and vV = ΔV/V̄ .

• Physical phenomena. It is evident that structures that are originally
linear, like phenomena that represent diffusion between compartments,
etc., can directly be integrated in the model, assuming that appropriate
variables (deviations from the nominal state) are included among the vari-
ables. What is more, smooth nonlinearities become affine when they are
locally linearized, and, further, they become linear when developed around
the nominal state.

In strong liquids one cannot always apply concentrations, but one has to employ
activities instead, or actual activation probabilities. If it is assumed that these
activities are some power functions of the concentration so that A = a1C

a2 ,
after taking logarithms the model still remains linear in terms of the original
concentrations. This means that — even though linearity is not compromized
— the variables may become multiplied by some unknown factors, so that there
is some scaling effect.

The vector v selected here is the measurement vector, containing all possible
quantities that can affect the system behavior — internal system variables and
external environmental variables alike. This data presentation can capture the
chemical domain semantics, and in different environments the models have dif-
ferent interpretations.
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11.3.2 Case 1:
Modeling an industrial nickel plating process1

In printed wiring boards, one needs a layer of nickel as an oxidation barrier
between the copper electric circuitry and gold finishing (see Fig. 11.3). This
nickel-phosphor layer can be created, for example, using electrochemical pro-
cesses. The properties of the nickel layer can be affected by changing its phos-
phor content. It is clear that one should be capable of monitoring and controlling
the layer thickness, and also its phosphor content so that the set values would
be reached.

The chemical reactions taking place in the plating process are very complex, and
not completely known. Four contradictory sets of reactions have been proposed
to characterize the process, but none of them seems to satisfactorily explain
observed behaviors. Not only is the exact process structure unknown — not
all chemicals are either known, as the compositions of the commercial reagents
are business secrets. However, the processes are slow, and it is evident that
the appropriately operated coating process remains well in balance. All these
observations are well in line with the assumptions beyond the freedoms-oriented
modeling.

The process state can be characterized in terms of its acidity or pH (controlled
using ammonia to be between 4.7 and 5.0), temperature (to be around 80 de-
grees centigrade), nickel concentration (controlled by adding nickel sulphate),
and electrical potentials. The dynamics is also affected by the loading, or the
total area to be plated simultaneously in the bath. In addition to these, addi-
tional chemicals are present, some of them are known, like the reducers (sodium
hypophosphite), and some are not (different kinds of activators and inhibitors);
the contribution of the residues of reaction chemicals is also estimated: The
variable MTO (or “metal turn-over”) descibes the aging of the process liquids,
being supposedly proportional to the concentrations of the unspecified chem-
icals. All these state variables can be recorded or calculated in a practically
continuous manner.

It is the properties of the final nickel surface that cannot be measured on-line:
The layer thickness should be around 4 μm, and it should contain some 7 – 10
weight percent phosphor. Information of these is available only after laboratory
analyses, once or twice a day, and a model is needed to estimate these quantities
in a reliable way. To implement such soft sensors, the multivariate regression
models were constructed.

As it is typically the case, the model (or data preprocessing) needs to be tailored
to match the problem domain. The state variables were mean-centered and
normalized in the traditional way — but, in addition to these variables, new
ones could also be employed. This nicely illustrates the benefits of the simple
linear model structure.

Because the relative changes in the momentary layer growth rate assumedly
are linear functions of changes in the other state variables, the overall relative
change is reached when one integrates the momentary rate over the bath time.
And because of the linearity of this mapping model F , the integration can be

1The simulations were carried out by Mr. Hans-Christian Pfisterer
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a b c

Figure 11.3: Cross-
section of a test plate:
a - the Ni-P layer
(about 5 μm); b - cop-
per layer; c - base
(epoxy laminate)

moved “through” the model:

Δl(t) =
∫ t

t0

Δl̇(τ)/̄l̇dτ =
∫ t

t0

FT v(τ) dτ = FT

∫ t

t0

v(τ) dτ. (11.34)

This means that if one includes the integrals of relative changes among the
x variables, a linear model should be capable of capturing the layer changes
around the nominal cumulation rates. These nominal absolute values need to
be separately modeled, or if the bath time of the board is also included among
the input variables, it is the same model that suffices.

It is always difficult to evaluate the performance of the models in an unbiased
way — however, in this case we are lucky: There is an explicit model derived
specially for this process, starting from physico-chemical first principles, the
free parameters being optimally tuned to match the observations. It can be
assumed that this model is the best model one can construct for the process,
as that modeling effort gained the the Best Diploma Thesis Prize of 2004 in
Finland (as granted by TEK, the Finnish Association of Graduate Engineers).
The results are shown in Figs. 11.4 and 11.5: Even though not all phenomena can
be estimated by the model of four PCA-based latent variables (see Fig. 11.5),
it seems that the same problems are faced by all models regardless of their
construction. The data-oriented model where no process-specific knowledge is
exploited is well comparable with the expert-tuned physical model that is based
on a set of highly nonlinear differential equations: The validation errors for fresh
data have the same orders of magnitude (results for two set of validation data
shown in the figures).
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Figure 11.4: Estimates for nickel layer thickness
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Figure 11.5: Estimates for phosphor content
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11.3.3 Case 2:
Modeling genetic networks and metabolic systems2

The previous example was a man-made system based on more or less designed
chemical reactions, the reaction mechanisms being predetermined to explicitly
implement intended behaviors, and a (more or less accurate) first-principles
model could also be constructed. Now, study a natural system that is still
much more complex, so that finding the explicit reaction mechanisms is even
more complicated — perhaps the same principles of freedoms-based modeling
apply?

When studying metabolic reactions, it is complex chains of reactions based on
organic chemistry that should be mastered. What is more, these reactions are
dictated by the genetic processes, where enzymes are produced. On the other
hand, the chemical state affects the gene activities — this means that there are
interacting genetic and metabolic networks that should be mastered. The closed
control loops cannot be distinguished from each other, and the only realistic
approach is to assume “pancausality”, where the interactions and feedbacks
constitute the tensions keeping the system in balance. As studied in chapter
2, genetic networks can be modeled applying the same model structures as
the chemical processes — the metabolic processes are fast, whereas the genetic
ones are slow (see Fig 11.6). Both of the levels can be combined in one model
structure, making it perhaps possible to reach systemic biology. In the figure,
the linear pattern recognition processes are expressed in terms of dynamic state-
space models.

In the project SyMbolic (Systemic Models for Metabolic Dynamics and Gene
Expression), funded by TEKES during 2004 – 2006, new kinds of models were
derived for representing the cellular dynamics, and one of the approaches was
the exploitation of the idea of emergent models [?].

There is plenty of data: The modern ChIP techniques, etc., provide huge
amounts of measurements, as all gene activities can be simultaneously mea-
sured (for example, see [?]). Indeed, measuring gene activities (in terms of
active messenger-RNA) is more straightforward than measuring the metabo-
lites. Even though there is plenty of data, it is not optimally conditioned for
dynamic identification purposes: The dimension of data (in thousands) is higher
than what is the number of samples (in hundreds), and the excitation sequences
are not persistently exciting (being step experiments). What is more, the data
is very noisy — partly because of the uncertainties in the measurement process,
and partly because measurements carried out in different laboratories seem not
to be quite compatible. This means that the statistical multivariate methods,
and specially the latent variable approaches, are well motivated also from the
pragmatic point of view.

Implicitly, the latent variable methods assume that there is redundancy among
genetic and cellular functionalities — and, indeed, it has been shown that there
are typically groups of genes rather than individual genes that are responsible
for the functionalities. And also on the metabolic level: Processes in the cyto-
plasm are well buffered, and typically there are negligible responses if one only
considers a single input and a single output. The multivariate methods make it

2The simulations were carried out by Mr. Olli Haavisto, M.Sc.



11.3. Case studies 197

A1

A2

B2

B1

Cell

Nucleus

Genetic state
= enzyme/transcription levels

Metabolic state
= chemical levels/flows

Environment

Genetic
activity

Chemical
activity

Figure 11.6: Two
time scales in the
cellular system

possible to study the whole grid of proteomic/metabolomic phenomena simul-
taneously — this means that one does not need to employ excessive excitation
signals, or huge dosages, resulting in considerable disturbances in the cell be-
havior, or even death. The gentle approaches are necessary when one wants to
study living cells rather than pathological, more or less irrelevant cases.

As an application example, modeling of data from yeast cell cultivations were
used (see [?]). There were a few dozen experiments, where different kinds of
step changes in the environment were executed, and the resulting gene activity
transients were recorded. Modeling this data was quite a challenge, as there
was not enough data. Even though the applied model structure was robust, no
conclusive conclusions can be drawn.

As was observed above, metabolite concentrations and gene activities could
be represented in the linear model structure, variaqbles being collected in a
single vector. However, now the model was restructured so that dynamics was
captured: The environmental variables (substrate properties, temperature, etc.)
were collected in the input vector u, and the gene expression levels were collected
in the output vector y. Mean-centering and normalization of data was carried
out. The dimensions of the vectors were such that nu was about ten, and m was
about 4000; the number of latent variables N was selected as 4, and stochastic-
deterministic subspace identification was applied.

The assumption beyond the adopted modeling approach is that balances are
more characteristic to cellular systems than the transients are. And, indeed, it
seems that the steady states are nicely modeled, whereas the transient behaviors
are not reproduced by the model (see Fig. 11.7). Still, it seems that the extreme
compression of the variable space does not ruin the steady-state correspondence.
There seem to exist only few degrees of freedom left in the behavioral data.

It can be claimed that the degrees of freedom in a cellular system character-
ize metabolic behaviors or functions. When the environment changes, the new
balance is found along these axes in the chemical space whan “chemical pat-
tern matching” is carried out. For example, assuming that available glucose
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Figure 11.7: Two open-loop experiments with the model, showing 256
“stress genes” (red color meaning activity increase, green meaning ac-
tivity decrease). In the leftmost figures, hydrogen peroxide step is being
simulated for two hours, and in the rightmost ones, nitrogen step is sim-
ulated. In both cases, the actual behaviors in the genetic state are shown
on the left, and the estimates given by the four-state model are shown on
the right. Despite the transients, there is a good correspondence between
the observations and the very low-dimensional model (see [?])

goes up, it is also mannose production that goes up, or some other processes
that exploit glucose. There is only balance pursuit taking place: But after “an-
thropocentric”, finalistically-loaded interpretations are employed, when some
chemicals are interpreted as nutrients, some others as metabolic products, and
the rest as waste, one reaches “emergent interpretations”. When complexity
cumulates, the balance reactions start looking goal-oriented, pre-planned, and
“clever”. Scarcity of some chemicals changes the balance appropriately, trying
to compensate for the shortage.

11.4 Towards “artificial cells”

New conceptual tools become available as further interpretations are employed.
In complex chemical systems, there seem to exist reserve mechanisms for com-
pensating for the disturbances. This kind of buffering is characteristic not only
to metabolic systems, but it seems to apply also in more general terms: Le
Chatelier principle states that changes in environment are compensated by
changes in the balance, so that the system tries to “escape” the changes. In
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Figure 11.8: From data modeling (on the left) towards system model-
ing (on the right). The variables being measured are system variables:
Because of pancausality, changing them also changes the system state

[?], the idea of “elastic systems” is proposed to characterize the reactions of
cybernetic systems in general.

When the variables are selected appropriately, so that system semantics is cap-
tured, and if the pancausality assumption holds, the constructed modes are
not only data models — they are system models. They can capture the fun-
damental essence of systems. They can be used not only for monitoring, but
also for design and control construction: Changing variables appropriately also
changes the resulting balance (see Fig. 11.8). The remaining degrees of freedom
in the system reveal the possibilities of further controls to make the system
still more balanced; in this sense, process data mining becomes possible, where
information can be gathered directly from the behaviors, not from model-based
assumptions. New kinds of models make it possible to implement new kinds of
controls — higher-level controls. However, new challenges are faced: When new
feedbacks are introduced, the set of freedoms changes. Control design becomes
an iterative task, and new kinds of design tools are needed.

The ideas of biological cybernetic systems can be extended to technical (bio)pro-
cesses: The still unbounded degrees of freedom can be regulated, new feedbacks
can be constructed. Still better balanced “superorganisms” are constructed.
The industrial systems are becoming like artificial cells themselves: Industrial
plants also have metabolism, raw materials being exhausted and others being
produced. Originally, the production can be far from optimum, but as soon as
dependencies among variables are recognized, they can be used for construct-
ing new feedback structures to implement more efficient and robust — better
balanced — production. In both cases, in natural and man-made cells alike,
it turns out that the goal of “evolution” is overall efficiency of production, no
matter whether it is humans that are acting as agents for development or not.
This can be reached by implementing mechanisms for reaching best possible pro-
duction conditions; and this system integrity needs to be maintained without
collapses. To maintain such balance, the system has to respond appropriately
to the spectrum of disturbances coming from the environment.

It seems that the new approaches offer new possibilities for attacking the mys-
teries of evolutionary processes from a fresh point of view — such visions are
studied closer in [?]).
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Computer exercises

1. Assume that data of an oscillating system is collected and its time-series
is analyzed, that is, dynamics is being captured in data, and study the
covariance structure:

y = sin([1:100]/2)’;
V = [y(1:98),y(2:99),y(3:100)];
theta = regrPCA(V)

Interpret the distribution of the eigenvalues. Also interpret the first and
second eigenvector as patterns characterizing the signal.

2. Applying the same data, study the eigenvector with the vanishing eigen-
value (carrying out the Total Least Squares regression analysis):

G = regrPCA(V,-1) % Also "regrTLS" available
abs(roots(G))

Interpret the result. What happens with the above analyses (freedoms vs.
constraints) if the data is extended so that

V = [y(1:97),y(2:98),y(3:99),y(4:100)];
theta = regrPCA(V)

Try to interpret the eigenvectors and eigenvalues now. What can you say
about the extensibility and robustness of the two approaches?




