
204



Appendix A

Structure from Data

The top-down (qualitative, structural) and bottom-up (quantitative, numeric)
modeling approaches are fundamentally incompatible1. This report concen-
trates on the data-oriented modeling approach: The discussions were based
exclusively on data. However, here in these Appendices we try to bridge the
gap between the two extremes — or, at least, we try to bring the two approaches
nearer to each other.

This first appendix concentrates on the approach from data towards structure,
that is, it is assumed that analysis of data suggests some underlying structure
explaining the observations. The data-suggested structure is typically seen as
the clustered nature of the data. The latter appendix concentrates on the ap-
proach from structure towards data, that is, the data is explicitly modified to
match the known structure. In both cases, these structure-oriented analyses are
carried out before the actual data modeling, or regression analysis, is done.

A.1 Cluster analysis

Determination of the system structure is, a complex and knowledge-intensive
task. Typically, when doing multivariate modeling, no a priori information
about the underlying subprocesses exists. This complexity is reflected in the
data: The emergence of relevant clusters cannot be foreseen. There exist no
unique solutions to the data clustering problem, and clustering is typically based
on more or less heuristic algorithms. Because of the nonlinear and noncontinu-
ous nature of the clustering problem, there exist only iterative, trial-and-error
algorithms for this purpose.

In what follows, two prototypical clustering approaches will be studied a little
closer. Both of them work well only for “nice” data, hoping that the clusters
are more or less clearly distinguishable in the measurements.

1It is as in artificial intelligence (AI) — either you do it symbolically with expert systems,
etc., or you do it numerically with neural networks, etc. — and there seem not to exist natural
combinations in between

205



206 Appendix A. Structure from Data

A.1.1 K-means algorithm

The K-means algorithm is the basic approach that is used for clustering: Start-
ing from some initial guesses, the clusters are refined by moving samples from
a cluster to another depending on which of the clusters happens to be clos-
est. When samples are redistributed, the cluster centers also evolve; iteration is
needed to reach convergence.

The algorithm that searches for N distinct clusters (parameter N being fixed
beforehand) can be written as follows (references to the clusters are now shown
as superscript indices):

1. Choose a set of original cluster centers v̄1, . . . , v̄N arbitrarily, for example,
let v̄1 = v(1), . . . , v̄N = v(N).

2. Assign the k samples to the N clusters using the minimum Euclidean
distance rule: Sample v(κ) belongs to cluster c, or v(κ) ∈ Γc, if ‖v(κ) −
v̄c‖ ≤ ‖v(κ)− v̄c′‖ for all c′ �= c.

3. Compute new cluster center prototypes v̄c ←∑
v(κ)∈Γc v(κ)/#{Γc}, where

#{Γc} denotes the number of vectors in cluster Γc.

4. If any of the cluster prototypes changes, return to step 2, otherwise, stop.

Note that it is assumed that v contains now all available information, containing
both the input variables (later denoted x) and the output variables (later y);
in some sources this approach is called “input-output clustering”. It is also
possible to use x exclusively2.

If one determines some topology (indeed, a metric) among the clusters, so that
some of the clusters are assumed to be “nearer” to each other than some others,
one can easily extend the K-means algorithm towards self-organizing map. If it
is not only the cluster itself whose center is moved towards the local data center,
but also its “neighbors” are slightly adapted in the same direction, one has (a
version of) the Batch-SOM algorithm [?]. In the converged cluster organization,
the “neighboring” clusters will stand for nearby data samples, so that a “map”
is constructed.

The K-means clustering method works reliably, and sometimes it gives useful
results. However, there is a basic problem: The distances are calculated using
the Euclidean norm. If searching for linear dependency models within the clus-
ters, it is not pointwise but linear, “longish” data clusters that support linear
model construction. How this can be achieved, is studied next.

A.1.2 EM algorithm

The Expectation Maximization (EM) algorithm is a more sophisticated approach
as compared to the basic K-means algorithm: Clustering is serched for in the
maximum likelihood sense, fitting Gaussian distributions with data in a more

2Indeed, this is the normal approach: When the models are applied, it is only the input x
that is available for determining the cluster



A.1. Cluster analysis 207

complicated way ... needless to say that there is no guarantee about the con-
vergence or the uniqueness of the solutions. It is not only the cluster centers, or
means of the distributions, but also the “outlooks”, or covariance matrices, that
need to be determined here; this means that the number of free modl parameters
is very high. As there exist various local minima, bootstrapping the algorithm is
also complicated — typically the initial guesses for clusters are calculated using
the K-means algorithm.

First, study the Gaussian distribution (2.1) a bit closer. Probability density
reaches maximum simultaneously as its (natural) logarithm does; this means
that one can define the log-likelihood measure for each cluster:

ln(p(v)) = −dim{v}
2 · ln(2π)

− 1
2 · ln(det{Rc})
− 1

2 · (v − v̄c)T (Rc)−1(v − v̄c).
(A.1)

This criterion can be applied for determining into which cluster a data sample
should be put to maximize the overall model fit with the data. The first term
above is constant for different clusters, and it can be neglected; the role of
the second term, regulating the a priori cluster probability to fixed level, is to
prevent the cluster from growing unboundedly. Finally, the third term matches
the data points against the Gaussian models within clusters; essentially one
calculates the Mahalanobis distance from the data point to the cluster c:

(v − v̄c)T (Rc)−1(v − v̄c). (A.2)

This measure determines how “longish” the distribution is; searching for the
locations of the equidistant points in the v space using this distance measure,
ellipsoids are found. Based on log-likelihood, the EM algorithm can be written
as

1. Choose a set of original cluster centers v̄1, . . . , v̄N arbitrarily, for exam-
ple, using the K-means algorithm; the cluster covariances are originally
identity matrices, or Rc = I.

2. Assign the k samples to the N clusters using the minimum (balanced)
Mahalanobis distance rule: Sample v(κ) belongs to cluster c, or v(κ) ∈ Γc,
if ln(det{Rc}) + (v(κ) − v̄c)T (Rc)−1(v(κ) − v̄c) becomes minimum.

3. Compute new cluster center prototypes v̄c ← ∑
v(κ)∈Γc v(κ)/#{Γc} and

covariance estimates Rc ←∑
v(κ)∈Γc(v(κ)− v̄c)(v(κ)− v̄c)T /#{Γc} where

#{Γc} denotes the number of vectors in cluster Γc.

4. If any of the cluster prototypes changes, return to step 2, otherwise, stop.

Note that K-means algorithm results if it is explicitly assumed that in all clusters
Rc ≡ σ2 · I for some σ2. The EM algorithm can be made more stable if some
additional assumptions can be made. For example, if one can assume that the
nonlinearity within the data is simple affinity, so that only the cluster centers
vary while the internal structures within the clusters remains unchanged, there
holds Rc = Rc′ for all c and c′ — this effectively reduces the problem complexity.



208 Appendix A. Structure from Data

Figure A.1: Incorrect, K-means
type clustering result

Figure A.2: Intuitively correct
clustering result

The presented EM algorithm matches well with the (Gaussian) mixture model
scheme that was discussed in Chapter 2: Data samples within the clusters have
the direct probability interpretation, so that the combination of the submodels
constructed for individual clusters can be carried out in the maximum likelihood
sense.

A.2 Classification

Sometimes the appropriate classes are already known — but they are known
only by examples. Then one is facing a classification problem: How to determine
the decision boundary between the classes, so that, when facing fresh data, the
probability of false classifications would be minimized?

A.2.1 Fisher discriminant analysis

Knowing the clusters, it would be good to know some structure among the
clusters. Additionally, sometimes it would be nice to have a linear criterion
for determining how well a new sample matches a cluster and how near it is to
the neighboring clusters. One would like to find a projection axis so that data
belonging to different clusters, as projected onto this axis, would be maximally
distinguishable.

From the classification point of view, one can assume that the clusters carry the
classification information, whereas the variation around the cluster centers can
be interpreted as noise. One can try to find such a projection of the data that
the signal-to-noise ratio is maximized. So, first define the “noise sequence” so
that the cluster centers v̄c(κ) corresponding to each of the classified sample v(κ)
is eliminated:

vnoise(κ) = v(κ)− v̄c(κ). (A.3)



A.2. Classification 209

The signal sequence, then, is the sequence of cluster centers:

vsignal(κ) = v̄c(κ). (A.4)

Assume that the projection axis that is being searched for is θi. A data sample
v(κ) projected onto this axis is vT (κ)θi; its square thus is θT

i v(κ)vT (κ)θi. The
average of this, or the variance, can be written separately for the signal and the
noise sequences, giving

1
k ·

∑k
κ=1 θT

i vsignal(κ)vT
signal(κ)θi

= θT
i · 1

k ·
∑k

κ=1 vsignal(κ)vT
signal(κ) · θi

= θT
i · Rbetween · θi,

(A.5)

and

1
k ·

∑k
κ=1 θT

i vnoise(κ)vT
noise(κ)θi

= θT
i · 1

k ·
∑k

κ=1 vnoise(κ)vT
noise(κ) · θi

= θT
i · Rwithin · θi.

(A.6)

Here, the matrices Rbetween and Rwithin denote the “between-classes” covariance
and the “within-classes” covariance, respectively. Now the problem of maxi-
mizing the between-classes variance while keeping the within-classes variances
constant can be expressed as a constrained optimization task

Maximize θT
i · Rbetween · θi

when θT
i · Rwithin · θi = 1.

(A.7)

This can be formulated in the Lagrangian framework (see page 20) when select-
ing

{
f(θi) = θT

i · Rbetween · θi

g(θi) = 1− θT
i · Rwithin · θi.

(A.8)

Using the Lagrange multipliers, the optimum solution θi has to obey

d J(θi)
dθi

=
d

dθi
(f(θi)− λi · g(θi)) = 0 (A.9)

or

Rbetween · θi − λi ·Rwithin · θi = 0, (A.10)

giving

Rbetween · θi = λi · Rwithin · θi. (A.11)

If the matrix Rwithin is invertible, this can further be solved as

R−1
withinRbetween · θi = λi · θi. (A.12)



210 Appendix A. Structure from Data

�
1

Maximum likelihood discriminant curveFisher discriminant line

Figure A.3: Fisher discriminant axis θ1 in a two-cluster case with un-
equal covariances. Note two things: First, the discriminant axis is not
pointed from one cluster center to the other, the covariance structure
of the clusters affecting its orientation; second, the maximum likelihood
discriminant surface between clusters is generally not a plane but an hy-
perellipsoid (or some other generalized conic section determined by the
equi-distance points in the Mahalanobis sense)

This is an eigenproblem (and (A.11) is so called generalized eigenproblem)3.
That is, the best projection axes are given as eigenvectors of the above problem.
The eigenvector corresponding to the largest eigenvalue is the best in this sense.
Note that if there are only two clusters, the axis is unique (the rank of Rbetween

being 1, all but one of the eigenvalues being zeros).

As an example, assume that there are only two clusters with equal covariances.
In this case the discriminant (hyper)plane between the clusters is defined by
those points that lie on the hyperplane going through the center point between
the clusters and being perpendicular to the axis θ1. However, if the clusters do
not have equal covariance structures, the linear Fisher discriminant no longer
gives the theoretically correct separation between the clusters (see Fig. A.3).

If one is trying to find an appropriate way of scaling ones data, the FDA model
can also give some intuition. The signal-to-noise ratio information can directly
be used for weighting purposes according to the weighting scheme (B.31). This
approach is generally used, more or less knowingly, for example, in data mining:
The relevance of different words in textual documents is estimated by checking
how often they are found in “interesting” documents and, on the other hand,
in “non-interesting” ones. This information about frequency variations can be
used for weighting the words appropriately.

A.2.2 Support Vector Machines (SVM)

One of the most promising modern classification methods is called a Support
Vector Machine or SVM for short [?]. It is a result of sophisticated mathematics,
optimization, and statistical learning theory — and, surprisingly, the basic ideas
are very well compatible with the ideas of multivariate regression as studied in
this report:

• The structural complexity of the decision boundaries is substituted with

3Later we will see how often the same problem formulation pops up in multivariate analysis



A.2. Classification 211

dimensional complexity, that is, the original data space is augmented with
a high number of feature variables.

• In the high-dimensional feature space, it is assumed that the patterns are
linearly separable from each other, and very efficient linear classification
methods are applied.

• The structural information about the samples can be expressed as kernel
matrices, representing “similarities”, being closely connected to associa-
tion matrices that were studied before.

There are also some differences in interpretations. First, in pattern recognition
applications it is assumed that the number of features is huge — typically the
number of samples is lower than the number of features, k ≤ n. Because of this,
the kernel matrices, for example, are calculated “horizontally” for the sample
vectors. Note that the covariance properties remain here essentially the same,
only the matrix dimensions become lower.

It is also the objective — classification rather than regression — that means that
there are some complications. After all, the adaptation is necessarily nonlin-
ear and iterative: It is only those samples (“support vectors”) that are located
nearest to the decision boundary that are of essence in classifier training, the
other samples are automatically correctly classified. The SVM algorithm maxi-
mizes the error margin; it maximizes the minimum distance between the support
vectors and the separating hyperplane.

The SVM’s are not concentrated on here in more detail. Perhaps it suffices
to say that — despite its mathematically simple and elegant ideas, it often
outperforms more sophisticated nonlinear approaches.



212 Appendix A. Structure from Data

Computer exercises

1. You can test the behaviors of different clustering algorithms by using
the analysis and data construction routines in Regression Toolbox for
Matlab. For example, you can try the following commands:

DATA = dataClust(3,5,50,20,100); % See "help dataclust"
clustersKM = regrKM(DATA,5);
regrShowClust(DATA,clustersKM);
clustersEM = regrEM(DATA,5);
regrShowClust(DATA,clustersEM);

2. Extend the K-means algorithm regrKM in the Regression Toolbox so
that it approximately implements the Batch-SOM algorithm. For simplic-
ity, you can restrict to one-dimensional maps, so that the clusters c − 1
and c + 1 are the nearest neighbors of the cluster number c.


