
Appendix B

Structure into Data

Above, the data was analyzed to find structures, clusters or classes. In this
appendix it is assumed that there already exists some knowledge about the
system where the data is coming from, and this structural knowledge is applied
to enhance the measurements, to get back to the actual behaviors beyond the
noisy observations.

There are different kinds of structures that can be utilized: First, there is the
physical structure, including not only the actual system structure but also the
hierarchic structure determined by the instrumentation of the measurement de-
vices; second, there is the mathematical structure as determined by theoretical
dependencies among variables; and, third, the observed a posteriori structure
among the measurements themselves can be utilized. Each of these alternatives
is illustrated separately in what follows — what is possible and what is not
is very much dependent of the practical system being modeled. Here, only a
glimpse into these issues can be given, introducing the challenges and possibili-
ties.

The data is manipulated so that the structural constraints are automatically
taken care of when models are constructed for that data. Exploitation of
the structures typically introduces new constraints among variables; these con-
straints become visible in the degrees of freedom in the data. In some cases
this reduction in degrees of freedom is reflected as explicit reduction of the data
vector dimension. However, if this is not done, explicitly reducing the degrees
of dreedom in the data makes the data linearly dependent and collapses the
analyses that are based on invertibility of covariance matrices — it turns out
that multivariate methods are specially valuable when modeling that data.

B.1 Data reconciliation

The system structure and and measurement variables are, of course, closely
linked together. The system structure and its parameters determine what is
being measured; on the other hand, these measurement realizations are used
to determine the parameters. This report mainly concentrates on the issue
of how to utilize the measurements to determine the system structure (or, at
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least, its parameters). In this appendix, the known a priori structure is used to
determine (or adjust) the measurements: Understanding of the physical system
structure is utilized for trying to reconstruct the actual variables beneath the
noisy measurement data — what the data values probably should have been.
This kind of interference in the actual measurements is called data reconciliation.

Assume that vector ν represents the noisy measurements, and v is the vector
of polished variable values after the structural constraints have been taken into
account. The problem of finding variable values v near to measurements, subject
to a set of (linear) constraints, can be written in the Lagrangian framework as

Minimize 1
2 · (ν − v)T R−1(ν − v)

when Γv = γ.
(B.1)

Here it is assumed that the measurements ν are distributed normally around the
(unknown) correct values v having covariance matrix R; minimizing the above
criterion gives the maximum likelihood estimates for v (see Chapter 2). The
linear constraints are expressed in the form Γv = γ, where Γ and γ are a matrix
and a vector of compatible sizes.

Note that even if the measurements were exactly correct, delivering the mo-
mentary variable values with no error at all, data reconciliation can still be
motivated: The measurements only give information of temporary nature, they
are not necessarily representative, they do not necessarily deliver essential in-
formation. It is the cumulative effect that is relevant; how the quantity has
affected the system behavior over the longer sampling interval.

To apply the Lagrangian methodology, one can first construct the Hamiltonian
as

J(v) =
1
2
· (ν − v)T R−1(ν − v) + μT · (Γv − γ). (B.2)

Note that each constraint equation (as determined by individual rows i in Γ and
γ) has a multiplier μi of its own; above, this set of constraints has been collected
into a single matrix expression, μi’s being collected in vector μ. Minimizing the
Hamiltonian gives the following expression for the gradient:

dJ(v)
dv

= −R−1(ν − v) + ΓT μ = 0, (B.3)

resulting in

v = ν −RΓT μ. (B.4)

For eliminating the other unknown μ from the above expression, one needs
to utilize the constraint equation Γv = γ. Recognizing that when (B.3) is
multiplied from the left by ΓR, the only term with v can be substituted, resulting
in

μ =
(
ΓRΓT

)−1
(Γν − γ), (B.5)

so that one finally has (assuming that ΓRΓT is invertible)

v = ν −RΓT
(
ΓRΓT

)−1
(Γν − γ). (B.6)
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It is evident that if the measurements ν fulfill the constraints, so that Γν = γ,
these values are directly transferred to v, otherwise they are modified accord-
ing to maximum credibility as expressed in the above formula. Note that the
above derivation only modifies data, and constraints directly on the final model
parameters cannot be given — see Section B.1.1.

As an example, look at Fig. B.1: Because no accumulation is possible in this
subsystem, there must hold

Q1 + Q2 = Q3. (B.7)

Assuming that the flow values are the only available measurements, so that

ν =
(

Q̃1 Q̃2 Q̃3

)T
, (B.8)

one has a constraint that can be expressed as

Γ =
(

1 1 −1
)

with γ =
(

0
)
. (B.9)

If there are various measurements of the flows from different time instants,
similar constraints have to be written for each time instant separately.

Often the variables are not linearly separable, and the above data reconciliation
approaches cannot directly be applied. However, often such problems can still be
(approximately) solved. For example, assume that also the concentration values
are measured in Fig. B.1, and these values should also be polished. Now the
dependencies between variables are highly nonlinear: When the mass balance
equations are constructed, in addition to the above volume balance (B.7), one
has another weighted average constraint for the solutions:

Q1C1 + Q2C2

Q1 + Q2
= C3. (B.10)

This expression is nonlinear in variables, if all of the measurements are studied
simultaneously; on the other hand, if the problem is divided in two separate
(suboptimal) optimization tasks, both of these problems are linear. This means
that one first solves for the new values for the flow variables as shown above,
and when these values are regarded as fixed, one has in the second phase the
measurement vector

ν =
(

C̃1 C̃2 C̃3

)T
, (B.11)

and the mass balance constraint can then be expressed (using the already fixed
values for Qi’s) as

Γ =
(

Q1
Q1+Q2

Q1
Q1+Q2

−1
)

with γ =
(

0
)
. (B.12)
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The final variable vector v can be reconstructed from these data; this approach
is not exactly optimal, because the concentration measurements cannot affect
the values of the flow variables.

As a more complicated example, study the system in Fig. B.2 that is character-
ized by the flows Q1 and Q2 and the volume V . One knows that the volume at
time κ is dependent of the net flow, or, more accurately, the change in volume,
V (κ + 1) − V (κ), is the same as the effective net flow, Q1(κ) − Q2(κ) multi-
plied by the sampling interval Δt. If one wants to capture all information that
concerns a specific time instant, the data vectors have to be of the form

ν(κ) =
(

Q̃1(κ) Ṽ (κ) Q̃2(κ) Ṽ (κ + 1)
)T

. (B.13)

It is now evident that successive measurement vectors ν(κ− 1), ν(κ), ν(κ + 1),
etc., are linked together because of the shared variables V , and the constraint
matrix (consisting of a band of non-zero entries) becomes huge:
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Note that it is not necessary that all of the quantities needed to construct the
structural constraints are measured. The elements in R corresponding to such
unmeasured variables can have high values, so that these dummy variables are
not weighted. The process can be iterated to reach convergence.

B.1.1 Explicit constraints on parameters

Above, it was the data that was assumed to have some internal structure; it is
also possible that the structure exists among the parameters of the final model.
For example, assume that the (dynamic single-output) system being modeled
can be expressed in the form

yi(k + 1) = ayi(k) + bu(k), (B.14)

or

yi(k + 1) =
(

a
b

)T (
y(k)
u(k)

)
= FT

i x(k), (B.15)



and, further,

Yi = XFi. (B.16)

Assuming that we know that this system represents an ideal mixer, we know
that the steady-state gain of the model must equal 1, meaning that there must
hold

a + b = 1. (B.17)

This can be expressed as(
1 1

)
Fi = 1, (B.18)

or, more generally, in the form

GFi = g. (B.19)

Here, G can also be a matrix and g can be a vector, assuming that there are
various constraints to be matched simultaneously. However, G must have more
columns than there are rows — otherwise there are no degrees of freedom left
for optimization.

To find a model for data, the same procedure as shown above can be applied
for constrained optimization:

Minimize 1
2 (Yi −XFi)

T (Yi −XFi)
when GFi = g.

(B.20)

The difference here as compared to the above derivation is that the intended
result cannot be assured by data manipulations alone; now the model construc-
tion has to be modified. In this sense, the results here differ from other examples
in this chapter, but being closely related to data reconciliation, this case is also
studied in this context. Differentiating the Hamiltonian

d
dFi

(
1
2 (Yi −XFi)

T (Yi −XFi)− μT (GFi − g)
)

= XT XFi −XT Yi −GT μ = 0,
(B.21)

giving

Fi =
(
XT X

)−1 (
XT Yi + GT μ

)
. (B.22)

To solve for the vector of Lagrange multipliers μ, one can first multiply the above
expression from the left by G, and observe that according to the constraint this
must equal g:

GFi = G
(
XT X

)−1
XT Yi + G

(
XT X

)−1
GT μ = g, (B.23)

so that

μ =
(
G
(
XT X

)−1
GT
)−1 (

g −G
(
XT X

)−1
XT Yi

)
, (B.24)



and, finally,

Fi =
(
XT X

)−1
(

XT Yi + GT
(
G
(
XT X

)−1
GT
)−1

(
g −G

(
XT X

)−1
XT Yi

))
.

(B.25)

From the outlook of this expression one can see that the nominal solution of the
least-squares minimization is modified by an additive factor that goes to zero if
the nominal solution fulfills the given constraint.

What if a more sophisticated regression approach is to be applied, so that the
mapping is to go through a subspace spanned by some matrix θ? Assume
that the data is first projected onto the latent basis by the mapping matrix
F 1 =

(
θT θ

)−1
θT , just as have been done earlier, so that Z = XF 1, but the

final mapping from the latent basis to the output, F 2
i , is modified from the

nominal least-squares fitting so that the overall mapping Fi = F 1F 2
i fulfills the

constraint GFi = GF 1F 2
i = g. It is then evident that exactly the above formula

(B.25) can be applied if one only selects

X ← Z = X
(
θT θ

)−1
θT , and

G ← GF 1 = G
(
θT θ

)−1
θT .

(B.26)

The expression (B.25) now actually only gives the mapping F 2
i , so that the final

result, or the mapping from input directly to output that fulfills the constraints,
with F 1 =

(
θT θ

)−1
θT , is

Fi = F 1
(
(XF 1)T XF 1

)−1(
(XF 1)T Yi + (GF 1)T

(
GF 1

(
(XF 1)T XF 1

)−1 (GF 1)T
)−1

(
g −GF 1

(
(XF 1)T XF 1

)−1 (XF 1)T Yi

))
.

B.2 Observing functional hierarchy

Different quantities are measured in different ways, using different kinds of de-
vices. Typically, there is some measurement error present, and one can try to
enhance the quality of the data by utilizing various independent (even though
somewhat redundant) devices for measuring the same quantity. The number of
measurements grows, but — as has been shown — special means are developed
to make the models tolerate high dimensionality.

However, the more or less mechanical approaches that were recommended for
preprocessing the wealth of measurements do not take into account the func-
tional structure between individual measurements, and the results may be un-
optimal. For example, in Chapter ?? it was said that a good approach to reach
well-conditioned data is to make the measurements all have the same variance
— then the information available from different channels is best balanced. This
is a good rule of thumb — but it can be considerably enhanced if additional
information is available.
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Figure B.3: Hierarchy among measurements

Look at Fig. ??. It is assumed there that a subset of measurements together try
to capture a single physical quantity; the reliability of different measurements (as
characterized by the measurement variance) may be different. However, assum-
ing that the devices are independent, all of them deliver some fresh information,
and also the less reliable measurements should contribute in the determination
of that quantity.

Study an example where n zero-mean measurements of the same quantity v
are available, so that vi = νi + ei for all 1 ≤ i ≤ n. All measurements have
characteristic noise properties, so that the variances var{ei} may vary between
measurements; it is assumed that all measurements are unbiased. How should
one scale these measurements to reach the best possible estimate v̂ =

∑n
i=1 wivi

for v? Scaling of the variables means that the variances are also multiplied, so
that var{v̂} =

∑
i var{wivi} =

∑
i w2

i · var{vi}. Minimization of the overall
variance when the sum of weights is fixed, results in the Lagrangian formulation
(see page 20)

{
f(w1, . . . , wn) =

∑n
i=1 w2

i · var{vi}, and
g(w1, . . . , wn) = 1−∑n

i=1 wi.
(B.27)

The former expression tries to minimize variance, whereas the second expression
keeps the estimate v̂ unbiased, the sum weights equalling unity. This problem
formulation gives

J(w1, . . . , wn) =
n∑

i=1

w2
i · var{vi}+ λ ·

(
1−

n∑
i=1

wi

)
, (B.28)

so that⎧⎪⎪⎨
⎪⎪⎩

d J(w1,...,wn)
d w1

= 2w1 · var{v1} − λ = 0
...

d J(w1,...,wn)
d wn

= 2wn · var{vn} − λ = 0.

(B.29)

Because λ is the same in all of the above equations, it turns out that in the



optimum there must hold for all i

wi · var{vi} = constant. (B.30)

This is only possible if the weight is inversely proportional to the corresponding
error variance. The optimal weighting between the measurements can also be
accomplished as

v̂ = α ·
(

1

var{v1} · · · 1

var{vn}
)
· ν. (B.31)

Essentially, forgetting the scalar normalization factor α, the measurements are
divided by the observed variances. It seems that division by the standard devi-
ations

√
var{vi}, or normalization of the measurement variances to unity — as

proposed later — is not the best way to determine the measurement scaling in
this kind of a sensor fusion case, where the subset of measurements are tightly
coupled together.

Note that still better estimates could be achieved, if not only the variances,
but also the covariances between measuring devices were taken into account.
In such case, the sensor fusion can best be carried out by applying principal
component analysis (see Chapter 5) for the subset of measurements alone, or, if
there is additionally some dynamics in the measurements, by applying Kalman
filter (see Chapter 9.1). This means that it is not necessary (not even wise) to
do all data processing in a centralized manner; if there are clearly independent
data analysis subtasks that can be carried out separately, implementing this
kind of hierarchical structure in the data processing enhances the overall system
robustness and transparency.

B.3 Dimensional analysis

In addition to the above considerations concerning physical structure among
the measurements, mathematical structure can in some cases also be utilized in
a (semi)automatic manner.

Dimensional analysis utilizes the theoretical compatibility properties among
variables having different domains: The units have to match to result in mathe-
matically valid expressions. All of the measurements do have some mathematical
structure as expressed in terms of basic SI units — distances are written in me-
ters (m), velocities are written as distances divided by time intervals (m/sec),
etc. Only such multiplicative combinations of variables are allowed that make
all dimensions among additive terms match with each other.

However, to utilize the above idea in practice, one has to make strong assump-
tions about structure among the variables. It is assumed that the dependency
among the n variables can be written in the following form:

νf1
1 · · · · · νfn

n = (dimensionless) constant. (B.32)

This means that the model structure has to be multiplicative, and no additive
terms can be allowed in the model (see Sec. ??). In this case it is only some



distinct combinations of the exponents (parameters) fi that make the units
compatible in (B.32), and this fact is now extensively utilized: Determine a set
of parameters so that their all combinations result in valid expressions.

The ideas of dimensional analysis are best explained through an example. As-
sume that the pressure drop in a tube, Δp, is a function of the tube length l, its
diameter d, viscosity of the fluid μ, average speed of the fluid w and its density
ρ, so that there exists some function

g(l, d, μ, ρ, w, Δp) = 0. (B.33)

How to find the functional dependency between the variables based on measure-
ment data? To proceed in the spirit of dimensional analysis, one has to assume
that — according to (B.32) — that there holds

lf
′
1 · df ′

2 · μf ′
3 · ρf ′

4 · wf ′
5 ·Δpf ′

6 = (dimensionless) constant. (B.34)

In principle, even though the functional structure has already been considerably
constrained, huge amounts of measurements would still be needed to find all six
f ′

i parameters (see Sec. ??). Each variable has the unit of its own, though,
and they cannot be freely combined; this reduces the degrees of freedom in the
search space. Let us study these units:

Variable Unit
Length l [l] = m
Diameter d [d] = m
Viscosity μ [μ] = kg ·m−1 · sec−1

Density ρ [ρ] = kg ·m−3

Velocity w [w] = m · s−1

Pressure drop Δp [Δp] = kg ·m−1 · sec−2.

In these expressions, only three basic units are found: meter m, kilogram kg,
and second sec. It can be shown (as originally shown in [6]) that if there exist
n0 basic units among the n variables, the degrees of freedom of the formula can
be spanned using only n − n0 artificial dimensionless variables: The variables
increase the degrees of freedom, whereas each basic unit introduces a constraint
of its own, reducing the degrees of freedom by one.

Intuitively, the idea is that if all variables that are manipulated are dimension-
less, they can be freely multiplied together without problems emerging due to
compatibility; any values for exponents are valid (from the mathematical point
of view). In this case, one should find those 6− 3 = 3 dimensionless variables
vi, so that the same functionality as in (B.33) can be reached in the form

g′(v1, v2, v3) = 0, (B.35)

or, more specifically, solving (B.34) for v3, for example,

v3 = f0 · vf1
1 · vf2

2 . (B.36)

When searching for the dimensionless variables vi, there are various ways to
proceed — the methods and also the results are not unique. One practice that



results in easily manageable expressions is to first select n−n0 variables that one
thinks are the most relevant, and have the dimensionless variables specifically
reflect these (note that the rest of the variables have to contain all base units).
For example, if one now wants to find a model for pressure drop, it is reasonable
to select Δp among the relevant variables; additionally, let us select l and w.
This means that, according to [6], the dimensionless variables are constructed
as ⎧⎨

⎩
v1 = ρφ11μφ12dφ13 · l
v2 = ρφ21μφ22dφ23 · w
v3 = ρφ31μφ32dφ33 ·Δp.

(B.37)

The exponents φij are now selected so that the units of vi become dimensionless:

⎧⎪⎨
⎪⎩

[v1] =
(
kgm−3

)φ11 (kgm−1sec−1
)φ12 (m)φ13 ·m = kg0m0sec0

[v2] =
(
kgm−3

)φ21 (kgm−1sec−1
)φ22 (m)φ23 ·msec−1 = kg0m0sec0

[v3] =
(
kgm−3

)φ31 (kgm−1sec−1
)φ32 (m)φ33 · kgm−1sec−2 = kg0m0sec0,

or ⎧⎪⎨
⎪⎩

(kg)φ11+φ12 · (m)−3φ11−φ12+φ13+1 · (sec)−φ12 = kg0m0sec0

(kg)φ21+φ22 · (m)−3φ21−φ22+φ23+1 · (sec)−φ22−1 = kg0m0sec0

(kg)φ31+φ32+1 · (m)−3φ31−φ32+φ33−1 · (sec)−φ32−2 = kg0m0sec0.

From these one can construct a linear set of equations, and the solution for this
set becomes⎧⎨

⎩
φ11 = 0
φ12 = 0
φ13 = −1,

⎧⎨
⎩

φ21 = 1
φ22 = −1
φ23 = 1,

and

⎧⎨
⎩

φ31 = 1
φ32 = −2
φ33 = 2.

(B.38)

The dimensionless variables also are⎧⎪⎨
⎪⎩

v1 = ρ0μ0d−1 · l = l
d

v2 = ρ1μ−1d1 · w = wdρ
μ

v3 = ρ1μ−2d2 ·Δp = Δpd2ρ
μ2 .

(B.39)

Expression (B.36) can then be written as

(
d2ρΔp

μ2

)
= f0 ·

(
l

d

)f ′
1

·
(

wdρ

μ

)f ′
2

. (B.40)

The original problem has been considerably simplified. The expression can be
further reduced if there is additional information available: For example, if it is
known that the pressure drop is linearly proportional to the tube length, instead
of having two separate variables, one can introduce a new independent variable

ξ = Δp/l (B.41)



having the unit kgm−2sec−2. After this, there only exist n = 5 independent
variables, and one only needs two dimensionless variables.

It seems that the dimensionless variable v2 above (accidentally) has the defi-
nition of the Reynold’s number that is familiar from fluid mechanics. This is
typical: One often ends up having the same variables when using dimensional
analysis — there exist much less freedom among dimensionless variables than
there exist dimensioned variables.

It needs to be remembered that this astonishing reduction in the number of
variables has its price: First, the assumed functional form (B.34) must be ap-
propriate; second, note that the whole construction collapses if there are, in
addition to the variables, some constants that do have some dimension. It
seems, however, that in fluid mechanics, for example, this kind of assumptions
hold, and dimensional analysis is a standard technique in those fields.

Note that in later phases in modeling (as in control engineering in general) the
units of the variables are ignored altogether.

B.3.1 Fixing missing data

The above data manipulations were (more or less) well motivated, because the
information that was utilized for modifying the data was additional, received
from independent external sources — from our a priori understanding of the
physical or mathematical structure of the system being studied. This last section
here, on the other hand, utilizes for modifying the data a posteriori structure,
determined using a model that has been estimated (as was explained in earlier
chapters) by using that same data. This means that the steps of data fixing
and model construction become an iterative process with some kind of positive
feedback1.

When using the computer, all data structures have to be filled in, there must be
no inhomogeneity in the data. In practice, one often has missing values among
measurements, meaning that some of the variables vi are unknown; this may be
caused, for example, by measurement problems. In the data such problems are
often reflected as outliers (see next chapter), lone samples far from the nominal
distribution, and it is reasonable to eliminate such erroneous values from the
data. however, if there is scarcity with data, or if a contiguous sequence of
data is needed for modeling purposes, it may be reasonable to try and fix the
incorrect variable values, not to have a “hole” in the data set.

The traditional approach is to substitute the missing values by some kind of
average values, either using the average over the whole data set, or calculating
the average between the predecessor and the successor (assuming that the same
quantity has been measured various times). However, it is clear that such ap-
proximations can be extremely crude, and the data distribution may become
distorted, resulting in biased models.

The missing value estimate can also be refined iteratively, so that the model

1It needs to be kept in mind that fixing data in this way can be extremely dangerous:
Using one’s intuition about what the data should look like, and using such “tailored” data for
modeling, makes the model follow this intuition — however incorrect the assumptions were;
fresh data should be used where possible!



will be minimally affected by the errors in the fixed variables. One starts with
a crude approximation, and step by step makes that value more appropriate, or
less conflicting with the other measurements.

As will be shown later, the models that will be constructed later in this report
essentially consist of one single matrix F that tries to map a subset of variables
vin onto another subset of variables vout, so that there should hold vout = FT vin.
Assume that the regression model with the mapping matrix F̃ has been con-
structed using crudely fixed, incorrect data. Then the reconstruction error (the
data vectors assumedly containing fixed data in some entries) can be written as

e = vout − F̃T vin =
(

Im −F̃T
) ·( vout

vin

)
= Mv. (B.42)

Now, one can rearrange the variables in v so that all variables to be fixed are
collected on top, no matter if they belong to the input or output variables.
Note that the rows in the matrix M also need to be reordered accordingly. This
rearranged set of equations can be written as

e =
(

MNO MOK

) ·( vNO

vOK

)
, (B.43)

or

e = MNOvNO + MOKvOK. (B.44)

The variables in vOK are assumed to be known a priori, whereas the variables
in vNO should be modified to better match the model. The next approximation
for the missing variables to be fixed can be found when such new values are
selected that the matching error e is minimized, so that one has

d(eT e)
d vNO

= d
d vNO

(MNOvNO + MOKvOK)T (MNOvNO + MOKvOK)
= d

d vNO

(
vT

NOMT
NOMNOvNO + vT

NOMT
NOMOKvOK

+ vT
OKMT

OKMNOvNO + vT
OKMT

OKMOKvOK

)
= 2MT

NOMNOvNO + 2MT
NOMOKvOK

= 0.

This gives

vNO = − (MT
NOMNO

)†
MT

NOMOKvOK. (B.45)

So, having found better approximates for the missing values, a new model can
be constructed, where the error due to the missing data should be smaller; this
refinement procedure can be continued until the parameters converge. The more
there are missing values, the more probably the process converges in some local
rather than global minimum. Note that the above pseudoinverse may be rank
deficient, if too many variables are unknown in a single sample.

Above, it was assumed that one can concentrate on a single issue at a time
— now, the data was fixed utilizing the knowledge of some existing structures,



and it is assumed that other issues, like constructing the actual model, can be
concentrated on later, separately. The same step-by-step approach has been em-
ployed troughout this report, introducing new ideas only after the motivation for
them can be understood; this understanding being engineering-like “hands-on”
understanding rather than mathematically exhaustive mastering of details. Of
course, some level of iteration cannot be avoided: It is clear that in engineering
work iteration is necessary — on both conceptual and practical levels — be-
cause more can be found in the underlying issues if there is some understanding
of the entity. The linear methods that have been elaborated on facilitate fast
execution times, so that different kinds of iterative refinement schemes become
feasible.



Computer exercises

1. Define original data and constraints as follows:

v = [1,1,1]’;
R = eye(3);
G = [1,1,1];
g = 1;

Vary the covariance matrix changing the first variance between zero and
very high values and study the results:

R(1,1) = input(’Give variance of the first measurement: ’);
RegrReconc(v,R,G,g)

2. Test the outlier detection using, for example, the following commands:

[X,Y] = dataxy(10,2,2);
X(1,1) = 10;
outl([X,Y]);

Iteratively fix the missing value of the previous exercise by the following
commands:

Wx = ones(size(X));
Wy = ones(size(Y));
Wx(1,1) = 0;
for i = 1:5

F = mlr(X,Y);
[X,Y] = fixval(X,Y,F,Wx,Wy)

end

What may happen in the fixing process if there are too many degrees of
freedom, say,

[X,Y] = dataxy(10,5,5);
X(1,1) = 10;


