
Part II

Practical Toolbox

227





229

About the Regression Toolbox

One reason why data-oriented methods have become so popular during the last
years is the availability of high-capacity computers and efficient software tools.
There is a wealth of alternative tools available — different kinds of tools for
different needs.

There exist many ways to categorize the software tools. One characterization
goes along specialization: For example, general-purpose programming languages
like C++ and Java make it possible to implement any algorithm — if there is
enough time available. Specialized program products (like SIMCA, etc.) make it
easy to do the standard operations on data appropriately; however, one is bound
to the ready-to-use routines. Matlab is there in between, offering a programming
framework for implementing generic algorithms that can directly operate on
high-level concepts from linear algebra. Based on this Matlab platform, various
more or less sophisticated toolboxes have been implemented that are tailored for
special purposes: For example, the following toolboxes are available, either in
public domain or commercially:

• Statistics Toolbox (indeed, various versions exist) for statistical data
analysis

• PLS Toolbox for PCA/PLS modeling, etc.

• Chemometrics Toolbox for model calibration, etc.

• System Identification Toolbox for analysis of dynamic systems.

Additionally, there exist dozens of toolboxes that concentrate on some specific
approach, like Neural Networks Toolbox, Optimization Toolbox, FastICA
Toolbox, etc. It seems that as these toolboxes have been deloped by professional
domain-area experts, they often are rather unpenetrable: They are difficult to
understand, meaning that they are difficult to modify or experiment with.

That is why, there is need for yet another toolbox. The implemented Regression
Toolbox for Matlab specially supports the theoretical derivations discussed in
Part 1. The routines are not polished or optimized. But because the used codes
are so simple, they can be understood also by a non-expert, and they can be
easily experimented with, and extended if needed.

Just as in the theoretical discussions before, the main goal in the Toolbox is to
present all methods in a homogeneous framework, and to show how simple all
the algorithms (in principle) are. The routines in this Toolbox are not intended
for professional use.

Installation

The Regression Toolbox version 1.1 can be downloaded through the address
http://saato014.hut.fi/hyotyniemi/publications/01 report125.htm.

There are two compressed files, one for the commands, and one for the accom-
panying data for experimenting. The compressed files have to be uncompressed



230

using WinZip, for example, and the files should be expanded to a separate tool-
box folder.

Within the Matlab environment, the search path has to be modified so that
the toolbox folder is included (preferably in the beginning of the search path).
After that, the commands should be operational. The toolbox was developed in
the Matlab version 5.3 environment, and the compatibility with other versions
is not guaranteed; however, only the very basic functionality of Matlab is used.

Standard Matlab style command line help scripts are supplied for all routines.
No special user interface is available; the commands are run from command
line (because of this, the Toolbox may be operational also in other versions of
Matlab).



231

Commands at a glance

The Regression Toolbox consists of the following commands (summarized here
in not in alphabetical but in “logical” order). Each of the commands is explained
in more detail in the attached Reference Guide. The help command of Matlab
is available for on-line use.

Preprocessing commands

◦ regrCenter: Mean centering of data

◦ regrScale: Normalization, variable variances getting scaled

◦ regrWeight: Weighting of data samples

◦ regrWhiten: “Whitening” of data: covariance becomes identity matrix

◦ regrFixval: Iterative fixing of missing data values.

Cluster management

◦ regrFDA: Fisher Discriminant Analysis for distinguishing between clusters

◦ regrForm: Histogram equalization (or deformation) model construction

◦ regrDeform: Histogram equalization model application

◦ regrEM: Expectation Maximization clustering

◦ regrKM: K-Means clustering of data

◦ regrOutl: Visual outlier detection.

Structure refinement

◦ regrPCA: Standard Principal Component Analysis

◦ regrPLS: Partial Least Squares analysis, formulated as an eigenproblem

◦ regrCR: Continuum regression basis determination

◦ regrCCA: Canonical Correlation Analysis

◦ regrICA: Independent Component Analysis

◦ regrRBFN: Radial Basis Function Network construction.

Model construction and regression

◦ regrMLR: Multi-Linear Regression

◦ regrMLRC: Multi-Linear Regression with linear constraints

◦ regrOLS: Orthogonal Least Squares algorithm

◦ regrTLS: Total Least Squares regression

◦ regrRR: Ridge Regression

◦ regrRBFR: Radial Basis Function Regression.



232

Functions for dynamic systems

◦ regrBal: Balancing and reducing a dynamic state-space system

◦ regrCyb: Iterative “cybernetic regression”

◦ regrIdent: Black-box identification of ARX models

◦ regrSSI: SubSpace Identification of dynamic systems

◦ regrSSSI: Stochastic SubSpace Identification of dynamic systems.

Iterative demonstration algorithms

◦ regrCYB: “Cybernetic” adaptation of PCA

◦ regrFACTOR: Factor analysis applying the neocybernetic approach

◦ regrHAH: Hebbian - Anti-Hebbian regression

◦ regrPPCA: PCA using the power method

◦ regrGHA: PCA using the Generalized Hebbian Algorithm

◦ regrIICA: “Interactive” ICA.

Analysis and visualization

◦ regrP: Fit data against a Gaussian distribution

◦ regrCrossval: Cross-validation of the model

◦ regrShowClust: Visualize the structure of clustered data

◦ regrKalman: Implement discrete-time Kalman filter

◦ regrKalm: Implement stochastic discrete-time Kalman filter

◦ regrAskOrder: Visual tool for model order determination.

Test material

◦ dataXY: Generate random input-output data

◦ dataClust: Generate random clustered data

◦ dataIndep: Generate data consisting of independent signals

◦ dataDigits: Handwritten digits (Warning: Large file)

◦ dataDyn: Generate random dynamic data

◦ dataHeatExch: Heat exchanger data

◦ dataEmotion: Voice signal data (Warning: Large file).



233

dataClust

Function generates random clustered data.

Syntax

[X] = dataclust(n,N,kk,cm,cd)
[X] = dataclust(n,N,kk,cm)
[X] = dataclust(n,N,kk)
[X] = dataclust(n,N)
[X] = dataclust(n)
[X] = dataclust

Input parameters

◦ n: Data dimension (default 3)

◦ N: Number of clusters (default 2)

◦ kk: Data samples in each cluster (default 100)

◦ cm: Deviation of the cluster centers (default 1)

◦ cd: Cluster spread, “longest” axis vs. “shortest” (default 1)

Return parameter

◦ X: Data matrix (size kk · N × n)

Comments

The cluster centers are normally distributed around origin, the centers having
standard deviation cm.

The individual clusters have internal normal distributions determined by param-
eter cd: If this ratio between the distribution principal axes is 1, the clusters are
circular. Otherwise, the standard deviations in randomly selected orthogonal
directions are determined so that the deviation widths are equally spaced on
the logarithmic scale, the ratio between widest and narrowest deviation being
cd. The determinant of the covariance matrix is always 1.



234

dataDigits

Challenging data: Handwritten digits (thanks to Jorma Laaksonen, Dr.Tech.)

Syntax

datadigits

Comments

Running the command defines the 500 × 256 matrix DIGITS containing 500
samples of handwritten digits in a 16×16 grid. Each row represents one sample,
packed in a vector row by row; this means that the data can be visualized in
the following way:

digit = DIGITS(index,:);
feature = zeros(16,16);
for j = 1:16

feature(j,:) = digit((j-1)*16+1:j*16);
end
colormap(gray);
imagesc(feature);

Figure B.4: Index 1: Example of the digit “0”



235

dataDyn

Generate random data coming from a state-space system.

Syntax

[U,Y] = datadyn(n,nu,m,k,sigma)
[U,Y] = datadyn(n,nu,m,k)
[U,Y] = datadyn(n,nu,m)
[U,Y] = datadyn(n,nu)
[U,Y] = datadyn(n)
[U,Y] = datadyn

Input parameters

◦ n: State dimension (default 1)

◦ nu: Input dimension (default 1); see below

◦ m: Output dimension (default 1)

◦ k: Number of data samples (default 100)

◦ sigma: Standard deviation of the noise (default 0)

Return parameters

◦ U: Input sequence (size k × ν)

◦ Y: Output sequence (size k × m)

Comments

Function generates sequences of random dynamical data, starting from zero
initial condition. Parameter sigma determines all the noise processes: The
standard deviation of the state noise and the measurement noise.

If the input parameter nu is zero, the system has no inputs, being driven by a
stochastic process; if nu is vector or matrix, this data is directly interpreted as
the input data.



236

dataEmotion

Command file defines sound signal samples.

Syntax

dataemotion

Comments

There are no expicit inputs or outputs in this command file; running it constructs
matrix DATA in the workspace. DATA contains five sequences of sound signals
from different sources; these sources are presented in DATA as separate columns.

dataemotion;
sound(DATA(:,1),16000);
sound(DATA(:,2),16000);
sound(DATA(:,3),16000);
sound(DATA(:,4),16000);
sound(DATA(:,5),16000);

Because no compression of the signals has been carried out, this file is rather
large.



237

dataHeatExch

Command file defines heat exchanger data.

Syntax

dataheatexch

Comments

There are no expicit inputs or outputs in this command file; running it constructs
two matrices X and Y in the workspace, where the input data X stands for
temperature measurements along the heat exchanger (see Fig. B.5), and the
matrix Y is interpreted as follows:

• Y1: Temperature of the incoming cold flow

• Y2: Temperature of the incoming hot flow

• Y3: Temperature of the outgoing cold flow

• Y4: Temperature of the outgoing hot flow.

This data is used, for example, as the training material for the Regreswsion
Course, and different regression methods can be experimented with and their
properties can be compared: A model should be constructed for estimating y
when x is given. Note that the causality structure is here blurred — the values
in y cannot be interpreted as being functions of x, but prediction models can
still be implemented.

x2 0x1

y2

y1

y4

y3

Figure B.5: “Instrumentation” of the heat exchanger



238

dataIndep

Function mixes independent data sources.

Syntax

[X] = dataindep(k,func1,func2,func3,func4,func5,func6)
[X] = dataindep(k,func1,func2,func3,func4,func5)
[X] = dataindep(k,func1,func2,func3,func4)
[X] = dataindep(k,func1,func2,func3)
[X] = dataindep(k,func1,func2)
[X] = dataindep(k,func1)
[X] = dataindep(k)
[X] = dataindep

Input parameters

◦ k: Number of data samples (default 1000)

◦ funci: If funci is string, it is evaluated as a function of time index k
(note that in the text this variable is called κ). There are some functions
directly available:

· ’f1’: Harmonic, xi(k) = sin(k/5)
· ’f2’: Saw-tooth, xi(k) = (rem(k, 27) − 13)/9
· ’f3’: “Strange curve”, xi(k) = ((rem(k, 23) − 11)/9)5

· ’f4’: Impulsive noise, xi(k) = binrand(k) · log(unifrand(k)), where
“binrand” and “unifrand” denote random binary and uniform se-
quences, giving two alternative values -1 or 1 and continuum of values
between 0 and 1, respectively

Default is func1=’f1’, func2=’f2’, func3=’f3’, and func4=’f4’.

Return parameter

◦ X: Data matrix (size k × n, where n is the number of selected functions)

Comments

Linear mixing, mean centering, and whitening is applied to the set of signals
automatrically.



239

dataXY

Function generates random input-output data.

Syntax

[X,Y] = dataxy(k,n,m,dofx,dofy,sn,sm)
[X,Y] = dataxy(k,n,m,dofx,dofy)
[X,Y] = dataxy(k,n,m)
[X,Y] = dataxy(k)
[X,Y] = dataxy

Input parameters

◦ k: Number of samples (default 100)

◦ n: Input data dimension (default 5)

◦ m: Output data dimension (default 4)

◦ dofx: Non-redundant input data dimension (default 3)

◦ dofy: Non-redundant output data dimension (default 2)

◦ sn: Input noise level (default 0.001)

◦ sm: Output noise level (default 0.1)

Return parameters

◦ X: Input data matrix (size k × n)

◦ Y: Output data matrix (size k × m)

Comments

This data is specially intended for visualizing the differences between MLR,
PCR, and PLS regression methods. There is redundancy in X , making problems
of MLR visible; but not all of the input variation explains the output, so that
the difference between PCR and PLS is also demonstrated.



240

regrAskOrder

Interactively determine the model order.

Syntax

[N] = regraskorder(LAMBDA)

Input parameter

◦ LAMBDA: Vector of latent vector weights

Return parameter

◦ N: Selected model order

Comments

Function plots the values in LAMBDA and lets the user select how many of the
latent variables will be used in the model construction.

This function is intended to be used only by other routines (regrPCA, regrCCA,
regrPLS, regrICA, regrTLS, regrBal, regrSSI, and regrSSSI) if the model
order is not explicitly determined.

Figure B.6: Selection of the model order. Note that the figure “X% of
maximum” only means how much of the absolute achievable maximum
is captured



241

regrBal

State-space dynamic system balancing and reduction.

Syntax

[Ared,Bred,Cred,theta,sigma] = regrbal(A,B,C,N)
[Ared,Bred,Cred,theta,sigma] = regrbal(A,B,C)

Input parameters

◦ A, B, C: System matrices

◦ N: Number of remaining states (optional)

Return parameters

◦ Ared, Bred, Cred: Reduced system matrices

◦ theta: State transformation matrix, z=theta’*x

◦ sigma: Hankel singular values

Comments

If the reduced model order is not given, graphical interaction with the user is
used (see regrAskorder).

If none of the states is dropped, the model is just balanced.



242

regrCCA

Canonical Correlation Analysis (CCA) model construction.

Syntax

[theta,phi,lambda] = regrcca(X,Y,N)
[theta,phi,lambda] = regrcca(X,Y)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ N: Number of latent variables (optional)

Return parameters

◦ theta: Input block canonical variates

◦ phi: Output block canonical variates

◦ lambda: Canonical correlation coefficients

Comments

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the Canonical Correlation Regression can easiest be
implemented as

F = regrmlr(X,Y,regrcca(X,Y));
Ytest = Xtest*F;



243

regrCenter

Function for mean centering the data.

Syntax

[X,barX] = regrcenter(DATA,barX)
[X,barX] = regrcenter(DATA)

Input parameter

◦ DATA: Data to be modeled

◦ barX: Point in space included in the model (optional)

Return parameters

◦ X: Transformed data matrix

◦ barX: Center of DATA

Comments

Returning to the original coordinates can be carried out as

Data = X + barX;



244

regrCR

Continuum Regression basis determination.

Syntax

[theta,lambda] = regrcr(X,Y,alpha,N)
[theta,lambda] = regrcr(X,Y,alpha)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ alpha: Continuum parameter from ≈ 0 (MLR) to 1 (PCR) through 0.5
(PLS)

◦ N: Dimension of the latent structure (optional)

Return parameters

◦ theta: Latent basis vectors

◦ lambda: Corresponding eigenvalues

Comments

The determination of the CR latent basis is not carried out exactly as explained
on page 98; the reason is that the powers of an k × k matrix should be calcu-
lated, resulting in an huge eigenvalue problem; on the contrary, a shortcut using
singular value decomposition is applied.

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the actual Continuum Regression can easiest be im-
plemented as

F = regrmlr(X,Y,regrcr(X,Y,alpha));
Ytest = Xtest*F;



245

regrCrossVal

Function for cross-validation of linear regression models.

Syntax

[E] = regrcrossval(X,Y,expr,seqs)
[E] = regrcrossval(X,Y,expr)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ expr: String form expression resulting in F , given X and Y

◦ seqs: How many cross-validation rounds (default k, meaning “leave-one-
out” cross-validation approach)

Return parameter

◦ E: Validation error matrix (size k × m)

Comments

Cross-validation leaves a set of samples out from the training set, constructs the
model using the remaining samples, and tries to estimate the left-out samples
using the model.

Parameter seqs determines how many continuous separate validation sets are
used; default is k, meaning that the model construction is carried out k times,
always with k − 1 samples in the training set.

In this routine, it is assumed that the string expr, when evaluated, returns the
mapping matrix F , so that Y = X · F . References within the string to input
and output blocks must be X and Y, respectively, no matter what are the actual
symbols.

Remember that validation of the constructed model with fresh samples is cru-
cial — otherwise MLR would always give the seemingly best model, explicitly
minimizing the cost criterion for the training data, even though its robustness
is weak.



246

regrCYB

Function that implements adaptation of data structures in the “neocybernetic
model”.

Syntax

[A,B,Uhat,Xbar] = regrCYB(U,A,B,lambda,S,nonlin,maskA,maskB)
[A,B] = regrCYB(U,A,B)

Input parameters

◦ U: Input data block (size k × ν)

◦ A: Feedback matrix A (n × n)

◦ B: Feedforward matrix B (n × ν)

◦ lambda: Forgetting factor (scalar)

◦ S: Sparsity - how many variables used

◦ nonlin: If non-zero, nonlinear cut modeling

◦ maskA: Masking matrix for A

◦ maskB: Masking matrix for B

Return parameters

◦ A: Modified feedback matrix A

◦ B: Modified feedforward matrix B

◦ Uhat: Estimate of the input

◦ Xbar: State variable sequence in balance

Comments

This routine implements the “neocybernetic model” in a simplified form (for
more information, see http://www.control.hut.fi/cybernetics). In the lin-
ear and non-sparse-coded form principal subspace analysis is carried out; if the
masking matrix maskA in adaptation of A is triangular, principal component
analysis results (accepting the default, the last feature will represent the most
significant principal component direction). Principal subspace analysis is now
iterative, no explicit data covariance matrix is constructed; in this sense, this
method can even be useful for analysis of very high-dimensional data, for ex-
ample, when doing image analysis:

dataDigits; % Loading challenging data
n = 10; % Dimension of latent basis
A = 0.01*eye(n);
B = 0.01*randn(n,size(DIGITS,2));



247

% Iteration repeated until convergence
[A,B] = regrCYB(DIGITS,A,B,0.8);
[A,B] = regrCYB(DIGITS,A,B,0.8);
...

After this, the pattern vectors are stored as columns in the data structure
(inv(A)*B)’. In the algorithm, the internal dynamics of a neocybernetic model
is abstracted away. What is more, the structure is streamline somewhat: Inter-
nal iterations are eliminated, making the Matlab implementation relatively fast.
However, these modifications can result in problems if nonlinearity is employed.
Specially, when employing the cut nonlinearity (nonlin = 1), it can be benefi-
cial to “invert” some of the features; assume that feature number i is stuck in
negative weights, so that there never holds xi > 0, one can make it active by
writing

invert = zeros(n,1); invert(i) = 1;
B = B - 2*(invert*ones(1,size(B,2))).*B;
A = A - 2*(invert*ones(1,size(A,2))).*A;
A = A - 2*(ones(size(A,1),1)*invert’).*A;



248

regrDeForm

Function for equalizing data distributions.

Syntax

[X,W] = regrdeform(DATA,defmatrix)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

◦ defmatrix: Matrix containing deformation information (see form)

Return parameters

◦ X: Data with (approximately) deformed distribution (size k × n)

◦ W: Validity vector containing “1” if measurement within assumed distri-
bution, “0” otherwise

Comments

Note that the histogram of the deformed data follows the intended distribu-
tion only with the resolution that was determined by the number of bins in the
equalization model construction function form. That is, if only 10 bins, for ex-
ample, are used, histograms plotted with higher resolution will still be unevenly
distributed (even for the training data).



249

regrEM

Function for clustering using Expectation Maximization algorithm.

Syntax

[clusters] = regrem(X,N,centers,equal)
[clusters] = regrem(X,N,centers)
[clusters] = regrem(X,N)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of clusters

◦ centers: Initial cluster center points (by default determined by K-means,
see km)

◦ equal: “1” if distributions within clusters are assumed equal (default “0”)

Return parameter

◦ clusters: Vector (size k × 1) showing the clusters (1 to N) for samples

Comments

Sometimes, for difficult combinations of clusters, the procedure may get stuck in
the clustering given by K-means algorithm; that is why, the initial centers can
be given also explicitly. Also, setting equal to “1” makes the algorithm more
robust; this can be utilized if there is only affinity difference between clusters.

Only the set membership information is given out; the actual properties for
cluster 1, for example, can be calculated as

cl = regrem(X,N)
count1 = sum(find(cl==1));
center1 = mean(X(find(cl==1),:))’;
covariance1 = X(find(cl==1),:)’*X(find(cl==1),:)/count1 ...

- center1*center1’;



250

regrFACTOR

Function that implements adaptation of data structures in the “neocybernetic
model”.

Syntax

[Exu,Uhat,Q] = regrFACTOR(U,Exu,Q,lambda,nonlin,XXref)
[Exu,Uhat,Q] = regrFACTOR(U,Exu,Q)

Input parameters

◦ U: Input data block (size k × m)

◦ Exu: Model matrix (format n × m)

◦ Q: “Stiffnesses” (diagonal matrix n × n)

◦ lambda: Forgetting factor (scalar, default no learning)

◦ nonlin: Nonlinearity applied (default “1”=true)

◦ XXref: Scalar/vector of xi variances (default levels at 1)

Return parameters

◦ Exu: Modified model matrix

◦ Uhat: Balance data estimate outside the system

◦ Q: Related to error covariances (diagonal matrix n × n)

Comments

This routine implements the “neocybernetic model” in a simplified form (for
more information, see http://www.control.hut.fi/cybernetics). Principal
subspace analysis is carried out, and within that subspace, sparse coding is
searched for. The code below shows this coding for the digit data:

% Load hand-written digits
dataDigit; U = DIGITS;

% Parameters
[k,m] = size(U);
n = 16; lambda = 0.9;

% Initialize model structures
Exu = 0.01*randn(n,m);
Q = 1*eye(n);

while 1 == 1
[Exu,Uhat,Q] = regrFACTOR(U,Exu,Q,lambda,1);



251

% Visualization
for i = 1:n
feature = zeros(16,16);
for j = 1:16, feature(j,:) = Exu(i,(j-1)*16+1:j*16); end
subplot(sqrt(n),sqrt(n),i); imagesc(feature); colormap(’hot’); drawnow;

end
end

Figure B.7: 16 factors extracted from the handwritten digits



252

regrFDA

Fisher Discriminant Analysis (FDA) for discriminating between classes.

Syntax

[theta,lambda] = regrfda(X,clusters,N)
[theta,lambda] = regrfda(X,clusters)

Input parameters

◦ X: Input data block (size k × n)

◦ clusters: Cluster index between 1 and N for all k samples (size k × 1)

◦ N: Number of discriminant axes (optional)

Return parameters

◦ theta: Discriminant axes (size n × N)

◦ lambda: Corresponding eigenvalues

Comments

If the number of discriminant axes N is not explicitly given, it is queried inter-
actively (see regrAskOrder).

The vector clusters can be constructed, for example, by the EM algorithm
(see em):

X = dataclust(3,2,50,5,5);
clusters = regrem(X,2);
theta = (X,clusters,1);



253

regrFixVal

Function tries to fix missing values matching data against model.

Syntax

[Xhat,Yhat] = regrfixval(X,Y,F,Wx,Wy)

Input parameters

◦ X: Data matrix to be fixed (size k × n)

◦ Y: Output matrix to be fixed (size k × m)

◦ F: Model matrix, assuming that Y = X*F

◦ Wx: Matrix containing “1” for each valid data in X (size k × n)

◦ Wy: Matrix containing “1” for each valid data in Y (size k × m)

Return parameters

◦ Xhat: Fixed input data matrix (size k × n)

◦ Yhat: Fixed output matrix (size k × m)

Comments

Function tries to fix uncertain elements in X and Y (as pointed out by zeros
in the matrices Wx and Wy, respectively) to have more plaussible values, so that
the reconstruction error E = Y −XF would be minimized. This procedure can
be repeated as meny times as needed:

for i = 1:10
F = mlr(Xhat,Yhat);
[Xhat,Yhat] = regrfixval(Xhat,Yhat,F,Wx,Wy);

end



254

regrForm

Function for “equalizing”, finding mapping between distributions.

Syntax

[defmatrix] = regrform(DATA,normdist)
[defmatrix] = regrform(DATA,bins)
[defmatrix] = regrform(DATA)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

◦ normdist for vector argument: Intended distribution form

◦ bins for scalar argument: Number of “bins”, data sections
(default distribution being Gaussian between −3σ to 3σ, number of bins
being 10 if no argument is given)

Return parameters

◦ defmatrix: Matrix containing deformation information. For each variable
(column) of DATA, there are the starting points of the data bins, and
between these there is the “steepness” of the distribution within the bin;
there are this kind of bin/steepness pairs as many as there are bins (and,
additionally, the end point of the last bin), altogether the matrix size being
2 · bins+ 1 × n.

Comments

Too special distributions, or if there are too many bins as compared to the
number of data, may result in difficulties in the analysis. These failure situations
are stochastic, being caused by a random process dividing samples in bins: This
means that retrial may help.



255

regrGHA

Principal Component Analysis using Generalized Hebbian Algorithm.

Syntax

[theta,lambda] = regrgha(X,N,gamma,epochs)
[theta,lambda] = regrgha(X,N,gamma)
[theta,lambda] = regrgha(X,N)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of latent variables to be extracted

◦ gamma: Step size (default γ = 0.001)

◦ epochs: Number of iterations (default 10)

Return parameters

◦ theta: Extracted eigenvectors (size n × N)

◦ lambda: Corresponding eigenvalues

Comments

As compared to regrPCA or even regrPPCA, convergence here is slow; however,
no explicit covariance matrix needs to be constructed.



256

regrICA

Eigenproblem-form Independent Component Analysis (ICA).

Syntax

[theta,lambda] = regrica(X,alpha,N)
[theta,lambda] = regrica(X,alpha)
[theta,lambda] = regrica(X)

Input parameters

◦ X: Input (whitened) data block, mixture of signals (size m × n)

◦ alpha: Type of signals being searched (default 1)

◦ N: Number of latent vectors (default all)

Return parameters

◦ theta: Independent basis vectors

◦ lambda: Corresponding eigenvalues

Comments

This function calculates independent components using an eigenproblem-oriented
approach called FOBI. The (prewhitened) data is modified so that the anoma-
lies in the distribution become visible in the second-order properties; this is
accomplished in the following way:

x′(κ) = ‖x(κ)‖α · x(κ)

It can be shown that for α = 1 the standard, kurtosis-based independent com-
ponent analysis results. Different values of α may emphasize different statistical
moments.

For α = 1, the kurtosis in direction θi can be calculated as λi − n − 2.



257

regrIdent

Identify SISO system recursively.

Syntax

[f] = regrident(u,y,n,lambda,f)
[f] = regrident(u,y,n,lambda)
[f] = regrident(u,y,n)

Input parameters

◦ u: Scalar input sequence (size k × 1)

◦ y: Scalar output sequence (size k × 1)

◦ n: System dimension

◦ lambda: Forgetting factor (default 1, no forgetting)

◦ f: Initial parameter vector (default zero)

Return parameters

◦ f: Final parameter vector

Comments

Very simple SISO identification algorithm based on the ARX model structure.
The structure of the model is

y(κ) = a1y(κ − 1) + · · · + any(κ − n) + b1u(κ − 1) + · · · + bnu(κ − n),

and the parameter vector is

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
an

b1

...
bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



258

regrIICA

“Interactive” Independent Component Analysis (ICA).

Syntax

[theta] = regriica(X)

Input parameter

◦ X: Input (whitened) data block, mixture of signals (size k × n)

Return parameters

◦ theta: Independent basis vectors

Comments

The method presented in Sec. 7.3.3 results, in principle, in n · (n2 + n)/2 provi-
sional independent components. This function lets the user interactively select
those that are most interesting.



259

regrKalm

Discrete time stochastic Kalman filter.

Syntax

[Xhat,Yhat] = regrkalm(Y,A,C,Rxx,Ryy,Rxy,x0)
[Xhat,Yhat] = regrkalm(Y,A,C,Rxx,Ryy,Rxy)

Input parameters

◦ Y: Output data block (size k × m)

◦ A, C, Rxx, Ryy, and Rxy: System matrices

◦ x0: Initial state (default 0)

Return parameters

◦ Xhat: State sequence estimate

◦ Yhat: Corresponding output estimate

Comments

The assumed stochastic system structure is

{
x(κ + 1) = Ax(κ) + ε(κ)
y(κ) = Cx(κ) + e(κ),

where the white noise sequences ε(κ) and e(κ) are characterized by the covari-
ance matrices E{ε(κ)εT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ε(κ)eT (κ)} =
Rxy.

This function augments the stochastic model and calls regrKalman function.



260

regrKalman

Discrete time Kalman filter.

Syntax

[Xhat,Yhat] = regrkalman(U,Y,A,B,C,D,Rxx,Ryy,Rxy,x0)
[Xhat,Yhat] = regrkalman(U,Y,A,B,C,D,Rxx,Ryy,Rxy)

Input parameters

◦ U: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ A, B, C, D, Rxx, Ryy, and Rxy: System matrices

◦ x0: Initial state (default 0)

Return parameters

◦ Xhat: State sequence estimate

◦ Yhat: Corresponding output estimate

Comments

The assumed stochastic system structure is

{
x(κ + 1) = Ax(κ) + Bu(κ) + ε(κ)
y(κ) = Cx(κ) + Du(κ) + e(κ),

where the white noise sequences ε(κ) and e(κ) are characterized by the covari-
ance matrices E{ε(κ)εT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ε(κ)eT (κ)} =
Rxy. The implementation of the procedure is very elementary — for example,
the Riccati equation is solved using a fixed-length iteration, meaning that for
badly conditioned matrices the results can be inaccurate.



261

regrKM

Function for determining the clusters using the K-means algorithm.

Syntax

[clusters] = regrkm(X,N,centers)
[clusters] = regrkm(X,N)

Input parameters

◦ X: Data to be modeled (size k × n)

◦ N: Number of clusters

◦ centers: Initial cluster center points (optional)

Return parameter

◦ clusters: Vector (size k × 1) showing the clusters for samples

Comments

If no initial cluster centers are given, the N first samples are used as centers.



262

regrMLR

Regression from X to Y, perhaps through a latent basis.

Syntax

[F,error,R2,stds] = regrmlr(X,Y,theta)
[F,error,R2,stds] = regrmlr(X,Y)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ theta: Latent basis, orthogonal or not (optional)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors (size k × m)

◦ R2: Data fitting criterion R2

◦ stds: Estimated standard deviations of the parameters (n × m)

Comments

This is the basic regression function in the Toolbox, used by most of the other
regression methods.

If no θ is given, least-squares mapping from X to Y is constructed; otherwise,
the data is first projected onto the latent basis, no matter how it has been
constructed.

The matrix stds has the same structure as the model matrix F , revealing the
estimated accuracies of the parameters. Depending on the assumed probability
distribution of the error, one can study whether the parameter value “0” is
plausible. If there is the latent structure θ defined, standard deviations are not
calculated.



263

regrMLRC

Regression from X to Y, perhaps through a latent basis, when there are addi-
tional linear constraints for parameters.

Syntax

[F,error,R2,stds] = regrMLRC(X,Y,G,g,theta)
[F,error,R2,stds] = regrMLRC(X,Y,G,g)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ G and g: Linear constraints in the form GF = g

◦ theta: Latent basis, orthogonal or not (optional)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors (size k × m)

◦ R2: Data fitting criterion R2

◦ stds: Estimated standard deviations of the parameters (n × m)

Comments

If no θ is given, least-squares mapping from X to Y is constructed; otherwise,
the data is first projected onto the latent basis, no matter how it has been
constructed. In both cases, the final mapping between the input and the output
fulfills the given constraints.



264

regrOLS

Orthogonal Least Squares (OLS).

Syntax

[F,error] = regrols(X,Y)

Input parameters

◦ X:Input data block (size k × n)

◦ Y: Output data block (size k × m)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors

Comments

Model construction is carried out using the QR factorization of X .



265

regrOutl

Interactive elimination of outliers.

Syntax

[W] = regroutl(X,W)
[W] = regroutl(X)

Input parameters

◦ X: Data to be modeled (size k × n)

◦ W: Old vector (size k × 1) containing “1” for valid samples (optional)

Return parameters

◦ W: New vector containing “1” for valid data (size k × 1)

Comments

Function eliminates outliers interactively. Feedback is given on the graphical
screen — mouse clicks toggle the status of the nearest point (“1” for valid data
and “0” for invalid), and the vector of these values W is returned.

Vector W can also be refined if it is given as input argument.

Outlier
points

Figure B.8: Outliers, lone samples



266

regrP

Fitting data against a Gaussian distribution.

Syntax

[p] = regrP(X1,X2)

Input parameters

◦ X1: Input data block determining the distribution (size k1 × n)

◦ X2: Data block to be fitted (size k2 × n)

Return parameters

◦ p: Probabilities for data in X2 to match X1

Comments

For each vector in X2, a probability value is returned — how well that vector
matches the assumedly Gaussian distributions determined by data in X1, or
“how probably a vector truly belonging to that distribution is farther from the
center than vector in X2 is”.

Assuming that x has normal distribution, the measure xT E{xxT }−1x has χ2

distribution, and this understanding is exploited.



267

regrPCA

Principal Component Analysis (PCA) model construction.

Syntax

[theta,lambda,Q,T2] = regrpca(X,N)
[theta,lambda,Q,T2] = regrpca(X)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of latent variables (optional)

Return parameters

◦ theta: Latent basis

◦ lambda: Variances in latent basis directions

◦ Q,T2: Fitting criteria Q and T 2 (sizes k × 1)

Comments

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the Principal Component Regression can easiest be
implemented as

F = regrmlr(X,Y,regrpca(X));
Ytest = Xtest*F;



268

regrPLS

Partial least Squares (PLS) model construction.

Syntax

[theta,phi,lambda] = regrpls(X,Y,N)
[theta,phi,lambda] = regrpls(X,Y)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ N: Number of latent variables (optional)

Return parameters

◦ theta: Input block latent basis

◦ phi: Output block latent basis

◦ lambda: Correlation coefficients (unnormalized)

Comments

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the actual regression can easiest be implemented as

F = regrmlr(X,Y,regrpls(X,Y));
Ytest = Xtest*F;



269

regrPPCA

Principal Component Analysis using iterative power method.

Syntax

[Z,L,iter] = regrppca(X,N,iterlimit)
[Z,L,iter] = regrppca(X,N)
[Z,L,iter] = regrppca(X)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of latent variables (optional)

◦ iterlimit: Maximum number of iterations (optional)

Return parameters

◦ theta: Eigenvectors

◦ lambda: Corresponding eigenvalues

◦ iter: Number of iterations needed

Comments

If there are eigenvectors with practically same eigenvalues, the convergence may
be slow.



270

regrRBFN

Radial Basis Function regression model construction.

Syntax

[rbfmodel,error] = regrrbfn(X,Y,clusters,sigma)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ clusters: Cluster index between 1 and N for all k samples, constructed,
for example, by K-means (see km)

◦ sigma: Distribution of the Gaussians

Return parameters

◦ rbfmodel: Matrix containing the model (see below)

◦ error: Prediction errors

Comments

The structure of rbfmodel is the following:

rbfmodel = [centers;sigmas;weights]

where

◦ centers: Vector (size n × N) containing cluster centers

◦ sigmas: Standard deviations in the clusters (size 1 × N)

◦ weights: Mappings (size m × N) from clusters to outputs

This routine can be used as:

model = regrrbfn(X,Y,regrkm([X,Y],N));
Yhat = regrrbfr(X,model);



271

regrRBFR

Radial Basis Function regression.

Syntax

[Yhat] = regrrbfr(X,rbfmodel)

Input parameters

◦ X: Input data block (size k × n)

◦ rbfmodel: Matrix containing the model

Return parameters

◦ Yhat: Estimated output data block (size k × m)

Comments

See regrRBFN.



272

regrReconc

Data reconciliation.

Syntax

[v] = regrreconc(v,R,G,g)

Input parameters

◦ v: Data vector (size n × 1)

◦ R: Measurement error covariance matrix (size n × n)

◦ G and g: Linear constraints in the form Gv = g

Return parameter

◦ v: Modified data vector

Comments

After this operation, the data vector fulfills the given set of linear constraints.



273

regrRR

Ridge Regression.

Syntax

[F,error] = regrrr(X,Y,q)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ q: “Stabiliaztion factor”

Return parameters

◦ F: Mapping matrix, so that Ŷ = X · F
◦ error: Prediction errors



274

regrScale

Function for normalizing data variances.

Syntax

[X,backmap] = regrscale(DATA,w)
[X,backmap] = regrscale(DATA)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

◦ w: Intended variable variances or “importances” (optional)

Return parameters

◦ X: Scaled data matrix (size k × n)

◦ backmap: Matrix for getting back to original coordinates

Comments

The original coordinates are restored as

DATA = X*backmap;



275

regrShowClust

Function for visualization of clusters.

Syntax

regrshowclust(X,c)
regrshowclust(X)

Input parameters

◦ X: Data matrix (size k × n)

◦ c: Cluster indices for data (optional)

Comments

Samples classified in different classes are shown in different colours. If only one
argument is given, one cluster is assumed.

The user is interactively asked to enter (in Matlab list form) the principal axes
onto which the data is projected. If only one number is given, the horizontal axis
is time k; if two or three axes are given, a two-dimensional or three-dimensional
plot is constructed. The three-dimensional view can be rotated using mouse.



276

regrSSI

Combined stochastic-deterministic SubSpace Identification (simplified)

Syntax

[A,B,C,D,Rxx,Ryy,Rxy] = regrssi(U,Y,maxdim,N)
[A,B,C,D,Rxx,Ryy,Rxy] = regrssi(U,Y,maxdim)

Input parameters

◦ U: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ maxdim: Assumed maximum possible system dimension

◦ N: System dimension (optional)

Return parameters

◦ A, B, C, D: System matrices

◦ Rxx, Ryy, Rxy: Noise covariances

Comments

If the number of states N is not explicitly given, it is queried interactively (see
regrAskOrder). The implementation of the ideas of subspace identification is
very simple, so that internally it is simple PCA that is applied, and Ridge
Regression is used for carrying out the internal mappings.

The assumed system structure is compatible with the following structure:

{
x(κ + 1) = Ax(κ) + Bu(κ) + ε(κ)
y(κ) = Cx(κ) + Du(κ) + e(κ),

where the white noise sequences ε(κ) and e(κ) are characterized by the covari-
ance matrices E{ε(κ)εT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ε(κ)eT (κ)} =
Rxy.



277

regrSSSI

Stochastic SubSpace Identification (simplified)

Syntax

[A,C,Rxx,Ryy,Rxy] = regrsssi(Y,maxdim,N)
[A,C,Rxx,Ryy,Rxy] = regrsssi(Y,maxdim)

Input parameters

◦ Y: Output data block (size k × m)

◦ maxdim: Assumed maximum possible system dimension

◦ N: System dimension (optional)

Return parameters

◦ A, C: System matrices

◦ Rxx, Ryy, Rxy: Noise covariances

Comments

If the number of latent states N is not explicitly given, it is queried interactively
(see regrAskOrder). The implementation of the ideas of subspace identification
is very simple, so that internally it is simple PCA that is applied, and Ridge
Regression is used for carrying out the internal mappings.

The assumed system structure is compatible with the stochastic Kalman filter
(see regrKalman):

{
x(κ + 1) = Ax(κ) + ε(κ)
y(κ) = Cx(κ) + e(κ),

where the white noise sequences ε(κ) and e(κ) are characterized by the covari-
ance matrices E{ε(κ)εT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ε(κ)eT (κ)} =
Rxy.



278

regrTLS

Total Least Squares regression.

Syntax

[F,error] = regrtls(X,Y)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors (size k × m)



279

regrWeight

Function for weighting the data.

Syntax

[X] = regrweight(DATA,w)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

◦ w: Data sample importances (size k × 1)

Return parameters

◦ X: Weighted data matrix (size k × n)

Comments

This function makes it possible to condition heteroscedastic data. Assuming
that invs contains the inverses of the sample-wise a priori error variances, the
following formulations can be employed:

theta = regrpca(regrweight(X,sqrt(invs)));
F = regrmlr(regrweight(X,sqrt(invs)),regrweight(Y,sqrt(invs)),theta);



280

regrWhiten

Function for whitening the data.

Syntax

[X,backmap] = regrwhiten(DATA)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

Return parameters

◦ X: Scaled data matrix (size k × n)

◦ backmap: Matrix for getting back to original coordinates

Comments

The original coordinates are restored as

DATA = X*backmap;


