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Preface

In psychology, regression means degeneration, or return to a prior, lower level
of development. And, indeed, speaking of statistical methods sounds some-
what outdated today — all those neural networks and fuzzy systems being now
available.

However, it has been recognized that the new soft computing methods are no
panacea. These methods cannot find models any better than the more con-
ventional ones if there is not enough information available in the data to start
with. On the other hand, many celebrated soft computing applications could
have been solved with age-old methods — assuming that somebody were famil-
iar with them. After all, neural networks can only operate on the statistical
properties visible in the data. Why not concentrate on these statistical proper-
ties directly?

The starting point here is that when analysing complex systems, simple methods
are needed. When the system under study is very complicated, one needs data
analysis methods that are reliable and fast and that give possibility for closer
analysis.

Unfortunately, the statistical literature seems to be mathematically rather un-
penetrable for normal engineers (for those that are not too ashamed to admit
that). Researchers seem to represent the results in such sophisticated forms
that the very simple and elegant ideas remain hidden — the problem is that
the powerful methods may not be applied in practice. What is more, different
methods have been developed in different research communities: It is difficult
to see the connections between the methods when the approaches and notations
differ. New methods are constantly being developed; there exists no one-volume
book that would cover the whole field in sufficient detail.

This text tries to show how simple the basic ideas are and how closely related
different methods turn out to be. The approach is rather pragmatic, many
proofs being omitted for readability. All the methods are presented in a homo-
geneous framework. It is crucial that a student recognizes that all formulas and
algorithms are based on simple underlying principles; everything can be ques-
tioned and nothing needs to be believed as some kind of unpenetrable “secret
wisdom”. One objective is to show that there is still room for new ideas and
innovations. As the reader can see, there exist plenty of ideas waiting to be ex-
plored and exploited — indeeed, one is very near to frontier science, maybe able
to cross the boundary towards new discoveries (examples of such exploratory
experiments are indicated by stars “*”).

The theoretical methods are supported by Matlab routines. The implemented
“vanilla” algorithms are by no means optimized; their main purpose is also to
show that the methods are by no means unpenetrable.

In addition to the printed version, this report is available in public domain
in PostScript format. The Matlab Toolbox and the textual material can be
accessed through the HTML page at the Internet address

http://saato014.hut.fi/hyotyniemi/publications/01_reportXXX.htm.



The earlier version of this text, with the name “Multivariate Regression —
Techniques and Tools” was published in 2001. Despite its various shortcomings,
it received a positive acceptance. The printed version was “sold out” a long
time ago. This interest was the motivation to try and fix some of the holes that
were left open.

In the previous version, applications were not discussed: Now there is the last
chapter that tries to present examples of not so evident but potential ways of
applying the new tools. Second, the fields of physical first-principles modeling
and data-oriented modeling are not so distinct that no connections could be
found; the new appendices concentrates on this kind of discussions, fitting the
structural considerations into the domain of numeric manipulations in a more
or less seamless way.

National Technology Agency of Finland (TEKES) has provided funding dur-
ing the research under several project frames, and this support is gratefully
acknowledged.

Heikki Hyötyniemi



List of symbols

The same variable names are used consistently in the theoretical discussion and
in the accompanying Regression Toolbox for Matlab, if possible.

• A, B, C, D: Matrices determining a state-space system

• c: Arbitrary constant, scalar or vector

• i, j: Matrix and vector indices

• e, E: Measurement error vector and matrix, dimensions m×1 and k×m,
respectively

• ϵ: State error, dimension n × 1

• f , F : Vector and matrix defining a linear mapping

• g(·): Any function (scalar or vector-valued)

• γ, Γ: Constraint vector and matrix, respectively

• J(·): Cost criterion

• I, In: Identity matrix (of dimension n × n)

• k: Time index, sample number (given in parentheses)

• K: Kalman gain

• m: Dimension of the output space

• M : Arbitrary matrix (or vector)

• n: Dimension of the input space / Non-compressed feature space

• N : Dimension of the latent space / Number of levels or substructures

• P : Error covariance matrix, dimension d × d

• p(·): Probability density

• R: Covariance matrix (or, more generally, association matrix)

• u, U : Input vector and matrix, dimensions ν × 1 and k × ν, respectively

• v, V : Combined data vector and matrix (x and y together), dimensions
m + n × 1 and k × m + n, respectively

• ν: Unprocessed measurement vector / Dimension of the vector u in dy-
namic systems

• w, W : Weight vector and matrix, respectively

• x, X : Data vector and matrix, dimensions n × 1 and k × n, respectively.
In the case of a dynamic system, state vector and matrix, dimensions d×1
and k × d, respectively.



• y, Y : Output data vector and matrix, dimensions m × 1 and k × m,
respectively

• z, Z: Latent data vector and matrix, dimensions N × 1 and k × N , re-
spectively

• ξ, ζ: Arbitrary scalars

• λ, Λ: Vector of eigenvalues and eigenvalue matrix, respectively

• µ, η: Lagrange multipliers

• θ, φ: Reduced base, dimensions n × N and m × N , respectively

• Θ, Φ: Matrices of data basis vectors, dimensions n × n and m × m, re-
spectively

Notations

• M: Unprocessed data

• M̄ : Mean value of M (columnwise mean matrix if M is matrix)

• M̂ : Estimate of M

• M̃ : Error in M / Erroneous M

• M ′: M modified (somehow)

• M i: Power of M / Level i data structure

• Mi: Column i for matrix M / Element i for vector-form M

• MT : Transpose of M

• M †: Psedoinverse of M (for definition, see page 21)

• E{M}: Expectation value of M

• Mtest, Mest: Independent testing data or run-time data

•
(

M1 M2

)
: Partitioning of a matrix

• M
ξ×ζ

: Matrix dimensions (ξ rows, ζ columns)

Abbreviations

• CCA/CCR: Canonical Correlation Analysis/Regression (page 102)

• CR: Continuum Regression (page 98)

• CA: Cluster Analysis (page 205)

• CLR: Constrained Linear Regression (page ??)



• DA or FDA: (Fisher) Discriminant Analysis (page 208)

• EIV: Error In Variables model (page 68)

• FOBI: Fourth-Order Blind Identification (page 115)

• GHA: Generalized Hebbian Algorithm (page 138)

• ICA/ICR: Independent Component Analysis/Regression (page 109)

• MLR: Multi-Linear Regression (page 63)

• NNR: Neural Networks based Regression (page 129)

• OLS: Orthogonal Least Squareas (page 72)

• PCA/PCR: Principal Component Analysis/Regression (page 77)

• PLS: Partial Least Squares regression (page 95)

• RR: Ridge Regression (page 73)

• SOM: Self-Organizing Map (page 126)

• SPC: Statistical Process Control (page 90)

• SSI: SubSpace Identification (page 143)

• TLS: Total Least Squares (page 185)
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A Good Book Must Have Obscure Quotes

A theory has only the alternative of being wrong. A model has a
third possibility — it might be right but irrelevant.

— M. Eigen

Statistics in the hands of an engineer are like a lamppost to a drunk
— they’re used more for support than illumination.

— B. Sangster

Like other occult techniques of divination, the statistical method has
a private jargon deliberately contrived to obscure its methods from
non-practitioners.

— G. O. Ashley

Make the model as simple as possible — but not simpler!
— A. Einstein

There are three kinds of lies: lies, damned lies, and statistics.
— B. Disraeli

In earlier times, they had no statistics, and so they had to fall
back on lies. — Stephen Leacock

Torture the data long enough and they will confess to anything.
— unknown

If at first it doesn’t fit, fit, fit again.
— J. McPhee

Data! Data! Data! I can’t make bricks without clay!
— S. Holmes

...

Why’s the bell-shaped curve called normal?
Is it normal to be so formal?
There’s nothing mean about the mean.
Its just average, as is clearly seen.
And what’s so standard about that deviation?
It’s a really malicious creation.
Confusing students is its only function.
It frustrates and mystifies, in conjunction.
...

— “On statistical terminology” by C. Lation



Lesson 1

Introduction to
Multivariate Modeling

Statistics tell the biggest lies, everybody knows that ...! — However, this is not
necessarily true. It all depends on the user who is interpreting the results: If
the statistical methods are applied appropriately, by somebody who understands
their properties, excellent results are often reached. Gaining this understanding
is the objective of this report.

1.1 About systems and models

The role of a model is to organize information about a given system. There are
various questions that need to be answered when a model is being constructed
— the selection of the modeling principle being perhaps the most significant,
affecting all subsequent analysis. First, one can start from the physical first
principles, constructing the model in the bottom-up fashion. However, this
modeling style is very knowledge-intensive, and the scarcity of the domain-area
experts is an ever increasing problem. And, what is more, the larger the system
is, the more probable it is that such a model will not really be suited for real
use, for analysis of the system behavior or for control design. To understand
this, see Fig. 1.1: What is the dimension of this constant-volume system, what
is the number of independent system state variables?

The intuition tells us that there are three independent state variables — the
concentrations in each tank needs to be represented in the system model. The
problem with qualitative analyses is that the relevance of different constructs
is not at all judged. For example, assume that one of the tanks is negligible,
so that its volume is small as compared to the other two tanks: This tank
does not contribute in the system behavior, and the nominal three-state model
is unnecessarily complex for practical use. On the extreme, all the system
time constants may be negligible as compared to the sampling interval, and,
seemingly, the system becomes static with no dynamics whatsoever. On the
other hand, assume that the mixing is not perfect: If the tanks are not ideal
mixers, the one-state-per-tank approach is no more sufficient, and one ends in

11
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C1

C2

C3

C0

Figure 1.1: What is the dimension of the dynamic system?

a partial differential equation model. How many state variables are needed
to reach sufficient accuracy is dependent of the actual system. The relevant
dimension of the system can be anything between zero and infinity — and,
indeed, for partial differential equation models, one can even speak of non-
integer dimensions! Appropriate model structure is dependent of the intended
use of the model.

As compared to bottom-up methods, the multivariate statistical methods op-
erate in the top-down fashion: Plenty of data is collected and one tries to find
the relevant system properties underlying the measurements. Instead of being
knowledge-intensive, multivariate methods are data-intensive. The field of sys-
tems engineering is getting wider and wider, and the systems to be modeled
are getting more and more complicated and less structured (see Fig. 1.2). All
these trends necessitate data-oriented approaches in both ends of the systems
continuum.

Another fact is that totally new branches of research — for example, data mining
and microactuators must be based on massively parallel analysis and modeling
methods.

The field of modern multivariate methods is wide and heterogeneous. Re-
searchers in different disciplines typically have different objectives and appli-
cation fields, and certainly they do have differing terminology and notations.
What is more, the methods are still in turmoil and their overall relevance has
not yet been generally understood. Some examples:

• Since the Gaussian times, least-squares mapping has been the standard
technique in all fields of science. This methodology matured well before
any data-orientation became a hot topic, and it seems that it is not typ-
ically seen in the wider perspective, in connection to other multivariate
methods. It can be assumed that a great number of scientists and engi-
neers suffer from its deficiencies, having to force their data into an unnat-
ural least-squares-conditioned model structure, never getting acquainted
with alternatives.

• In chemical engineering, for example, where calibration of devices is of
utmost importance, a method called Partial Least Squares is routinely ap-
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Figure 1.2: Spectrum of systems to be modeled

plied. However, being based on simple matching of correlations, employing
unpenetrable algorithms, the uncompromising and ambitious mathemati-
cians and statisticians are not very impressed or interested. Their answer
to similar problems is Canonical Correlation Regression — a method that
seems to be inaccessible for a practicing engineer. The unfortunate fact
is that these mental barriers are caused simply by different terminologies
and practices in these communities: The underlying ideas turn out to be
closely related.

• The neural networks have become popular in almost all complex data
modeling applications. In these research circles there seem to exist preju-
dices against the “outdated” statistical methods — but it is not only the
“postmodernists” to blame: In the traditional school, there exist similar
scornful attitudes towards the “heuristic” neural network methods. Again,
beyond the surface, there is very much in common.

• Finally, in control engineering, dynamic models are often regarded as the
only “interesting” models. However, the dynamic models can often better
be understood when the simpler, static models are studied — indeed,
dynamic modeling is static modeling with appropriately chosen data. On
the other hand, static data samples are seldom independent of each other
and dynamic understanding can reveal additional structure beyond that
data, so that, again, it would be nice if these two approaches, static and
dynamic, could be presented in a consistent setting.

It is difficult to see the underlying relationships among different approaches.
An illustration of this heterogeneity in the field of data-oriented modeling is the
fact that there seems not to exist an engineering level treatment of all relevant
methods in a common framework. This report tries to do that: To offer a
homogeneous view over the various disciplines in multivariate analysis.
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1.2 About mathematical tools

Its is mathematics that is the natural language of nature. To fluently “think”
using the syntactical structures defined in that language, the appropriate con-
cepts need to be, not only familiar, but they have to belong to one’s active
vocabulary.

1.2.1 Challenge of high dimensions

In multivariate framework the structural complexity of the system is changed
into a problem of high dimensionality: It is assumed that when one includes
enough measurement data in the model, arbitrary accuracy concerning the sys-
tem behavior can be achieved.

One needs to keep in mind the lesson learned in “Flatland” [1]:

Assume that there existed two-dimensional creatures, being only
able to recognize their environment in two dimensions. Now, assume
that a three-dimensional ball goes through this two-dimensional world
— what the creatures perceive, is a point coming from nowhere, ex-
panding into a circle, and finally again contracting into a dot before
vanishing. This circle can emerge anywhere in the two-dimensional
space. How can the creatures understand what happened?

Figure 1.3: Cover page of E. Abbott’s “Flatland”

The answer is that this behavior exceeds the capacity of those creatures, there
is no way they could really understand it. The point is that we are bound to the
three-dimensional world — the behavior of higher-dimensional objects similarly
exceeds our capacity. Or, as J. Hadamard put it:

Give me 100 parameters and I will construct an elephant; give me
101 parameters, and I will make it wag its tail.
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This incomprehensibility is the basic problem when studying multivariate meth-
ods: The phenomena emerging in higher dimensions cannot really be visualized
as two-dimensional plots (or even three-dimensional wire models). When more
sophisticated methods are analyzed, illustrations do not help much, and com-
mon sense intuitions are of no use.

How the above problems with high data dimensionality are reflected in practice
is perhaps best illustrated by an example: Assume that behaviors of a scalar
(one-dimensional) function can be captured along a line; a two-parameter func-
tion spans the whole plane, and a three-parameter function spans the three-
dimensional space. This means that to reach the same accuracy in each case, to
cover the space equelly, the claim for data grows exponentially. To master the
dimensional complexity, it is evident that one has to make strong assumptions
to constrain the model structures.

Mathematics is a robust tool to attack the above challenges, offering stronger
concepts and grammar for discussing multivariate phenomena.

The way to reach reasonable restrictions on the model structures, is to assume
linearity. For linear models, essentially the same methodologies work no matter
what is the dimension of the problem. This means that it is linear algebra
that is the theoretical framework for studying multivariate statistics, and it
is matrix calculus that is the practical language for implementing models for
high-dimensional phenomena. Good understanding of these conceptual tools is
vital.

1.2.2 About matrices

When doing multivariate modeling, data is (hopefully) received in huge num-
bers, and some kind of standardization of representations is necessary. It is
assumed here that the only data structure that is employed is a data matrix,
following the original Matlab style course of operation. The matrices will then
have different roles: They are used as data storages, but also as frames for vec-
tor systems, and as linear operators representing linear mappings. In each case,
it is matrix operations that are applied to manipulate the data structures.

The principles of matrix calculus are not repeated here (for more information,
see, for example, [2] or [11]). It is assumed that matrix inverses, etc., are
familiar; however, let us repeat what are eigenvalues and eigenvectors, what
are singular values, and how matrix-form expressions are differentiated and how
their extrema can be found. The discussion is restricted to real-valued matrices.

Eigenvalues and eigenvectors

It turns out that, rather astonishingly, most of the major regression methods
can be presented in a homogeneous framework; this is the framework of the so
called eigenproblem. A square matrix M of dimension n × n generally fulfills
the following formula for some ξ and λ:

M · ξ = λ · ξ. (1.1)
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Here, λ is a scalar called eigenvalue and ξ is a vector called eigenvector. This
means that the eigenvector directions are, in a sense, “natural” to the matrix M :
Vectors in this direction, when multiplied by M , are only scaled, so that their
direction is not changed (later, when speaking of linear mappings, this property
will be elaborated on further). From the construction, it is clear that if ξ is
eigenvecter, then αξ also is, where α is an arbitrary scalar. For uniqueness, from
now on, it will be assumed that the eigenvectors are always normalized, so that
∥ξ∥ =

√
ξT ξ = 1 (this constraint is automatically fulfilled by the eigenvectors

that are returned by the eig function of Matlab, for example).

In those cases that we will study later the matrices will be non-defective by
construction (however, see the exercise); this means that there will exist n dis-
tinct eigenvectors fulfilling the expression (1.1). These eigenvectors ξi and cor-
responding eigenvalues θi, where 1 ≤ i ≤ n, can be compactly presented as
matrices Ξ and Λ, respectively:

Ξ =
(

ξ1 · · · ξn

)
and Λ =

⎛

⎜⎝
λ1 0

. . .
0 λn

⎞

⎟⎠ , (1.2)

where the dimension of matrices Ξ and Λ is n × n. Using these notations, it
is easy to verify that the n solutions to the eigenproblem (1.1) can now be
expressed simulateneously in a compact matrix form as

M · Ξ = Ξ · Λ. (1.3)

In those cases that we will be later studying, the eigenvectors are linearly in-
dependent, Ξ has full rank and the matrix M is diagonalizable: The above
expression equals

Ξ−1 · M · Ξ = Λ, (1.4)

or

M = Ξ · Λ · Ξ−1, (1.5)

so that M is similar to a diagonal matrix consisting of its eigenvalues. One of
the specially useful properties of the above eigenvalue decomposition is due to
the following:

M i =
(
Ξ · Λ · Ξ−1

)i

= Ξ · Λ · Ξ−1 · · ·Ξ · Λ · Ξ−1
︸ ︷︷ ︸

i times

= Ξ · Λi · Ξ−1

= Ξ ·

⎛

⎜⎝
λi

1 0
. . .

0 λi
n

⎞

⎟⎠ · Ξ−1.

(1.6)

That is, calculation of matrix powers reduces to a set of scalar powers. From
this it follows that all matrix functions determined as power series can be cal-
culated using their scalar counterparts after the matrix eigenstructure has been
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determined. On the other hand, it is interesting to note that matrix functions
cannot affect the matrix eigenvectors.

The eigenvalues can be determined also as the roots of the characteristic equa-
tion

det{λ · I − M} = 0. (1.7)

Even though the eigenvalues should not be calculated this way, the roots of high-
order polynomials being numerically badly behaving, some theoretical proper-
ties can easily be proven in this framework. For example, if a matrix of a form
q · I, where q is scalar, is added to the matrix M , all of the eigenvalues are
shifted by that amount:

det{(λ − q) · I − M} = 0. (1.8)

The properties of the eigenvalues and eigenvectors will be discussed more when
we know more about the properties of the matrix M .

Singular value decomposition

The eigenvalue decomposition is defined only for square matrices (and not even
all square matrices matrices can be decomposed in such a way). The general-
ization, the singular value decomposition (SVD), on the other hand, is defined1

for all matrices M :

M = Ξ · Σ · ΨT . (1.9)

Here Ξ and Ψ are orthogonal square matrices, so that ΞT Ξ = I and ΨT Ψ = I,
and Σ is a diagonal matrix of singular values. Note that Σ does not need to be
square; if M has dimension ξ times ζ, where ξ > ζ (and analogous results are
found if ξ < ζ), the decomposition looks like

M
ξ×ζ

= Ξ
ξ×ξ

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

0 σζ

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

· Ψ
ζ×ζ

T . (1.10)

The singular values σi are characteristic to a matrix; they are positive real num-
bers, and it is customary to construct Σ so that they are ordered in descending
order. The singular values are close relatives of eigenvalues: Note that, because
of the orthogonality of Ξ and Ψ there holds

MT M = Ψ · ΣT Σ · ΨT = Ψ ·

⎛

⎜⎝
σ2

1 0
. . .

0 σ2
ζ

⎞

⎟⎠ · ΨT (1.11)

1Here, the Matlab convention is followed: Matrices Ξ and Psi are kept invertible (square),
meaning that generally Σ is non-square. Other ways to define SVD can be found in other
contexts
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and

MMT = Ξ · ΣΣT · ΞT = Ξ ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 0

. . . 0
0 σ2

ζ

0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

· ΞT . (1.12)

These are eigenvalue decompositions of MT M and MMT , respectively; this
means that the (non-zero) eigenvalues of MT M (or MMT ) are squares of the
singular values of M , the corresponding eigenvectors being collected in Ψ (or Ξ,
respectively).

Generalization of functions to non-square matrices can be based in the following
matrix power definition, following the idea of (1.6):

M i = Ξ ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σi
1 0

. . .
0 σi

ζ

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

· ΨT . (1.13)

Matrix differentiation

Corresponding to the differentiation with respect to a scalar, we can differentiate
a scalar-valued function f(·) with respect to a vector; the result is a vector called
gradient. Assume that the function f : Rζ → R is being differentiated:

d

d z
f(z) =

⎛

⎜⎝

d
d z1

f(z)
...

d
d zζ

f(z)

⎞

⎟⎠ . (1.14)

Note that now we choose that gradients to be column vectors (in literature, this
is not always the case). Assuming that the matrix M has dimension ζ× ξ, its
row dimension being compatible with z, so that there exists

zT M =
( ∑ζ

i=1 ziMi1 · · ·
∑ζ

i=1 ziMiξ

)
, (1.15)

the differentiation can be carried out columnwise:

d
d z

(
zT M

)
=

⎛

⎜⎜⎝

d
d z1

∑ζ
i=1 ziMi1 · · · d

d z1

∑ζ
i=1 ziMiξ

...
. . .

...
d

d zζ

∑ζ
i=1 ziMi1 · · · d

d zζ

∑ζ
i=1 ziMiξ

⎞

⎟⎟⎠

=

⎛

⎜⎝
M11 · · · M1ξ

...
. . .

...
Mζ1 · · · Mζξ

⎞

⎟⎠

= M.

(1.16)
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This is how one would expect a linear matrix function to behave. On the other
hand, it turns out that if z is multiplied from the other side, the matrix has to
be transposed:

d

d z

(
MT z

)
= M. (1.17)

Thus, using the product differentiation rule,

d
d z

(
zT Mz

)
=

(
d

d z

(
zT Mz̄

)
+ d

d z

(
z̄T Mz

))∣∣̄
z=z

=
(
M + MT

)
z.

(1.18)

Here, M must have dimension ζ× ζ; z̄ is assumed to be a (dummy) constant
with respect to z. For symmetric M the above coincides with 2Mz, something
that looks familiar from scalar calculus.

It turns out that more sophisticated differentiation formulas are not at all needed
later in this report.

1.2.3 Optimization

Matrix expressions can be optimized (minimized or maximized) similarly as
in the scalar case — set the derivative to zero (this time, “zero” is a vector
consisting of only zeros):

d

d z
J(z) = 0. (1.19)

For matrix functions having quadratic form (like xT Ax) the minima (maxima)
are unique; this is the case in all optimization tasks encountered here. For an
extremum point to be maximum, for example, the (hemo) Hessian matrix must
be negative semidefinite:

d2

d z2
J(z) =

d

d z

(
d

d z
J(z)

)T

≤ 0. (1.20)

Note the transpose; the other gradient must be written as a row vector, so that
the final result would be a square matrix. Here “<” has to be interpreted (both
sides being matrices) so that

ξT ·
(

d2

d z2
J(z)

)
· ξ ≤ 0 (1.21)

for any (compatible) vector ξ. However, the above approach only works if there
are no constraints to be taken care of in the optimization.

Pseudoinverse (case I)

As an example, study the least squares solution when there does not exist any
exact solution.
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Assume that there holds x = θz + e, x and θ being fixed, and one wants to
solve z so that the norm of the error vector e is minimized. It is now assumed
that the dimension of z is lower that that of x; this means that the solution
generally has no exact solution. The criterion to be minimized, the square of
the norm of e is

J(z) = eT e = (x − θz)T (x − θz)
= xT x − xT θz − zT θT x + zT θT θz.

(1.22)

Differentiating one has

d

d z
J(z) = − θT x − θT x + 2θT θz = 0, (1.23)

so that one can solve

θT θz = θT x. (1.24)

This is called the normal equation — it can further be solved if explicit formula
for z is needed:

z =
(
θT θ

)−1
θT x. (1.25)

1.2.4 Lagrange multipliers

The method of Lagrange multipliers is a generic method for solving constrained
optimization problems, assuming that the functions involved are continuously
differentiable. It must be recognized that this method gives necessary, not
sufficient conditions for optimality.

Assume that one should find the maximum (or minimum) of the function f(z),
so that there holds g(z) = 0. The idea of the Lagrangian method is visualized in
Fig. 1.4: at the optimum point, the gradients of f and g must be parallel. In the
case of scalar z this means that the gradient of g at z must be a scalar multiple
of the gradient of f . For vector z, analogously, there must exist constant vector
λ so that

df(z)
dz

= λT · dg(z)
dz

, (1.26)

or, written in the standard form,

d

dz

(
f(z) − λT · g(z)

)
= 0. (1.27)

Pseudoinverse (case II)

As an example, study the least squares solution when there is a multitude of
possible solutions available.

Assume that there holds x = θz, and we want to solve z when x and θ are
fixed. Further, assume that the dimension of z is now higher that that of x; this
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Figure 1.4: Illustration of the optimality condition: in the extremal point
the gradients of f and g are parallel

means that the solution is not generally unique. To formulate a well-defined
problem, assume that out of the set of candidate solutions, we want to select
the “simplest” in the sense of vector size; that is, the criterion to be minimized
is zT z.

Now we have the optimality defined in terms of f(z) = zT z and the constraint
function is g(z) = x − θz, so that

d

dz

(
zT z − λT · (x − θz)

)
= 0 (1.28)

gives

2z + θT λ = 0, (1.29)

and, further, z = − 1
2 · θT λ. From x = θz we now get x = − 1

2 · θθT λ or
λ = (− 1

2 · θθT )−1 · x. Finally, combining this and z = − 1
2 · θT λ, one has the

least squares solution

z = θT
(
θθT

)−1 · x. (1.30)

In this section, we have found two expressions for the solution of the least-
squares problem in different cases. These can be expressed using the so called
pseudoinverse:

θ† = θT
(
θθT

)−1
, (1.31)

or

θ† =
(
θT θ

)−1
θT , (1.32)

whichever is appropriate; anyway the least-squares solution is given as z = θ†x.

Note that it is possible that neither of the above forms of pseudoinverse is
defined, both θT θ and θθT being rank deficient; in such case more general ap-
proach to defining pseudoinverse is needed. The general pseudoinverse can be
calculated utilizing the singular value decomposition (for example, see “help
pinv” in Matlab).
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Computer exercises

1. Study the Matlab commands eig and svd (command “help eig”, etc.).
Define the matrix

M =
(

0 1
0 0

)
,

and construct the eigenvalue and singular value decompositions

[XiEIG,Lambda] = eig(M);
[XiSVD,Sigma,PsiSVD] = svd(M);

Study the matrices and explain the results you have when you try

XiEIG*Lambda*inv(XiEIG)
XiSVD*Sigma*inv(PsiSVD)

Repeat the above with the matrices MT M and MMT . Comment the
results in the case where the matrix is defined as

M =

⎛

⎝
0 1
0 0
0 0

⎞

⎠ .

2. Download the Regression Toolbox for Matlab from the Internet address
http://saato014.hut.fi/hyotyniemi/publications/01 report125.htm,
and install it following the guidelines presented on page 229. This Toolbox
will be used later for illustrating the theoretical derivations.
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About Distributions

When modeling large amounts of data, individual samples are of no special rele-
vance. To construct relevant models, one has to reach the “big picture” beyond
the surface. The relevance is captured in the statistical general properties of the
whole data set; these statistical properties are represented by probability distri-
butions. After all, it is distributions that are being modeled by the data-oriented
methods.

To find appropriate methods for data modeling, it is also necessary to first
study the properties of data distributions. Later, however, the statistical con-
siderations can be ignored: Assumptions concerning the data-generating procss
make it possible just to concentrate on some emergent distribution characteris-
tics, like variance and covariance. The existence of the underlying distributions
is reflected in the modeling methods and resulting model structures. In this
chapter, the basic model structures are motivated in statistical terms, and their
correspondence with real data is discussed.

2.1 Data mining

When facing something new, it is clever to first look it from a distance, from
different points of view. It is the same with data: Before starting any harder
labor, it is clever to gain insight. There are efficient and innovative data analysis
tools available where the computing power available today is utilized to reveal
different ways to see the data.

The diversity of data mining approaches and tools is not surveyed here. Only as
an example, in Fig. 2.1 industrial data is visualized applying the Self-Organizing
Map or SOM (see [?]; also see Sec. 8.1.1). SOM efficiently utilizes the hu-
man pattern recognition capability: The data is typically projected onto a two-
dimensional surface, so that the dependencies among data are visually mani-
fested. However, computer is notoriously bad in such pattern recognition tasks;
SOM is a good front-end for humans, but not for implementing some machine-
to-machine (or “algorithm-to-algorithm”) interaction.

Such SOM models can directly be used, and they have been used, also directly

23
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Cluster #1
Cluster #2

Cluster #3

Cluster #4

Projection axis 1

Projection axis 2

Cluster #1

Cluster #2
Cluster #3

Cluster #4

Figure 2.1: How the character of the data can be visualized: The SOM
approach. High-dimensional industrial data has been projedcted onto a
two-dimensional manifold or “hypersurface”, so that the topology among
the data has been maximally preserved. On the left, the 12 × 12 SOM
grid is shown: The regions of many “hits” have been printed with lighter
color. On the right, the converged SOM map itself has been projected
into the original variable space, showing its curved nature. It seems that
there are perhaps four (or more?) separate concentrations of data, or
clusters, perhaps revealing something about the variability in the oper-
ating regimes in the process

for process monitoring purposes, etc., but when implementing prediction or
control, SOM should be seen as a pre-analysis tool only. SOM implements
extreme compression, mapping data from high-dimensional continuous-valued
variable space onto a discrete set of map nodes, so that unavoidably very much
of the available information is lost. Better regression can be implemented if
the intuition offered by SOM is exploited for adjusting the more traditional
modeling methods.

It also needs to be mentioned that when the data is high-dimensional, the won-
ders of high dimensions can look too fancy for the inhabitants of Flatlands.
The higher the dimension, the more there exist alternative explanations for the
observations, at least if the evidence is interpreted in an appropriate way ...
One should remember the “Barnum effect” and recognize that You see what
you want to see.

2.2 Normal distribution

The Gaussian or normal distribution is the most important abstraction for more
or less stochastic measurement data. The famous central limit theorem states
that if a large number of independent random variables are added together, the
sum is normally distributed under very general conditions, no matter what is
the distribution of the original variables. Usually, when making process mea-
surements, it can be assumed that underlying the actual measurement values
there is a large number of minor phenomena that cannot be separately analyzed
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Figure 2.2: Visualizing the
density of the two-dimensional
Gaussian distribution: In surface
form ...

Figure 2.3: ... and as a contour
map. Here the covariance matrix
was such that r11 = r22 = 1 and
r12 = r21 = 0.8

— their net effect, according to the central limit theorem, is that the overall
distribution becomes normal.

Similarly as in the one-dimensional case, multinormality holds for multivariate
data (see Figs. 2.2 and 2.3). Let v stand for the measurement vector of length
dim{v}. Assuming multinormal distribution, the density function value (corre-
sponding to the probability; note that finite probabilities are found only when
the density function is integrated within some region in v space) for a data
sample v can be calculated as

p(v) =
1√

(2π)dim{v} det{R}
e−

1
2 ·(v−v̄)T R−1(v−v̄). (2.1)

Here, v̄ stands for the center of the distribution and R is the covariance matrix,
det{R} being its determinant. This prototypical distribution can be compactly
denoted as N{v̄, R}. The distribution formula consists essentially of a (de-
caying) exponential function, making the “bell-shaped” distribution extend to
infinity in all directions; due to the normalization factor, its integral over the
whole space equals 1. The statistical properties of multinormal distributions
are not elaborated on in this context; it suffices to note that all projections of a
normal distribution are also normal, and, generally, linear functions of normally
distributed data result in normal distributions (see Figs. 2.2 and 2.3).

It needs to be noted that above it is all variables that are assumed similarly
stochastic. Traditionally when doing modeling and identification, there is a dis-
tinction between deterministic and stochastic variables; there are inputs and
outputs; there is noise and there is information. Now, the framework is ho-
mogeneous: All variables have the same stochastic nature to begin with. This
means that methodologies for analysing the variables also remain uniform. The
information is assumed to be buried in correlations among the variables.
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2.2.1 About distribution parameters

Multinormal distribution is uniquely determined by its mean and covariance. If
there are measurements v(1) to v(k) taken from the distribution, the unbiased
mean, v̄ = E{v(κ)}, can be approximated as the sample mean

v̄ =
1
k
·

k∑

κ=1

v(κ). (2.2)

The covariance matrix, R = E{v(κ)vT (κ)}, can be approximated as sample
covariance

R =
1
k
·

k∑

κ=1

(v(κ) − v̄)(v(κ) − v̄)T , (2.3)

or, if the individual sample vectors v are collected as rows in the k × dim{v}
matrix V,

R =
1
k
· (V − V̄)T (V − V̄). (2.4)

The matrix V̄ now consists of k copies of v̄T . It is assumed that the covariance
matrix has full rank and it is invertible; this means that necessarily there must
hold k ≥ dim{v} (there are at least as many data vectors as there are separate
measurements in the measurement vector) and the measurements V1 to Vdim{v}
are linearly independent.

Note that the presented estimate for covariance that is based on the estimate
of the sample mean is biased; one should take into account the reduced degrees
of freedom to find the unbiased estimate (that is, the denominator should read
k−dim{v}). However, it is not always clear what is the theoretically appropriate
normalizing factor (for example, if calculating the cross-correlation XT Y , where
X is a k×n matrix and Y is a k×m matrix). In what follows, it is assumed that
the number of measurements is so high that this bias can be neglected (that is,
k ≫ dim{v}). Later, it turns out that it is the covariance matrix that plays
a central role when determining the model structure — and it is the structure
of the covariance matrix that is of relevance, ratios between elements, revealing
the interconnections among variables, not its scaling.

The covariance matrix is such a central data construcy in subsequent analyses
that it deserves a still closer look — it is still intuition that plays a central role
when constructing good models. Understanding the structure of the covariance
matrices, and understanding how this structure is related to data properties,
is fundamental knowledge when trying to understand multivariate statistical
methods.

As visualized in Fig. 2.3, the covariance structure can be visualized in terms of
(hyper)ellipsoids in the data space: The ellipsoids represent the “equi-probability”
surfaces in the data space. The projections of Gaussians onto lower dimensions
(also having Gaussian distribution) can be visualized es ellipses.
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Figure 2.4: Some association matrices

It is instructive to interpret the covariances in terms of concrete ellipses, end
here are some guidelines to interpret them. The variances of the individual vari-
ables that are collected on the diagonal of the covariance matrix dictate how
far the ellipsoid extends in that variable direction; zero variance means that
the ellipsoid “collapses” into a (hyper)planar structure. The non-diagonal ele-
ments in the covariance matrix reveal how much the ellipsoid is “tilted” as com-
pared to the variable axes. This “tiltedness” connects the variables together,
variables becoming dependent, and it is indeed these dependency structures,
cross correlations, that make it possible to estimate the values of some vari-
ables when some other variables only are known, making regression analysis
feasible. However, the properties of such tilted ellipsoids cannot be seen in the
original coordinate frame, and more closer analyses have to be postponed to
the eigenvalue/eigenvector analysis of the covariance matrix in Chapter 5. It
turns out that the extent of the ellipsoid in different directions (as determined
by the eigenvectors of the covariance matrix) is revealed by the square roots of
the corresponding eigenvalues; the “volume” of the ellipsoid is proportional to
the product of the eigenvalues.

2.2.2 Association matrices

The covariance matrix reveals the second-order properties of the data (variances
and co-variances) in a compact form, and it turns out that it is these second-
order properties that one concentrates on in multivariate modeling. It turns out
that determination of the model structure is based on the analysis of the data
covariances. However, there also exist other ways to capture the second-order
properties.

Covariance measures similarity between variables, and it makes it possible to
define associations among them. Generalizing slightly, rather than speaking
merely of covariance matrices, we can speak of association matrices. The idea
is the same: the second-order “nearness” properties between variables should be
captured in a compact form so that the assumedly relevant phenomena would
become tractable. Fig. 2.4 shows some common selections that are found when
the data either is centralized or it is not, and when the data either is normalized
to unit variance or it is not (there will be more about data preprocessing in the
next chapter). In all of the above cases, the association matrices are constructed
as

R =
1
k
·

k∑

κ=1

x′(κ)x′T (κ) =
1
k
· X ′T X ′ (2.5)

where x′ is the correspondingly scaled (and perhaps centered) data sample.
Again, if being theoretically orthodox, one would have problems with the nor-
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Figure 2.5: Data distributions after different preprocessing operations.
First, in a, the assumed original data distribution is shown, and in b
data is centered. In c data is additionally normalized to unit variance,
and in d , it is whitened (in addition to being centered)

malization factor: If the origin is now assumed to be the “center” of data the
degrees of freedom are not reduced?

All of the above association matrices are positive semi-definite, that is, ξT Rξ ≥ 0
for any vector ξ:

ξT Rξ =
1
k
·

k∑

κ=1

ξT x′(κ)x′T (κ)ξ =
1
k
·

k∑

κ=1

(
ξT x′(κ)

)2 ≥ 0. (2.6)

This means that all eigenvalues are non-negative. Note that when discussing
general association matrices one is violating the basic assumptions concerning
covariance matrices on purpose: One is no more analyzing the properties of the
original Gaussian distribution but some virtual distribution. “Forgetting” the
centering, for example, has major effect on the data distribution as seen by the
algorithms. In Fig. 2.5, the effects of different preprocessing operations (see
Chapter 3) on the data distribution are shown.

There are also other possibilities for constructing matrices that are related to
similarity matrices — for example, the distance matrix, where the element Rij

is the distance (Euclidean or other) between vectors Xi and Xj, can be used
for structuring the relationship between variables (note that the diagonal con-
tains zeros, making this matrix to be not positive definite); also see Sec. 7.3.3.
The Kernel matrices are yet another of representing (nonlinear) relationships
between variables (see Appendix 2). When similarity is measured in some fea-
ture space, so that one applies similarity matrices of the form E{f(x)f(x)T }
for analysis, where the features are determined through the nonlinear vector-
valued function f , one sometimes speaks of nonlinear component analysis or
kernel PCA (compare to Chapter 5). Indeed, determination of the function f ,
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or feature extraction, is discussed in the next chapter.

Depending on the situation, it can be motivated to study the connections among
samples rather than among variables, that is, rather than finding the structure
for XT X , one can search for the structure of the matrix XXT . Note that the
non-zero eigenvalues are the same in both cases.

The data can also be scaled samplewise; If there holds y(κ) = FT · x(κ), then,
for some scalar function g(x(κ), y(κ), κ), there must also hold

g y(κ) = FT g x(κ), (2.7)

and these scaled variables can be just as well be used for determining F . Even
though the expression above looks like an identity, the statistical properties of
the data may be changed remarkably when the samples are individually scaled
(see Sec. 7.3.2): This kind of “samplewise” scaling can also be justified if one
knows that different samples have different levels of reliability — or if the noise
variance level varies along the sampling; this is sometimes called heterosedastic-
ity. Specially, assume that g(κ) is a function of time index κ alone, and study
the properties of the correlation matrix:

R =
1∑

κ

·
k∑

κ=1

g(κ) v(κ)vT (κ). (2.8)

Here, the normalizing factor compensates for the scaling effect of the sequence
of the weighting factors. Further, assuming that one wants to apply expo-
nential forgetting, so that the “memory” gradually fades away, one can select
g(κ) = λ k−κ, where 0 ≪ λ < 1 is the forgetting factor, one can write the
recursive adaptation rule for the covariance estimate in the familiar-looking
form (mathematical interpretations ranging from weighted-average to convex-
combination):

R(k) = λ R(k − 1) + (1 − λ ) v(k)vT (k). (2.9)

2.2.3 χ2 distribution

Multivariate normal distribution (2.1) gives a probability of any point to belong
to a Gaussiann distribution. However, in a high-dimensional space the probabil-
ity of any location becomes very low — one would like to have a scalar measure
for easily studying whether an observation is characteristic to a distribution or
not, regardless of the data dimension. It turns out that the χ2 distribution is a
practical tool for this purpose.

If there are n independent, normally distributed normalized variables vi, where
1 ≤ i ≤n, the sum of the squares, or vT v, has χ2 distribution with degrees of
freedom n. This sounds like a rare special case, but this is not so. Study the
case where Gaussian variable vectors ν are normalized so that

v(κ) = R−1/2
ν ν(κ), (2.10)
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Figure 2.6: Note that
in higher dimensions the
maximum of χ2 distribu-
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where

Rν =
1
k

k∑

κ=1

ν(κ)νT (κ). (2.11)

Then the new variables v are Gaussian and there holds

Rv = 1
k

k∑
κ=1

v(κ)vT (κ) = R−1/2
ν

1
k

k∑
κ=1

ν(κ)νT (κ) R−T/2
ν

= R−1/2
ν RνR−T/2

ν = I.

(2.12)

This means that the familiar expression has χ2 distribution:

vT (κ)v(κ) = νT (κ)R−T/2
ν R−1/2

ν ν(κ) = νT (κ)R−1
ν ν(κ). (2.13)

This νT R−1
ν ν is a quantity that is routinely computed in multivariate analysis,

and it makes it possible to reduce the high-dimensional distribution into one
dimension. The χ2 distribution can be found, for example, in Matlab; to use the
functions there, one needs to determine the degrees of freedom, or the number
n (see Fig. 2.6). In the Regression Toolbox, there is the function regrP that is
tailored for course usage.

2.3 Motivation of modeling approaches

After this chapter, the distributions are abstracted away — one only concen-
trates on a single distribution parameter, (co)variance, forgetting about the
other distribution properties. Calculation of variance and covariance can be
carried out for any set of data, regardless of the actual distribution, and, simi-
larly, the regression models that are presented later being based on covariance
properties can be constructed. However, the Gaussianity assumption is im-
plicitly buried in the model structures: As it turns out, the adopted modeling
principles are not only pragmatically motivated, they are optimal for the Gaus-
sian distribution.
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2.3.1 Why linear models?

Let us study some special properties of the Gaussian distribution. The “most
probable” regions in the data space are determined by the formula (2.1). For
simplicity, assume that data is zero-mean, v̄ = 0. Because the exponent function
is a monotonously increasing function, the maximum of probability is reached
when the following expression reaches minimum:

J = vT R−1v (2.14)

To proceed, one has to distinguish between the roles of individual variables in v.
As explained in the next chapter, it is reasonable to separate the input variables
and output variables from each other. If it is assumed that some of the variables
in v, collected in the vector x, are known, and some, collected in y, are unknown,
so that

v =
(

x
y

)
, (2.15)

expression (2.14) can be divided in parts:

J =
(

x
y

)T (
(R−1)xx (R−1)xy

(R−1)yx (R−1)yy

)
·
(

x
y

)
, (2.16)

or, written explicitly,

J = xT (R−1)xxx + xT (R−1)xyy + yT (R−1)yxx + yT (R−1)yyy. (2.17)

Here the matrices (R−1)xx, etc., are formally used to denote the blocks of the
inverse covariance matrix; how they should actually be constructed is not of
interest here. Minimization with respect to y means solving

dJ

dy
=

d

dy

(
xT (R−1)xxx + xT (R−1)xyy + yT (R−1)yxx + yT (R−1)yyy

)

= 0,

giving a unique solution:

((R−1)xy)T x + (R−1)yxx + ((R−1)yy)T y + (R−1)yyy = 0, (2.18)

or

y =
(
((R−1)yy)T + (R−1)yy

)−1 (
((R−1)xy)T + (R−1)yx

)
x. (2.19)

This can be expressed in a very simple form

y = Mx. (2.20)

It is not of interest here to study any closer the matrices that constitute the
solution, or what is the structure of the matrix M ; these issues will be concen-
trated on later in detail. What is crucial is the basic outlook of the maximum
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likelihood (ML) solution for the regression problem: The unknown variables are
linear functions of the known ones. Within a Gaussian distribution, linear es-
timates are optimal — this is a very useful result, justifying the simple model
structures that will be applied later.

To be exact, assuming that the distribution is not zero-mean, the general max-
imum likelihood relationship between variables becomes affine:

y = Mx + c, (2.21)

where c is a constant vector. However, models will be assumed strictly lin-
ear later — the techniques to avoid problems that are faced because of this
assumption will be discussed in the next chapter.

2.3.2 Why sum-of-error-squared criteria?

Continuing from the above linear model structure, assume that there exists such
a matrix M that maps x onto y, so that (2.20) is assumed to apply, and one’s
task is to determine this mapping matrix. Typically (if k > n) exact matching
cannot be reached, so that for each sample κ there remains a residual error

e(κ) = y(κ) − Mx(κ). (2.22)

If the data is Gaussian, also this error has Gaussian distribution. Further, as-
sume that the errors in the sequence e(κ) are independent of each other, and
have identical Gaussian distribution with mean ē = 0 and covariance Re. The
best choice for the matrix M maximizes the probability that the observed se-
quence of samples has been obtained — that is, the probabilities of observing the
sequence e(κ) should be maximized. Because the individual errors were assumed
independent, the overall probability is the product of individual probabilities,
so that the likelihood function now becomes

L =
∏
κ

p(e(κ))

= 1√
2π det{Re}

e
− 1

2

∑
κ

(y(κ)−Mx(κ))T R−1
e (y(κ)−Mx(κ))

.
(2.23)

Because the logarithm function is monotonously increasing, the maximum of
the above criterion equals the minimum of the following:

J = − log L = c +
k∑

κ=1

(y(κ) − Mx(κ))T R−1
e (y(κ) − Mx(κ)) . (2.24)

for scalar y, this reduces essentially to a sum of squared errors, J is proportional
to

∑
κ e2(κ). This all means that the criterion that makes it possible to find

solutions in a mathematically closed form, is again optimal for Gaussian data.

There are also many other reasons for selecting the error-squared criterion:
From the theoretical point of view, it is nice that the minimum of the quadratic
criterion is unique, so that no closer analyses of candidate solutions is needed;
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from the practical point of view, it is nice that this criterion has rather natural
interpretations in terms of signal powers, error squares are related to noise
variances, capturing the essence of the noise distributions, etc. However, in
some cases the emphasis on the error squares is clearly a disadvantage: This is
the case specially if there exist large spurious variations in the data (perhaps
caused by undetected outliers, etc.) — such samples are emphasized excessively
in the model construction because of the error-squared criterion.

Often errors in different variables are more critical than in others; however,
the error-squared criterion assumes that all errors are equally significant. It is
the user’s task to assure that this equality assumption is justified; this can be
carried out by appropriate scaling of the variables during the preprocessing. If
the variables are scaled up, also the errors in those variables are emphasized
accordingly.

2.4 Tackling with real-world data

Gaussianity assumption is well-motivated, due to the Central Limit Theorem.
However, despite the above optimistim, the things are not so simple in practice.

The real measurement data seldom is purely Gaussian. There are various rea-
sons for this: First, normally distributed data that goes through a nonlinear
element is no more Gaussian; second, the measurement samples may be gen-
erated by different underlying processes, constituting no single distribution at
all. All these phenomena can be explained as different kinds of nonlinearities in
the system. If the Gaussianity assumption has to be abandoned, what kind of
model structure to adopt instead?

The selection of the model structure is always a compromise between two things:
The model should fit the data well, but, at the same time, the model should
suit the user’s needs, being easily applicable and analyzable. The first of the
objectives — matching the data — generally means that complex models should
be used, but, on the other hand, the second objective favors overall simplicity.
There are no final truths available here, but it turns out that a nice conceptual
compromise between real data properties and theoretical preferences is given by
the Gaussian mixture model of data.

2.4.1 Gaussian mixture models

Non-Gaussianity of a distribution is a symptom of nonlinearity somewhere along
the data generation processes. As it was observed in the previous chapter, non-
linearity in high dimensions is a problem defying analyses. But assuming that
the nonlinearities can be locally linearized, the function can approximately be
substituted with a set of linear functions — and the complex distribution can ap-
proximately be substituted with a set of appropriately located Gaussians. Such
a collection of Gaussian subdistributions is called Gaussian mixture model. As-
suming smoothness of functions, nearby samples are related; but the farther
apart in the data space the samples are, the less they are assumed to be related,
or assumed to contribute to the same model: Thus, there are different (linear)
submodels for different clusters. In Fig. 2.1, there exist, say, 4 or 5 data clus-
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ters; It is also assumed here that these subdistributions can be approximately
characterized by Gaussians.

It seems that the typical nonlinearities can be attacked using a two-level strat-
egy: First, find the set of appropriate clusters Γ, whatever phenomenon has
given rise to such clustering, and, after that, apply linear methods for modeling
within each of the clusters c ∈ Γ separately.

However, when constructing regression models, one is not interested in the clus-
ters, but one would like to have (continuous) mappings between variables. Gaus-
sianity (or, indeed, any compact distribution model) as the model for subdis-
tributions gives a consistent way of getting back from discretized (clustered)
coding of data to smooth and continuous (nonlinear) input/output functions.
Assume that pc(κ) is the probability of sample number κ to belong in the sub-
distribution κ, as revealed by (2.1), with mean v̄c and covariance Rc determined
using the samples belonging to that distribution, and assume that ŷc is the
output estimate determined by the cluster c. Then, the maximum likelihood
estimate that combines the clusterwise sub-estimates in a probabilistically rea-
sonable way, weighting the individual estimates by the appropriate probability,
is given by

ŷ(κ) =
∑

c∈Γ

pc(κ)∑
c′∈Γ pc′

ŷc(κ) (2.25)

The normalization factor in the denominator is needed to assure that the total
probability of the sample to belong to some of the clusters is 1.

It is clear that if data only is available, determination of the cluster structure is
a difficult task ... In Appendix A, some (more or less heuristic) approaches to
determining the cluster structure are presented.

2.4.2 Example: Types of “Natural Data”

The class of nonlinear functions in real processes is hopelessly large, and cap-
turing all alternative behavioral patterns within a single model structure is not
possible. However, it turns out that just a few special types of nonlinearities
usually exist in measurement data, and these classes of nonlinearity can nicely
be captured by the Gaussian mixture model (see 23]). Let us study little closer
those nonlinearities that we would assume to detect in a typical system to be
modeled. The first type of structural nonlinearities is reflected as separate clus-
ters (see Fig. 2.7). During different periods, different conditions in the process
apply (sometimes a pump is on, sometimes it is off; sometimes ore is coming from
one mine, sometimes from another mine, etc.), and the qualitatively differing
process conditions are typically seen in the data in a specific way, the samples
being clustered around the cluster centers. Within the operating regimes, how-
ever, no structural changes take place, meaning that within the clusters the
Gaussianity assumption holds. This means that linear analysis can be carried
out for each cluster separately.

The second typical source of distribution non-Gaussianity are the continuous
nonlinearities (see Fig. 2.8). It is common in practice that this kind of behavior
is approximated using piecewise linearized models around the operating points;
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Figure 2.7: Clusters of Type I:
Different operating regimes

Figure 2.8: Clusters of Type II:
Continuous nonlinearities

this means that separating data in clusters and modeling each operating point
separately, useful models are again reached. It is a nice coincidence that this
piecewise linearity approach is also well compatible with current engineering
practices: Smooth nonlinearities are typically linearized around the operating
points in control engineering models.

2.4.3 Outliers

A rather special reason giving rise to separate degenerate data clusters is the
existence of outliers in the data. Outliers are more or less “lonely” samples,
being typically not caused by real process originated phenomena but by spurious
measurement errors, device or communication failures, etc. Often outliers are
located alone far from other samples. However, the normal distribution extends
to infinity — there exist no straightforward criteria for distinguishing between
valid and outlier samples, and it is more or less visual inspection by a domain-
area expert that is needed.

Because it is the error squared criterion that is typically used in modeling, sam-
ples far from the more typical ones have a considerable effect on the subsequent
modeling. There are two opposite risks:

1. Including outliers among the modeling data may totally ruin the model,
the far-away sample dominating in the final model.

2. On the other hand, too cautious selection of samples, neglecting too many
samples, also affects the final model: It is those samples that are far from
others that carry the most of the fresh information — of course, assuming
that these samples carry information rather than disinformation.

As all clusters seemingly existing in the data should be checked separately to
assess their overall validity, this is specially true in the case of outliers. Detect-
ing outliers is knowledge-intensive, and special expertise on the domain-area,
measurement devices, etc., is needed. Often a missing measurement variable is
replaced by the measurement machinery by zero (or some other predetermined
value), and such outliers can easily be detected, but this is not always the case.

Typically, if there is no scarcity of data, sample vectors with missing values
can be simply ignored and eliminated from the data set. If only some of the
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measurements are missing, all other measurements within a sample being valid,
however, it may be reasonable to utilize that sample anyway: Then, the missing
values have to be somehow fixed before the sample is used (see “missing values”
in Appendix B).

2.5 Excursion: Networks and power law

Some of the “hottest” areas of research — like chaos and complexity theory —
seem to be very far from the age-old statistical approaches. Specially, linearity
seems to be completely out of the question: Interesting behaviors emerge only
in nonlinear environments. However, looking the applications in more detail, it
seems that there are connections.

It has been observed that there exist peculiar similarities among very different
kinds of complex systems. For example, it has been claimed [?] that distributions
in self-organized complex networks follow the power law, that is, there generally
holds

y = cxf (2.26)

for scalars y, x, and constant f . Here, x stands for the free variable, and y
is some emergent phenomenon related to the probability distribution of x; for
example, if x is the “ranking of an Internet page”, and y represents “number of
visits per time instant”, the dependency between these variables follows power
law: There are some very popular pages, whereas there are huge numbers of
seldom visited pages. As compared to Gaussian distribution, the power law
distribution has “long tails”; the distribution does not decay so fast1.

In the multivariate spirit, one can extend the single-variable formula (2.26) by
including more variables; if there is only one variable xi changing at a time, the
new formula corresponds to a set of n simultaneous power laws:

y = xf1
1 · · · · · xfn

n . (2.28)

Now, if one takes logarithm on both sides of the formula, one has

log y = f1 log x1 + · · · + fn log xn, (2.29)

1It is interesting to note that the power law distribution is closely related to another
modern concept, namely fractal dimension. Assuming that the variable x represents some
kind of “yardstick”, determining the scale factor, and y represents the level of self-similarity,
so that when one zooms the original pattern by the factor of 1/x, there exist y copies of the
original pattern (and this zooming process can be repeated infinitely), the fractal dimension
of that pattern can be defined as

dim =
log y

log x
. (2.27)

When the pattern is simple, this definition coincides with the traditional ideas concerning
dimension, but for complex patterns, non-integer dimensions can exist. Now, it is easy to
see that, after taking logarithms, the parameter f in (2.26) closely corresponds to the fractal
dimension for the networked system
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or

y′ = f1 x′
1 + · · · + fn x′

n + c, (2.30)

where x′
i = log xi, etc. It turns out that the multiplicative dependency has be-

come globally linear — by only preprocessing the variables appropriately. There
are also other approaches towards reaching a linear (local) model structure: Dif-
ferentiate (2.29) around the nominal values x̄i, so that there holds

(
∆y

ȳ

)
= f1

(
∆x1

x̄1

)
· · · · · fn

(
∆xn

x̄n

)
. (2.31)

Now the variables ∆xi/x̄i are the relative deviations from the nominal state.
This kind of variables are assumedly more robust that the log-variables. It is
evident that very much can be done by appropriately conditioning the data;
these issues are studied closer in the next chapter.

As a final note here, study the outlook of the multivariate fractal distribution.
variable y′ in (2.30) is a sum of assumedly large number of assumedly indepen-
dent stochastic variables f1x′

1. Because nothing more accurately about these
variables is known, it can be assumed (again according to the Central Limit
Theorem) that y′ = log y has normal distribution:

p(log y) =
1√
2πσ

exp
(
− (log y − µ)2 /2σ2

)
. (2.32)

Taking logarithms,

log(p(log y)) = c − (log y − µ)2 /2σ2. (2.33)

This means that the multivariate fractal distribution is parabolic rather than
linear on the log/log axis, the three parameters being c, µ, and σ2. Indeed, this
is in conflict with “traditional modern” network intuition!
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Computer exercises

1. Try the dataClust command in the Regression Toolbox. Define one-
dimensional data of two Gaussian clusters, both containing 1000 samples
and centers being 10 units apart, with the command

[X] = dataClust(1,2,1000,10);
hist(X,50);

Modify data, summing variables that have this same distribution:

X = X + X(randperm(length(X)));
hist(X,50);

Repeat the above steps sufficiently many times. What happens with the
data clusters? Why natural data still typically is clustered — what is the
difference in the data production processes?

2. Search for examples of observed distributions in complex networks that
have been published in Internet. Applying some search engine, use key-
words like

power law distribution
fractal dimension

Study the distributions; observe how the claimed linear dependencies on
the log/log scales (as resulting from the single-variable fractal dependency)
can often indeed better be matched against a parabola (as resulting from
the multivariate fractal dependency assumption).
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Understanding Data

As it will turn out, the multivariate modeling procedures are extremely math-
ematical, powerful, but rather mechanical procedures: There is not very much
left for the user to do after the machinery has been started. But there is one
thing that is common to statistics and computer programs: if you put trash in,
you get trash out — and when these two, statistics and computers, are com-
bined, as is the case in multivariate modeling, the risks only cumulate. The value
of the modeling results is completely dependent of the quality of the modeling
data; this data validity has to be ascertained by the user of the modeling tools.
Whether the quality really was good, can only be assessed afterwards, when the
constructed model is tested. It is preprocessing of data and postprocessing of
models where expertise is truly needed (see Fig. 3.1).

3.1 From intuition to information

Statistical analysis methods can only do data modeling, not actual system model-
ing. The statistical analysis only looks for and utilizes the observed correlations
between measurements. On the other hand, the mathematical tools always op-
erate only within some selected model structure. It is the user’s responsibility
to connect this data crunching to real system modeling. When aiming at use-
ful models, the user has to utilize his understanding in all levels of statistical
modeling.

The data preprocessing and model postprocessing tasks — to be discussed later
in this Lesson — are more or less quantitative. Before there are any numbers to
be processed, however, some qualitative analyses are needed: The chaos of data
has to structured. In this section, these preliminary analysis tasks are briefly
discussed.

3.1.1 Some philosophy

It is perhaps interesting to recognize that systems modeling is closely related
to those activities that have been studied by the philosophers since the dawn of
history. The age-old questions of what the world is really like, and what we can
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Figure 3.1: Role of knowledge in model construction

possibly know about it, are studied within two branches of philosophy, namely
ontology and epistemology, respectively.

The Platonian idealism, where it is assumed that fundamentally there are some
ideas, perfect objects underlying our observations, has become outdated — it
has turned out that the empiristic approach is more fruitful. According to
the Kantian view, it is assumed that it is only through our senses that we
can receive information from our environment, and from these observations we
construct our subjective world view, trying to find a coherent (sub-conscious)
explanation for all of it. We can only hope that our mental machinery and senses
are constructed so that they are capable of perceiving the essential phenomena
in our environment and drawing relevant conclusions.

Loosely speaking, these two opposite views, idealistic and empiristic, correspond
to the qualitative, first principles approach and the multivariate statistical ap-
proach to system modeling, respectively. It is now the mathematical machinery
that is in the role of the human: Its subjective “world” is determined by those
sensor signals that it is let to receive. It is not the human that is put in the
center of this chaos of sensations, but it is the computer, and it is we that are
like Gods in the universe of measurements giving the computer its senses and
all those tools it has for making some sense in the chaos.

The questions of “applied ontology and epistemology” become to questions of
what are the system’s real properties, and how can one get information about
them. What is valuable information in the measurements, and what is only
noise? It is our task to make the (assumed) real system structure as visible as
possible to the modeling machinery. The algorithms start from “tabula rasa”,
the only hardwired structures determining the construction of the data model
being fixed by the organization of the measurements and the selected modeling
method.

The problems of prior data analysis and manipulation, and those of model
validation, are always knowledge-intensive. These tasks cannot be automated;
there are just good practices that often seem to work. Because these tasks are
based on expert intuition, there are no methodologies that would always work
— that is why, this chapter gives various examples, hopefully visualizing the
questions from comprehensible points of view.



3.1. From intuition to information 41

3.1.2 Implementing structure on the data

One of the disadvantages when using data-oriented techniques is that it is dif-
ficult to integrate such models with expert understanding. However, to find
the best possible model, one should utilize the available knowledge somehow.
The only way to do this is to first partition the complex modeling problem
into subtasks, in an engineering-like reductionistic way, exploiting the domain-
area expertise in this partitioning task, and apply appropriate methods to the
subproblems. If some parts of the process are known beforehand, their contri-
bution can hopefully be eliminated from the remaining unknown behavior (see
Appendix B).

To reach practical models, the data needs to be structured. This structuring
should reflect the intended use of the model, but it should also support the
human ways of perceiving the system.

Causality is one of the basic mechanisms that characterizes human cognition;
on the other hand, statistical methods cannot see causalities (or any kinds of
dependency structures) from data. This is the first, crucial task of the expert
doing modeling: Determine the inputs and outputs of the system. The whole
idea of regression models concentrates on modeling the relation between action
and reaction.

The determination of the causal structure must be done by a human having
some “common sense” — mathematical machinery can analyze data, revealing
co-occurrences, but these dependencies are correlation, not causation. Con-
structing a causal structure that is based on false premises can result in a useless
(and fallacious) model1. Study the following example:

It has been recognized that taller children outperform smaller ones
in almost all tasks, not only in physical contests, but also in cognitive
tests. And this observation is true, however unjust it may sound.
The correlation, however, vanishes, if only children of the same age
are studied! There is no causation between size and mental capac-
ity; rather, there is causal relation from age to both child size and
capacity.

In concrete terms, to achieve causal structuring among data, the roles of different
variables in the data vector v need to be studied. From now on, we assume that
the input variables are denoted xi, where 1 ≤ i ≤ n, n being the number of
input variables. The measurements are assumed to be linearly independent, so
that none of the variables can be expressed as a weighted sum of the other ones.
An input measurement sample can be presented as a data vector

x =

⎛

⎜⎝
x1
...

xn

⎞

⎟⎠ . (3.1)

Correspondingly, the output variables yj , where 1 ≥ j ≥ m, are collected in the
1However, this is again very much dependent of the intended use of the model: Non-causal

correlations can be useful if aiming at simple prediction models, but they are not suited for
control design purposes
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Figure 3.2: The assumed system outlook

output vector

y =

⎛

⎜⎝
y1
...

ym

⎞

⎟⎠ . (3.2)

The assumption is that the process output variables can be calculated as y =
f(x), where f(·) is a linear, vector-valued function, so that f : Rn → Rm (see
Fig. 3.2). The linearity assumption (motivated in the previous chapter) means
that the mapping from input to output can be represented using the matrix
formulation:

y = FT · x, (3.3)

where the dimension of F is n×m. Further, assume that one has measured sets
of k data vectors, from x(1) to x(k) and from y(1) to y(k), respectively. These
observations are written in matrices (following Matlab practices) as

X
k×n

=

⎛

⎜⎝
xT (1)

...
xT (k)

⎞

⎟⎠ and Y
k×m

=

⎛

⎜⎝
yT (1)

...
yT (k)

⎞

⎟⎠ . (3.4)

Again, the mapping between these matrices can be written compactly (note that
changes in ordering and the transpositions are necessary to make the dimensions
match) as

Y = X · F. (3.5)

No structure can also be seen in the data — the structure is imposed on the data
by the domain area expert. The modeling machinery will match the data against
this structure, finding the best possible parameters within that framework. For
pragmatic reasons, depending on the application, it can sometimes be reasonable
to apply some physically non-meaningful structure for the data. For example,
it can be motivated to apply a causally incorrect structure: If there is need for a
model for estimating some quantity based on measurements of other variables,
the observed correlations can be exploited regardless of the actual causality
structures. The model structure should follow this intended model usage, so that
the variables that are used for estimation are collected in x, and the estimated
variables in y. However, it is necessary to stick to the real causality structures,
if one wants to apply the models not only for prediction but also for control,
etc.
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3.1.3 Experiment design

Experiment design studies how maximum information can be extracted by car-
rying out minimum number of (expensive) experiments. If data can be measured
under optimal conditions, many of the problems that will be discussed later are
automatically solved. However, a more challenging case is such that one can
only observe the system, without being able to dictate the process inputs. At
least if the system is large, this assumption typically holds.

No matter whether one can carry out an explicit experimenting procedure or
not, there are some necessary requirements to be taken care of before data ac-
quisition. It needs to be noted that the algorithms only see the data that is
delivered to them; in this sense, one must trust on the “benevolence of nature”,
so that it is not explicitly trying to fool the observer! It is, of course, quite pos-
sible that all samples happen to be located in just a narrow region of the whole
operating range of the system, thus misleading the analyses, giving incorrect
mean values, etc.; but it is the law of large numbers promising that in the long
run the observed mean value, for example, should be unbiased, assuming that
lots of representative data containing fresh information is collected. But this
optimism is justified only if there is not some agent acting (more or less con-
sciously) in the opposite direction, explicitly ruining the quality of data! One
of such mechanisms efficiently deteriorating the quality of data is feedback.

In the traditional modeling, one of the most important guidelines is that if
there are some feedback loops, they should be opened before data acquisition.
Otherwise, the causality chains become blurred: The physical output, if used
for feedback control, effectively becomes an input signal. Study the following
example:

Assume that the process acidity is being controlled. Because of
some unmodeled disturbance, the pH value tends to fluctuate. Pro-
portional control law is used, that is, when the acidity is too low,
more acid is added, and vice versa. If the process acidity is analyzed
statistically, it seems that high amounts of added acid correlate with
low acidity. In this case, of course, this paradox is easily explained:
The actual process dynamics being slow and noisy, it is essentially
the inverse process, the feedback loop that is being modeled; when
the process is non-acidic, the acid flow is increased. Against intu-
ition, the “cause” now is the process acidity, the acid flow being the
“effect”.

However, the above view (“open all loops!”) is becoming challenged in the
multivariate real world. First, there are the pragmatic reasons: During on-line
operation of the plant the feedbacks simply cannot be opened — and, specially
when complex systems are to be analyzed, not all feedback structures can even
be detected, not all dependency structures are known. And, after all, one would
like to know the typical behaviors in the process, not the artificially induced
experiments. It is the undisturbed operation of the whole plant that is actually
of interest — one should model the working plant with appropriate feedbacks
closed. Indeed, the system should be seen as a “pancausal” network, where
all variables are tightly interconnected. The consequences of this new kind of
thinking are studied closer in Chapter 11.
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3.2 Selection of variables

It is assumed that all relevant information that is assumed to contribute in the
model construction can be stored in the sample vectors. No matter what is the
origin of that data, it is, after all, static mappings among sample variables in
v(κ) that are constructed. One sample, or one unit of information, is assumed
to be isolated from the other pieces of information, with no memory whatsoever.
Model construction tries to combine such (contradictory) pieces of information
v(κ) for different values of κ to reach a representation that can cover them all
as well as possible — what this means is studied in detail in later chapters.

3.2.1 Feature extraction

As a basic rule, all information that is relevant for a model must be available
at the same time, in a single vector v(κ). All process phenomena should be
captured as a set of stati(sti)c quantities. What is more, this data has to fulfill
the structural assumptions, like linearity. Here, some guidelines are presented:
How to select variables so that they would characterize the system appropri-
ately. These variables are not necessarily the measurements directly: They are
functions of the measurements that represent features characterizing the sys-
tem appropriately. There are no unambiguous variable combinations to choose.
Fortunately, the more sophisticated regression methods to be presented after
Chapter 4 will efficiently solve this problem of high dimensionality, and then we
can say that it is clever strategy to include all available information there exists
and different kinds of features characterizing the model in the beginning (the
excessive variables can be pruned later).

As an example, study how nonlinearities can be avoided by (formally) introduc-
ing approriate features.

Often it is so that a nonlinear function can be modeled in a linear form when the
input dimension is augmented — that is, when additional features are included.
This is the idea beyond, for example, basis functions (see later). For example,
if one knows the functional form of the nonlinearity, this nonlinearity can be
included among the input data: If there holds yi = FT f(x), where f is the
known classa of nonlinearity, it is possible to introduce the new input vector

x′ =
(

x
f(x)

)
. (3.6)

However, when doing data-based modeling, such a priori knowledge often can-
not be assumed to exist. A generic way to extend the linear framework is to
apply some kind of parameterized family of prototypical nonlinearities: For ex-
ample, it is known that smooth functions can be approximated by their Taylor
expansions that consist of a power series. Unknown nonlinearity forms can also
be approximated using truncated power series expansions. If the linear term
of variable xi does not suffice, arbitrary number of higher-order terms can be
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included among the data:
⎛

⎜⎜⎜⎝

xi

x2
i
...

xξ
i

⎞

⎟⎟⎟⎠
. (3.7)

When the nonlinear prototypical features are included among the input data, it
is the task of the modeling machinery to select among the relevant components
and determine their weights. More complex multivariate nonlinearities can be
handled in the similar manner, applying the multiple-variable Taylor expansion,
so that if one wants to be prepared for quadratic dependencies among variables
xi and xj , the input data vector can be augmented by the following three
variables: x2

i , x2
j , and xixj .

3.2.2 Special challenge: Dynamic systems

In systems engineering applications, it is often the dynamic properties that are
of special interest. However, if dynamic phenomena are to be modeled, one
is facing a problem: Static, instantaneous features are not enough to capture
the dynamics that is characterized by memory, or inertia, coupling variables
together also along the time axis. The basic trick is to use time series data, that
is, prior variable values, xi(κ), xi(κ−1), etc. all have separate entries in the data
vector — this is the standard approch, for example, in system identification,
where the dynamic system also needs to be expressed in a static form (see
Sec. 10.4). System theory assures that if the system memory extends back n
time steps, behaviors of a n’th order dynamic system can be captured. However,
this definition of data vectors means that successive samples are overlapping,
there are copies of the same variable values in different samples; this overlap
and redundancy among samples can cause numerical problems (see Lesson 10).

If the dynamic system is infinite dimensional, sometimes the data representation
can be simplified: For example, if there are delays, etc., the data can first be
synchronized.

The above time series approach can be applied for capturing the fast dynamics in
the system. However, it is not necessarily these high-frequency phenomena that
are always of special interest; sometimes it is the stationary behaviors rather
than the immediate transients of more or less random signal realizations that
should be captured to reach some statistical relevance of features. The emphasis
can be put on different frequency ranges, for example, by low-pass/band-pass
filtering of the signals. Filtering of signals affects the weighting among frequency
bands; this idea can be extended when one closer studies how information is not
only distributed among frequencies but buried in the observations.

Signal smoothing is still not the only alternative to enhance the data: When
filtering, it may be that relevant information is inevitably lost. Statistically rel-
evant phenomena can be captured, for example, by matching the signals against
some basis function families. The frequency-domain studies can be motivated
also in this framework: If the signals are matched against the orthogonal set of
harmonic functions, one receives spectra corresponding to the frequency content
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in the signals. These spectral components can be used for characterizing the
dynamic properties of the system, and the data vector x can be constructed cor-
respondingly. Whereas the spectra represent long-term phenomena, other func-
tion families can be applied to capture short-term ones: For example, wavelets
have been proposed for this purpose. Wavelets also span a family of orthogonal
functions, but having a rather limited range, they can be applied to characterize
spurious peaks in signals, etc.

Powerful features can be constructed when observations are matched against as-
sumed model structures, nonlinear or dynamic, and when it is the fitted model
parameters that are used to characterize the system. For example, in cellu-
lar phones voice coding applies this strategy: The formants characterizing the
voiced phonemes can efficiently be captured in the auto-regressive (AR) model
parameters, and when only the dynamic model parameters are employed the
amount of transmitted data can be radically reduced. The overall system be-
havior can be represented as a collection of local behaviors, as characterized
by lower-level local model parameters within some structural framework. To
implement more complicated feature extraction strategies, different approaches
can be further combined: For example, time-domain (time series) structures can
be combined with temporally local feature extraction techniques for modeling
variability of behavioral properties between time windows.

In short, when defining features to characterize dynamic phenomena, one should
avoid trusting some individual phenomena, absolute time points, etc., and use
some invariant quantities or perhaps statistical cumulants characterizing signal
properties. The features should be valid for different sets of signals with dif-
ferent noise realizations: No minimum/maximum values, etc., but averages or
probabilities. Integral-based criteria (ISE, ITSE, etc.) are typically smoother-
behaving than some perhaps visually well-motivated criteria2.

Sometimes it is possible to abstract the time axis away altogether, consentrating
exclusively on the higher-level quality measures directly [??]. The higher-level
measures one extracts from the data, the farther the quantities are from the
original measurements, and the nearer they are qualities characterizing the sys-
tem. There is also no clear distinction between the “quantifying variables” and
the “qualifying variables” — also this structure is not determined by the system
itself, but by the model designer.

There are some intuitions offered also by the studies concerning cybernetic sys-
tems: The key point in such systems is balance, and the cybernetic model
essentially is a model over the spectrum of balances. To capture this essence,
one has to code these balances already in the data; that is, the tensions keeping
the system in balance need to be represented by the data. In concrete terms,
this means that not only the process state but also the balancing forces, or
control signals, need to be included in data.

2For example, the settling time, traditional measure characterizing system responses, re-
vealing when the oscillation after a transient has decayed below the level of, say, 5% of the
original, turns out to behave in a curious, non-continuous manner: It is either after the first
oscillation cycle, or after the second (or third, ...), when the criterion level is no more crossed
— it turns out that as system parameters are varied the possible locations of these time points
are not continuously distributed but more or less clustered along the time axis
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3.3 Data preprocessing

After the set of variables has been selected, they need to be conditioned to reveal
the information they carry in an optimal way. The most typical tasks here are
centering and scaling. First, however, more challenging situations are studied.

3.3.1 Reaching “well-behavedness” of data

Often, the distribution of the variables is more or less peculiar. Sometimes it can
be motivated to normalize the distribution — remember that it was assumed
that data being modeled is Gaussian.

Qualitative data

Qualitative data here means data that does not have continuous distribution:
For example, there can be binary data concerning process operating mode, etc.
A single status bit can have crucial effects on the interpretations: The roles of
the variables can change altogether depending of the operating mode. In prin-
ciple, such qualitative data gives rise to clustering, so that each combination
of qualitative variables defines a cluster of its own. However, the number of
clusters explodes exponentially if there exist various qualitative variables, and
this should not be done without closer analysis of data. As was discussed in
Sec. 2.4.3, introducing new clusters too hastily may weaken the overall infor-
mation content that is available for modeling the individual clusters. Further,
there are the problems of mastering the “model library”: There is a separate
model for each cluster.

Assume that one allocates a separate (binary) variable for each of the qualitative
values. Very often it turns out that the effects of the individual binary data
become abstracted away, so that they sum up to a more or less continuous
distributions.

There are different types of qualitative variables, not all are binary. Some qual-
itative variables can rather naturally be quantified: For example, alternatives
along a continuum (like “hot” — “medium” — “cold”) can be fuzzified by a
domain-area expert, so that those variables can be coded in numeric form after
all (and, as will be seen also when discussing neural networks, the “modern”
methods should not be seen as alternatives of statistical methods, but as com-
plementary techniques) .

Logistic regression

Sometimes one has variables that are limited to a certain range. For example,
assume that the variable pi (being interpreted as some “probability”) ranges
originally between 0 and 1. The problem here is that linear models cannot
easily be constrained to only deliver results obeying such range limitations. It
turns out that by appropriately modifying the variables, such problems can be
(virtually) avoided.
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Figure 3.3: The idea of histogram deformation: The original data den-
sities (on top) can be changed by stretching and contracting the data
axis appropriately. This modification is applied to all of the variables
separately

Assume that one computes pi/(1 − pi) — this way, the range can be extended
from 0 to infinity. Additionally, if one defines

vi = log
pi

1− pi
, (3.8)

there holds for the new variable −∞ < vi <∞. If such a data data deformation
is carried out before modeling, one sometimes speaks of logistic regression. Note
that extreme values pi = 0 and pi = 1 are equally illegal when applying the
deformation.

Histogram equalization

In some cases there is no real physical reason to assume that the data should be
non-Gaussian in the first place. It may be that the anomalies in the distribution
are caused by some external factors, whereas the original distribution really
was normal (see Sec. 3.6.1). In such cases one can equalize or “renormalize”
the virtual distribution by nonlinear modifications of the variable scale: Data
density is deformed when the samples are distributed on a differently scaled axis
(see Fig. 3.3).

This deformation of the data axis must be remembered when applying the model
that is constructed for renormalized data: All variables have to be deformed
correspondingly. Indeed, this need for restoring the original data properties
applies to all data preprocessing.

3.3.2 “Operating point”

Look at the regression formula (3.3): It is clear that the regression hyperplane
always goes through the origin of the data space, so that x = 0 means y = 0.
This must be taken into account during the data preprocessing: One has to
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select one point (explicitly or implicitly) where the regression hyperplane will
be anchored. This is simple if there is some physical knowledge available: For
example, if the point x̄ is known to correspond to ȳ, one has to apply such a
transformation that this point becomes the origin of the modified data; that is,
x← x− x̄ and y← y− ȳ. This transformation must, of course, be remembered
every time when the model is used, eliminating x̄ from xest during run-time
application, and after the yest has been found, the transformation must be
inverted by adding ȳ to the result to receive the answer in original coordinates.

Often, there is no a priori knowledge of the values x̄ and ȳ. The normal
approach in such cases is to assume that the regression line goes through the
data center, that is, one selects x̄ = 1

k ·
∑k

κ=1 x(κ) and ȳ = 1
k ·

∑k
κ=1 y(κ), and

eliminates this mean from the data. This procedure is called mean centering of
data. Note that, even though this approach is commonly used, it is still quite
heuristic3.

In principle, there is another way to avoid this affinity problem caused by un-
known operating point: One can include some constant among the measurement
signals, so that, say, x0(κ) ≡1; the resulting mapping y = FT x + F0 does not
have the above constraints. Here this approach is not recommended, though:
The problem is that the signal covariance matrix would become singular, one
of the variables being constant, and some of the methods that will be discussed
later could not be applied at all.

In some cases one can eliminate the effects of biases by differentiation, that is,
one can define x′(κ) = x(κ)−x(κ− 1) and y′(κ) = y(κ)− y(κ− 1). It turns out
that when using x′(κ) and y′(κ) rather than the original variables, the constant
term vanishes from the model:

y(κ) = FT x(κ) + F0

− y(κ− 1) = FT x(κ− 1) + F0

y′(κ) = FT x′(κ).
(3.9)

It may also be so that the values x̄ and ȳ change continuously. For example,
linear trends are common in practice. Elimination of the trends (or other de-
terministic components) is more difficult than compensating constant biases,
because the behaviors rarely remain constant ad infinitum.

Finally, study an example: If mean centering is forgotten, and no other appro-
priate method is applied, the results can be catastrophic, specially if the data
mean dominates over the variance: The center of the virtual distribution lies
always in the origin, extending symmetrically in the “negative” direction (see
Fig. 3.4). The resulting model is intuitively incorrect: If x goes up, also y goes
up according to the model — even though this is evidently incorrect.

3.3.3 Data scaling

The role of variable scaling is to make the relevant features optimally visible in
the data. Study an example:

3If the center is determined blindly from the data, the degrees of freedom become lower;
when calculating covariance matrices, for instance, this should be taken into account (by
dividing with k − n rather than with k), but here it is assumed that the number of samples k
is so large that ignoring this does not matter too much
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Figure 3.4: The original data distribution, on the left, and the virtual
distribution if the centering is “forgotten”, on the right

Assume that there are temperature values in the range from 100◦C to
200◦C and pressure values in the range from 100000 Pa to 200000 Pa
among the measurement data. The variation range in temperature
(ignoring units) is 100 and in pressure it is 100000. It turns out
that in the mathematical analysis the role of the temperature will be
neglected because the variation range is so narrow: The error-square
criterion concentrates on minimizing the more significant variations,
emphasizing the pressure measurements exclusively.

The “equalization” of variable visibility can be carried out using data scaling.
Scaling can be formally expressed using weighting matrices WX and WY: If
data X is to be scaled, for example, one has X = XWX. Often, WX and WY

are diagonal matrices with the corresponding elementwise scaling factors on the
diagonal.

It is customary to assume (if there is no additional knowledge) that data given in
different units should carry the same level of information. This heuristic means
that all variables should have about the same variation range to be equally
emphasized in the error-squared based algorithms (see Sec. ??). To accomplish
this normalization, the weighting matrix should be selected as

WX =

⎛

⎜⎜⎜⎝

1√
var{x1}

0

. . .
0 1√

var{xn}

⎞

⎟⎟⎟⎠
, (3.10)

and similarly for the output data. For each variable there then holds 1
k ·X

T
i Xi =

1/(k · var{xi}) · XT
i Xi = 1. However, there are also other ways to define the

scaling (see Appendix B), and there are no general guidelines for scaling that
would always give optimal results exist.

However, it seems that if the data comes from a strictly cybernetic system [9.11],
the rigid model structure proposes some guidelines. If the variables represent
“deformations” in the cybernetic system as defined by the interaction between
a system and its environment, variance normalization is explicitly motivated;
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further, in such systems mean values are not necessarily eliminated in the pre-
processing phase.

After the above steps it is now assumed that the data in X and Y are valid,
and the system properties are (more or less) optimally visible in the data. In
the subsequent chapters, the construction of the matrices X and Y is no more
concentrated on.

3.4 Model construction and beyond

In the beginning of the chapter it was claimed that there is no room for exper-
tise during the actual regression model construction phase. However, this is not
exactly true. First, the selection of the modeling method is a question of what
one expects there to be found in the data. Second, many of the more sophisti-
cated methods are more or less interactive, so that the final model refinement
(like determining the model order) is left to the user.

3.4.1 Analysis and synthesis

When using the more sophisticated methods, to be discussed in later chapters,
the modeling procedure can be roughly divided in two parts, in analysis and in
synthesis. In analysis, the mathematical machinery is used to reveal some kind
of latent structure hidden among the observed data dependencies. The data
being numeric, there are typically no clear-cut absolutely correct answers to the
question of the underlying structure; the machinery just makes the data better
comprehensible, so that the final decisions can easier be made by the user. This
structure visualization is typically carried out so that the most fundamental
data properties of the high-dimensional data are compressed into sequences of
scalars measuring the relevance between the structural constructs. Generally, it
is the model dimension selection that is left to the user.

After the analysis, in the synthesis phase, the analyzed structure is reconstructed
in another form; when discussing regression models, this new structure empha-
sizes the mapping from input to output.

Note that in synthesis and in analysis the data preprocessing can be carried
out in different ways — that is, the selection of the association matrix form
studied in the previous chapter is an independent task from final mapping model
construction. Generally, in analysis, when only the latent structure is searched
for, there is more freedom; on the other hand, in synthesis, one has to be able
to somehow “invert” the data deformations to construct the output mapping.

It turns out that optimizing the model is often rather simple (at least if the
optimality criteria are selected in a sensible way). However, it also turns out
that sometimes the “best” is an enemy of “good”. It is not only the accuracy
but also the robustness or generalization capability of the model that should be
taken into account: How the model behaves when the data is somewhat different
as compared to the training data?
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3.4.2 Validating the model

After a model has been constructed, the knowledge is needed in interpreting
the results: What has actually been carried out, does the model do what it
was intended to do. In principle, the model validity should be checked using
statistical significance tests, etc. However, these methods often turn out to have
more theoretical than practical value and they are not studied in this context;
a more pragmatic approach to model validation is taken.

It is fair to apply the same criterion for evaluating the model as was used
when the model was constructed, that is, the sum-of-squared-errors criterion4.
However, there is a catch: A good measure for checking the model robustness,
applicable to all models, is to see what is the average prediction error size for
independent data that has not been used for training. If the error matrix is
defined as E = Ytest − Ŷtest, where Ytest is the correct output and Ŷtest is the
estimate given by the model, the following Mean-Square Error (MSE) measure
can be applied for each output separately:

1
k
· ET

i Ei =
1
k

k∑

κ=1

e2
i (κ) =

1
k

k∑

κ=1

(
ytest,i(κ)− FT

i xtest(κ)
)2

. (3.11)

Without independent data, if only the data fit is measured, one can only speak
of modeling data. If the model works fine for independent validation data, one
can assume that the model also captures the actual behaviors. A still more
challenging goal is to find a model that would represent the system. Whereas
validation data is typically collected from the system in the same environmental
conditions as the training data was, the testing data is collected in different
conditions, in different time. If the correspondence between the model and the
real system still is good, one can be satisfied — at least for some time: The
properties of the systems typically change over time.

Because the properties of the models are determined in the preprocessing phase,
but the model validity can be seen only afterwards, it is evident that the cycle
between preprocessing and model construction becomes iterative. Indeed, it is
clever to construct different types of models, using different kinds of prepro-
cessings for different sets of input data, and compare the results. Rather than
employing the computing capacity for complex parameter fitting for complex
models once and for all, the repetitive approach is here preferred: The designs
become more transparent and analyzable in this way. Because of this iterative
nature of model design, it is important that the model construction can be car-
ried out in an efficient way — and the toolbox of methods to be presented later
all share this efficiency (linearity) goal.

4Remember that the selection of the validation criterion is not quite straightforward: For
example, note that the (otherwise clever) information theoretic criteria like Final Prediction
Error criterion (FPE), Akaike Information Criterion (AIC), or Minimum Description Length
(MDL) criterion are not suited here. They only employ training data in the formulas, measur-
ing the model applying a priori structural assumptions; robustness, being due to unanticipated
disturbances, cannot be captured. Typically, it would be the basic least-squares method that
would win
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3.4.3 Cross-validation

A practical way to evaluate the model validity, at least if there is scarcity with
data, is cross-validation. The basic idea is to leave one sample (or sequence
of samples) out at a time from the data set, construct regression model using
other remaining training samples, and check how well the missing sample can
be predicted using this truncated model. When this procedure is repeated for
all samples (or all sequences), a rather reliable view of how well the modeling
method can abstract the data is found. On the other hand, large cross-validation
errors may also reveal outliers that can be eliminated during the next modeling
cycle.
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3.5 Summary: Modeling procedures

The above discussion can be summarized as follows (note that the steps below
illustrate the typical procedure, not always being implemented exactly in that
way):

Constructing the model

1. Construction of the features, classification of data, search of primary Gaus-
sian distributions, outlier detection, determination of training sets X and
Y, and the corresponding test sets Xtest and Ytest.

2. Determination of the data scaling matrices WX and WY using data in X
and Y.

3. Preprocessing, data transformations, centering and scaling, giving X =
(X − X̄)WX and Y = (Y − Ȳ)WY, and Xtest = (Xtest − X̄)WX and
Ytest = (Ytest − Ȳ)WY.

4. Model structure refinement, if appropriate, giving θ = gθ(X ′, Y ′).

5. Model construction, giving F = gF (X, Y, θ).

6. Model validation, comparing XtestF against Ytest.

Note that in Steps 4 and 5 different preprocessing procedures may be used, so
that the data X ′ and Y ′ need not be the same as X and Y . The semantics of
“functions” gθ and gF will be concentrated on in subsequent chapters (see page
80).

Using the model

1. Construction of the features, classification of data, selection of the primary
Gaussian distribution, outlier detection, giving Xest.

2. Preprocessing, data transformations, centering and scaling, giving the final
data Xest = (Xest − X̄)WX.

3. Model use, giving Ŷest = XestF .

4. Inverse transformations, denormalization and decentering; reconstruction
of the final estimate by inverting all preprocessing operations that were
carried out for the output data: Ŷest = (ŶestW

− 1
Y ) + Ȳ.
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3.6 Case studies

In this section two examples of modern process data preprocessing are presented.
In both cases the information is acquired in the form of digital camera images.
One reason for increased general interest in machine vision is the intuition: Hu-
mans looking at complex processes often can recognize valuable information —
why not automate such a measuring process? However, whereas perceiving im-
ages is easy for humans, but pattern recognition is very difficult for computers.
Assuming that there are, say, 512×512 pixels of raw data in these images,
multivariate methods are clearly needed for sensor fusion — but without ap-
propriate preprocessing of the data, the relevant information would still remain
hidden.

These examples illustrate how difficult it is to give any general guidelines on how
the data should be preprocessed; it is always a matter of domain area expertise.
In 2005, both of these process analyses are still being carried out and further
modeling is still continuing.

3.6.1 Analysis of the paper machine dry line

The first example illustrates the modern development work at a paper mill.
This modeling effort is currently taking place at Stora-Enso Kaukopää plant in
Imatra, Finland. The discussion here is somewhat streamlined, simplifying the
problem to some extent; more detailed discussions can be found, for example,
in [4].

The paper machine consists of the “wet end”, where the liquid-form pulp is
processed, and the “dry end”, where the more or less solid-form paper (or card-
board) is received. The connection point between these two processing phases
is the wire, where the pulp is spread from the headbox. The wire being a sparse
fabric, excessive water is filtered through it, whereas the fibres remain on the
wire, constituting the final paper formation. The wire runs continuously, taking
the moist paper to the drying section.

The drying section consists of dozens of steam-heated cylinders; the important
processes governing the final paper properties take place on the wire, but the
results can today be measured only in the end of the dry end, causing a consid-
erable delay in the control loop. It would be excellent if the properties of the
final paper could be estimated already on the wire; this would make the control
loops much faster. And, indeed, there seems to be room for improvement: The
location on wire where the slush pulp turns from thick liquid into moist paper
affects the paper formation and thus the final paper properties; in this transi-
tion region the mirror reflectance of the pulp surface turns into diffuse. This dry
line has traditionally been utilized by the operators for more or less intuitive
manual process control. Installing a camera beside the wire and determining
the dry line from the digital image, one could perhaps mimic the expert actions
(see Figs. 3.5 and 3.6).

Before some kind of control based on the dry line measurements can perhaps be
implemented, the problem that remains is that the connection between the dry
line measurements and quality properties at the dry end (mainly final humidity
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Figure 3.6: Paper machine dry line as seen by the camera. The edge
detection algorithm has determined the “most probable” location of the
wet/dry transition

and total mass) should be determined. It is the profile that is the most relevant
now: The distribution of the fibres is determined on the wire. This means that
the variations in “cross direction” (CD) in the dry and wet ends of the machine
should be connected using statistical methods.

There are many technical problems in the camera imaging, concerning illumi-
nation, etc.; here we assume that these problems are solved and a high-quality
digitized image is available. The pixel matrix first has to be deformed to com-
pensate for the perspective distortions caused by the nonoptimal camera in-
stallation. An edge detection algorithm is applied to find the locations where
the gradient of the pixel intensity is maximum: When these maximum gradient
points are connected, an estimate for the dry line is achieved.

The dry line is analyzed every 18 seconds, extracting 71 dry line measurement
values along the width of the wire, constituting the original data vector x(κ).
When data is collected during several hours, the data matrix X can be con-
structed. Similarly, in the dry end, a traversing sensor measures the quality
properties, constituting the output data Y.
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Figure 3.7: Dry line behavior in time. Some 1000 samples of all profile
points (71) are plotted; samples #194 and #898 seem to be outliers

The first task in preprocessing is to make the input data and output data com-
patible. Because it takes (for the cardboard type being produced) 1.5 minutes to
proceed from the wire to the dry end sensors, the output block must be shifted
so that corresponding data values are aligned: The number of shifts in this case
is five (because 90 sec / 18 sec = 5).

The outliers have to be eliminated from the data (see Fig. 3.7. These outliers
are due to failures in pattern recognition — these problems may be caused
by, for example, an operator walking by the wire, confusing the edge detection
algorithm! Of course, the outlier data rows have to be eliminated in input and
output blocks simultaneously to keep the data structures aligned. After this,
some 1000 valid data points were left in data.

Next, the distribution of dry line points is analyzed (see Fig. 3.8). It seems that
the measured dry line points seem to be distributed rather strangely, wide “un-
active” regions existing between areas of frequent hits. Closer analysis reveals
that this is (partly) caused by the suction boxes: a negative pressure under the
wire is applied to increase the efficiency of pulp drainage. There is no real physi-
cal reason why the dry line should have non-Gaussian distribution, and it can be
assumed that these anomalies are caused by the external suction. That is why,
the normality of the distribution is restored by using histogram equalization
techniques. Note that histogram equalization has to be carried out for the data
still in absolute coordinates (because the effects of the suction boxes, of course,
are always visible in the same coordinates), so that necessarily equalization has
to precede any other manipulation affecting the numerical measurement values.

Because only profile shapes are now of interest, the changes in the dry line
average have to be eliminated. This means that the instantaneous dry line
mean (in cross-direction) is eliminated from the measurement sample: x′

i(κ) =
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Figure 3.8: Paper machine dry line histograms as a contour plot (wire
running upwards). The lighter a point is in this image, the more hits
there are, meaning that the measured dry line is most probably located
there in the long run

xi(κ) − 1
71 ·

∑71
i=1 xi(κ). However, this seemingly straightforward data modi-

fication procedure introduces surprising additional problems: Note that after
this modification the variables become linearly dependent, the last variable (or
any of the variables) being negative of the sum of the other ones, so that, for
example, x′

71(κ) = −
∑70

i=1 x′
i(κ) — otherwise they would not add to zero! The

easiest way to circumvent this new problem is to simply ignore the last, redun-
dant variable, so that effectively we have n = 70. The linear independence of
the variables (or the invertibility of the covariance matrix) was assumed before,
and it is the prerequisite for many of the regression methods.

Only after these steps, the standard operations of mean centering and scaling
are carried out (now in MD, or “machine direction”, that is, κ running from 1
to 1000). Now, because all input variables have the same interpretation, it is
natural to simply normalize the variances to unity before the model construction
phase.

3.6.2 Modeling of flotation froth

Flotation is used in mineral processing industries for separation of grains of
valuable minerals from those of side minerals. In the continuous flow flotation
cell (see Fig. 3.9), air is pumped into a suspension of ore and water, and the
desired mineral tends to adhere to air bubbles and rises to the froth layer where
the concentrate floats over the edge of the cell; the main part of other minerals
remains in the slurry. The separation of minerals requires that the desired
mineral is water-repellent: In zinc flotation, this can be reached by conditioning
chemicals like copper sulphate CuSO4.

Flotation is one of the most difficult and challenging processes in mineral pro-
cessing industry. This characteristic of the process mainly arises from the in-
herently chaotic nature of the underlying microscopic phenomena; there are no
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Figure 3.9: An array of two flotation cells in series

good models available that would capture the behaviour of the particles. Addi-
tional problems are caused by the fact that todays measurement technology is
not able to provide with a description of the current state of the process that
would be accurate and reliable enough. It is the froth surface that dictates the
quality of the outflowing concentrate; the properties of the froth are reflected in
its texture, movement, and colour. No standard measurement devices, however,
can capture the outlook of the froth. Thus, most of the chemical reagents that
are used to increase the efficiency of flotation are controlled by the human op-
erators. The operators usually determine the suitable levels of the reagents by
analysing the visual appearance of the froth; the control strategies they apply
are expert knowledge.

Perhaps the limited capacity of the operator to monitor cells continuously (the
operator is usually responsible for various circuits consisting of several cells)
could be increased by machine vision (see Fig. 3.10)? This idea was studied
during the Esprit long term research project ChaCo (Characterization of Flota-
tion Froth Structure and Colour by Machine Vision); for example, see [25].
There were various lines in this research project; however, in this context only
those studies are explained where the machine vision system was used to help
the human operators in their task, analyzing the froths for process monitoring
and supervision purposes.

The status of the flotation froth cannot be uniquely characterized; there are
just a few measurements that can be explicitly defined and determined (like
the froth level and thickness), whereas most of the factors that characterize the
froth properties are more or less conceptual having no explicit definition. To
construct “soft sensors” for the unmeasurable quantities, operator interviews
were first carried out to find out what are the most relevant phenomena to be
studied in the froth. It turned out that the trivial features — like “big bubbles”,
“small bubbles”, etc. — are only used by novices, not the real experts. The
operator interviews revealed that the most interesting (more or less fuzzy) froth
types in zinc flotation are the following5:

5Note that classification can be seen as a special case of regression. Each of the classes has
an output of its own in the regression model; this variable has value “1” if the sample belongs
to that class. Using regression, the calassification results are not binary — the output values
reveal how certain the classifications are
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Figure 3.10: The automatic froth monitoring system helping the operator

1. “Wet” froth is characterized by “empty bubbles”, meaning that not all
bubbles are covered with the concentrate; it also seems that most of the
bubbles are tiny whereas some of them may grow excessively. The bubbles
do have a rather high tendency to burst.

2. “Dry” froth has a rather even tessellation, bubbles being of equal size
and all being covered by concentrate; because of the uniformity, the bub-
bles are often hexagonal. This seems to be the category characterizing
optimal production conditions, both froth speed and quality of concen-
trate being high.

3. “Stiff” froth is “porridge-like”, the bubble forms becoming distorted and
finally being substituted for layered concentrate rafts; this kind of froth
floats rather unevenly, sometimes stopping altogether. In the extreme,
stiffness can make the froth collapse, so that no concentrate floats out;
these pathological cases should be avoided at any cost.

These characterizations are conceptual and there are no exact mathematical
definitions for them (see Fig. 3.11). The role of image data preprocessing is
to somehow make the classes distinguishable. First, it was noticed that static
images are not enough: Many of the characterizations involve dynamic phenom-
ena. Second, there is need for both frequency-domain and spatial segmentation
approaches, as well as for pixel-wise analyses:

• Dynamic phenomena were captured by analysing image pairs having
0.2 sec time interval; this way, the changes between the images revealed
information about the bubble collapse rate (how well the aligned images
match each other) and froth speed (the average speed being determined
as the maximum point in the image pair cross-correlation matrix — this
can be calculated in the frequency space, that is, the tgwo-dimensional
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Figure 3.11: Different “conceptual categories” as seen by experts

FFT transform is applied to both images, and these transformed images
are multiplied pixelwise, revealing the matches among shifted images).
The variation in speed was measured by how high the average maximum
cross-correlation peak was as compared to neighboring values.

• Frequency domain methods (in practice, based on the two-dimensional
fast Fourier transform) were used to analyze the directional orientedness
and non-sphericity of the bubbles; also the above cross-correlation matri-
ces were calculated using FFT.

• Segmentation techniques (based on the so called “watershed tech-
nique”) were used to extract the properties of individual bubbles; the
bubble size distributions were determined this way, as well as average
“roundness” of the bubbles.

• Pixel-wise analyses were carried out, for example, to determine the
“emptiness” or transparency of the bubbles. The bubbles covered with
concentrate only reflect light in a diffuse manner, whereas uncovered bub-
bles typically have bright total reflectance points on top; the number of
maximum intensity pixels in the image can be used as a measure for the
number of empty bubbles.

Finally, there are some few dozen variables characterizing the froth state, a new
set of variables being calculated after every twenty seconds; this data is then
mean-centered and normalized.

After all the above steps the data is ready for further model building — whatever
that happens to mean. These questions will be concentrated on in subsequent
chapters.
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Computer exercises

1. You can check how deformed, non-Gaussian data looks like after the
“equalization” of the histogram:

DATA = regrDataClust(1,2,100,5,3);
hist(DATA); % Matlab histogram command
defmatrix = regrForm(DATA);
X = regrDeForm(DATA,defmatrix);
hist(X,10);
hist(X,30); % Note the changed resolution!

2. Load data by running the m-file dataEmotion. There are five different
signal sources (or, actually, five different “modes” of the same source!)
collected in the columns of the matrix DATA. To have some intuition into
the signals, you can try, for example

sound(DATA(:,1),16384);

You are now asked to search for such features that these signal sources
could be distinguished from each other. First divide the signals in shorter
sequences of, say, a few hundred samples each, and analyze these sequences
separately. Are there some invariances between sequences coming from the
same source as compared to the other sources?

In addition to the time-domain features, you should experiment with, for
example, frequency domain features (use fft), AR-type (auto-regressive)
model parameters, etc. — and you can combine these, defining new fea-
tures that are based on how fast the “first-order” features change. How
robust do you think your features are — would the same phenomena be
detected in other samples from the same sources?
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“Quick and Dirty”

Since its introduction by C. F. Gauss in the early 1800’s, the least-squares pa-
rameter matching technique has penetrated to all fields of research and practical
engineering work, and it still seems to be among the only ones that are routinely
used. However, there are some probloms that are not easily detected — these
problems become evident only in the complex modeling tasks, where there is
plenty of data that is necessarily not optimally conditioned. In this chapter,
the least-squares regression method is first derived, and modifications are pre-
sented; finally, the fundamental problem (so called multicollinearity) plaguing
this method is explained, giving motivation to search for more sophisticated
methods.

4.1 Linear regression model

As presented in the previous chapter, assume that the measurement data is
collected in the matrices X of dimension k × n and Y of dimension k × m. It
is assumed that there are (much) more measurement samples than what is the
dimension of the data, that is, k ≫ n. One would like to find the matrix F so
that

Y = X · F (4.1)

would hold. Finding a good matrix F is the main emphasis from now on. Even
though the modeling problem can be formulated in such a simple way, in a
multivariate system the task is far from trivial. There are n ·m free parameters
in the model, and the optimum is searched for in this parameter space.

4.1.1 Least-squares solution

To start with, first study a model of just one output signal Yi, so that m = 1.
The parameter matrix reduces to a vector Fi:

Yi = X · Fi. (4.2)

63
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Solving for Fi in (4.2) means that somehow X should be inverted; however, X
is not invertible, and because k > n, generally no exact solutions can be found.
To find the best approximation, the model needs to be extended to include the
modeling errors as

Ỹi = X · Fi + Ei, (4.3)

where Ei is a k× 1 vector containing the reconstruction error for each measure-
ment sample k. It is only these noisy measurements ỹ that are assumed to be
available for modeling; in what follows, the sloppy notation y will for brevity
still be used to denote the noisy data. Now there are more unknowns than there
are constraints, and the problem can be transformed into a form where opti-
mization is being carried out. It needs to be recognized that the formulation in
(4.3) is just a model representing the coupling of uncertainty in the system. The
variables ei(κ) do not represent any real noise signals in the system, they only
stand for the match between the model and the data. In this sense, minimizing
this uncertainty is a justified objective.

The errors can be solved from (4.3) as Ei = Yi −XFi; these errors should be
somehow simultaneously minimized. It turns out that the easiest way to proceed
— and also theoretically well motivated, as shown in the previous chapter —
is to minimize the sum of error squares. The sum of the squared errors can be
expressed as

ET
i Ei = (Yi −XFi)

T (Yi −XFi)
= Y T

i Yi −Y T
i XFi −FT

i XT Yi + FT
i XT XFi.

(4.4)

This (scalar) can be differentiated with respect to the parameter vector Fi:

d
(
ET

i Ei

)

dFi
= 0−XT Yi −XT Yi + 2XT XFi. (4.5)

Because

d2
(
ET

i Ei

)

dF 2
i

= 2XT X > 0, (4.6)

this extremum is minimum, and because the extremum of a quadratic func-
tion is unique, setting the derivative to zero (vector) gives the unique optimum
parameters:

−2XT Yi + 2XT XFi = 0, (4.7)

resulting in

Fi =
(
XT X

)−1
XT Yi. (4.8)

The estimate for yi is found as

ŷest,i = FT
i xest = Y T

i X
(
XT X

)−1
xest. (4.9)
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This result can be intuitively interpreted also in terms of correlation matrices:
First, covariance structure in x is eliminated (multiplication by

(
1
kXT X

)−1),
and after that the “whitened” data is mapped onto y utilizing the cross-correlation
structure (as revealed by 1

kXT Y ).

4.1.2 Piece of analysis

In what follows, some theoretical analyses that can be used to evaluate the
above least squares model are presented. More analysis can be found in various
sources, for example, in [35].

Model consistency

Because the model construction was an optimization process based on stochastic
data, the model parameters cannot be assumed to be quite accurate. Indeed,
for the parameter estimates one can write

F̂i =
(
XT X

)−1
XT Yi

=
(
XT X

)−1
XT (XFi + Ei)

= Fi +
(
XT X

)−1
XT · Ei.

(4.10)

Here, F̂i are the estimates, whereas Fi is assumed to contain the “true” noiseless
parameter values. From this one can write the expression for parameter errors:

F̃i = Fi −F̂i =
(
XT X

)−1
XT · Ei. (4.11)

The expected parameter error is zero, assuming that X and Ei do not correlate
(this issue is studied later):

E{F̃i} =
(
XT X

)−1
XT E{Ei} = 0. (4.12)

If this uncorrelatedness assumption does not hold, there will be bias. If X is
deterministic and E has zero mean, as was assumed, there will be no problem;
however, these assumptions cannot always be fulfilled (see Section 4.2.1).

Parameter sensitivity

The reliability of the regression model (4.8) can be approximated, for example,
by checking how much the parameters vary as there are stochastic variations in
Ei. The parameter vector covariance matrix becomes, applying (4.11)

E{F̃iF̃T
i } = E

{((
XT X

)−1
XT Ei

)((
XT X

)−1
XT Ei

)T
}

=
(
XT X

)−1
XT · E
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EiET

i

}
· X

(
XT X

)−1
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(
XT X

)−1
XT σ2

eI X
(
XT X

)−1

= σ2
e

(
XT X

)−1
.

(4.13)
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The noise variance σ2
e can be approximated as the variance of the reconstruction

error Ỹi = Yi−Ŷi = Yi−XF̂i. The parameter variance is also intimately related,
not only to the noise properties determined by the error variance σ2

e , but also
to the properties of the matrix XT X — see Sec. 4.3 for more analysis.

The estimate for the parameter error can be applied, for example, when as-
sessing the relevance of the input variables xj . For example, assume that a
least-squares model is constructed, and the corresponding diagonal element in
the model parameter covariance matrix is E{F̃ 2

jj} = σ2
jj . Now, assuming that

the probability density function form for the error is known (Gaussian?), one
can approximate the probability that the parameter Fjj , rather than being the
estimated F̃ii, actually has zero value. This would mean that there is no con-
tribution of that variable in the model, and it could be ignored.

Without going into details, it turns out that the expression for parameter co-
variance (4.13) reaches the Cramer-Rao lower bound, meaning that for Gaussian
data the least-squares model implements the best possible, or efficient, estima-
tor for the parameters.

Measures of fit

To evaluate how well the regression model matches the training data, the so
called R squared criterion can be applied: how much of the real output variance
can be explained by the model. That is, one can calculate the quantity

R2 = 1 −SSE

SST

, (4.14)

where, for the i’th output,

• The “error sum of squares” is defined as

SSE = (Yi −Ŷi)T (Yi −Ŷi) = (Yi −XFi)T (Yi −XFi). (4.15)

• The “total sum of squares” (for zero-mean data) is

SST = Y T
i Yi. (4.16)

So, R2 measures how much of the total variation in the output can be explained
by the model. This quantity has value 1 if all the variation in the output can
be exactly predicted, and lower value otherwise.

This R2 is a traditional measure for characterizing least-squares fitting. How-
ever, it needs to be emphasized here that it is not a good approach for evaluating
model goodness. It simply measures data fit, not model goodness: It uses the
same data for evaluation that was used for model construction. Applying this
criterion for comparing model structures, the least-squares model would always
outperform the other structures (to be studied later), no matter how sensitive
the model is to noise!



4.1. Linear regression model 67

4.1.3 Multivariate case

If there are various output signals, so that m > 1, the above analysis can be
carried out for each of them separately. When collected together, there holds

⎧
⎪⎪⎨

⎪⎪⎩

F1 =
(
XT X

)−1
XT Y1

...
Fm =

(
XT X

)−1
XT Ym.

(4.17)

It turns out that this set of formulas can simultaneously be rewritten in a
compact matrix form, so that

F =
(

F1 · · · Fm

)
=

(
XT X

)−1
XT ·

(
Y1 · · · Ym

)
. (4.18)

This means that the multilinear regression (MLR) model from X to estimated
Y can be written as

FMLR =
(
XT X

)−1
XT Y. (4.19)

The MLR solution to modeling relationships between variables is exact and op-
timal in the sense of the least squares criterion, implementing the pseudoinverse
of the matrix X . However, in Sec. 4.3 it will be shown that one has to be care-
ful when using this regression method: In practical applications and in nonideal
environments this MLR approach may collapse altogether. The problem is that
trying to explain noisy data too exactly may make the model sensitive to indi-
vidual noise realizations. In any case, in later chapters, the above MLR model
is used as the basic engine to reach mappings between variables; the deficiencies
of the basic approach are taken care of separately.

The basic MLR solution can be extended and modified in many ways. For
example, assuming that not all samples are assumed to be equally informative,
one can define the weighted cost criterion for output i as

Ji =
k∑

κ=1

w(κ) · e2
i (κ) = ET

i WEi, (4.20)

where the k × k matrix W contains the weighting factors on the diagonal. then
the solution (as expanded to multiple outputs) as

F =
(
XT WX

)−1
XT WY. (4.21)

The parallel structure of the multivariate problems can be utilized also more
generally for extending formulas to multivariate cases. For example, the expo-
nentially weighted (so that w(κ) = λk−κ with the forgetting factor 0 ≪ λ¡1)
recursive least-squares algorithm [?] corresponding to (4.21) can be extended to
multiple outputs, so that m > 1, as

F (k) = F (k −1) + (R(k))−1 x(k)
(
y(k) −FT (k)x(k)

)T

R(k) = λR(k −1) + x(k)xT (k).
(4.22)
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4.2 “Colored noise”

The above MLR formula will be the standard approach to implementing the
mapping between two sets of variables in later chapters. As was observed, it
is optimal and efficient — but only if the mapping problem is appropriately
conditioned. There are two basic problems that will be discussed during the
rest of this chapter. Both of the problems become acute in multivariate cases
where the quality of the high-dimensional data cannot be assured.

From the practical point of view, the first problem is caused by the incompatible
model structure assumption; this issue is studied in this section. In Section 4.3,
it is the robustness problem that is studied.

4.2.1 Error in variables

In the beginning, it was assumed that the nature of the variables is heteroge-
neous: It was assumed that Y only is stochastic, noise E being added to it, and
X was assumed to be deterministic. To understand the problem of deterministic
vs. stochastic variables, study an example.

Now, study a familiar-looking case: Assume that system dynamics is to be
modeled:

y(k) = FT · x(k) + e(k), (4.23)

where

x(k) =

⎛

⎜⎝
ỹ(k −1)

...
ỹ(k −n)

⎞

⎟⎠ =

⎛

⎜⎝
y(k −1) + e(k −1)

...
y(k −n) + e(k −n)

⎞

⎟⎠ . (4.24)

When the input x is defined so that the former outputs are “recirculated” into
input, one is identifying the auto-regressive (AR) model structure. It is clear
that the assumption of x being deterministic collapses; what is more, X becomes
correlated with E, so that the model in (4.11) becomes biased.

Clearly, it has to be assumed that X measurements can also contain uncertainty.
The model matching problem becomes very different if both X and Y blocks
are regarded as equally stochastic data values and errors in all variables should
be taken into account (see Fig. 4.1). This assumption results in the so called
Error In Variables (EIV) model.

There exists a wide variety of different ways to implement the data homogeneity
in the models. As an example, below, one approach is presented for circumvent-
ing the problems of correlated noise. A more concise treatment is carried out in
the next chapter, where the problem is attacked from a fresh point of view1.

1In chapter 11, a method called Total Least Squares is presented that also addresses Errors
in Variables
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Figure 4.1: Normal least-squares matching principle, on the left, assum-
ing that only the y variables contain noise, and the total least squares
principle, assuming that errors in all variables are equally meaningful,
on the right. For visualization purposes only one x and y variable is
employed

4.2.2 Instrumental variables

When constructring linear regression models, after all, it is all about invert-
ing the mapping: Starting from XF = Y solve the mapping matrix F . The
challenge is caused by the uninvertibibility of the matrix X . However, if the
original model holds, there must also hold X T Y = X T XF , where X is some
k × n matrix. Now, assuming that the matrix X T X is invertible, one can solve

F =
(
X T X

)−1 X T Y. (4.25)

As in (4.10), one can find the correspondence between the noise and the param-
eter matrix

F̂ = F +
(
X T X

)−1 X T E, (4.26)

and, further, for the parameter error one has

F̃ =
(
X T X

)−1 X T E. (4.27)

It is interesting here that it is no more the correlation between X and E that
determines the model bias: To minimize the model error, there should be high
correlation between X and X , and low correlation between X and E. Naturally,
the first objective is reached for X = X , resulting in the nominal MLR, but when
the other objective is also emphasized, non-trivial alternatives can be proposed.
The variables in § are called instrumental variables.

How to reach good properties for the instruments, is dependent of the situation.
For example, if in y(κ) = fT x(κ) the x(κ) data vector consists of the past values
of (scalar) y(κ), as shown in (4.24), meaning that AR modeling of a dynamic
system is being carried out, different choices have been studied a lot. A good
choice for instruments in such case would be to use the correct (noiseless) val-
ues of y(κ) as collected in §(κ): This would be the optimal choice, and, indeed,
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Figure 4.2: Collinearity visualized in two dimensions

this can be approximately implemented. When using the model, in the recon-
structed values of y the noise realization has (hopefully) been abstracted away,
and these estimates can be used as instruments: Select §(κ) = x̂(κ), where x̂(κ)
vector consists of the past values of ŷ(κ). When the cycle of first determining
a preliminary model and thereafter refining the instruments is repeated, the
model parameters finally converge to unbiased values.

4.3 Collinearity

In the previous section, the problem of data heterogeneity was discussed. The
deficiencies of MLR become even more painstaking when dimensional complex-
ity is faced.

The MLR regression model is optimal2. In simple cases it is difficult to see why
optimality is in contrast with usability. Today, when the problems to be modeled
involve large amounts of poor data, the problems of MLR have become evident.
The main problem plaguing MLR is caused by (multi)collinearity. What this
means can best be explained using an example.

4.3.1 Example: When variables are redundant

Assume that one can observe two variables x1 and x2, so that x = ( x1 x2 )T .
Further, assume that these variables are not strictly independent; they can be
written as x1(κ) = ξ(κ) + ϵ1(κ) and x2(κ) = ξ(κ) + ϵ2(κ), where the sequences
ϵ1(κ) and ϵ2(κ) are mutually uncorrelated, both having the same variance σ2.
This can be interpreted so that we have two noisy measurements of the same
underlying variable ξ, and together these measurements should give a more
reliable estimate for it.

2of course, only in the least-squares sense; but, because of the mathematical benefits, the
same criterion will be applied later, too
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Let us check what this collinearity of x1 and x2 means in practice. First, calcu-
late the matrix XT X that has an essential role in the regression formula

XT X =
( ∑

κ x2
1(κ)

∑
κ x1(κ)x2(κ)∑

κ x1(κ)x2(κ)
∑

κ x2
2(κ)

)

≈ k ·
(

E{ξ2} + σ2 E{ξ2}
E{ξ2} E{ξ2} + σ2

)
.

(4.28)

To understand the properties of the regression formula, let us study the eigen-
values of the above matrix. It turns out that the solutions to the eigenvalue
equation

det
{

λ · I2 −k ·
(

E{ξ2(κ)} + σ2 E{ξ2(κ)}
E{ξ2(κ)} E{ξ2(κ)} + σ2

)}
= 0 (4.29)

are
{

λ1 = 2k · E{ξ2(κ)} + kσ2, and
λ2 = kσ2.

(4.30)

The theory of matrices reveals that the condition number of a matrix determines
its numerical properties — that is, the ratio between its largest and smallest
eigenvalue dictates how vulnerable the formulas containing it are to unmodeled
noise. As the condition number grows towards infinity the matrix becomes
gradually uninvertible. In this case, the matrix XT X has the condition number

cond{XT X} = 1 + 2 · E{ξ2(κ)}
σ2

, (4.31)

telling us that the smaller the difference between the variables x1 and x2 is (σ2

being small), the higher the sensitivity of the regression formula becomes.

The above result reveals that when using regression analysis, one has to be
careful: It is the matrix XT X that has to be inverted, and problems with in-
vertibility are reflected in the model behavior. There only need to exist two
linearly dependent measurements among the variables in x, and the problem
instantly becomes ill-conditioned. In practice, it may be extremely difficult to
avoid this kind of “almost” collinear variables — as an example, take a system
that has to be modeled using partial differential equation (PDE) model (say, a
rod that is being heated). PDE models are often called “infinite-dimensional”;
that is, one needs very high number (in principle, infinitely many) measurements
to uniquely determine the process state. It is not a surprise that temperature
readings along the rod do not change rapidly, or nearby measurements deliver al-
most identical values, variables becoming linearly dependent; a regression model
trying to utilize all the available information becomes badly behaving. When
aiming towards accuracy, the model robustness is ruined!

To see an example of what collinear data looks like in a two-dimensional space,
see Fig. 4.2: the data points in the figures are created using the above model,
where E{ξ2(κ)} = 1.0 and σ2 = 0.01, the sequences being normally distributed
random processes. The data points seem to be located along a line; they do not
really seem to “fill” the whole plane. Intuitively, this is the key to understanding
the ideas of further analyses in later chapters.
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The TLS approach by no means solves the above collinearity problem — on
the contrary, even more severe problems emerge. Note that the last principal
component essentially spans the null space of the covariance matrix, that is, if
there is linear dependency among the variables, this dependency dominates in f ′.
Assuming that the linear dependency is between, say, input variables xi and xj ,
the parameters f ′

i and f ′
j have high values, all other coefficients being near zero.

Now, if (11.21) is applied, the parameter f ′
y (having negligible numerical value)

in the denominator makes the model badly conditioned. The main problem with
TLS is that while solving a minor problem (error in variables), it may introduce
more pathological problems in the model.

4.3.2 Patch fixes

Because of the practical problems caused by collinearity, various ways to over-
come the problems have been proposed. In what follows, two of such proposi-
tions are briefly presented — more sophisticated analyses are concentrated on
in next chapters.

Orthogonal least squares

Because the basic source of problems in linear regression is related to inversion of
the matrix XT X , one can try to avoid the problem by enhancing the numerical
properties of this matrix. Intuitively, it is clear that if the input variables were
mutually orthogonal, so that XT X = I, the numerical properties would be nice.
Indeed, one can construct new variables Z so that this orthogonality holds using
the so called Gram-Schmidt procedure: Corresponding to all indices 1 ≤i ≤n,
define Zi by

Z ′
i = Xi −

i−1∑

j=1

XT
i Zj · Zj , (4.32)

and normalize it,

Zi = Z ′
i/

√
Z ′T

i Z ′
i, (4.33)

starting from Z1 = X1/
√

XT
1 X1. These data manipulation operations can be

presented in a matrix form

Z = X · M, (4.34)

where M is an upper-triangular matrix3. It is easy to see that there holds

ZT
i Zj =

{
1, if i = j, and
0, otherwise, (4.35)

3Actually, the so called QR factorization of X that is readily available, for example, in
Matlab, gives the same result (note that the resulting R matrix is the inverse of our M . The
inversions of the triangular matrix are, however, nicely conditioned)
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so that ZT Z = I. Using these intermediate variables one has the mapping
matrix from Z to Y as

F =
(
ZT Z

)−1
ZT Y = ZT Y, (4.36)

or returning to the original variables X , the Orthogonal Least Squares (OLS)
formula becomes

FOLS = MZT Y. (4.37)

Of course, reformatting formulas does not solve the fundamental problems —
the inversion of the matrix is implicitly included in the construction of M .
However, it turns out that reorganizing the calculations still often enhances the
numerical properties of the problem.

Ridge regression

Ridge Regression (RR) is another (ad hoc) method of avoiding the collinearity
problem — the basic idea is to explicitly prevent the covariance matrix from
becoming singular. Ridge regression belongs to a large class of regularization
methods where the numerical properties of the data — as seen by the algo-
rithms — are somehow enhanced. The idea here is not to minimize exclusively
the squared error, but to include weighting for parameter size in the optimiza-
tion criterion: The badly-behaving nature of models is reflected in excessive
parameter values. Instead of (4.4), the criterion that is really minimized is

ET
i Ei + FT

i QiFi =
Y T

i Yi −Y T
i XFi −FT

i XT Yi + FT
i XT XFi + FT

i QiFi,
(4.38)

where Qi is a positive definite weighting matrix. Differentiation yields

d
(
ET

i Ei

)

dFi
= 0−XT Yi −XT Yi + 2XT XFi + 2QiFi. (4.39)

Setting the derivative to zero again gives the optimum:

−2XT Yi + 2XT XFi + 2QiFi = 0, (4.40)

resulting in

Fi =
(
XT X + Qi

)−1
XT Yi. (4.41)

In the multi-output case, assuming that Qi = Q is the same for all outputs, one
can compactly write

FRR =
(
XT X + Q

)−1
XT Y. (4.42)

Usually there is no a priori information about the parameter values and the
weighting matrix Q cannot be uniquely determined. The normal procedure is
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q1

q2

Figure 4.3: The “virtual” distribution of collinear data as seen by the
ridge regression algorithm for different values of q

to let Q be diagonal; what is more, it is often chosen as Q = q · I, where q > 0
is a small number. This approach efficiently prevents the matrix being inverted
from becoming singular.

The key point here is that the matrix Q is added to the (unscaled) data covari-
ance matrix. Study the eigenvalues; another way to determine the eigenvalues
is to solve the determinant expression

∣∣(XT X + q · I
)
−λI

∣∣ =
∣∣XT X −(λ −q) · I

∣∣ . (4.43)

When adding q I to the matrix XT X , its all eigenvalues are shifted up by the
amount q, so that originally zero eigenvalues will have numerical value q > 0.
The condition number also goes down. The model parameters are typically
more conservative than in the nominal MLR case.

Note that the same ridge regression behavior in standard MLR is achieved also
if white noise with covariance 1

k q I is added to data: If this added noise does
not correlate with X — this assumption is easily fulfilled because the noise is
artificial, being added in the algorithm — the noise-corrupted data covariance
matrix is 1

k

(
XT X + q I

)
. This regularization approach is often explicitly used,

for example, when training neural networks.

It seems that there are essentially two ways to enhance the invertibility of the
matrix XT X , and thus the MLR regression model properties:

1. Either, one can ignore information by leaving the “redundant” variables
out. The problem here is that there are typically no variables with no
information at all, even though this information can be highly redundant,
and such variable elimination necessarily makes the model ignore available
information.

2. Or, one can introduce disinformation by adding noise in the variables.
This is effectively done when implementing regularization.

Just think of it: Either information is ignored, or noise is deliberately added
to data just to make the model better behaving! There is an uneasy feeling
of heuristics here, and something more sophisticated is clearly needed — the
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modeling method should be matched with the data, not vice versa. Alternatives
to MLR are presented in the following chapters.

Computer exercises

1. Check how the MLR sensitivity is affected when the data properties are
changed; that is, try different values for the parameters k (number of
samples), n (data dimension), dofx (true degrees of freedom), and σx (de-
viation of the noise) below, and calculate the covariance matrix condition
number:

k = 20;
n = 10;
dofx = 5;
sigmax = 0.001;
X = dataXY(k,n,NaN,dofx,NaN,sigmax);
Lambda = eig(X’*X/k);
max(Lambda)/min(Lambda)

2. Study how robust the different regression algorithms are. First generate
data, and test the methods using cross-validation (try this several times
for fresh data):

[X,Y] = dataXY(20,10,5,5,3,0.001,1.0);
E = regrCrossVal(X,Y,’regrMLR(X,Y)’);
errorMLR = sum(sum(E.*E))/(20*5)
E = regrCrossVal(X,Y,’regrTLS(X,Y)’);
errorTLS = sum(sum(E.*E))/(20*5)
E = regrCrossVal(X,Y,’regrOLS(X,Y)’);
errorOLS = sum(sum(E.*E))/(20*5)
E = regrCrossVal(X,Y,’regrRR(X,Y,0.001)’); % Change this!
errorRR = sum(sum(E.*E))/(20*5)
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Lesson 5

Tackling with Redundancy

The collinearity problem is essentially caused by redundancy in the data: Mea-
surements are more or less dependent of each other. However, none of the
measurements is completely useless, each of them typically delivers some fresh
information. Qualitative analyses cannot help here — on the other hand, when
the quantitative approach is adopted, powerful methods turn out to be readily
available.

5.1 Some linear algebra

Linear algebra is a highly abstract field of systems theory. In this context, it
suffices to concentrate on just a few central ideas, and theoretical discussions
are kept in minimum; these issues are studied in more detail, for example, in
[15] or [33].

5.1.1 On spaces and bases

To have a deeper understanding of how the mapping from the “space” of input
variables into the “space” of output variables can be analyzed, basic knowledge
of linear algebra is needed. The main concepts are space, subspace, and basis.
The definitions are briefly summarized below:

The set of all possible real-valued vectors x of dimension n consti-
tutes the linear space Rn. If S ∈ Rn is a set of vectors, a subspace
spanned by S, or L(S), is the set of all linear combinations of the
vectors in S. An (ordered) set of linearly independent vectors θi

spanning a subspace is called a basis for that subspace.

Geometrically speaking, subspaces in the n dimensional space are hyperplanes
(lines, planes, etc.) that go through the origin. The number of linearly indepen-
dent vectors in the subspace basis determines the dimension of the subspace.
The basis vectors θ1 to θN can conveniently be represented in a matrix form:

θ =
(

θ1 · · · θN

)
. (5.1)

77
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This basis matrix has dimension n × N , assuming that the dimension of the
subspace in the n dimensional space is N . Given a basis, all points x in that
subspace have a unique representation; the basis vectors θi can be interpreted as
coordinate axes in the subspace, and the “weights” of the basis vectors, denoted
now zi, determine the corresponding “coordinate values” (or scores) of the point:

x =
N∑

i=1

zi · θi. (5.2)

The elements in θi are called loadings of the corresponding variables. In matrix
form, the above expression can be written as

x = θ · z. (5.3)

Further, if there are various data vectors, the matrix formulation can be written
as

X = Z · θT . (5.4)

There is an infinite number of ways of choosing the basis vectors for a (sub)space.
One basis of special relevance is the so called “natural” basis: fundamentally,
all other bases are defined with respect to this natural basis. For the space of
n measurements the natural basis vector directions are determined directly by
the measurement variables; formally speaking, each entry in the data vector can
be interpreted as a coordinate value, the basis vectors constituting an identity
matrix, θ = In.

However, even though this trivial basis is easy to use, it is not necessarily math-
ematically the best representation for the data (as was shown in the example
about collinearity above). Next we see how to change the basis.

5.1.2 About linear mappings

The matrix data structure has been adopted here for various purposes — this
is partly duw to the role of Matlab as the assumed basic tool: There (at least
originally) the matrix was the only one data structure available. The matrix
can have various roles. It can be used as a collection of data values (as X and
Y above, for example), or it can be used as a frame for a vector system (as in
the case of basis vectors); but perhaps the most important role of a matrix is its
use as a means of accomplishing linear transformations between different bases
of (sub)spaces.

Whereas all matrix operations can be interpreted as linear transformations, now
we are specially interested in mappings between different bases. The transfor-
mations from a given basis to the natural basis are straightforward: applying
(5.3) gives the transformed coordinates directly. The question that arises is how
one can find the coordinate values z for a given x when the new basis θ is given.
There are three possibilities depending on the dimensions n and N :
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• If n ≡ N , matrix θ is square and invertible (because the linear indepen-
dence of the basis vectors was assumed). Then one can directly solve

z = θ−1 · x. (5.5)

• If n > N , the data point cannot necessarily be represented in the new
basis. Using the least squares technique (see the first lesson) results in an
approximation

ẑ =
(
θT θ

)−1
θT · x. (5.6)

• If n < N , there are an infinite number of exact ways of representing the
data point in the new basis. Again, the least squares method offers the
solution, now in the sense of minimizing zT z, that is, finding the minimum
numerical values of the coordinates (see page 20):

z = θT
(
θθT

)−1 · x. (5.7)

All of the above cases can be conveniently presented using the pseudoinverse
notation:

z = θ† · x. (5.8)

If the basis vectors are orthonormal (orthogonal and normalized at the same
time, meaning that θT

i θj = 0, if i ̸= j, and θT
i θj = 1, if i = j) there holds

θT θ = IN (or θθT = In, whichever is appropriate). Thus, all the above formulas
(5.5), (5.6), and (5.7) give a very simple solution:

z = θT · x, (5.9)

or, corresponding to (5.4),

Z = X · θ. (5.10)

The above result visualizes the benefits of basis orthonormality; there are ad-
ditional advantages that are related to the numerical properties of orthogonal
transformation matrices (manipulations in an orthonormal basis are optimally
conditioned)1.

5.1.3 Data model revisited

To enhance the basic regression method, a more sophisticated scheme is now
adopted (see Fig. 5.1). Speaking informally, we search for an “internal structure”
that would capture the system behavior optimally; this internal structure is
assumed to be implemented as a linear subspace. The data samples are first

1Note that the orthogonality condition is always fulfilled by the basis vectors that are
generated by the PCR and PLS approaches that will be presented later. Furthermore, when
using Matlab, say, for calculating the eigenvectors, they will be automatically normalized; this
means that the practical calculations are rather straightforward
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Figure 5.1: The dependency model y = f(x) refined

projected onto the internal basis, and from there they are further projected
onto the output space, the final projection step being based on MLR regression.
Note that because all of the mappings are linear, they can always be combined
so that, seen from outside, the original “one-level” model structure is still valid:
Y = (XF 1)F 2 = X(F 1F 2) = XF .

Now there are approximate mappings instead of only one, as in the MLR case.
Is it not so that the regression model will become even more sensitive to noise?
However, it is not so. It is not the number of mappings, it is the properties
of these mappings that matter — and now, as it turns out, the mapping from
input to the latent variables and the mapping from latent variables to output
can be made well-conditioned.

The overall regression model construction becomes a two-phase process, so that
there are the following tasks:

1. Determine the basis θ.

2. Construct the mapping F 1 = θ
(
θT θ

)−1.

3. Calculate the “latent variables” Z = XF 1.

4. Construct the second-level mapping F 2 =
(
ZT Z

)−1
ZT Y .

5. Finally, estimate Ŷest = XestF = XestF 1F 2.

Here Z stands for the internal coordinates corresponding to the training data
X and Y . In special cases (for example, for orthonormal θ) some of the above
steps may be simplified. The remaining problem is to determine the basis θ so
that the regression capability would be enhanced.

How the internal structure should be chosen so that some benefits would be
reached? When the rank of the basis is the same as the number of degrees
of freedom in the data (normally meaning that there are n basis vectors rep-
resenting the n dimensional data), the data can be exactly reconstructed, or
the mapping between data and the transformed representation can be inverted.
This means that also the random noise that is present in the samples will always
remain there. A good model, however, should only represent the relevant things,
ignoring something, hopefully implementing this compression of data in a clever
way. In concrete terms, this data compression means dimension reduction, so
that there are fewer basis vectors than what is the dimension of the data, or
N < n.

Let us study this a bit closer — assume that the dimension of input is n,
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the dimension of output is m, the dimension of the latent basis is N , and the
number of samples is k. The nominal regression model, matrix F mapping input
to output contains n · m free parameters; there are k · m constraint equations.
This means that on average, there are

k · m
n · m =

k

n
(5.11)

constraints for each parameter. The higher this figure is, the better the estimate
becomes in statistical sense, random noise having smaller effect. On the other
hand, if the latent basis is used in between the input and output, there is first
the mapping from input to the latent basis (n ·N parameters) and additionally
the mapping from the latent basis to the output (N ·m parameters). Altogether
the average number of constraints for each parameter is

k · m
n · N + N · m =

k

N
(
1 + n

m

) . (5.12)

Clearly, if N ≪ n, benefits can be achieved, or the model sensitivity against
random noise can be minimized — of course, assuming that these N latent
variables can carry all the relevant information.

How an automatic modeling machinery can accomplish such a clever thing of
compression, or “abstracting” the data? There are different views of how the
relevant phenomena are demonstrated in the data properties. Speaking philo-
sophically, it is the ontological assumption that is left to the user: The user has
to decide what are the most interesting features carrying most of the informa-
tion about the system behavior. Concentrating on different aspects and utilizing
the statistical properties of the data accordingly results in different regression
methods.

5.2 Principal components

The hypothesis that will now be concentrated on is that data variance carries
information. This is the assumption underlying Principal Component Analysis
(PCA), also known as Karhunen–Loeve decomposition, and the corresponding
regression method PCR. In brief, one searches for the directions in the data
space where the data variation is maximum, and uses these directions as basis
axes for the internal data model. Whereas noise is (assumed to be) purely
random, consistent correlations between variables hopefully reveal something
about the real system structure.

Assume that θi is the maximum variance direction we are searching for. Data
points in X can be projected onto this one-dimensional subspace determined by
θi simply by calculating Zi = Xθi; this gives a vector with one scalar number
for each of the k measurement samples in X . The (scalar) variance of the
projections can be calculated2 as E{z2

i (k)} = 1
k · ZT

i Zi = 1
k · θT

i XT Xθi. Of

2Here, again, maximum degrees of freedom existent in the data is assumed; for example,
if the centering for the data is carried out using the sample mean, the denominator should be
k − 1. However, this scaling does not affect the final result, the directions of the eigenvectors
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course, there can only exist a solution if the growth of the vector θi is restricted
somehow; the length of this vector can be fixed, so that, for example, there
always holds θT

i θi = 1. This means that we are facing a constrained optimization
problem (see Sec. 1.2.4) with

{
f(θi) = 1

k · θT
i XT Xθi, and

g(θi) = 1 −θT
i θi.

(5.13)

Using the the method of Lagrange multipliers, the optimum solution θi has to
obey

d J(θi)
dθi

=
d

dθi
(f(θi) −λi · g(θi)) = 0 (5.14)

or

2
1
k
· XT Xθi −2λiθi = 0, (5.15)

giving

1
k

XT X · θi = λi · θi. (5.16)

Now, the variance maximization has become an eigenvalue problem with the
searched basis vector θi being an eigenvector of the matrix R = 1

k · XT X . The
eigenvectors of the data covariance matrix are called principal components.

Because of the eigenproblem structure, if θi fulfills the equation (5.16), so does
αθi, where α is an arbitrary scalar; it will be assumed that the eigenvectors are
always normalized to unit length, so that θT

i θi = 1.

The solution to the variance maximization problem is also given by some of
the eigenvectors — but there are n of them, which one to choose? Look at the
second derivative:

d2 J(θi)
dθ2

i

=
2
k
· XT X −2λi · I. (5.17)

To reach the maximum of J(θi), there must hold d2 J(θi)/dθ2
i ≤ 0, that is,

the second derivative matrix (Hessian) must be semi-negative definite: For any
vector ξ there must hold

ξT ·
(

2
k
· XT X −2λi · I

)
· ξ ≤0. (5.18)

For example, one can select ξ as being any of the eigenvectors, ξ = θj :

θT
j ·
(

2
k · XT X −2λi · I

)
· θj

= 2
k · θT

j · XT X · θj −2λi · θT
j θj

= 2λj · θT
j θj −2λi · θT

j θj

= 2λj −2λi ≤0.

(5.19)

This always holds regardless of the value of 1 ≤j ≤n only for the eigenvector
θi corresponding to the largest eigenvalue.
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5.2.1 Eigenproblem properties

Let us study closer the eigenvalue problem formulation (5.16).

Symmetricity and non-negativity of eigenvalues

It seems that the matrix R = 1
k · XT X (or the data covariance matrix) deter-

mines the properties of the PCA basis vectors, and, indeed, these properties
turn out to be very useful. First, it can be noted that R is symmetric, because
there holds

RT =
(

1
k
· XT X

)T

=
1
k
· XT X = R. (5.20)

Next, let us multiply (5.16) from left by the vector θT
i (note that, of course, this

vector is rank deficient, and only “one-way” implication can be assumed):

1
k
· θT

i XT · Xθi = λi · θT
i θi. (5.21)

This expression consists essentially of two dot products (θT
i XT ·Xθi on the left,

and θT
i · θi on the right) that can be interpreted as squares of vector lengths.

Because these quantities must be real and non-negative, and because k is positive
integer, it is clear that the eigenvalue λi is always real and non-negative.

Orthogonality of eigenvectors

Let us again multiply (5.16) from left; this time by another eigenvector θT
j :

θT
j Rθi = λi · θT

j θi. (5.22)

Noticing that because R is symmetric (or R = RT ), there must hold θT
j R =

(RT θj)T = (Rθj)
T = λjθT

j , so that we have an equation

λj · θT
j θi = λi · θT

j θi, (5.23)

or

(λi −λj) · θT
j θi = 0. (5.24)

For λi ̸= λj this can only hold if θT
j θi = 0. This means that for a symmetric

matrix R, eigenvectors are orthogonal (at least if the corresponding eigenvalues
are different; for simplicity, this assumption is here made). Further, because of
the assumed normalization, the eigenvectors are orthonormal.

The above orthogonality property is crucial. Because of orthogonality, the eigen-
vectors are uncorrelated; that is why, the basis vectors corresponding to the
maximum variance directions can, at least in principle, be extracted one at a
time without disturbing the analysis in other directions.
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5.2.2 Analysis of the PCA model

Let us study the properties of the variables in the new basis. There are n
eigenvectors θi corresponding to eigenvalues λi; from now on, assume that they
are ordered in descending order according to their numerical values, so that
λi ≥λj for i < j. This is possible because it was shown that the eigenvalues are
real and positive (note that the eig function in Matlab does not implement this
ordering automatically). When the eigenvectors and eigenvalues are presented
in the matrix form

Θ =
(

θ1 · · · θn

)
and Λ =

⎛

⎜⎝
λ1 0

. . .
0 λn

⎞

⎟⎠ , (5.25)

where the dimension of Θ and Λ is n × n, the eigenproblem can be expressed
compactly as

1
k

XT X · Θ = Θ · Λ. (5.26)

It was shown that the vectors constituting Θ are orthonormal; this means that
the whole matrix Θ also is, so that ΘT = Θ−1. Noticing that XΘ = Z is the
sequence of variables as presented in the new latent basis, one can write

1
k
· ZT Z =

1
k
· ΘT XT XΘ = ΘT Θ · Λ = Λ. (5.27)

What this means is that the new variables are mutually uncorrelated (because
their covariance matrix Λ is diagonal); what is more, the eigenvalues λi directly
reveal the variances of the new variables. Let us elaborate on this a bit closer.

var{z1} + · · · + var{zn}
= λ1 + · · · + λn

= tr{Λ} Definition of matrix trace
= tr{ 1

k · ΘT XT · XΘ}
= tr{ 1

k · XT X · ΘΘT } (See below)
= tr{ 1

k · XT X} Orthonormality of Θ
= 1

kx2
1 + · · · + 1

kx2
n

= var{x1} + · · · + var{xn}.

(5.28)

The matrix trace used above returns the sum of the diagonal elements of a
square matrix. The change of the multiplication order above is motivated by
the trace properties: Note that for all square matrices A and B there must hold

tr{AB} =
nA∑

i=1

nB∑

j=1

AijBji =
nB∑

j=1

nA∑

i=1

BjiAij = tr{BA}. (5.29)

The above result (5.28) means that the total variability in x is redistributed in
z. It was assumed that variance directly carries information — the information
content is then redistributed, too. If the dimension is to be reduced, the optimal
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approach is to drop out those variables that carry least information: If an N < n
dimensional basis is to be used instead of the full n dimensional one, it should
be constructed as

θ =
(

θ1 · · · θN

)
, (5.30)

where the vectors θ1 to θN are the directions of the most variation in the data
space. If one tries to reconstruct the original vector x using the reduced basis
variables, so that x̂ = θz, the error

x̃ = x −x̂ = x −
N∑

i=1

zi · θi =
n∑

i=N+1

zi · θi (5.31)

has the variance

E{x̃T (k)x̃(k)} =
n∑

i=N+1

λi. (5.32)

This reveals that the the eigenvalues of R = 1
k · XT X give a straightforward

method for estimating the significance of PCA basis vectors; the amount of data
variance that will be neglected when basis vector θi is dropped is λi.

As an example, study the case of Sec. 4.3 again. The eigenvalues of the data
covariance matrix are

{
λ1 = 2 · E{ξ2(κ)} + σ2

λ2 = σ2,
(5.33)

and the corresponding eigenvectors are

θ1 =
1√
2
·
(

1
1

)
and θ2 =

1√
2
·
(

−1
1

)
. (5.34)

These basis vectors are shown in Fig. 5.2 (on the right); in this example, the
data variance was E{ξ2(k)} = 1 and the noise variance was σ2 = 0.01. In this
case, the ratio between the eigenvalues becomes very large, λ1/λ2 ≈ 200; the
basis vector θ1 is much more important as compared to θ2. When a reduced
basis with only the vector θ1 is applied, all deviations from the line x2 = x1 are
assumed to be noise and are neglected in the lower-dimensional basis. The data
collinearity problem is avoided altogether.

5.2.3 Another view of “information”

In the beginning of the chapter it was claimed that it is variance maximization
that is the means of reaching good data models. But why does this seemingly
arbitrary assumption really seem to do a good job?

It must be recognized that the main goal in the data compression is to enhance
the signal-to-noise ratio, so that the amount of misleading disinformation would
be minimized as compared to the valuable real information. And it is here that
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Figure 5.2: Illustration of the “natural” and the PCA bases for the
collinear data

the assumptions about “noise ontology” are utilized: The distribution of the
noise hopefully differs from that of real information. Typically the underlying
basic assumption is that the noise is “more random” than the real signal is; this
assumption can have different manifestations:

1. Truly random signals fulfill the assumptions of central limit theorem, so
that noise distribution is more Gaussian than that of real information
(this starting point is elaborated on in Chapter 7).

2. If one assumes that noise signals are uncorrelated with other signals, the
noise is distributed approximately evenly in different directions in the n
dimensional space.

The second assumption is utilized in PCA: It is assumed that the same informa-
tion is visible in various variables, so that the information introduces correlation
in the data, whereas noise has no correlations or preferred directions in the data
space (see Figs. 5.3 and 5.4). Specially if the data is normalized to unit variance,
the variance pursuit of PCA changes to covariance pursuit, trying to capture
the dependencies among variables. The noise variation remaining constant re-
gardless of the direction, the maximum signal-to-noise ratio is reached in the
direction where the signal variation is maximum — that is, in the direction of
the first principal component. PCR is strongest when MLR is weakest — in
large-scale systems with high number of redundant measurements.

Note that PCA gives tools also for further data analysis: For example, if one
of the variables varies alone (just one variable dominating in the loadings),
this variable seemingly does not correlate with other variables — one could
consider leaving that variable out from the model altogether (however, see the
next section).

5.2.4 Selection of basis vectors

How to determine the dimension of the latent basis? For normalized data∑n
i=1 λi = n; a crude approximation is to include only those latent vectors

θi in the model for which there holds λi > 1 — those directions carry “more
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Figure 5.3: Why PCA works: It is assumed that covariation reveals some
underlying phenomena, whereas noncorrelating variation is measurement
noise

that average amount” of the total information (being manifested in the vari-
ances). However, the overall behavior of the eigenvalue envelope should be
taken into account: That is, plot the eigenvalues in descending order; if there
is a significant drop between some of them, this may suggest where to put the
model order.

As a rule, it can be argued that the directions of largest eigenvalues are the
most important, the dependency relations between variables being concentrated
there, whereas the effects of noise are pushed to the later principal components.
However, analysis of the components may also reveal some pecularities in the
system operation, like outlier data, etc., and the basis selection should not
be completely automated. Often the first few eigenvectors represent general de-
pendencies within data, but they may start representing individual disturbances
out from the nominal behaviors if these outliers are dominant enough; this all
is dependent of the numerical ratios between different phenomena.

If the first principal component dominates excessively, it may be reasonable to
check whether the data preprocessing has been successfull: If the data is not
mean-centered, it is this mean that dominates in the model rather than the true
data variation, specially if the numerical data values are far from origin. The
absolute minimum eigenvalue is zero, meaning that the set of measurements is
linearly dependent; this can happen also if there are too few measurements, so
that k < n; note, however, that PCA type data modeling can still be carried out
in such case, whereas MLR would collapse. In general, the more there are good-
quality samples as compared to the problem dimension, that is, if k ≫ n, MLR
often given good results, whereas the latent basis methods outperform MLR if
the number of samples is low (and random variations are visible in data).

If there exist eigenvectors with exactly equal eigenvalues in the covariance ma-
trix, the selection of the eigenvectors is not unique; any linear combination of
such eigenvectors also fulfills the eigenvalue equation (5.16). This is specially
true for whitened data, where the data is preprocessed so that the covariance
matrix becomes identity matrix; PCA can find no structure in whitened data
(however, see Chapter 7).

It needs to be noted that the PCA results are very dependent of scaling: The
principal components can be turned arbitrarily by defining an appropriate or-
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Figure 5.4: Two views of the “directional” information vs. the “undirec-
tional” noise: Five-dimensional data projected onto the first two principal
components, on the left, and the corresponding PCA eigenvalues on the
right (note that adding a matrix q · I, the noise covariance, to the data
covariance matrix shifts all eigenvalues up by the amount q). Relatively
the most of the noise seems to be concentrated in the directions of lowest
overall variation

thogonal transformation matrix D. Assume that X ′ = XD; if there holds
Λ = 1

k · ΘT XT XΘ, then

Λ =
1
k
· ΘT D · X ′T X ′ · DT Θ, (5.35)

so that the new set of eigenvactors is DT Θ — directions being freely adjustable.

figure ”InfoNoise”

5.3 Practical aspects

Below, some practical remarks concerning the PCA method are presented. For
more theoretical discussions, for the validity of the principal components model,
etc., the reader should study, for example, [3].

5.3.1 Regression based on PCA

The PCA approach has been used a long time for data compression and clas-
sification tasks. In all applications the basic idea is redundancy elimination —
this is the case also in regression applications.

Summarizing, it turns out that the eigenvector corresponding to the largest
eigenvalue explains most of the data covariance. The numeric value of the
eigenvalue directly determines how much of the data variation is contained in
that eigenvector direction. This gives a very concrete way of evaluating the
importance of the PCA basis vectors: One simply neglects those basis vectors
that have minor visibility in the data. Using this reduced set of vectors as the
internal model subspace basis θPCA, principal component regression (PCR) is
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directly implemented3. Because of the orthogonality of the basis vectors there
holds Z = XF 1 = XθPCA, and the general modeling procedure (see page 80)
reduces into the expression

FPCR = F 1F 2

= θPCA

(
θT
PCAXT XθPCA

)−1
θT
PCAXT Y

= θPCA (kΛN )−1 θT
PCAXT Y.

(5.36)

5.3.2 Other applications

Principal component analysis has routinely been used for data compression
tasks, in all kinds of applications where huge amounts of data are being pro-
cessed. For example, in neural networks the input data is often preprocessed in
this way to reach manageable adaptation in the network weights — no matter
how “outdated” the statistical methods are claimed to be in that community.

PCA has also been applied in more ambitious tasks, hoping that the compression
of data would reveal some underlying hidden phenomena. For example, there
exist plenty of applications in fault diagnosis and process monitoring. A rather
new solution to these problems is called multivariate statistical process control
(SPC), where the traditional approach of observing individual variables at a
time is extended to analysis of variation structures of multiple variables (see
Fig. 5.5).

5.3.3 Analysis tools

The numerical values of the principal component loadings reveal the dependen-
cies (covariances) between different variables, and they also give information
about the relevances of different input variables in the regression model. As-
suming that θi,j is the j’th element in the basis vector i, the contribution of
variable zi when explaining variance in xj is λiθ2

i,j , and the overall relevance of
this variable is Ê{x2

j} =
∑N

i=1 λiθ2
i,j , expressing the total amount of variance in

xj that can be reconstructed by the selected latent variables; for normalized xj

this gives a measure for estimating the “value” of that input variable. This kind
of analysis is important specially when the model structure is iteratively re-
fined: Non-existent weighting of some of the inputs in all of the latent variables
suggests that these inputs could perhaps be excluded from the model altogether.

The PCA model can be analyzed against data in various ways in practice. One
can for example calculate the measure for lack of fit, the parameter called Q.
This is simply the sum of error squares when a data sample is fitted against
the reduced basis, and then reconstructed. Because z(κ) = θT x(κ) and x̂(κ) =
θz(κ), there holds x̂(κ) = θθT x(κ), so that the reconstruction error becomes

3Even if the basis would not be reduced, the orthogonality of the basis vectors already en-
hances the numeric properties of the regression model: in a non-orthogonal basis, the different
coordinates have to “compete” against each other (heuristically speaking), often resulting in
excessive numeric values
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Figure 5.5: Idea of process monitoring using multivariate SPC: It is not
always the measurements that are farthest away from the nominal values
of the variables that indicate problems in the process

x̃(κ) = (In −θθT ) · x(κ). The sum of error squares is then

Q(κ) = x̃T (κ)x̃(κ)
= xT (κ) ·

(
In −θθT

)T (
In −θθT

)
· x(κ)

= xT (κ) ·
(
In −2θθT + θθT θθT

)
· x(κ)

= xT (κ) ·
(
In −θθT

)
· x(κ),

(5.37)

because due to orthonormality of θ there holds θ ·θT θ ·θT = θθT . The Q statistic
indicates how well each sample conforms to the PCA model telling how much
of the sample remains unexplained.

Another measure, the sum of normalized squared scores, known as Hotellings
T 2 statistic, reveals how well the data fits the data in another way: It measures
the variation in each sample within the PCA model. In practice, this is revealed
by the scores z(κ); the T 2(κ) is calculated as a sum of the squared normalized
scores. Because the standard deviation of zi to be normalized is known to be√

λi, there holds

T 2(κ) = zT (κ) · Λ−1
N · z(κ) = xT (κ) · θΛ−1

N θT · x(κ). (5.38)
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Figure 5.6: The difference between the T 2 and Q criteria: The former
data point can be represented within the assumed model, whereas the
latter one resides in the subspace that is orthogonal to that model

Roughly speaking, the smaller both of these Q(κ) and T 2(κ) turn out to be,
the better the data fits the model. There are essential differences, though: For
example, inflating the basis, or letting N grow, typically increases the value of
T 2(κ), whereas Q(κ) decreases (see Fig. 5.6). Closer analyses could be carried
out to find exact statistical confidence intervals for these measures; however,
these analyses are skipped here.

5.3.4 Calculating eigenvectors in practice

There exist very efficient methods for calculating eigenvalues and eigenvectors,
available, for example, in Matlab. However, let us study such a case where the
dimension n is very high, and only few of the eigenvectors are needed.

Assuming that the measurement signals are linearly independent, the (unknown)
eigenvectors of the covariance matrix span the n dimensional space, that is, any
vector ξ can be expressed as a weighted sum of them:

ξ = w1θ1 + w2θ2 + · · · + wnθn. (5.39)

If this vector is multiplied by the covariance matrix, each of the eigenvectors
behaves in a characteristic way:

Rξ = λ1 · w1θ1 + λ2 · w2θ2 + · · · + λn · wnθn. (5.40)

Further, if this is repeated k times:

Rkξ = λk
1 · w1θ1 + λk

2 · w2θ2 + · · · + λk
n · wnθn. (5.41)

If some of the eigenvalues is bigger than the others, say, λ1, finally it starts
dominating, no matter what was the original vector ξ; that is, the normalized
result equals the most significant principal component θ:

lim
k→∞

{
Rkξ

∥Rkξ∥

}
= θ1. (5.42)

Assuming that the eigenvalues are distinct, this power method generally con-
verges towards the eigenvector θ1 corresponding to the highest eigenvalue λ1 —
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but only if w1 ̸= 0. Starting from a random initial vector ξ this typically holds.
However, one can explicitly eliminate θ1 from ξ, so that

ξ′ = ξ −θT
1 ξ · θ1. (5.43)

Now there holds

θT
1 ξ′ = θT

1 ξ −θT
1 ξ · θT

1 θ1 = 0, (5.44)

meaning that θ1 does not contribute in ξ′, and necessarily wi = 0. If the
power method is applied starting from this ξ′ as the initial guess, the iteration
converges towards the eigenvector direction corresponding to the next highest
eigenvalue λ2. Further, after the second principal component θ2 is found, the
procedure can be continued starting from ξ′′ were both θ1 and θ2 are eliminated,
resulting in the third eigenvector, etc. If only the most significant eigenvectors
are needed, and if the dimension n is high, the power method offers a useful
way to iteratively find them in practice (in still more complex cases, where the
matrix R itself would be too large, other methods may be needed; see Sec.
8.3.1).

Of course, numerical errors cumulate, but the elimination of the contribution of
the prior eigenvectors (5.43) can be repeated every now and then. The elimi-
nation of basis vectors can be accomplished also by applying so called deflation
methods for manipulating the matrix R explicitly.

5.4 New problems

The PCR approach to avoiding the collinearity problem is, however, not a
panacea that would always work. To see this, let us study another simple
example.

Again, assume that we can observe two variables x1 and x2, so that x =
( x1 x2 )T . This time, however, these variables are independent; and to sim-
plify the analysis further, assume that no noise is present. This means that the
covariance matrix becomes

1
k · XT X = 1

k ·
( ∑k

κ=1 x2
1(κ)

∑k
κ=1 x1(κ)x2(κ)∑k

κ=1 x1(κ)x2(κ)
∑k

κ=1 x2
2(κ)

)

≈
(

E{x2
1(κ)} 0
0 E{x2

2(κ)}

)
.

(5.45)

The eigenvalues are now trivially λ1 = E{x2
1(κ)} and λ2 = E{x2

2(κ)}, and the
eigenvectors are θ1 = ( 1 0 )T and θ2 = ( 0 1 )T , respectively. If either of
the eigenvalues has much smaller numerical value, one is tempted to drop it out
(as was done in the previous PCA example). So, assume that θ2 is left out.
What happens if the underlying relationship between x and y can be expressed
as y = f(x2), so that x1 (or θ1) is not involved at all? This means that a
regression model that uses the reduced PCA basis will fail completely.
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5.4.1 Experiment: “Associative regression”*

It is evident that one has to take the output into account when constructing the
latent variables — so, what if we define

v(κ) =
(

x(κ)
y(κ)

)
, (5.46)

and construct a PCA model for this — then the input and output variables
should be equally taken into account in the construction of the latent variables.
The corresponding covariance matrix becomes

1
k
· V T V =

1
k
·
(

XT X XT Y
Y T X Y T Y

)
, (5.47)

so that the eigenproblem can be written as

1
k
·
(

XT X XT Y
Y T X Y T Y

)
·
(

θi

φi

)
= λi ·

(
θi

φi

)
. (5.48)

Here, the eigenvectors are divided in two parts: First, θi corresponds to the input
variables and φi to outputs. The selection of the most important eigenvectors
proceeds as in standard PCA, resulting in the set of N selected eigenvectors

(
θ
φ

)
. (5.49)

The eigenvectors now constitute the mapping between the x and y variables,
and the matrices θ and φ can be used for estimating y in an “associative way”.
During regression, only the input variables are known; these x variables are fitted
against the “input basis” determined by θ, giving the projected z variables4:

Z = X · θT (θT θ)−1. (5.50)

The output mapping is then determined by the “output basis” φ: Because the
coordinates z are known, the estimate is simply

Ŷ = Z · φ. (5.51)

Combining these gives the regression model

FASS = θT (θT θ)−1φ. (5.52)

This should work, at least if the dimension of input n is much higher than that
of output m. The problem of loosely connected input and output variables still
does not vanish: The correlated variables dominating in the eigenvectors can
be in the same block, that is, they may both be input variables or they may
both be output variables. Modeling their mutual dependency exclusively may

4Note that, whereas the eigenvectors of the whole system are orthogonal, the truncated
vectors in θ are not
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ruin the value of the regression model altogether. What one needs is a more
structured view of the data; the roles of inputs and outputs need to be kept clear
during the analysis, and it is the regression models duty to bind them together.
This objective is fulfilled when applying the methods that are presented in the
following chapter.

It needs to be noted that when concentrating on specific details, something
always remains ignored. Now we have seen two methods (MLR and PCA)
that offer the best possible solutions to well-defined compact problems. In what
follows, MLR will routinely be used when it is justified, and PCA will be used for
data compression tasks, understanding their deficiencies; the problems they may
possibly ignore are then solved separately. It is expert knowledge to have such a
mental “theoretical toolbox” for attacking different problems using appropriate
combinations of basic methods depending on the situation at hand.
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Computer exercises

1. Study how the data properties affect the principal component analysis;
that is, change the degrees of data freedom and noise level (parameters
dofx and sigmax, respectively):

dofx = 5;
sigmax = 0.5;
X = dataXY(100,10,NaN,dofx,NaN,sigmax);
regrPCA(X);

2. Compare the eigenvectors and eigenvalues of the matrix R = 1
k · XT X

when the data preprocessing is done in different ways; that is, create data
as

DATA = dataClust(3,1,100,50,5);

and analyze the results of

regrShowClust(X,ones(size(X))); hold on; plot(0,0,’o’);
regrPCA(X)

when the following approaches are used:

X = DATA;
X = regrCenter(DATA);
X = regrScale(DATA);
X = regrScale(regrCenter(DATA));
X = regrCenter(regrScale(DATA));
X = regrWhiten(DATA);
X = regrWhiten(regrCenter(DATA));

Explain the qualitative differences in the eigenvalue distributions. Which
of the alternatives is recommended for PCR modeling?
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Lesson 6

Bridging Input and Output

In the previous chapter it was shown that (one) thing plaguing PCA is its
exclusive emphasis on the input variables. The next step to take is then to
connect the output variables in the analysis. But, indeed, there are various
ways to combine the inputs and outputs. In this chapter, two strategies from
the other ends of the scientific community are studied — the first of them,
Partial Least Squares, seems to be very popular today among chemical engineers.
This approach is pragmatic, usually presented in an algorithmic form1. The
second one, Canonical Correlation Analysis, has been extensively studied among
statisticians, but it seems to be almost unknown among practicing engineers.
However, both of these methods share very similar ideas and structure — even
though the properties of the resulting models can be very different.

6.1 Partial least squares

The Partial Least Squares (PLS)2 regression method has been used a lot lately,
specially for calibration tasks in chemometrics [31],[38]. In this section, a dif-
ferent approach to PLS is taken as compared to usual practices, only honoring
the very basic ideas. The reason for this is to keep the discussion better com-
prehensible, sticking to the already familiar eigenproblem-oriented framework.

6.1.1 Maximizing correlation

The problem with PCA approach is that it concentrates exclusively on the input
data X , not taking into account the output data Y . It is not actually the data
variance one wants to capture, it is the correlation between X and Y that should
be maximized.

The derivation of the PLS basis vectors can be carried out as in the PCA case,
1PLS is sometimes characterized as being one of those “try and pray” methods; the reason

for this is — it can be claimed — that a practicing engineer simply cannot grasp the unpene-
trable algorithmic presentation of the PLS ideas. He/she can just use the available toolboxes
and hope for the best

2Sometimes called also Projection onto Latent Structure
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Figure 6.1: The dependency model y = f(x) refined

now concentrating on correlation rather than variance. The procedure becomes
slightly more complex than in the PCA case: It is not only the input X block
that is restructured, but the internal structure of the output Y block is also
searched for. The regression procedure becomes such that the X data is first
projected onto a lower dimensional X oriented subspace spanned by the basis
vectors θi; after that, data is projected onto the Y oriented subspace spanned
by the basis vectors φi, and only after that, the final projection onto the Y
space is carried out.

The objective now is to find the basis vectors θi and φi so that the correlation
between the projected data vectors Xθi and Y φi is maximized while the lengths
of the basis vectors are kept constant. This objective results in the constrained
optimization problem (1.27) where

⎧
⎨

⎩

f(θi, φi) = 1
k · θT

i XT · Y φi, when
g1(θi) = 1− θT

i θi and
g2 (φi) = 1− φT

i φi.
(6.1)

There are now two separate constraints, g1 and g2 ; defining the corresponding
Lagrange multipliers ηi and µi gives the Hamiltonian

1
k
· θT

i XT · Y φi − ηi

(
1− θT

i θi

)
− µi

(
1− φT

i φi

)
, (6.2)

and differentiation gives

{
d

dθi

(
1
k · θT

i XT · Y φi − ηi(1− θT
i θi)− µi(1− φT

i φi)
)

= 0
d

dφi

(
1
k · θT

i XT · Y φi − ηi(1− θT
i θi)− µi(1− φT

i φi)
)

= 0,
(6.3)

resulting in a pair of equations

{
1
k · XT Y φi − 2ηiθi = 0
1
k · Y T Xθi − 2µiφi = 0.

(6.4)

Solving the first of these for θi and the second for φi, the following equations
can be written:

{
1
k2 · XT Y Y T Xθi = 4ηiµi · θi
1
k2 · Y T XXT Y φi = 4ηiµi · φi.

(6.5)

This means that, again, as in Sec. 5.2, the best basis vectors are given as solu-
tions to eigenvalue problems; the significance of the vectors θi (for the X block)
and φi (for the Y block) is revealed by the corresponding eigenvalues λi = 4ηiµi.
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Figure 6.2: What is usu-
ally meant by “PLS”: The
Algorithm

Because the matrices XT Y Y T X and Y T XXT Y are symmetric, the orthogo-
nality properties again apply to their eigenvectors. The expression (5.36) can
directly be utilized; the internal basis θPLS consists of a subset of eigenvectors,
selection of these basis vectors being again based on the numeric values of the
corresponding eigenvalues. In practice, the basis vectors φi are redundant and
they need not be explicitly calculated (see Sec. 6.3.3). Because the rank of a
product of matrices cannot exceed the ranks of the multiplied matrices, there
will be only min{n, m} non-zero eigenvalues; that is why, the PCR approach
may give higher dimensional models than PLS (when applying this eigenproblem
oriented approach).

It should be recognized that the PLS model is usually constructed in another
way (for example, see [31]); this “other way” may sometimes result in better
models, but it is extremely uninstructive and implicit, being defined through
an iterative algorithm (see Fig. 6.2). It can be shown that the two approaches
exactly coincide only what comes to the most significant basis vector; other
basis vectors can differ. For example, applying the approach based on the
eigenvectors, the number of non-zero eigenvalues cannot exceed the number
of variables in either input or the output — this means that the latent basis
dimension is restricted so that N ≤ m. Such constraint does not apply to the
iterative PLS approach.

Let us study the example that was presented in the previous chapter, now in the
PLS framework. The output is scalar; it is assumed that it is linearly dependent
of the second input variable, so that y(κ) = f · x2 (κ), where f is a constant.
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The matrix in (5.45) becomes

1
k2 · XT Y Y T X

= 1
k2 ·

( ∑
κ x1(κ)y(κ)

∑
κ x1(κ)y(κ)

∑
κ x1(κ)y(κ)

∑
κ x2 (κ)y(κ)∑

κ x1(κ)y(κ)
∑

κ x2 (κ)y(κ)
∑

κ x2 (κ)y(κ)
∑

κ x2 (κ)y(κ)

)

≈
(

E2{x1(κ)y(κ)} E{x1(κ)y(κ)} · E{x2 (κ)y(κ)}
E{x1(κ)y(κ)} · E{x2 (κ)y(κ)} E2{x2 (κ)y(κ)}

)

=
(

0 0
0 f 2 · E2{x2

2 (κ)}

)
,

because x1 and y are not assumed to correlate. This result reveals that the
maximum eigenvalue is f 2 ·E2{x2

2 (κ)} corresponding to the second input variable
— no matter what is the ratio between the variances of x1 and x2 . This means
that the basis always includes the vector ( 0 1 )T — and according to the
assumed dependency structure, this is exactly what is needed to construct a
working regression model. As a matter of fact, it can be seen that the eigenvalue
corresponding to the first input variable is zero, reflecting the fact that x1 has
no effect on y whatsoever.

6.2 Continuum regression

6.2.1 On the correlation structure

Let us study the correlation between input and output from yet another point
of view. The correlation structure is captured by the (unnormalized) cross-
correlation matrix

XT Y. (6.6)

The eigenvalues and eigenvectors are already familiar to us, and it has been
shown how useful they are in the analysis of matrix structures. Perhaps one
could use the same approaches to analysis of this correlation matrix? However,
this matrix is generally not square and the eigenstructure cannot be determined;
but the singular value decomposition, the geralization of the eigenvalue decom-
position exists (see Sec. 1.2.2)

XT Y = ΘXY ΣXY ΦT
XY . (6.7)

Here ΘXY and ΦXY are orthogonal matrices, the first being compatible with X
and the other being compatible with Y ; ΣXY is a diagonal matrix, but if the
input and output dimensions do not match, it is not square. Multiplying (6.7)
by its transpose either from left or right, the orthonormality of ΘXY and ΦXY

(so that ΘT
XY = Θ−1

XY and ΦT
XY = Φ−1

XY ) means that there holds

XT Y Y T X = ΘXY ΣXY ΣT
XY Θ−1

XY (6.8)

and

Y T XXT Y = ΦXY ΣT
XY ΣXY Φ−1

XY . (6.9)
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Because ΣXY ΣT
XY and ΣT

XY ΣXY are diagonal square matrices, these two ex-
pressions are eigenvalue decompositions (1.5) of the matrices XT Y Y T X and
Y T XXT Y , respectively. This means that there is a connection between the
singular value decomposition and the above PLS basis vectors: The matrices
ΘXY and ΦXY consist of the (full sets) of PLS basis vectors θi and φi. The di-
agonal elements of ΣXY , the singular values, are related to the PLS eigenvalues
in such a way that σi = k ·

√
λi.

What is more, one can see that the SVD of the input data block X alone is
similarly closely related to the PCA constructs:

XT = ΘXΣXΦT
X , (6.10)

so that

XT X = ΘXΣXΣT
XΘ−1

X , (6.11)

meaning that, again, the singular value decomposition does the trick, principal
components being collected in ΘX and singular values being related to the
eigenvalues through σi =

√
k · λi.

6.2.2 Filling the gaps

What if one defines the matrix3

(XT )αX (Y )αY , (6.12)

so that both of the analysis methods, PCA and PLS, would be received by
selecting the parameters αX and αY appropriately (for PCA, select αX = 1 and
αY = 0, and for PLS, select αX = 1 and αY = 1), and applying SVD? And,
further, why not try other values for αX and αY for emphasizing the input and
output data in different ways in the model construction? Indeed, there is a
continuum between PCA and PLS — and this is not the whole story: Letting
the ratio αX/αY go towards zero, we go beyond PLS, towards models where
the role of the output is emphasized more and more as compared to the input,
finally constructing an singular value decomposition for Y alone (or eigenvalue
decomposition for Y T Y ).

It is only the ratio between αX and αY that is relevant; we can eliminate the
other of them, for example, by fixing αX = 1. Representing the problem in the
familiar eigenproblem framework, multiplying (6.12) from left by its transpose
and compensating the number of samples appropriately one has the eigenprob-
lem formulation for the Continuum Regression (CR) basis vectors defined as4

1
k1+α

· XT
(
Y Y T

)α
X · θi = λi · θi. (6.13)

3The powers of non-square matrices being defined as shown in Sec. 1.2.2
4These eigenproblems should not be solved directly in this form: The matrix XXT has

dimension k × k, even though there are only n non-zero eigenvalues (or singular values)
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Figure 6.3: Schematic illustration of the relation between regression ap-
proaches

Correspondingly, the “dual” formulation becomes

1
k1+1/α

· Y T
(
XXT

) 1
α Y · φi = λ′

i · φi. (6.14)

When α grows from 0 towards∞, the modeling emphasis is first put exclusively
on the input data, and finally exclusively on the output data (see Fig. 6.3); some
special values of α do have familiar interpretations:

• If α = 0, the PCA model results, only input being emphasized.

• If α = 1, the PLS model results, input and output being in balance.

• If α→∞, an “MLR type” model results, only output being emphasized5 .

Which of the regression approaches, MLR, PCR, or PLS, is the best, cannot be
determined beforehand; it depends on the application and available data. All of
these methods have only mathematical justification; from the physical point of
view, none of them can be said to always outperform the others. It may even be
so that the ultimate optimum model lies somewhere on the continuum between
PCR, PLS, and MLR (it may also lie somewhere else outside the continuum).

In Figs. 6.4 and 6.5, the CR performance is visualized: There were 30 machine-
generated data samples with 20 input and 20 output variables; the number of
independent input variables was 10 and the “correct” dimension of the output
was 5; relatively high level of noise was added. And, indeed, it seems that
when the cross-validation error is plotted as the function of latent variables N
and continuum parameter α as a two-dimensional map, interesting behavior is
revealed: Starting from α = 0, the minimum error is reached for about N = 12
whereas the overall optimum is found near MLR with N = 6.

6.2.3 Further explorations*

It needs to be emphasized again that there are typically no absolutely correct
methods for determininf physically optimal latent basis vectors. As in the whole
report, the goal here is to show that there is plenty of room for experimenting

5Note that MLR is not based on basis vectors; that is why, the correspondence is somewhat
artificial (the first basis vector of the CR model explaining the first principal component of
the output data, thus explaining maximum amount of the output variance)
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Figure 6.4: Continuum regres-
sion performance for different pa-
rameter values N and α

Figure 6.5: Continuum regres-
sion performance as a “mountain
view”

and research (after all, the history of CR is less than ten years long; by no means
one should assume that the final word has been said). For example, a whole
class of methods can be defined that share the idea of continuum regression.
Let us study a slightly different approach.

MLR can be interpreted as modeling the covariance structure of the estimated
output Y . The problem that emerges is that the output space usually does
not have the same dimension as the input space has; that is why, the output
variations need to be somehow presented in the input space to make this ap-
proach compatible with the other ones, PCR and PLS. The outputs can be
projected into the input space by applying MLR in the “inverse direction”, that
is, X̂ = Y · (Y T Y )−1Y T X , so that the covariance to be modeled has the form

1
k · X̂T X̂ = 1

k · XT Y (Y T Y )−1 · Y T Y · (Y T Y )−1Y T X
= 1

k · XT Y (Y T Y )−1Y T X.
(6.15)

Actually, this formulation gives a new “latent structure” oriented view of MLR.
Assuming that all eigenvectors are utilized, the normal MLR results (of course,
this is true for all latent variables based methods if all latent variables are
employed), but if a lower dimensional internal model is constructed, the output
properties are preserved based on their “visibility” in Y . It turns ot that if one
defines the latent vectors θi as

1
k1+α1(1+α2)

· XT
(
Y

(
Y T Y

)α2
Y T

)α1

X · θi = λi · θi, (6.16)

all of the above regression methods can be simulated by appropriately selecting
the parameters α1 and α2 :

• PCR is given by α1 = 0, whereas parameter α2 can have any value;

• PLS results if α1 = 1 and α2 = 0; and

• MLR is found if α1 = 1 and α2 = −1.
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Figure 6.6: Two alternative feasible function forms (see text)

We would like to have a single parameter α spanning the continuum between
the approaches, so that α = 0 would give MLR, α = 1/2 would give PLS, and
α = 1 would give PCR (note that the range of α is now from 0 to 1). There is
an infinity of alternative options — for example, the following definitions fulfill
our needs:

1. α1 = −2α2 + α + 1 and α2 = 2α− 1, or

2. α1 = 3
2 − α− |α− 1

2 | and α2 = − 1
2 + α− |α− 1

2 |.

The outlooks of these functions are presented in Fig. 6.6. As an example, select-
ing the option 1 above, the latent vectors of CR can be calculated as solutions
to the following eigenproblem:

1
kβ

· XT
(
Y

(
Y T Y

)2α−1
Y T

)−2α2+α+1
X · θ = λ · θ. (6.17)

Here, the parameter β can be selected as β = −4α3 + 2α2 + 2α + 1 to compen-
sate for the changes in the number of samples. It needs to be noted that the
outer matrix that one has to calculate the power function of may be very large
(dimension being k×k); however, there are only m eigenvalues different from
zero, meaning that (in principle) only m power functions have to be calculated.
The matrix power is best to calculate using the singular value decomposition.

The basis θCR is again constructed from the selected eigenvectors; because of
the symmetricity of the matrix in (6.17), the basis is orthonormal.

6.3 Canonical correlations

Another approach to modeling the dependency structure between the input and
the output is offered by Canonical Correlation Analysis (CCA) [32].

6.3.1 Problem formulation

Again, one would like to find the latent basis vectors θi and φi so that the
correlation between the input and output blocks would be maximized. The
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criterion to be maximized is again

f(θi, φi) =
1
k
· θi

T XT Y φi, (6.18)

but the constraints are modified slightly:
{

g1(θi) = 1
k · θi

T XT Xθi = 1
g2 (φi) = 1

k · φi
T Y T Y φi = 1.

(6.19)

Note the difference as compared to the PLS derivation: It is not the basis vector
θi itself that is kept constant size; it is the projected data vector size Zi = Xθi

that is regulated, θi
T XT · Xθi being kept constant. The same applies also in

the output block: The size of φi
T Y T · Y φi is limited.

Again using the Lagrangian technique the following expression is to be maxi-
mized:

1
k
· θi

T XT Y φi + ηi · (1−
1
k
· θi

T XT Xθi) + µi · (1−
1
k
· φi

T Y T Y φi).(6.20)

This expression can be minimized with respect to both θi and φi separately:
{

1
k · d

dθi

(
θT

i XT Y φi − ηi(1− θT
i XT Xθi)− µi(1 − φT

i Y T Y φi)
)

= 0
1
k · d

dφi

(
θT

i XT Y φi − ηi(1− θT
i XT Xθi)− µi(1− φT

i Y T Y φi)
)

= 0,

resulting in a pair of equations
{

XT Y φi − 2ηiXT Xθi = 0
Y T Xθi − 2µiY T Y φi = 0.

(6.21)

Solving the first of these for θi and the second for φi, the following equations
can be written (assuming invertibility of the matrices):

{
XT Y (Y T Y )−1Y T Xθi = 4ηiµi · XT Xθi

Y T X(XT X)−1XT Y φi = 4ηiµi · Y T Y φi,
(6.22)

or
{

(XT X)−1XT Y (Y T Y )−1Y T X · θi = 4ηiµi · θi

(Y T Y )−1Y T X(XT X)−1XT Y · φi = 4ηiµi · φi.
(6.23)

This means that, again, the best basis vectors are given as solutions to eigenvalue
problems; the significance of the vectors θi (for the X block) and φi (for the
Y block) is revealed by the corresponding eigenvalues λi = 4ηiµi (note the
equivalences of the corresponding eigenvalues in different blocks). If either XT X
or Y T Y is not invertible, either one of the generalized eigenvalue problems in
(6.22) can directly be solved.

It needs to be recognized that data must be explicitly scaled in the CCA case6 :
The property 1

k · θT XT Xθ = I is not automatically guaranteed by the eigen-
6This kind of extra scaling is not needed in the above PCA and PLS approaches: By

construction, the eigenvectors were assumed to be normalized to unit length
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problem formulation. The matrix is diagonal (see the next section), but the
diagonal elements are ones only after appropriate scalings:

θi ← θi/

√
1
k
· θT

i XT Xθi. (6.24)

6.3.2 Analysis of CCA

If the former equation in (6.22) is multiplied from left by θT
j , one has

θT
j XT · Y (Y T Y )−1Y T · Xθi − λi · θT

j XT · Xθi = 0. (6.25)

When rearranged in the above way, one can see that the matrix Y (Y T Y )−1Y T

is symmetric — meaning that (as in Chapter 5) the eigenproblem can be read
in the “inverse” direction, and the following must hold

(
θT

j XT · Y (Y T Y )−1Y T
)
· Xθi − λi · θT

j XT · Xθi

= λj · θT
j XT Xθi − λi · θT

j XT Xθi

= (λj − λi) · θT
j XT · Xθi

= 0,

(6.26)

meaning that Xθi and Xθj must be orthogonal if i ̸= j so that θT
i XT Xθj = 0

(remember that for i = j it was assumed that θT
i XT Xθj = 1). The same

result can be derived for the output block: The projected variables are mutually
uncorrelated. Further, if the equations in (6.21) are multiplied from left by θT

j

and φT
j , respectively, one has

{
θT

j XT Y φi = 2ηi · θT
j XT Xθi

φT
j Y T Xθi = 2µi · φT

j Y T Y φi.
(6.27)

Observing the above uncorrelatedness result, one can conclude that also for
the cross-correlations between the projected input and output blocks the same
structure has emerged: Only for j = i there is correlation, otherwise not; this
correlation coefficient is 2ηi = 2µi =

√
λi. The above results can be summarized

by showing the correlation structure between the latent input and output bases:

(
XΘ Y Φ

)T (
XΘ Y Φ

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√

λ1

. . . . . .
1

√
λn√

λ1 1
. . . . . .√

λn 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(6.28)

For notational simplicity, it is assumed here that n = m (otherwise, the non-
diagonal blocks are padded with zeros). The basis vectors θi and φi are called
canonical variates corresponding to the canonical correlations

√
λi. The very
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elegant structure of (6.28) suggests that there must be going on something more
important — the dependencies between the input and output blocks are chan-
nelled exclusively through these variates. Indeed, it has been recognized that the
canonical variates typically reveal some kind of real physical structure underly-
ing the observations, and they have been used for “exploratory data analysis”
already in the 1960’s. The underlying real structure will be concentrated on
more in the next chapter.

Note that, because of the non-symmetricity of the eigenproblem matrices, the
bases are now generally not orthogonal! This is one concrete difference between
CCA and PCA/PLS. It can be claimed that whereas PCA and PLS are math-
ematically better conditioned, CCA is often physically better motivated — the
underlying real structures seldom represent orthogonality.

Despite the very similar starting points, PLS and CCA bases are truly very
different. For example, if Y is substituted with X in the formulas, it turns out
that PLS equals PCA (because the eigenvectors of XX are the same as those
of

(
XT X

)2 , and the eigenvalues become squared), whereas CCA cannot at all
distinguish between directions in the data space — check this by substituting
Y with X in (6.23).

6.3.3 Regression based on PLS and CCA

In Fig. 6.1, it was explained that regression is a three-step procedure with two
latent bases. However, it needs to be noted that this cumulating complexity is
only illusion, presented in this form only to reach conceptual comprehensibility.
In practice, it is only the first mapping from X to Z1 where the data compression
takes place, the step between Z1 to Z2 introducing no additional information
loss — thus, the same functionality as in the “stepwise” procedure is reached if
one maps the data directly from Z1 to Y , discarding the level Z2 . With PLS,
the structure of the regression model reduces into the same expression as with
PCR (see page 80):

FPLS = θPLS

(
θT
PLSX

T XθPLS

)−1
θT
PLSX

T Y. (6.29)

With CCR, however, the basis vectors are not orthogonal but the projected
data score vectors are — see (6.28). That is why, there is again reduction to
the algorithm presented on page 80, but the result looks very different7 :

FCCR = θCCAθT
CCAXT Y. (6.30)

6.3.4 Further ideas*

There are various benefits when all methods are presented in the same eigenprob-
lem-oriented framework — one of the advantages being that one can fluently

7Note the similarity between these regression formulas and the expressions (4.19) and
(5.36): It is always the correlation between X and Y , or XT Y , being the basis for the
mapping between input and output; how this basic structure is modified by the additional
matrix multiplier is only dependent of the method
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combine different approaches. For example, it turns out that if one defines

RCR2 =
1
kβ

·
(
XT X

)2α−1
(
XT Y

(
Y T Y

)2α−1
Y T X

)1−α
, (6.31)

the methods from CCR to PLS and PCR are found for α = 0, α = 1
2 , and

α = 1, respectively!8 Parameter β can be selected as β = 2α − 1 + (1 −
α)(2α − 1) = −2α2 + 5α − 2. MLR could also easily be included somewhere
along the continuum when using another choice of expressions for the exponents
There is one drawback, though — only for the distinct values α = 1

2 and α =
1 the eigenvectors are orthogonal, as compared with the standard continuum
regression.

Study yet another idea: Observe the combination of matrices in the CCA solu-
tion

(XT X)−1XT Y (Y T Y )−1Y T X. (6.32)

Note that this can be divided in two parts: The first part can be interpreted as
a mapping X from input to Ŷ , and the second part maps Ŷ to X̂ :

X̂ = X · F 1F 2 , (6.33)

where

F 1 = (XT X)−1XT Y, and
F 2 = (Y T Y )−1Y T X.

(6.34)

That is, CCA can be interpreted as modeling the behaviors of the mappings
when data X is first projected onto output Y and from there back to input.
This introduces yet another (CCA oriented) way of constructing the latent basis:
One can study what are the statistical properties of this “twice projected” data
in the PCA way, that is, the orthogonal basis vectors can be defined trough the
eigenproblem

X̂T X̂ · θi = λi · θi, (6.35)

or

XT Y (Y T Y )−1Y T X(XT X)−1XT Y (Y T Y )−1Y T X · θi = λi · θi. (6.36)

8In this case, all the matrices that are involved are low-dimensional and the powers are
easily calculated; also note that in the PLS case the square root of the nominal formulation
is used for notational simplicity — the eigenvectors, however, remain invariant in both cases
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Computer exercises

1. Study the robustness of the different regression methods trying different
values for parameter k (number of samples):

k = 20;
[X,Y] = dataXY(k,5,4,3,2,0.001,1.0);

E = regrCrossVal(X,Y,’mlr(X,Y)’);
errorMLR = sum(sum(E.*E))/(k*4)
E = regrCrossVal(X,Y,’mlr(X,Y,pca(X,3))’); % Try different
errorPCR = sum(sum(E.*E))/(k*4)
E = regrCrossVal(X,Y,’mlr(X,Y,pls(X,Y,2))’); % Try different
errorPLS = sum(sum(E.*E))/(k*4)
E = regrCrossVal(X,Y,’mlr(X,Y,cca(X,Y,2))’); % Try different
errorCCR = sum(sum(E.*E))/(k*4)

2. If installed on your computer, get acquainted with the Chemometrics
Toolbox for Matlab, and PLS Toolbox. Try the following demos:

plsdemo;
crdemo;
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Lesson 7

Towards the Structure

During the previous discussions, the role of the latent structure has become
more and more emphasized. And, indeed, now we are taking yet another leap
in that direction: It will be assumed that there really exists some underlying
structure behind the observations (see Fig. 7.1)1 . The observations x are used
to determine the internal phenomena taking place within the system; the output
variables are calculated only after that. Truly knowing what happens within
the system no doubt helps to pinpoint the essential behavioral patterns, thus
promising to enhance the accuracy of the regression model. In the earlier chap-
ters the latent structure was just a conceptual tool for compressing the existing
data, now it takes a central role in explaining the data.

As has been noticed, the methods presented this far do not offer us intuitively
appealing ways to find the real structure: If simple scaling can essentially change
the PCA model, for example (see (5.35), it cannot be the physical structure
that is being revealed. On the other hand, somehow the idea of continuity
between the methods (as utilized in CR) does not promise that a uniquely
correct structure would be found. The mathematically motivated structure is
not necessarily physically meaningful.

It is an undeniable truth that the underlying primary structure cannot be de-
termined when only observations of the behavior are available. We can only
make optimistic guesses — if we trust the benevolence of Nature these guesses
are perhaps not all incorrect. However, remember Thomas Aquinas and his
theories of “First Cause”:

“... And so we must reach a First Mover which is not moved by
anything; and this all men think of as God.”

1Note that the causal structure is now assumedly different as it was before: If both X
and Y are only reflections of some internal system structure, so that no causal dependence is
assumed between them, the applications of the final models should also recognize this fact.
This means that control applications are somewhat questionable: If x values are altered in
order to affect the y values according to the correlations as revealed by the model, it may be
that the intended effects are not reached. On the other hand, different kinds of soft sensor
applications are quite all right: The observed correlations justify us to make assumptions
about y variables when only x has been observed (assuming invariant process conditions)
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X

Y
Z

Figure 7.1: Yet another view of signal dependency structure

7.1 Factor analysis

An age-old method for feature extraction, or finding the underlying explanations
beyond the observations is Factor Analysis. It has been applied widely in social
sciences, etc. The basic model is familiar:

x(κ) = θz(κ), (7.1)

or

X = ZθT . (7.2)

The goal is to find the basis θ and the scores Z (factors) so that the residual
errors E = X − ZθT would be minimized. Nothing strange here — actually
the goal sounds identical with the PCA problem formulation. However, now
we have an additional uncorrelatedness constraint for the residual: The residual
errors Ei should be uncorrelated2 :

E{e(κ)eT (κ)} =
1
k
· ET E =

⎛

⎜⎝
var{e1 (κ)} 0

. . .
0 var{en(κ)}

⎞

⎟⎠ . (7.3)

All dependencies between data should be explained by the factors alone. As-
suming that the residual errors and factors are uncorrelated, the data covariance
matrix can be written as

1
k · XT X = 1

k ·
(
θZT ZθT + θZT E + ET ZθT + ET E

)
1
k · θZT ZθT + 1

k · ET E.
(7.4)

From this it follows that, if one defines

θ′ = θM
Z ′T Z ′ = M−1ZT Z(MT )−1 ,

(7.5)

the same residual errors are received for different factor structure; the new model
is also equally valid factor model as the original one was for any invertible matrix
M . This means that the results are not unique. Factor analysis is more like art
than science; there are more or less heuristic basis rotations that can be applied
to enhance the model. These algorithms will not be studied here.

2Note that this uncorrelatedness property is not fulfilled by the PCA basis
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Note that the uniqueness of the PCA model (at least if the eigenvalues are
distinct) is caused by the assumed ordering of the basis vectors according to their
relevance in terms of explained variance; in the factor analysis model, this kind
of ordering is not assumed and uniqueness is not reached in the same manner.
As long as the rotations just operate in the same subspace, the selection of the
factors does not affect the accuracy if regression model is to be implemented.

7.2 Independent components

Above, factor analysis tried to find the original sources by emphasizing uncorre-
latedness — but the results were not quite satisfactory, uniqueness of the results
remaining lost. Could we define more restrictive objectives that would fix the
problems of traditional factor analysis? The key question here, again, is that of
ontological assumptions: Just as in the case of information vs. noise (chapter
5), now one has to determine how the structure is manifested in the data.

And, indeed, the answer to the question whether structure can be characterized
in a reasonable way or not is yes: During the last decade, it has turned out
that the independence of sources is a good starting point. This approach is
called Independent Component Analysis (ICA), and it has lately been studied
specially in the neural networks community. It has been successfully applied for
blind source separation, image coding, etc. (see [16], [28]).

7.2.1 Why independence?

Intuituively, the original sources are those that are independent of other sources.
Finding the underlying structure can be based on this idea: Search for data that
is maximally independent. In mathematical terms, two variables x1 and x2 can
be said to be independent if there holds3

E{f1 (x1 (κ))f2 (x2 (κ)} = E{f1 (x1 (κ))} · E{f2 (x2 (κ)}. (7.6)

According to the above formulation, it can be said that maximizing indepen-
dence between signals simultaneously minimizes the mutual information be-
tween them.

In a way, the idea of ICA is to invert the central limit theorem: When various
independent variables are mixed, the net distribution more or less approximates
normal distribution. So, when searching for the original, unmixed signals, one
can search for maximally non-normal projections of the data distribution!

7.2.2 Measures for independence

Probability distributions can uniquely be determined in terms of moments or
cumulants. Gaussian distribution is determined by the first order cumulant

3Note that independence is much more than simple uncorrelatedness, where the formula
(7.6) holds only when both of the functions are identities, f1(x1) = x1 and f2(x2) = x2.
Because independence is so much more restricting condition than what uncorrelatedness is,
one is capable of finding more unique solutions than what is the case with traditional factor
analysis
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(mean value) and the second order cumulant (variance) alone; for this distribu-
tion, all higher order cumulants vanish. This means that the “non-normality”
of a distribution can be measured (in some sense) by selecting any of the higher
order cumulants; the farther this cumulant value is from zero (in positive or
negative direction), the more the distribution differs from Gaussian. For ex-
ample, non-normality in the sense of “non-symmetricity” can be measured us-
ing the third-order cumulant skewness. In ICA, the standard selection is the
fourth-order cumulant called kurtosis that measures the “peakedness” of the
distribution:

kurt{xi(κ)} = E{x4
i (κ)}− 3 · E2{x2

i (κ)}. (7.7)

For normalized data this becomes

kurt{xi(κ)} = E{x4
i (κ)}− 3. (7.8)

If the data is appropriately normalized, the essence of kurtosis is captured in
the fourth power properties of the data; this fact will be utilized later.

After the ICA basis has been determined somehow, regression based on the inde-
pendent components can be implemented (this method could be called “ICR”).
Note that the expressions are somewhat involved because the basis vectors are
non-orthogonal.

7.2.3 ICA vs. PCA

Figs. 7.3 and 7.2 illustrate the difference between the principal components and
the independent components in a two-dimensional case. The data is assumed
to have uniform distribution within the diamond-shaped region, and in these
figures, ICA and PCA bases for this data are shown, respectively. It really
seems that independence means non-Gaussianity: Note that the trapetzoidal
marginal distributions in the non-independent PCA case are much more Gaus-
sian than the “flat”, negatively kurtotic uniform distributions in the ICA case.
The “mixing matrix” (using the ICA terminology) in the case of Fig. 7.3 is

θ =
(

1/
√

2 1
1/

√
2 0

)
, (7.9)

meaning that x = θz. Note that, as compared to the Gaussian distribution,
uniform distribution is rather “flat”; in this case the kurtosis is maximally neg-
ative in the directions of the original sources, other projections having smoother,
more Gaussian distributions.

7.3 Eigenproblem-oriented ICA algorithms

Normally independent component analysis is carried out in an algorithmic, it-
erative framework [16]; there are good reasons for this, but in this context we
would like to bring ICA into the same eigenproblem-oriented framework as all
the other approaches before.
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p z( )1

p z( ) =2 p z( ( ))2 !

Data distribution

z1

z2

z1( )!

Figure 7.2: The ICA basis vectors, or “independent components”. Know-
ing the value of z1 (κ), say, nothing about the value of z2 (κ) can be said.
The distribution remains intact, or p(z2 (κ)) = p(z2 (κ)|z1 (κ)), and the
two projected variables really are independent (compare to the PCA
case below: information about z1 (κ) affects the posteriori probabilities
of z2 (κ))

pc 2

pc 1

z1

p z( ( ))2 !

Data distribution

Projected
distributions

z1( )!

p z( )1

p z( )2

z2

Figure 7.3: The PCA basis vectors, or “principal components”: the first
of them captures the maximum variance direction, and the other one is
perpendicular to it. Variables are not independent
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In what follows, kurtosis (or, equally, the fourth moment of data, as shown
in (7.8)) as a measure of independence is concentrated on (even though other
contrast functions can also be defined). The problem with the eigenproblem
framework is that it naturally emerges only when the second-order data prop-
erties, covariances and correlations, are studied. It is now asked whether the
higher-order statistical properties like kurtosis could somehow be captured in
the same way. And, indeed, the tensor methods for ICA have been found4 . In
principle, the tensors are linear operators just as normal matrices are, and the
eigenstructure can be defined also for the four-dimensional tensors; however,
the procedures are computationally involved, tensors consisting of n · n · n · n
elements, and also the mathematical theory is cumbersome (the “eigenvectors”
now being n × n matrices!). Here the excessive growth of search space (and
the sophisticated mathematics) is avoided and some alternative approaches are
studied.

7.3.1 Data whitening

The key point is to modify the data distribution so that the structural features
— as assumedly being revealed by the fourth-order properties — become visible.
To reach this, the lower-order properties have to be compensated, because they
typically outweight the higher-order properties:

• First-order properties are eliminated by only studying mean-centered data,
that is, E{xi(κ)} = 0 for all i;

• Third-order properties (or “skewness”) vanish if one assumes that the
distributions are symmetric, so that E{xi(κ)xj(κ)xl(κ)} = 0 for all i, j, l;
and

• Second-order properties are eliminated if the data is whitened.

The data whitening means that the data is preprocessed so that its covariance
matrix becomes an identity matrix. This can be accomplished by

x(κ) =
(√

E{x(κ)xT (κ)}
)−1

· x(κ), (7.10)

where the square root of a matrix is here defined so that M =
√

M
T√

M . After
this modification there holds E{x(κ)xT (κ)} = I. No matter what kind of addi-
tional preprocessing is needed, the above elimination of lower-order statistics is
assumed in what follows5 .

We are again searching for a basis θ so that x(κ) = θz(κ), signals zi now hope-
fully being independent; and, again, we assume that in the whitened data space

4Note that the first-order statistical properties of a distribution are captured by the one-
dimensional mean value vector, and the second-order properties are captured by the two-
dimensional covariance matrix — similarly, the fourth-order properties can be captured by
the four-dimensional tensor

5If one is capable of finding some structure in the data after this prewhitening, this structure
cannot be dependent of the measurement scaling, thus reflecting the real structure in a more
plausible way — this dependency of the scaling was one of the arguments against the PCA
model
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the basis is orthogonal (of course, when expressed in the original coordinates,
the orthogonality does not hold — see Fig. 7.2).

7.3.2 Deformation of the distribution

One way to reduce the fourth-order properties to second-order properties is to
explicitly change the distribution. In Fourth-Order Blind Identification (FOBI)
the data is preprocessed (after first being whitened) so that the samples are
either stretched or contracted about the origin. This can be accomplished as

x′(κ) = f(∥x(κ)∥) · x(κ), (7.11)

where f is some function. For example, selecting f(∥x∥) = ∥x∥ means that
analyzing the variance properties of x′ the fourth order properties of the original
x are modeled. This can be seen when the new covariance matrix is studied:

E{x′(κ)x′T (κ)} = E{x(κ)xT (κ) · ∥x(κ)∥2}
= E{Θz(κ)zT (κ)ΘT · zT (κ)ΘT Θz(κ)}
= Θ · E{z(κ)zT (κ) · zT (κ)z(κ)} · ΘT .

(7.12)

This formulation is justified because one assumes that there exists an orthogonal
basis Θ and independent signals zi. Let us study the matrix E{z(κ)zT (κ) ·
zT (κ)z(κ)} closer. The element i, j has the form

E{zi(κ)zj(κ) · zT (κ)z(κ)}
= E{zi(κ)zj(κ) · (z2

1 (κ) + · · · + z2
n(κ))}

= E{zi(κ)zj(κ) · (z2
1 (κ)} + · · · + E{zi(κ)zj(κ)(z2

n(κ)}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E{z4
i (κ)} + E{z2

i (κ)} ·
∑

l≠i E{z2
l (κ)} = E{z4

i (κ)} + n − 1,
if i = j, and

E{z3
i (κ)zj(κ)} + E{zi(κ)z3

j (κ)}+
E{zi(κ)zj(κ)} ·

∑
l≠i,l≠j E{z2

l (κ)} = 0,
otherwise.

The above simplifications are justified because of the assumed independence of
the signals zi — for example, E{zξ

i (κ)zζ
j (κ)} = E{zξ

i (κ)} · E{zζ
j (κ)} for i ̸= j.

Also, because of centering, E{zi(κ)} = 0, and because of whitening, E{z2
i (κ)} =

1. Additionally, taking into account the assumed orthogonality of Θ (in the
whitened data space), there holds ΘT = Θ−1 , and

E{x′(κ)x′T (κ)}

= Θ ·

⎛

⎜⎝
E{z4

1 (κ)} + n − 1 0
. . .

0 E{z4
n(κ)} + n − 1

⎞

⎟⎠ · ΘT

= Θ · Λ · Θ−1 .

(7.13)

This means that the right hand side can be interpreted as the eigenvalue de-
composition of the covariance matrix of the modified data. The diagonal el-
ements in the eigenvalue matrix are directly related to the fourth-order prop-
erties of the (assumed) independent components. The cumulant maximiza-
tion/minimization task (for whitened data) is also transformed into the variance
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x4

Figure 7.4: The original mixture of signals (200 of the original 1000
samples are shown as time series). Can you see any structure here?

maximization/minimization task for the modified variable6 . This means that
the standard PCA approach can be applied; simultaneously as the covariance
structure of x′ is analyzed, so is the kurtosis structure of the original variables
x. However, contrary to the standard PCA, now the principal components car-
rying the least of the variance may be equally interesting as the first ones are
— depending on whether one is searching for the latent basis of maximal or
minimal kurtosis. The eigenvalues reveal the kurtoses of the signals zi so that
kurt{zi(κ)} = E{z4

i (κ)}− 3 = λi − n − 2.

As an example, study the four-dimensional data samples as shown in Fig. 7.4.
Here, the data sequence is interpreted as constituting a continuous signal; how-
ever, note that this signal interpretation is only for visualization purposes. Using
the above scheme, the underlying signals can be extracted — with no additional
information, just based on the statistical properties of the samples (see Fig. 7.5)!

The exclusively input-oriented approach for determining the latent structure
can again be extended: Note that the regression structure y = FT x remains
formally intact if both sides are multiplied by the same factor, so that there
holds yf(x, y) = FT xf(x, y). This means that extensions towards the directions
of PLS and CCR, for example, can be proposed where both input and output
data are preprocessed prior to determination of the latent structure; it seems
that such possibilities have never been explored.

It is important to note that the curve continuity and periodicity, properties that
are intuitively used as criteria for “interesting” signals, are not at all utilized
by the ICA algorithms — indeed, the samples could be freely rearranged, the
continuity and periodicity vanishing, but the analysis results would still remain
the same. In fact, the traditional methods like some kind of harmonic analy-
sis could reveal the underlying periodic signal structure, but ICA is specially

6Note that if the signals zi are independent, kurtosis can be maximized/minimized using
this algorithm even if the distributions are skewed, that is, E{z3

i (κ)} ̸= 0
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z1

z2

z3

z4

Figure 7.5: The extracted sources and their distributions

powerful when such periodicity or continuity properties cannot be assumed.

However, even though the above approach seems promising, it has to be rec-
ognized that in many cases the distribution properties are only visible on the
local scale, they cannot be attacked applying global methods like PCA. For
example, see Fig. 7.6: there it is shown how the peculiar data distribution is
deformed in the data processing. The key observation here is that even after
the data deformation (last image), the covariance properties remain identical in
orthogonal directions, meaning that none of the directions can be selected by
the PCA-based approaches. Typically, algorithmic approaches to ICA are su-
perior, because locally there still exist gradients in the kurtosis-oriented design
criterion.

7.3.3 Further explorations*

One of the disadvantages of the above algorithm is that it cannot distinguish
between independent components that have equal kurtosis7 . Let us try to find
another approach offering more flexibility.

First, study the basic properties of the fourth power of the data point norm:

∥x∥4 =
(√

x2
1 + · · · + x2

n

)4

=
(
x2

1 + · · · + x2
n

)2

= x4
1 + · · · + x4

n + 2x2
1x

2
2 + 2x2

1x
2
3 + · · · + 2x2

n−1x
2
n.

(7.14)

7Note that the non-uniqueness problem is the same with PCA if there are equal eigenvalues;
however, in this case when we are searching for the real explanations beneath the observations,
not only some compression of information, this problem is more acute
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Figure 7.6: Modifications of the data distribution. The covariance struc-
tures are shown as ellipses (circles) in the figures

Let us define a modified (n2 + n)/2 dimensional data vector as follows:

x′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1
...

x2
n√

2 · x1x2
...√

2 · xn−1xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.15)

containing all possible second order cross-products between the x elements. Us-
ing this kind of modified data vector one can express the fourth moment of the
original data vector simply as

∥x∥4 = ∥x′∥2 = x′T · x′. (7.16)

Now in the x′ space one can project the point onto an axis l as x′T l, and, further,
it is possible to express the fourth moment of this projected data as

lT · x′x′T · l. (7.17)

One should find such an axis l that the average of this quantity over all the modi-
fied samples x′(κ), where 1 ≤ κ ≤ k, would be maximized (or minimized). First,
construct the expression for the average of projected fourth moment values:

1
k
· lT ·

k∑

κ=1

x′(κ)xT (κ) · l =
1
k
· lT · X ′T X ′ · l, (7.18)
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Figure 7.7: The basis vectors cor-
responding to l of lowest kurto-
sis. Note that only first two are
“correct” signals, these sources
being sub-Gaussian

Figure 7.8: The basis vectors cor-
responding to l of highest kurto-
sis. Only the first two are cor-
rect, these sources being super-
Gaussian

where the modified data vectors are written in the matrix form. Letting ∥l∥ = 1,
Lagrangian constrained optimization problem results:

J(l) =
1
k
· lT · X ′T X ′ · l + λ ·

(
1 − lT l

)
, (7.19)

so that

d J(l)
d l

=
2
k
· X ′T X ′ · l − 2λ · l = 0, (7.20)

again resulting in an eigenproblem:

1
k
· X ′T X ′ · l = λ · l. (7.21)

Substituting (7.21) in (7.19) one can see that the eigenvalue equals the cost
criterion value, that is, λ is the average of the projected fourth moments of
the samples. Note that here the least significant eigenvector can be more im-
portant than the most significant one, depending whether one is searching for
sub-Gaussian or super-Gaussian distribution. This principal component is now
presented in the high-dimensional x′ space, and to make it useful as a basis
vector, one needs to approximate it in the lower-dimensional space of x vectors.
For this purpose, remember what is the interpretation of each of the elements
in l:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 ∼ x2
1

...
ln ∼ x2

n

ln+1 ∼
√

2x1x2
...

l(n2+n)/2 ∼
√

2xn−1xn,

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 ∼ l1
...

x2
n ∼ ln

x1x2 = x2x1 ∼ 1√
2
· ln+1

...
xn−1xn = xnxn−1 ∼ 1√

2
· l(n2+n)/2 ,
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PCA

kurt{ } > 0z1 kurt{ } > 0z2 kurt{ } = 0z2

kurt{ } = 0z1

Figure 7.9: Another (more difficult) example of underlying structure:
Positive kurtosis in the basis that is suggested by the structure of the
distribution (on the left), and zero kurtosis using PCA (two equal pro-
jections of normal distributions summed together). In this case, for ex-
ample, the PCA analysis hides the underlying structure altogether — all
samples belonging to different distribution regions are mixed up. How-
ever, for this distribution the independence assumption also collapses (see
text)

These are not expectation values, but they still tell something about the con-
nections between the variables for some hypothetical data; from the elements of
l one can construct an association matrix

R =

⎛

⎜⎜⎜⎜⎝

l1
1√
2
· ln+1 · · · 1√

2
· l2n−1

1√
2
· ln+1 l2
...

. . .
1√
2
· l2n−1 ln

⎞

⎟⎟⎟⎟⎠
. (7.22)

Using this matrix, one can determine the n dimensional basis vectors θi that
best can span the higher-dimensional space; the answers must be given by the
principal components of R. Note that the eigenvalues may now be negative,
as well as the diagonal elements; this could be explained assuming that data
is complex-valued. However, because the matrix is symmetric (in this case,
actually, Hermitian) the eigenvalues and vectors are real-valued.

7.4 Beyond independence

Study the distributions in Fig. 7.9: The intuitively correct basis vectors fulfill
the non-Gaussianity goal, the marginal distributions being peaked, or positively
kurtotic. However, note that the variables z1 and z2 are in this case not inde-
pendent: knowing, for example, that z1 has high value, one immediately knows
that z2 must be near zero, whereas low values of z1 leave much more freedom
for z2 ; in a way, these variables are rather mutually exclusive than indepen-
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"1

"2"3

Figure 7.10: Three basis vectors in a two-dimensional space: The basis
set is overcomplete

dent, either of them telling very much about the other one. The independence
objective does not seem to always work when searching for good basis vectors.
What kind of alternatives do exist?

7.4.1 Sparse coding

It turns out that in those types of distributions that seem to be characteristic
to measurement data and that we are specially interested in, meaning mixture
models as studied in Sec. 2.4, this mutual exclusiveness is more like a rule rather
than exception: If a sample belongs to some specific subdistribution, the other
subdistributions do have no role in explaining it. And there are more surprises:
It may be so that the correct number of latent structures is higher than what is
the dimension of the data space (see Fig. 7.10). Perhaps it is this exclusiveness
that could be taken as starting point? And, indeed, this approach results in a
framework that could be called Sparse Component Analysis (SCA).

In sparse coding it is assumed that a sample x is represented in latent basis
so that most of the scores are zeros. Sparse coding is a rather general frame-
work: For example, the various submodels constituting a mixture model can be
presented within the same sparse structure. But sparse models are more gen-
eral than the mixture models are: Whereas the constructs in mixture models
strictly belong to one submodel only, in the sparse framework the components
may be shared, so that the submodels can have common substructures. This
exchange of substructures is the key to the expressional power of sparse models.
Unfortunately, this power also suggests that there exist no explicit algortihms
for constructing sparse models8 . Also the varimax, quartimax, and infomax ro-
tation algorithms resemble sparse coding; these approaches are commonly used
within the factor analysis community for maximizing the score variance, thus
distributing the activity in more specialized factors).

As compared to the modeling methods discussed before, ICA is typically not
seen as a compression technique; rather, it carries out data reorganization, so
that the z vectors often do have the same dimension as x. In the sparse coding

8However, various iterative approaches exist; for example, see next chapter
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Figure 7.11: The structure of a sparse model

case, the goal is still different: The model may even be inflated, so that the num-
ber of constructs is higher than the data dimension, hoping that the structural
phenomena become better visible when the data is less compactly packed.

One of the implicit general objectives in modeling is simplicity, in the spirit of
Occam’s razor. Now this simplicity objective has to be interpreted in another
way: Usually, “model of minimum size” means minimum number of substruc-
tures; in sparse coding it means minimum number of simultaneously active units
(see Fig. 7.11).

Regression based on a sparse model is nonlinear; however, the nonlinearity is
concentrated on the selection of appropriate latent vectors among the candidates
— after they are selected, the model is linear. The latent variables can be
selected so that together they can explain the data sample as well as possible.
The abrupt switching between latent structures means that the model behavior
is discontinuous if no additional measures are applied.

When the most specialized constructs are only used, it seems that sparse rep-
resentations often seem to be “easily interpreted”, being sometimes connected
to intuitive mental (subsymbolic) constructs. There is some evidence that the
human brain organizes at least sensory information in this way: In visual cor-
tex, there are areas, groups of neurons that have specialized in very narrow
tasks, like detecting tilted lines in the visual image. The observed image is
mentally reconstructed using the low-level visual features — and what is more,
it seems that similar principles may be governing the higher level perception,
too. There is perhaps room for fruitful cooperation between cognitive science
and multivariate statistics.
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Computer exercises

1. Study the robustness of the eigenproblem-formulated ICA by iteratively
running the two commands below with different selections of parameter
alpha (here α denotes the power used in data preprocessing: x′ = ∥x∥α ·x.
Note that the default value α = 1 resulting in the nominal strictly kurtosis-
oriented algorithm is not necessarily the best choice — for example, try
α = −1 for this data):

X1 = dataIndep;
regrICA(X1,alpha);

Define data as

X2 = dataIndep(1000,...
’randn(1000,1)’,...
’sign(randn(1000,1)).*(rand(1000,1)<1/3)’);

regrICA(X2);

and analyze the independent components. Change the threshold value
(the peak probability; value “1/3” above) between 0 and 1, and explain
the results.

2. Download the FastICA Toolbox for Matlab through the Internet address
http://www.cis.hut.fi/projects/ica/fastica/, and install it. Apply
the FastICA algorithm to the above data sets.
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Regression vs. Progression

In the earlier chapters, methods were discussed that are based on “traditional”
statistical approaches. On the other hand, lately the so called soft computing
methods have become popular, seemingly shadowing the more traditional mod-
eling methods. In this chapter, the new methodologies are briefly discussed
exclusively focusing on neural networks. This paradigm consists of a wide vari-
ety of different approaches and methods, but there are some common features
— the methods are data-based, iterative, and massively parallel. And, what is
more, the intended applications are typically extremely complex and nonlinear
(see [5], [13], [7], and [36]).

However, neural networks and statistical methods are not competing method-
ologies for data analysis, and the aim of this chapter is to discuss the connections
between these two seemingly very different approaches. It is shown how under-
standing the (linear) statistical phenomena help in understanding the operation
of the more complex algorithms — it is statistical properties between data that
there only exist, no matter what is the analysis method, after all.

Neural networks research is a quite diverse field of methods originating from
different kinds of intuitions. Three different branches of neural networks research
are discussed here separately: The first branch is unsupervised neural clustering
methods and regression based on them, and the second branch is perceptron
networks and regression. Finally, it is shown how the statistical methods are not
only related to artificial neural networks but also to natural neuron structures.

8.1 Neural clustering

For practically any statistical data processing method, there exist a neural coun-
terpart. When clustering, for example, is done using the neural networks al-
gorithms, there are typically some benefits: The robustness of the clustering
process can be enhanced, and as a bonus, some kind of “topology” can be found
between clusteres, making it easier to gain intuition about the data properties.
But, on the other hand, there are drawbacks, like the longer execution time of
the algorithms.
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8.1.1 Self-organizing maps

The celebrated Self-Organizing Map (SOM) algorithm by Teuvo Kohonen [27]
performs nonlinear dimensonality reduction using competitive learning. It ac-
complishes data clustering in such a way that the topology of the input space is
somehow preserved, that is, nearby data in the input space are mapped into clus-
ters (now called “nodes”) that are near each other also in the low-dimensional
grid1 .

The self-organizing map consists of N nodes, each of which is characterized by
an n dimensional prototype vector x̄c, where 1 ≤ c ≤ N , standing for the cluster
centers. The batch SOM algorithm that iteratively organizes the map can be
expressed as follows:

1. Choose a set of original node prototypes x̄1 , . . . , x̄N arbitrarily.

2. Assign the k samples to the N nodes using the minimum distance rule,
that is, sample x(κ) belongs to node c(κ) such that

c̄(κ) = argmin
c∈[1 ,N ]

(x(κ) − x̄c)T (x(κ) − x̄c). (8.1)

3. For all pairs of center c̄(κ) and node c calculate the “distance measure”
(for explanation of the parameters, see below):

hc(κ) = exp
(
−d2 (c, c̄(κ))

2σ2 (κ)

)
. (8.2)

4. Compute new node prototypes, that is, for all 1 ≤ c ≤ N :

x̄c ←
k∑

κ=1

hc(κ) · x(κ)/
k∑

κ=1

hc(κ). (8.3)

5. If any of the node prototypes changes, return to step 2, otherwise, stop.

Above, in Step 4, the value of the neighborhood parameter hc(κ) determines the
behavior of the adaptation process. This parameter determines the net topology,
giving large values if the node c and the best matching node c̄(κ) are “near” each
other in the net, and smaller values otherwise. In (8.2) the parameter d(c, c̄(κ))
gives the distance between nodes c and c̄(κ) in the grid of network neurons,
and σ(κ) determines the “width” of the neighborhood. This parameter can be
time-varying, starting from a relatively large value, but getting smaller (the
neighborhood “shrinking”) as the adaptation continues, making the adaptation
more local. When the algorithm has converged, the node prototypes x̄c contain
the cluster centers being arranged within a grid structure.

The selection (8.2) for hc(κ) gives a Gaussian form for the neighborhood effect.
As shown in [18], this parameter can be interpreted as probability for a sample
to belong to a specific node; that is, the net can be interpreted again as a
Gaussian mixture model for the data, and the algorithm tries to adjust the
Gaussian centers to best match the data.

1Now we are not specially interested in the mapping, or the visual properties of the data,
but on the clusters in the input space as generated by the algorithm. The topological ordering
is reached as a side-effect
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8.1.2 “Expectation Maximizing SOM”

The SOM algorithm is related to the K-means clustering, because in both cases
the Gaussian distributions are assumed to have identity covariance matrix. As
in the case of the EM algorithm, the above algorithm can also be extended to
“EMSOM”:

1. Choose a set of original node prototypes x̄1 , . . . , x̄N arbitrarily, for ex-
ample, using the SOM algorithm; the cluster covariances are originally
identity matrices, that is, Rc = I for all 1 ≤ c ≤ N .

2. Assign the k samples to the N nodes using the minimum (balanced) Ma-
halanobis distance rule:

c̄(κ) = argmin
c∈[1 ,N ]

ln(det{Rc}) + (x(κ) − x̄c)T (Rc)−1 (x(κ) − x̄c). (8.4)

3. Calculate the neighborhoods for all node/sample pairs according to

hc(κ) = exp
(
−d2 (c, c̄(κ))

2σ2 (κ)

)
. (8.5)

4. Compute new node prototypes, that is, for all 1 ≤ c ≤ N :

x̄c ←
k∑

κ=1

hc(κ) · x(κ)/
k∑

κ=1

hc(κ). (8.6)

5. Correspondingly, update covariance estimates

Rc ←
k∑

κ=1

hc(κ) · (x(κ) − x̄c)(x(κ) − x̄c)T /
k∑

κ=1

hc(κ). (8.7)

6. If any node prototypes changes, return to step 2, otherwise, stop.

The algorithm can be stabilized by introducing some gradual forgetting in (8.7).
Note that if the number of clusters N is high, this algorithm typically behaves
better than the original EM algorithm: The Rc matrices do not become singular
as easily.

When doing neural networks modeling, it is typical that very little is assumed
about the data. In Chapter 2, it was (optimistically) assumed that the data
distributions can be expressed as combinations of Gaussian subdistributions.
When doing data modeling with SOM-type algorithms, the philosophy is very
different: All assumptions about the underlying distribution structure are dis-
carded, one just tries to capture the data density as exactly as possible. The
Gaussian formulas that are used in the self-organization algorithms are used
only as basis functions for spanning the observed data density, they do not
stand for separately distinguishable clusters. That is why the number of nodes
in SOM does not usually match the number of real clusters in data (if there
exists some) but is considerably higher, each condensation of data being repre-
sented possibly by various nodes. This generity makes it possible to model very
complex data distributions having no a priori information about the nature of
the distributions.
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8.1.3 Radial basis function regression

It turns out that nonlinear regression can be realized directly based on the
clustered data model2 . This kind of regression methods are studied under the
name of radial basis function networks.

For example, one can assume that if the sample is explained exclusively by some
specific subdistribution c, the correct (constant) output vector is Ȳ c. Limiting
the y values to one constant in a distribution sounds to be a harsh limitation
— but, as can be seen later, this is not true for a mixture model (see Fig. 8.1).
When the distributions are weighted in a reasonable way, according to their
probabilities of explaining the measured sample, continuity is achieved.

To apply basis function regression, one first has to find the probabilities for a
sample x being represented by a specific subdistribution. The estimated value
for the output is (in a maximum likelihood sense) a weighted sum of the can-
didate outputs; these weighting parameters are the probabilities of the corre-
sponding subdistributions, so that

ŷ =
N∑

c=1

p̄c(x) · Ȳ c, (8.8)

where the normalized probabilities are calculated as

p̄c(x) =
pc(x)

∑N
c′=1 pc′(x)

(8.9)

with the individual densities being determined as Gaussian distributions

pc(x) =
1√

(2π)n det{Rc}
· e− 1

2 ·(x−x̄c)T (Rc)−1(x−x̄c). (8.10)

If using K-means or SOM for clustering, the covariance is Rc = σ2 · I for all
1 ≤ c ≤ N . If there are k samples x(κ) and y(κ) available for constructing
the model, one has to optimize the values Ȳ c to fit the regression curve with
the observations X and Y . The above normalized probabilities can be collected
(in the familiar way) into the k×N matrix P̄ (X), and the optimal prototype
outputs for the clusters can be calculated in the MLR style as

Ȳ =
(
P̄T (X)P̄ (X)

)−1
P̄T (X) · Y, (8.11)

so that the final nonlinear regression model becomes

Ŷest = P̄ (Xest) · Ȳ
= P̄ (Xest) ·

(
P̄T (X)P̄ (X)

)−1
P̄T (X)Y.

(8.12)

2Note that we are assuming that the data density is now represented by (ovelapping)
Gaussian distributions, no matter whether there really exist separate clusters or not
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Figure 8.1: The effects of different basis distribution sizes in one di-
mension. For very narrow distributions, the regression curve becomes
stepwise, representing only N distinct values, one for each cluster; when
the distribution becomes wider, the curve becomes smoother, but abrupt
changes cannot any more be modeled
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Figure 8.2: Introducing more and more latent variables ...!

8.2 Feedforward networks

This far, we have been mainly interested in linear models, assuming that non-
linearities can be circumvented by appropriate preprocessing of data, clustering
or variable selection. However, this is not always enough, specially if the system
structure is unknown, and more general methods may sometimes be needed.
Nonlinear regression

y = g(x) (8.13)

can be accomplished in a variety of ways. The key question is: How to param-
eterize the function g?

As compared to linear models, the nonlinear regression problem is much more
complex. First, there is the model structure selection problem, and even if the
type of the nonlinearity has been determined, the algorithms for finding the best
parameters are complicated. Only iterative methods exist. The multilayer feed-
forward perceptron networks (MLP’s) are taken here as a prototype of nonlinear
regression models. The overall “layered” MLP regression structure is depicted
in Fig. 8.2.
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Figure 8.4: A layer of perceptrons: z = g(FT u), now g : Rn1 → Rn2

8.2.1 Perceptron networks

Within the neural networks paradigm, it is customary to construct the over-
all nonlinearity from simple nonlinear units called perceptrons (see Fig. 8.3).
These perceptrons are independent computing elements trying to mimic the in-
formation processing of the biological nerves. Various outputs can be realized
when more perceptrons are used in a layer; more sophisticated functions can be
implemented by connecting several layers after each other (Figs. 8.4 and 8.5).

As shown in Fig. 8.6, MLP’s are general-purpose, flexible, nonlinear models
that, given enough hidden neurons and enough data, can approximate virtually
any function to any desired degree of accuracy. In other words, MLP’s are
universal approximators. MLP’s can be used when there exists little a priori
knowledge about the form of the relationship between the input and output
variables. MLP’s are especially useful because the complexity of the model can
be varied easily.

However, if no assumptions are made about the structure of nonlinearity, there
are too many degrees of freedom to fix the model using some training data
(remember the “Flatland”!). That is why, in practice, the assumption about
function smoothness is made. This assumption is not well suited for modeling
functions with abrupt changes.

8.2.2 Back-propagation of errors

The original multilayer perceptron training method was back-propagation of
errors. The basic backpropagation algorithm is a gradient method, where the
weights are adapted in the negative error gradient direction, thus being relatively
inefficient. Later, various enhancements have been proposed, but in this context
only the original version is presented. The training algorithm can be divided in
two parts, forward regression and backward adaptation:
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Figure 8.5: The complete perceptron network (note the additional “bias
input” in each layer

1. Neural regression: For each neuron layer i, where 1 ≤ i ≤ N , apply the
following:

(a) Augment the input (note that ẑ0 (κ) = x(κ)):

ui(κ) =
(

ẑi−1 (κ)
1

)
. (8.14)

(b) Calculate the weighted sum of the inputs:

ζi(κ) = (F i)T · ui(κ). (8.15)

(c) Apply the ouput function for all 1 ≤ j ≤ Ni:

ẑi
j(κ) = gi

(
ζi
j(κ)

)
. (8.16)

2. Error back-propagation: If the weights are to be adapted, assuming
that the “correct” output y(κ) is available, do the following:

(a) Calculate the error ei(κ) = zi(κ) − ẑi(κ). Only for the last layer
this can be carried out explicitly, because zN(κ) = y(κ) is known.
All other errors can only be approximated; a heuristic approach is
to forget about the nonlinearities, etc., and back-propagate the error
from the outer level, assuming that the appropriate “error distribu-
tion” between the inner level neurons is determined by the weighting
matrix F i:

ei−1 (κ) = (F i)T · ei(κ). (8.17)

(b) Calculate the error gradients for all 1 ≤ i ≤ N and 1 ≤ j ≤ Ni (that
is, i is the layer index, and j is the neuron index within a layer). The
idea is to calculate the effect of one output at a time on all of the
inputs:

d(ei
j)

2

dF i
j

(κ) = d(zi
j−ẑi

j)
2

dF i
j

(κ)

= −2ei
j(κ) · dẑi

j

dF i
j
(κ)

= −2ei
j(κ) · dgi(ζi

j)

dF i
j

(κ)

= −2ei
j(κ) · dgi

dζ (ζi
j(κ)) · dζi

j

dF i
j
(κ)

= −2ei
j(κ) · dgi

dζ (ζi
j(κ)) · d((F i

j )T ui)

dF i
j

(κ)

= −2ei
j(κ) · dgi

dζ (ζi
j(κ)) · ui(κ).

(8.18)

(c) Update the parameters applying the gradient descent algorithm (γ
being the step size). The whole column is updated simultaneously:

F i
j ← F i

j − γ ·
d(ei

j)2

dF i
j

(κ). (8.19)

This process of forward and backward propagation is repeated for different
training samples until the network converges.
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It needs to be noted that training a nonlinear neural network, or finding the
values of the parameters in the matrices F i, is a much more complicated thing
than it is in the linear case. First, the results are very much dependent of
the initialization of the parameters; and during training, there are the problems
caused by local minima and neuron saturation effects, not to mention overfitting
problems, etc.

Typically, the nonlinear perceptron activation function gi is selected as hyper-
bolic tangent (or “tansig”):

gi
tansig(ζ) =

2
1 + e−aζ

− 1, (8.20)

so that the derivative becomes

dgi
tansig

dζ
(ζ) =

2ae−aζ

(1 + e−aζ)2
, (8.21)

where a is some constant (see Figs. 8.8 and 8.9). In some cases, linear neurons
may be used3 . It is reasonable to let at least the outermost layer have linear
activation function, otherwise (in the case of gtansig) the network output would
be limited between −1 < ŷj < 1:

gi
linear(ζ) = aζ, (8.22)

so that

dgi
linear

dζ
(ζ) = a. (8.23)

The selection of the number of hidden layer neurons is a delicate matter. Note
that if there are Ni neurons on the previous level and Nj neurons on the next
level, Ni ·Nj free parameters are introduced (plus the additional bias term). Too
many degrees of freedom may make the model useless (see Fig. 8.7); however,
the results are very dependent of the training method, too.

8.2.3 Relations to subspace methods

Nonlinear versions of PCA and PLS can also be constructed using the feedfor-
ward perceptron network (see Fig. 8.10). The key point is that there is a layer
i of relatively low dimension Ni, no matter how complicated layers there are
before and after this layer. If the dependency between input and output can be
compressed, these lower-dimensional hidden layer activations can be interpreted
as latent variables.

3Note that successive linear layers can be “collapsed”; various linear layers do not expand
the expressional power as compared to a single linear layer. If all gi are linear, the whole
network, no matter how complex, can be presented as a single matrix multiplication — and
because the cost criterion is identical (minimization of squared error average) the result of
training must be the same as in the case of linear regression!
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It must be recognized that this kind of results are seldom unique, and the re-
sults are often difficult to interpret: It is no more only linear subspaces that
are spanned. For example, see Fig. 8.11: It turns out that the functions being
modeled are symmetric, so that yi = fi(x) = fi(∥x∥) for i = 1, 2, and this can
efficiently be utilized in compression — see Fig. 8.12. Only the positive part
needs to be modeled, the negative region being taken care of automatically be-
cause of the latent variable construction. The network for reaching appropriate
behavior was as simple as N1 = 2, N2 = 1 (the latent layer), N3 = 2, and
N4 = 2 (the output layer). It is no wonder that the algorithms often fail in this
kind of complex tasks (see Exercise 2); typically the training becomes more and
more complex as the number of the layers grows.

Again, if all neurons are linear, variables z span the same linear subspace as in
normal PCA/PLS; this gives us a new, iterative way to determine the latent
basis. In the linear case, again, only one layer of neurons is needed to achieve the
required mappings, so that z = (F 1 )T x and y = (F 2 )T z. However, it has to be
recognized that the same ordering as in standard PCA/PLS cannot generally be
reached: None of the hidden layer neurons start uniquely representing the first
principal component, etc., and the latent variables are linear combinations of
the actual PCA/PLS latent variables that would be derived using the methods
presented in earlier chapters.

8.3 “Anthropomorphic models”

Of course, all artificial neural networks do have their underlying ideas in neuro-
physiology, the power of brains having boosted the interest. But typically it is
only the network structure that is copied, the functional characteristics being
simplified to extreme. However, long before the research on artificial neural
networks started, some fundamental phenomena of the neural functions were
noticed by Donald O. Hebb [14]:

Neurons seem to adapt so that the synaptic connections become
stronger if the neuronal activation and its input signals correlate.

This general idea of Hebbian learning has later become one of the basic paradigms
in unsupervised learning where there is no external training.

8.3.1 Hebbian algorithms

In unsupervised learning the only thing that the adaptation algorithm can do
is to try to find some statistical structure within the input signals. According
to the Hebbian principle, it is correlation that should be maximized — this
goal sounds distantly familiar, and as it will turn out, the results will also look
familiar.

In the simplistic technical implementation, as compared to the earlier discus-
sions, the Hebbian neuron is a linear perceptron without bias, that is, the acti-
vation (output) of the neuron can be expressed as

z(κ) = fT · x(κ). (8.24)
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The parameters in f are interpreted as synaptic weights connecting the neuron
to other neurons. According to the Hebbian rule the change in the weights can
be expressed as

∆f = γ · z(κ)x(κ), (8.25)

where z(κ)x(κ) denotes the correlation between the neuronal activation and
input, so that

f(κ + 1) = f(κ) + γ · z(κ)x(κ). (8.26)

Here γ is a small adaptation factor. The change in the vector f is determined
essentially by the match between input x(κ) and the contents of the Hebbian
neuron f .

One thing plaguing the extremely simplified linear Hebbian neuron is that above
learning law (8.26) is not stable but boosts the parameters in f without limits.
To enhance the basic Hebbian model, let us prevent f from exploding. A simple
solution to this (as proposed by Erkki Oja) is to normalize the length of f to
unity after each adaptation step. Assume that, to begin with, ∥f(κ)∥ = 1, and
this normality is returned after each iteration as follows:

f(κ + 1) =
f(κ) + γ · z(κ)x(κ)
∥f(κ) + γ · z(κ)x(κ)∥

=
f(κ) + γ · z(κ)x(κ)√

(f(κ) + γ · z(κ)x(κ))T (f(κ) + γ · z(κ)x(κ))

=
f(κ) + γ · z(κ)x(κ)√

fT (κ)f(κ)− 2γ · z(κ)xT (κ)f(κ) + O{γ2}

=
f(κ) + γ · z(κ)x(κ)√
1 + 2γ · z2 (κ) + O{γ2}

.

(8.27)

Assuming that γ is small, terms including powers of γ higher than two can be
ignored. Here one can further approximate the square root by noticing that for
small values of α there holds

1√
1 + α

≈ 1− 1
2
· α, (8.28)

giving (again forgetting terms containing γ2 )

f(κ + 1) = (f(κ) + γ · z(κ)x(κ)) ·
(
1− γ · z2 (κ)

)

≈ f(κ) + γ · z(κ)x(κ)− γ · z2 (κ)f(κ). (8.29)

The “stabilized” Hebbian algorithm also becomes

f(κ + 1) = f(κ) + γ ·
(
z(κ)x(κ)− z2 (κ) · f(κ)

)
. (8.30)

In addition to the nominal correlation-motivated factor z(κ)x(κ), another non-
linear term has emerged, preventing the algorithm from growing excessively.

Assuming that the algorithm converges to some fixed f (indeed, it does; for
example, see [13]), this parameter change trend ∆f(κ) = f(κ+1)−f(κ) should
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vanish. One can study the properties of this fixed state by taking expectation
values on both sides:

E{∆f(κ)} = γ ·
(
E{x(κ)z(κ)}− E{z2 (κ)} · f

)

= γ ·
(
E{x(κ)xT (κ)} · f − E{z2 (κ)} · f

)
.

(8.31)

It turns out that in the fixed state there must hold

E{x(κ)xT (κ)} · f = E{z2 (κ)} · f, (8.32)

where E{x(κ)xT (κ)} is the data covariance matrix. This means that the above
formula has the same structure as the PCA problem has, the eigenvector of the
data covariance matrix being f and the eigenvalue being λ1 = E{z2 (κ)} ̸= 0. It
also turns out that the Hebbian algorithm converges to the principal component
(the most significant one; see [13]), so that one can redefine θ1 = f . Further,

λ1 = E{z2 (κ)}
= E{θT

1 x(κ)xT (κ)θ1}
= θT

1 ·
(
E{x(κ)xT (κ)} · θ1

)

= θT
1 · λ1 · θ1

= λ1 · ∥θ1∥.

(8.33)

When λ1 is eliminated on both sides, it turns out that the eigenvector is auto-
matically normalized by this Hebbian algorithm:

∥θ1∥ = 1. (8.34)

So, it is no wonder that correlation maximization results in the principal com-
ponents of the data. What is interesting, is that this seems to be happening
also in the brain!

8.3.2 Generalized Hebbian algorithms

Assume that the contribution of θ1 is eliminated from the data, so that

x′(κ)← z(κ) · θ1 . (8.35)

Note that after this operation the modified input vector is orthogonal to θ1 :

θT
1 · x′(κ) = θT

1 · (x(κ) − z(κ) · θ1 ) = z(κ)− z(κ) · 1 = 0. (8.36)

Applying the Hebbian algorithm using this modified x′(κ) as input extracts the
most significant principal component that is left after the elimination of the first
principal component — that is, now f converges towards θ2 . This procedure
can be continued, and the resulting Generalized Hebbian Algorithm (GHA) can
be used to iteratively extract as many principal components that is needed; if
the procedure is formalized as a N layer network, the algorithm to be applied
for all 1 ≤ i ≤ N (note that x1 (κ) = x(κ)) becomes

xi(κ) = xi−1 (κ)− zi−1 (κ) · f i−1 (κ) for layers i > 1
zi(κ) = (xi)T (κ) · f i(κ)

f i(κ + 1) = f i(κ) + γ · zi(κ) ·
(
xi(κ)− zi(κ) · f i(κ)

)
.

(8.37)
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After the iteration has converged, the principal components are

(
θ1 · · · θN

)
=

(
f 1 · · · fN

)
. (8.38)

Note that the algorithm (8.37) does probably no more have any connection to
operations taking place in the brain; it is just an extension of the basic Hebbian
idea for easily extracting the principal component structure from the data. The
structures of the Hebbian algorithms are so simple that they can be easily
implemented; there is no explicit reference to their neural background, and this
is an example of how the new paradigms can give important contribution to
other branches of research.

Note that when using the Hebbian algorithms, the covariance matrix never needs
to be explicitly constructed — that is why, the Hebbian approach may be useful
in specially high-dimensional data analysis tasks.

8.3.3 Further extensions

The generalized Hebbian algorithm can still be extended. For example, take
the anti-Hebbian learning, where, in addition to maximizing the correlation
with the inputs, the correlations with other outputs is minimized. The goal is
to make the neurons as independent from each other as possible; as we have
seen, this kind of independence often reveals underlying structure in the data.
The explicit decorrelation between outputs results in sparse coding as shown in
[8]. However, the correlation maximization/minimization structure is recursive,
and the training algorithms are rather inefficient.

Another extension towards multiple mixture models is the Generalized General-
ized Hebbian Algorithm (GGHA) [24]. The idea is to explicitly assume sparsity
in the data; that is, there are various trains of candidate principal components,
and only one of these candidate sequences is selected at a time (using the “best
match” principle). When the selected components are eliminated from data, as
in GHA, the rest is explained by the remaining components. This algorithm
has been applied to a number of high-dimensional feature extraction problems.

8.4 Cybernetic neurons*

Cybernetics is a branch of complex systems research, where it is assumed that
the observed complex functionalities can be explained in terms of interactions
and feedbacks among the underlying local “agents”. Specially, in neocybernetics
the approaches are made very concrete: In the spirit of multivariate models, it is
assumed that understanding of high dimensionality and dynamic structures can
help in explaining the emergent functionalities. Furthermore, there are some
very stringent assumptions: First, it is assumed that there is dynamic balance
on all levels in a complex hierarchical system; second, model structures are
kept as simple as possible — one could speak of linearity pursuit. Despite the
constraints, it seems that non-trivial systems can be modeled in this way (see
[?]).
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These guidelines can be exploited on different levels of modeling the neuronal
system, and analysis of a Hebbian neuron grid is carried out here. First, one
can study the synaptic level: The stabilization of the synaptic weight can be
accomplished not only applying nonlinearity, as is done when following Oja’s
rule, but also applying linear feedback. So, assume that instead of (14) one
defines

∆f = γ · z(κ)x(κ)− αf (8.39)

for some scalar α. It turns out that, assuming stationarity of the input, the
synapse finds a stable value that is proportional to the correlation between
the input and the neuronal activity. In the matrix form, the steady state of all
synaptic weights can be expressed (β being some scalar) using an (unnormalized)
correlation matrix

W = βE{zxT }. (8.40)

To reach some added value, the neocybernetic intuitions can be applied also
on the next level, or to the analysis of the whole neuron grid. Assume that
the behavior of the grid of individual Hebbian neurons is orchestrated again by
linear feedback, so that some of the synapses are between neurons — this means
that one has a dynamic structure of the form

dz

dt
= −Az + Bx. (8.41)

Here, the matrices A and B contain the synaptic weights of W as divided
according to their roles: synapses between inputs and neurons are collected in
B, whereas the inter-neuronal connections are represented by the matrix A. In
front of A there is the “−” sign to explicitly emphasize the negative feedback
nature of these “anti-Hebbian” connections. The adaptation of the neuronal
activities is presented here in the continuous-time form, and it is assumed that
dynamics of this internal loop is much faster than the dynamics of the input x,
so that one can solve for the steady state

z̄ = FT x = A−1B x, (8.42)

where now

A = βE{z̄z̄T}, and B = βE{z̄xT }. (8.43)

Note that because A represents the covariance matrix of the state vector, all
eigenvalues being non-negative, dynamics determined by the matrix −A always
remains stable. The covariance matrix estimates can be adapted, for example,
using a continuous-time algorithm for some time constant τ ≫ 1/β as

d Ê{z̄xT }
dt

= −1
τ
Ê{z̄xT } +

1
τ

z̄xT . (8.44)

Because the neocybernetic studies concentrate on balances on all levels, it is of
interest to see what are the stationary properties of x̄. One has

E{z̄z̄T} = A−1B E{xxT }BT A−1

= E{z̄z̄T}−1E{z̄xT }E{xxT }E{z̄xT }T E{z̄z̄T }−1 ,
(8.45)
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or, when simplified

E{z̄z̄T}3 = E{z̄xT }E{xxT }E{z̄xT }T . (8.46)

Taking the linearity of the model into account, there holds

(
FE{xxT }FT

)3
= F

(
E{xxT }

)3
FT . (8.47)

The solution for the mapping matrix is non-trivial, if the dimension of the
input x is higher than that of the state z̄, that is, N < n. It turns out that
the columns of F span the principal subspace of the input data, that is, they
are linear combinations of the N most significant principal components. It
also turns out that the neocybernetic principles are enough to implement self-
regulation and self-organization (in the sense of PCA), even though the local
synapses only are capable of reacting to their immediate environment, knowing
nothing about the global situation. From the technical point of view, it is nice
that explicit covariance matrices in the assumedly high-dimensional space of x
vectors is not needed — one essentially operates in the low-dimensional space
of z vectors. However, the process is necessarily highly iterative as the final
balances z̄ are not known before adaptation.

Looking at the structure of the mapping matrix F , it is evident that one can
implement reconstruction of the input in the least-squares sense in a straight-
forward way:

x̂ = E{z̄xT }T E{z̄z̄T}−1 z̄ = F z̄. (8.48)

This means that the internal state z̄ can be interpreted as some kind of “mirror
image” of the environment as represented by x.

Further, one can also implement normal principal component regression exploit-
ing the principal subspace (see Fig. 8.13):

ŷ = E{z̄yT }T E{z̄z̄T }−1 z̄ = E{z̄yT }T E{z̄z̄T }−2E{z̄xT } x. (8.49)

It seems that the dynamic systems understanding can give new intuitions for
studying regression models. Also, as it turns out in what follows, understanding
of the static regression models can help to better exploit the dynamic models.
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Computer exercises

1. Construct data as follows:

X = 20*rand(100,1)-10;
Y = [cos(X/2),abs(X)/5-1];
Xtest = [-15:0.1:15]’;

Study the behavior of the radial basis regression for different values of N
(number of clusters) and σ (width of the distributions):

[clusters] = regrKM(X,N);
[rbfmodel] = regrRBFN(X,Y,clusters,sigma);
Ytest = regrRBFR(Xtest,rbfmodel);

2. Assuming that you have the Neural Network Toolbox for Matlab avail-
able (version 3.0.1, for example) study the robustness of training the multi-
layer feed-forward perceptron network. Using the same data as above,
construct the model as

structure = [2 1 2 size(Y,2)];
outfunc = {’tansig’, ’tansig’, ’tansig’, ’purelin’};
net = newff([min(X);max(X)]’,structure,outfunc);
net = train(net,X’,Y’);

In principle, these commands reproduce the example presented in Figs. 8.12
and 8.11. What can you say about reliability? For model simulation use
the commands

Ytest = sim(net,Xtest’);
net.outputConnect = [0 1 0 0]; % Second layer output
Ztest = sim(net,Xtest’);

Try also different network structures (that is, change the structure and
outfunc parameters). For example, using only one hidden layer, what
is the minimum number of hidden layer units that can accomplish the
mapping?
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a b

c d

Figure 8.6: Visualization of the generality of feedforward perceptron net-
works as approximators of smooth functions. In this example, only two
input signals is assumed (x1 and x2 ), and in the figures, the outputs
of neurons are plotted as functions of these inputs in a two-dimensional
(x1 , x2 ) plane. First, see a: this kind of output function is character-
istic to the nonlinear neuron; adjusting the weights of the inputs and
the bias, the location, orientation, and depth of the “transition barrier”
can be freely adjusted (note that z = g(w1x1 + w2x2 + b)). Similarly, if
yet another neuron is connected to the same input using the same ratio
between the input weights, the new transition barrier is parallel to the
previous one, yet shifted. Figure b results if the outputs of these two neu-
rons are added together — the height of the bump can be freely adjusted
by changing the weights. Using another set of two neurons, another (not
parallel) bump can be constructed, and if the outputs of these four neu-
rons are added together, the result looks something like the surface in
c. The peak can be emphasized (see d) if this signal is connected to a
second-layer neuron. It turns out that using four first-layer neurons, a
peak can be created anywhere in the plane; if there are enough neurons,
a large number of such peaks can be constructed. These peaks can be
applied as basis functions (compare to radial basis function networks),
and any continuous function can be approximated to arbitrary accuracy.
To summarize, a two-layer network with enough hidden layer neurons
can approximate any function
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Figure 8.7: Number of neurons — matter of expertise. A two-level feed-
forward perceptron network (hyperbolic tangent / pure linearity) with
different numbers N1 of hidden layer neurons has been trained using the
dotted points as training samples. As the number of free parameters
grows, the matching error becomes smaller, but, at the same time, the
curve outlook becomes less predictable. Note that the results can vary
from simulation to simulation
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Figure 8.10: Neural network based “nonlinear PCA” (output x) and
“nonlinear PLS” (output y). After training, the impact from the input
to the output gets channelled through the variables z of lesser dimension.
If the mapping from x to x or y still can be done, it must be so that the
information has been successfully compressed
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Figure 8.11: Two functions to be
modeled (shown as circles), ap-
proximations shown using solid
line type (see Fig. 8.12)

Figure 8.12: An intuitively rea-
sonable nonlinear latent variable
behavior, recognizing the sym-
metry of the signals in Fig. 8.11
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Figure 8.13: “Structure of “cybernetic regression”. Note that the nota-
tions differ from those employed in [?]



Lesson 9

Application to Dynamic
Models

All the above discussions assumed static dependency between the input and
the output, so that the value of y should be directly determined by the value
x. In systems engineering, the models are usually dynamic — there is some
“inertia” in the system, or “memory” between inputs and responses. Past affects
the future, and successive measurements become interlinked. In principle, this
makes the models considerably more complicated. However, the derived models
can readily be extended to dynamic domains.

9.1 Representing dynamics

It turns out that basically static multivariate methods can be extended also to
the determination of dynamic model parameters. The procedure is as follows:
First, determine the state sequence, then compress the state space (using the
familiar methods), and, finally, solve for the system matrices. To accomplish
this, some basic theory is needed.

9.1.1 Capturing history

In the chapter 3, it was explained how structural complexity can be changed into
dimensional complexity. A specially interesting form of structural complexity is
caused by dynamic nature in the system being studied. How to determine the
features to represent the dynamic phenomena as data?

In dynamic systems, there is inertia — it is not only the input but also the
history that affects the current and future behaviors of the system. This infinite
history can be captured in a finite set of time-series samples: System theory says
that behaviors of a d’th order discrete-time dynamic system can be represented
in terms of d past samples:

y(κ) = f (y(κ − 1), . . . , y(κ − dmax), u(κ), . . . , u(κ − dmax)) . (9.1)

143
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This means that the dynamic features in the data vector should be more or less
delayed measurements of the signals. Assuming that the system input u goes
through the system causing the output y, one can express the information in
the input sample vectors and in the output sample vectors collectively as the
state vector

x(κ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(κ)
...

u(κ − dmax)
y(κ − 1)

...
y(κ − dmax)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.2)

That is, there are overlapping windows over the past time-series data. If the
dynamics is assumed linear, there holds

y(κ) = FT x(κ) (9.3)

for some parameter matrix F . Here, it is assumed that the system dimension is
not known beforehand, it is only assumed that dimension cannot exceed dmax.
Note that high dimensionality and excessive redundant variables is not assumed
to be a problem — now it can be assumed that (preliminary) state x contains
all information back to the maximum length of system memory.

Indeed, high dimensionality is not a problem if appropriate latent variable meth-
ods are applied when the regression model between x and y is constructed.
Again, assume that the latent variable, or the reduced minimum state, is de-
noted z(κ). The preliminary state x(κ) is first projected onto this minimum
state z(κ) and from there to output y(κ).

So, nothing new here. In principle, the above scheme is already a working solu-
tion for implementing determination of dynamic models. The problem here is
that x(κ) needs to be reconstructed at each time point κ separately — a more
streamlined approach would be beneficial. What is more, more tailored formu-
lations make it possible to employ the very powerful theory of linear dynamic
systems. The rest of this chapter devoted to the challenges of writing the above
model in the standard dynamic model form.

9.1.2 State-space models

There are various ways to represent dynamic systems in a mathematically com-
pact way. In this context we only study state-space models. The basic idea here
is that the history of the system is coded in the state vector z, as explained
above, and the time-domain behavior of this state is coded in the model. To-
gether with the future inputs the state determines the future outputs. The
linear discrete-time state-space model can be written in the following general
form:

{
z(κ + 1) = Az(κ) + Bu(κ) + ϵ(κ)
y(κ) = Cz(κ) + Du(κ) + e(κ). (9.4)
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Vector u(κ) is the system input (dimension nu × 1), z(κ) is the state vector
(dimension N ×1), and y(κ) is the output (dimension m×1); matrices A, B, C,
and D have compatible dimensions. Even if the model is written here using the
minimum-dimensional state vector, the state sequence is by no means unique,
and the state model representation is by no means optimal in terms of available
parameters. Vectors e(κ) and ϵ(κ) represent white noise sequences so that

E{ϵ(κ1)ϵT (κ2)}=
{

Rzz, if κ1= κ2

0, otherwise, (9.5)

and

E{e(κ1)eT (κ2)}=
{

Ryy, if κ1= κ2

0, otherwise, (9.6)

are the state noise and the measurement noise covariances matrices, respec-
tively. Additionally, assume that ϵ(κ) and e(κ) are mutually correlated:

E{ϵ(κ1)eT (κ2)}=
{

Rzy, if κ1= κ2

0, otherwise. (9.7)

Note that this system model is a generalization of what has been studied this
far: If matrices A, B, and C are ignored, matrix D directly corresponds to the
static regression model FT . From this it is easy to see that there are much more
degrees of freedom in the dynamic model as compared to the static one.

The above state-space system structure is used, for example, by the Kalman
filter, and a wide variety of analysis and control design methods are readily
available for models that are presented in this form. If one were able to find all
the system matrices directly from data, such method would be very useful —
and finding such a technique is our objective now.

9.2 Subspace identification

The solution to the above problem is given by subspace identification (complete
coverage can be found in [?]). This branch of research is rather new, developed
mainly in the 1990’s (yet having its roots in realization theory dating back to
1960’s), and the texts discussing this material are typically difficult to follow
for non-experts. However, the ideas are again very simple. It needs to be
kept in mind that this presentation only explains the bare bones, and various
enhancements could be (and have been) implemented.

9.2.1 Stochastic models

There exist various modifications of the basic model (9.4) that can be useful
in different applications. For example, discarding the input u, assuming that
the process is run exclusively by the noise, one faces the so called stochastic
realization problem: What is the underlying succession of unmeasurable states z,
together with the model structure, that best can explain the observed outputs y?
This problem setting is characteristic to filtering problems, where measurements
are corrupted by noise and the original variables should be recovered.
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State sequence

The simplified system model that is exclusively driven by the noise processes
becomes

{
z(κ + 1) = Az(κ) + ϵ(κ)
y(κ) = Cz(κ) + e(κ). (9.8)

Now the available data only consists of output time series samples. Assume
that the block of k successive data samples extends from time point k0 = 1 to
time k. Define vector of past outputs as follows:

ypast
dmaxm×1

(κ) =

⎛

⎜⎝
y(κ − 1)

...
y(κ − dmax)

⎞

⎟⎠ . (9.9)

The future signals are, correspondingly,

yfuture
dmaxm×1

(κ) =

⎛

⎜⎝
y(κ + dmax − 1)

...
y(κ)

⎞

⎟⎠ .

The data matrices Ypast and Yfuture are constructed as before, stacking transposed
sample vectors on top of each other, the indexes running from dmax + 1 to
k − dmax + 1. Note that the matrices have k − 2dmax + 1 rows rather than the
original k. The preliminary state variable can be constructed immediately:

X =
(

Ypast

)
. (9.10)

The dimension of the preliminary system state is high and the states are highly
redundant — but the main thing here is that the originally dynamic problem
has been transformed into a static one, and all of the tools that have been pre-
sented in the previous chapters for dealing with static models can be utilized
for dimension reduction, or for determining the latent vector matrix Z contain-
ing the N dimensional minimum state vectors. According to system theoretic
understanding, one should select N = d.

Compressing the state

There is still plenty of freedom. One can compress the state space utilizing the
state sequence X exclusively, or one can take into account the fact that there
should be a mapping from the state to the future states and outputs. These
alternative viewpoints give rise to approaches of PCA/PLS/CCA type. Further,
applying some independent component approach to the state selection should
be something new in this field (see Exercises). Here, the PLS option is briefly
studied.

One should determine the compressed state so that mapping from this state to
next state and to the output could be accomplished.
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Define X− as a submatrix of X , where the last row is eliminated (the newest
state vector), and, similarly, define X+ as a submatrix, where the first row is
eliminated (the oldest state vector):

X− =

⎛

⎜⎝
xT (1)

...
xT (k − 2dmax)

⎞

⎟⎠ and X+ =

⎛

⎜⎝
xT (2)

...
xT (k − 2dmax + 1)

⎞

⎟⎠ .(9.11)

These matrices stand for the succession of states, that is, elements in X+ are
the next state variables corresponding to the state variables in X−. Further,
define (dimensionally and causally matching) output matrix

Y =

⎛

⎜⎝
yT (dmax)

...
yT (k − dmax − 1)

⎞

⎟⎠ , (9.12)

consisting of altogether k − 2dmax rows. Now the intended mapping can be ex-
pressed so that the virtual input data and the virtual output data, respectively,
are

X =
(

X− )
and Y =

(
X+ Y

)
. (9.13)

When the PLS model is constructed for this problem, and the latent variables are
determined, it is this sequence of latent variable vectors (in the input-oriented
subspace) that can be selected as the compressed state sequence, so that Z = Z.

Typically, the selection of the state dimension will not be unique, so that the
system order is more or less uncertain. Note that this uncertainty is an inherent
property of real distributed parameter systems — the exact system dimension
is just a mathematical abstraction that has been approved as there are no al-
ternatives for representing the system behavior in such a compact form.

System matrices

To proceed, the resolved compressed state matrix Z needs to be restructured.
This is done as in (9.11): Define Z− as a submatrix of Z, where the last row
is eliminated (the newest compresswed state vector), and, similarly, define Z+

as a submatrix, where the first row is eliminated (the oldest compressed state
vector):

Z− =

⎛

⎜⎝
zT (1)

...
zT (k − 2dmax)

⎞

⎟⎠ and Z+ =

⎛

⎜⎝
zT (2)

...
zT (k − 2dmax + 1)

⎞

⎟⎠ .(9.14)

These matrices stand for the succession of states. Also, define the output matrix
as in (9.12).

When the state sequence is now known, the subsequent steps of subspace iden-
tification nicely illustrate the power of linear machinery — the final model (9.8)
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can be constructed by matching the parameters against the now known state
variables. Because the system model can be written as

(
z(κ + 1)

y(κ)

)
=

(
A
C

) (
z(κ)

)
, (9.15)

there holds

(
Z+ Y

)
=

(
Z− )

·
(

AT CT
)
. (9.16)

The matrices A and C can be solved in the least squares sense:

(
A
C

)
=

(
Z+ Y

)T ·
(

Z− ) ((
Z− )T ·

(
Z− ))−1

, (9.17)

where the individual system matrices can be identified as partitions of the re-
sulting matrix the first N × N elements being allocated for A.

Noise covariances

The mismatch between data and the model gives the estimates for the noise.
Because the state and output sequences estimated by the model can be written
as

(
Ẑ+ Ŷ

)
=

(
Z− )

·
(

AT CT
)
, (9.18)

the estimation error becomes

E =
(

Z+ Y
)
−

(
Ẑ+ Ŷ

)

=
(

Z+ Y
)
−

(
Z− )

·
(

AT CT
)
,

(9.19)

and the noise covariances can be mechanically solved from this. The approxi-
mations for the covariances are again found as partitions of

(
Rzz Rzy

RT
zy Ryy

)
=

1
k′ · E

T E. (9.20)

Here, the normalization factor k′ = (k − 2dmax + 1)− (N + m) is the number of
data samples minus the overall data dimension. Again, in typical applications
(like when doing Kalman filtering, see below), it is the ratio between Rzz and
Ryy that is the most important information, not the absolute scalings.

Assuming that the input signal exactly can explain the output, the error covari-
ances are zero matrices. In such cases one is facing the deterministic realization
problem; it turns out that the realization problem is solved as a special case of
the more general subspace identification problem. The above discussion can be
further extended.
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9.2.2 Stochastic-deterministic models

A more complicated case is faced when the complete model (9.4) is employed.
Now define sequences of past inputs and outputs as follows:

upast(κ) =

⎛

⎜⎝
u(κ − 1)

...
u(κ − dmax)

⎞

⎟⎠ and ypast(κ) =

⎛

⎜⎝
y(κ − 1)

...
y(κ − dmax)

⎞

⎟⎠ (9.21)

The future signals are, correspondingly,

ufuture(κ) =

⎛

⎜⎝
u(κ + dmax − 1)

...
u(κ)

⎞

⎟⎠ and yfuture(κ) =

⎛

⎜⎝
y(κ + dmax − 1)

...
y(κ)

⎞

⎟⎠ .

The data matrices Upast, Ufuture, Ypast, and Yfuture are again constructed in the
same way as above.

To find a good model for the data in this more complicated case, one should
distribute the burden of explaining the future behaviors appropriately among
the two sources of information — the known history, and the unknown future
inputs. One has to apply the mathematical theory of oblique projections. To
give an idea of what this means, construct matrices

X =
(

Ypast Upast Ufuture

)
(9.22)

and

Y =
(

Yfuture

)
, (9.23)

so that there should exist a mapping from X to Y. Indeed, this can be con-
structed using least squares matching, giving a prediction model for the future:

Yest = Xest ·
(
X TX

)−1X TY
=

(
Ypast,est Upast,est Ufuture,est

)
·
(
X TX

)−1X TY.
(9.24)

In practice, the invertibility of X TX may be poor, specially id dmax has too high
value as compared to the system dimension, and some dimension reduction
technique may again be needed.

The values of Ufuture,est are not known at time κ, and to make this model useful,
it has to be divided in parts:

Ypast + Yfuture =
(

Ypast,est Upast,est 0
)
·
(
X TX

)−1X TY
+

(
0 0 Ufuture,est

)
·
(
X TX

)−1X TY.
(9.25)

The variables in Ypast can be interpreted as containing all available information
about the system past. Based on this, one can define the “refined” data matrix
where the contribution of the future inputs is eliminated:

X = Ypast =
(

Ypast,est Upast,est 0
)
·
(
X TX

)−1X TY. (9.26)
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It is possible to choose this data as constituting the preliminary system states.
The determination of the reduced state matrix Z can be accomplished exactly
as was done before.

Again, the resolved state matrix Z is restructured into Z− and Z+ parts. Fur-
ther, define (dimensionally matching) input and output matrices

U =

⎛

⎜⎝
uT (dmax)

...
uT (k − dmax − 1)

⎞

⎟⎠ and Y =

⎛

⎜⎝
yT (dmax)

...
yT (k − dmax − 1)

⎞

⎟⎠ , (9.27)

consisting of altogether k − 2dmax rows. Now, because the system model can be
written as

(
z(κ + 1)

y(κ)

)
=

(
A B
C D

) (
z(κ)
u(κ)

)
, (9.28)

there holds

(
Z+ Y

)
=

(
Z− U

)
·
(

AT CT

BT DT

)
. (9.29)

The matrices A, B, C, and D can be solved in the least squares sense:
(

A B
C D

)
=

(
Z+ Y

)T ·
(

Z− U
)

·
((

Z− U
)T ·

(
Z− U

))−1
,

(9.30)

where the individual system matrices can be identified as partitions of the result-
ing matrix (again, note the possible invertibility problems). The reconstruction
errors give the estimates for the noise. Because the state and output sequences
estimated by the model can be written as

(
Ẑ+ Ŷ

)
=

(
Z− U

)
·
(

AT CT

BT DT

)
, (9.31)

the estimation error becomes

E =
(

Z+ Y
)
−

(
Ẑ+ Ŷ

)

=
(

Z+ Y
)
−

(
Z− U

)
·
(

AT CT

BT DT

)
,

(9.32)

and one has
(

Rzz Rzy

RT
zy Ryy

)
=

1
k′ · E

T E. (9.33)

9.3 Practical aspects

Subspace identification differs much from traditional identification methods, and
its properties are also different from what one is familiar with. Understanding
these boundary conditions is necessary to effriciently exploit the techniques.
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Figure 9.1: Making the process behaviors transparent

9.3.1 Comparisons

As this subspace identification approach is compared to the standard black-box
identification procedures, some clear benefits can be seen:

• The selection of the system dimension needs not be done beforehand as
in traditional black-box identification; the algorithms give tools for appro-
priate on-line determination of the dimension.

• The models are naturally applicable to multi-input/multi-output (MIMO)
systems, whereas traditional identification only studies systems of one
input and one output.

• Coloured noise becomes modeled without additional efforts, whereas stan-
dard techniques have to rely on complicated nonlinear, iterative methods.

The dynamical phenomena that are visible in the data are all integrated in
the model structure itself, no matter where those phenomena originate from.
Indeed, the properties of observed noise are also characteristic to the system
and it is natural that this information is also coded in the model in a consistent
way. Some state variables may be allocated for presenting the noise — if this
dynamics is relevant enough.

However, there are also some drawbacks as the dynamic modeling approach is
compared to the static approach. The model is more sophisticated, and there are
more quality requirements concerning the data: Longer sequences of valid data
are needed, as no outlier or missing data samples can be dropped from within
the sequence. For the same reason, also model validation becomes problematic,
because longer continuous sequences of validation data are needed; the leave-
one-out cross-validation (with one sample being dropped at a time) cannot be
implemented.

9.3.2 Emulating the process

A natural way to exploit the models given by subspace identification is reached
through state estimation: When the process state is known, all state-based
analysis and design methods are available. Typically, one can only measure the
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inputs and outputs of a complex process; now, one can implement a process sim-
ulator, and this simulator, rather than being a black-box system, is a white-box
system with explicitly known structure and measurable state. When simulator
has the same dynamics as the process, and when it is given the same inputs
as the actual process has, the behaviors of the simulator and the process itself
should be equal (see Fig. 9.1). The feedback matrix K is used for correcting the
state according to the observed error e(k) = y(k) − ŷ(k), or difference between
process and model outputs.

The Kalman filter is a natural companion of models derived by subspace iden-
tification: The feedback matrix K can be optimally determined based on the
observed system and noise properties [?]. The model structure with the ma-
trices A, B, C, and D are explicitly given by subspace identification, and even
the noise properties Rxx, Ryy, and Rxy, are solved, making the determination
of the Kalman filter a straightforward task.

Often, specially when the system dimension is high, determining all the system
matrices is a difficult task using traditional techniques — and the matrices Rzz

and Ryy are typically used as tuning parameters only, typically chosen to be
simply diagonal. Now, using subspace identification, all these data structures
are determined to optimally match the data. However, as it turns out in the
next chapter, optimality and robustness are different things also in this case.
Understanding the nature of the problem — again caused by the multivariate
nature and collinearity — makes it possible to attack the problems.

9.3.3 Preprocessing and postprocessing

When applying subspace identification, model construction can be affected again
by appropriately scaling of the data samples. In addition to the normal scalings,
etc., there also exist other ways to affect the modeling results. Specially, be-
cause of the dynamic nature of the problem, or because there is a time-domain
succession of the samples, one can apply frequency weighting to emphasize (or
attenuate) variations in some frequency ranges. Here, one would not like to
affect the model construction process itself (compare to [?]) — the goal is to
implement the frequency weighting directly in the data.

Assume that there exists some linear dynamic model between inputs and out-
puts, so that the mapping matrix F (q−1) contains delay operator polynomials

y(k) = FT (q−1)u(k). (9.34)

Now, the model remains valid if the left-hand side and the right-hand side
are further filtered by the operator polynomial h(q−1); because of the linearity
assumption, the operators are commutative:

h(q−1)y(k) = h(q−1)FT (q−1)u(k) = FT (q−1) h(q−1)u(k). (9.35)

If one defines the new data as u′(κ) = h(q−1)u(κ) and y′(κ) = h(q−1)y(κ), for
this new data the original model still applies:

y′(k) = FT (q) · u′(k). (9.36)
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The system structure, and also the state-space model, can be determined for
the modified data as well as for the original data. Nominally there is no change
in the system — however, as always when modeling is based on the variance
properties, the results change as errors are weighted in different ways in different
frequency bands, depending on the ratios between information and noise along
the frequency axis. In practice, one can apply low-pass, band-pass, band-stop,
or high-pass filtering, as studied below.

It is very common in real processes that the levels of the signals can vary,
even though the dynamic properties essentially remain intact. If one applies
the standard mean-centering for training data, this mean does not necessarily
remain constant, and the biased model can become invalid. A simple way to
avoid this problem is to apply “on-line centering”, or high-pass filtering, so that
the zero-frequency properties are eliminated altogether:

h(q−1) = 1 − q−1, (9.37)

meaning that the differentiated variables (variable vectors) in time domain are
defined as

∆y(κ) = y(κ) − y(κ − 1). (9.38)

However, assuming that there exists high-frequency noise in the system, differ-
entiation emphasizes such noise signals. It can be reasonable to define some
upper limit frequency for the filter, for example, by further filtering

y′(κ) = λ y′(κ − 1) + (1 − λ) ∆y(κ). (9.39)

This lead-lag compensator can also be applied for inputs and outputs alike, and
subspace identification is applied for those signals. However, when the model is
used for estimation, data preprocessing has to be ripped off by applying inverse
postprocessing to reach the actual signal estimates. First, the differentiated
signal estimates are found by inverting (9.39):

∆ŷ(κ) =
1

1 − λ
ŷ′(κ) − λ

1 − λ
ŷ′(κ − 1). (9.40)

In principle, the differentiation within these signals can be eliminated by inte-
gration — however, no pure integrators should be applied, as biases in signals
would increase during this process. It is motivated to introduce a “leaking
integrator” that eventually tends towards the actual measurements:

ŷ(κ) = µ (ŷ(κ − 1) + ∆ŷ(κ)) + (1 − µ) y(κ). (9.41)

Here, the parameters λ and µ are forgetting factors to be adjusted appropriately
to fit the signal and process properties. The pure discrete-time derivator in (??)
should also be modified to match the inverse operation (9.41).

9.4 Case study: Towards “smart devices”

Here, an example is presented where the above tools are being experimented
and exploited. This research and development work is currently being carried
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out in the industrial scale. It is clear that the full potential of the new methods
cannot yet be seen.

9.4.1 Data based data reconciliation

In process industries knowing the contents of processed materials is of utmost
importance. An X-ray fluorescence analyzer is an efficient tool when doing
such analyses in mineral processing. The X-ray fluorescence analyzer excites
the atoms and measures the emitted photons: The emission spectra are unique
to the atoms, and, in principle, the atom contents can be solved by analyz-
ing the spectral peaks. However, because of the environmental conditions and
because of the physical reasons, the results are corrupted by noise and other
stochastic phenomena. To enhance the estimates, one needs calibration models
to map between the measured spectra to actual concentration estimates. The
superposition of individual spectra is a linear process, and it is plausible that
linear multivartiate methods can efficiently be used for this calibration purpose.
And, indeed, such developments have been taking place recently (for example,
see [?]).

Even though the static mapping models from the intensities to concentrations
could be appropriately constructed, there is need for closer studies. It does not
help if the sample could be analyzed exactly, if that sample is not representa-
tive. The random samples do not necessarily reflect the overall contents of the
slurry — this is due to the changes in slurry densities and grain size distribu-
tions. To dampen the variability in the measurements, different kinds of filtering
techniques have been applied. The traditional approach is exponential filtering
with some forgetting factor: That is, one only partly trusts the measurements,
keeping the prior average level of estimates as the starting point. If there are
some consistent changes in the slurry properties, such filtered estimate becomes
delayed, as the average level only slowly follows the changes. There is a trade-
off between accuracy and smoothness of estimates. It is not the variability that
should be dampened, if it reclects the reality; but there is no way to locally
determine whether some change in the measurement values is relevant or not.
Are there other ways to enhance the estimates?

Data reconciliation is a bunch of techniques for employing the system structure
for enhancing the noisy measurements. Typically, data reconciliation is based
on mass or volume balances: If the inputs and outputs of some process struc-
ture are recorded, the mass/volume flows should compensate each other. For
example, a flotation cell (or a bang of cells) is such a vessel: The two outgoing
flows (concentrate and gangue flows) have to balance the incoming slurry flow.
Because of the practical challenges, data reconciliation is often carried out stat-
ically, for steady-state levels, so that the flows compensate each other only in
the long run.

However, often the structures or dependencies within a complex process are
not known, and there exist no explicit constraint equations. And even if the
constraints were known, there may be no measurements: For example, an X-ray
analyzer is such an expensive device that measurements are carried out only in
the most informative locations in the process. But, after all, data reconciliation
is based on the redundancy among data, and if the measurements are cut to
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Figure 9.2: The an-
alyzer is already the
“heart” of the process
— make it also the
“brain”

minimum, the crucial measurements closing the logical loops may be missing.
Still, there most probably exist some interdependencies between signals. How to
implement the idea of data reconciliation as a robust enough scheme, applicable
in such a complex environment — and, what is more, how to extend data
reconciliation to dynamic cases?

The presented ideas of statistical multivariate modeling, and specially the ideas
of subspace identification, make it possible to implement “data based data rec-
onciliation”. As an example case, again study the Pyhäsalmi concentrator plant
(see chapter 3).

The zinc circuit alone is a rather complicated network (see Fig. 9.2), different
recirculations having been implemented to enhance the recovery rate and purity
of the concentrate. The current structures in the process are a result of an
evolutionary process, and they are characteristic to this unique process plant.
In addition to the physical feedforward and feedback flows, there is yet another
level of information flows, being caused by the control structures, making the
overall system fully connected and “pancausal”. Indeed, the degrees of freedom
in the system are reduced by the interconnected variables, and the remaining
variation assumedly takes place only in a rather low-dimensional subspace. Even
if all the constraints cannot be explicitly tracked, it can be assumed that in the
cybernetic system the balance around the steady-state average is maintained,
and it suffices to capture the properties of the “emergent model” (see chapter
11). Because of the balance and assumed minimization of signal variations,
local linearity can be assumed, at least if no structural changes take place in
the process.

The concentrations in the most relevant flows are measured: Slurry samples
are taken to the centralized analyzer unit, where the samples are analyzed one
after the other in a sequence, the whole cycle lasting some 20 minutes. However,
significant changes can take place in the process during these time intervals, and
to implement efficient control and monitoring applications, it would be of utmost
importance to be capable of reliably estimating the signal behaviors during the
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periods of “blindness”. One should implement soft sensors based on process
models; to construct the models that utilize the available measurements, one
has to implement sensor fusion. It is clear the slurry concentrations in different
parts of the process are interrelated, and utilizing these relationships, behaviors
“downstream” can be estimated. Rather than concentrating on the individual
signals, one should find the overall dependencies — this global-level state of the
whole zinc circuit can be exploited for estimation. The correlations between
measurements are rather low, but if many pieces of evidence are combined in a
clever way, useful models can still be found.

What is this clever way, then? It is evident that subspace identification, as
accompanied by the appropriate Kalman filter, is the method of choice: As
the high dimensionality is no problem, the various measurent channels can be
efficiently exploited, and also the minor pieces of correlation information can be
extracted. Depending on the available information, different model structures
are possible:

1. Stochastic model. The measurements constitute the output vector y,
and the task is to determine the system state vector z, assuming that the
changes in the system state are driven by noise. The internal system model
makes it possible to enhance the “downstream” estimates by exploiting the
“upstream” observations.

2. Stochastic-deterministic model. As explained in chapter 3, there are
also cameras installed on top of the flotation cells: The features extracted
from the camera images can be employed as causally preceding informa-
tion, giving delayless data of the froth outlook (color, “thickness”, etc.)
that is assumedly related with the concentrate properties.

It is a closed-loop system that is being implicitly identified. The causalities are
blurred, one cannot distinguish between the process and the controls. If further
feedbacks or process re-design is to be implemented, the derived models have to
be interpreted by a domain-area expert.

In Fig. 9.3, results are shown when the zinc concentrate from the “Cleaning”
cell is estimated utilizing also the measurement information from the “High
Grade” cell (see Fig. 9.2). The preliminary experiments with the subspace
identification schemes are promising, and faster reactions to changes in con-
cetrate properties can be reached. When the estimates are “calibrated” after
each measurement, the signals can be estimated during the inter-sample peri-
ods using the model. However, it turns out that the data quality needs to be
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emphasized: Just as global information is exploited for local estimation, local
problems become global, perhaps ruining the whole plant operation. The outlier
values need to be detected and fixed reliably on-line, so that new challenges are
faced.

9.4.2 Connections to AI*

The discussion of “clever” data analyses can be extended.

In Artificial intelligence (AI) one tries to implement “intelligent-looking” func-
tionalities in computers. Traditionally, AI approaches are symbolic, meaning
that the constructs, declarative or procedural, need to be explicitly programmed:
There is then no connection to data, and there is no possibility of adaptation.
Human is needed as an interface between the system and its environment. Real
intelligence can be defined as ability of appropriate reacting to its environment
and adapting according to it, and fixed structures are necessarily deficient.

The neural netwroks, etc., have been exploited to reach data-orientedness and
associative reasoning, and they can be applied to accomplish complicated pat-
tern recognition tasks. However, something essential seems to be missing: The
structures themselves are still fixed, non-adaptive. How to find a good compro-
mise, a structural framework where adaptation is possible?

Structures that characterize human cognition are causal, meaning that human
mind naturally organizes observations in cause/effect hierarchies. Such causal-
ity structures cannot be seen in the data — but, again, one can do assumptions
of how the structures are reflected in data. If it is assumed that correlation
structures can be used to represent causalities, temporal ordering among data
can be found applying the techniques presented above. When the data dimen-
sion is high and redundant, the challenge of the modeling method is to cope
with the high dimensionality, and detect the appropriate connections — getting
“wiser” is about ignoring irrelevant connections. After adaptation the dynamic
state models become “numeric inference models” — when given the current
state, the system can predict what happens afterwards. Many philosophical
problem settings become very concrete: Questions concerning ontologies and
semantics are wiped away, as everything is based on contextual semantics de-
fined in terms of similarities, or correlation structures among variables. As the
“numeric concepts”, or the state variables, have continuous values, the problems
of “hermeneutic circles”, or the convergence properties of infinite recursions can
be studied mathematically. In this way, it seems that multivariate modeling can
offer new possibilities for research in AI.

On the other hand, models derived in the field of AI can perhaps give new tools
for extending the dynamic model structure beyond linearity. For example, the
sparse coding schemes derived for cognitive tasks can perhaps be extended to
dynamic applications.
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Computer exercises

1. Study the properties of the subspace identification algorithm; try different
parameter values in the following:

[U,Y] = dataDyn(3,2,1,100,0.001);
regrSSI(U,Y,5);

2. Analyze the different compression techniques in state dimension reduction.
First, define time series data as

[u,y] = dataDyn(1,0,1,100,0.1);
X = [y(1:96),y(2:97),y(3:98),y(4:99),y(5:100)];
Xminus = X(1:size(X,1)-1,:);
Xplus = X(2:size(X,1),:);

Compare the first principal component basis vector to the system transient
behavior:

thetaPCA = regrPCA(X,1)

Compare PLS and CCA. How can you explain the differences in the eigen-
value behavior? How about the latent vectors?

[thetaPLS,phiPLS] = regrPLS(Xminus,Xplus)
[thetaCCA,phiCCA] = regrCCA(Xminus,Xplus)

What happens to the independent components in a dynamic system? Can
you explain the results?

U = dataIndep(1000,’f1’,’f2’);
[U,Y] = dataDyn(2,U,3);
X = [Y(1:999,:),Y(2:1000,:)];
thetaICA = regrICA(regrWhiten(X),-1)



Lesson 10

Relations to Systems
Engineering

This far we have been exclusively interested on data, and on models that are
constructed directly from that data. It seems that the traditional control engi-
neering practices that are usually based on first principles models would not have
very much to do with these discussions. However, finally it is numeric data that
flows through these physical models, too, even if the model construction had
been based on qualitative studies; the structure of the model determines how
the data is manipulated in the system, directly dictating how nice behavioral
properties that system has. In this chapter we study how the multivariate ideas
and approaches can be applied for analysis and manipulation of existing system
models so that the expected behavior of the hypothetical data being processed
in the system is taken into account.

In this context, some specially important aspects of modern control engineer-
ing will be concentrated on, among them balanced model reduction and state
estimation.

10.1 MIMO vs. SISO systems

Traditional control design has been based on SISO (single input, single output)
models, meaning that complex plants are reduced to simple control loops. This
is natural, because the SISO systems are easily comprehensible for the system
designers as well as for field operators. Yet, it is clear that local optimization of
single control loops does not result in optimal behavior of the larger plant, and
there is need to be able to design and analyze more complex models of multiple
interconnected inputs and outputs (MIMO systems).

Because of the intuitive understandability and long tradition of SISO systems,
the main paradigm in MIMO control design has been to somehow extend the
SISO design ideas to the multivariate cases, or, rather, to make the MIMO
systems look like sets of SISO systems.

159
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One usually starts from the transfer function matrix

G(s) =

⎛

⎜⎝
G11(s) · · · G1,n(s)

...
. . .

Gm,1(s) Gm,n(s)

⎞

⎟⎠ , (10.1)

that characterizes a linear, dynamic multivariate system of nu inputs and m
outputs in Laplace (frequency) domain; the algebraic dependency L{y(t)}(s) =
G(s) · L{x(t)}(s) governs the behavior of the Laplace transformed input and
output signal vectors L{u(t)}(s) and L{y(t)}(s). Sustituting s → jω in (10.1),
the transfer properties of sinusoidals of angular frequency ω are directly given,
the absolute value revealing the amplitude and the angle of the complex-valued
number revealing the phase of the output sinusoidal. Now, it is immediately
clear that the interconnections between different inputs and outputs can be min-
imized if the matrix (10.1) is somehow diagonalized, and, indeed, constructing
the singular-value decomposition, this can be done:

G(jω) = Ξ(ω) · Σ(ω) · ΨH(ω), (10.2)

the matrix Σ(ω) containing the Hankel singular values σi(jω) (to be discussed
more later) on the diagonal. This means that if the measured Laplace-domain
output signals are multiplied by ΨH(ω) and the constructed control signals by
Ξ(ω), the system looks like a set of separate SISO systems, and direct SISO
design is possible for all input-output pairs. However, note that the matrices
Ξ(ω) and Ψ(ω) are complex valued, and they are functions of ω; using constant
(real) matrices, this diagonalization can only be approximate. To easily get rid
of complex factors, the diagonalization is typically optimized for zero frequency.

The frequency domain stability and sensitivity analysis techniques (stability
margins, etc.) are also originally developed for SISO systems. These techniques
can easily be extended to the multivariate case, if one is only interested in the
worst-case behavior: The above Hankel singular values σi(jω) reveal the system
gains, and studying the largest of them, the principal gain σ̄i for all frequencies,
gives information about the maximum possible system response, given the most
pathological input signal. Constructing controllers concentrating on the open-
loop principal gains, it is possible to assure system stability in all situations and
for all inputs (for example, see [30]).

10.2 Dimension reduction

The traditional way to apply multivariate techniques (as discussed above) are
somewhat crude, not really taking into account the dynamic nature beneath the
numbers, but forcing the complex systems into the SISO framework. In what
follows, more sophisticated approaches discussed.

10.2.1 About state-space systems

The basis of modern systems engineering is the state-space model; as compared
to the models in the previous chapter, now we start with its deterministic version
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of it:
{

x(κ + 1) = Ax(κ) + Bu(κ)
y(κ) = Cx(κ) + Du(κ). (10.3)

Here, u and y are the system input and output of dimension nu and m, respec-
tively, and x is the state of dimension d. It needs to be noted that, from the
input/output behavior point of view, the state realization is not unique: For
example, if there is an invertible matrix L of size d ×d, one can define another
state vector x′ = Lx so that the following state-space model fulfills the same
relationship between u(κ) and y(κ):

{
x′(κ + 1) = LAL−1x′(κ) + LBu(κ)
y(κ) = CL−1x′(κ) + Du(κ). (10.4)

Intuitively, the strength of the state-space model is that the real internal phe-
nomena within the system can also be included in the model. In such cases,
when the model has been constructed starting from first principles, the state
representation for the system may be unique, and state transformations in the
above way are meaningless. However, when the modern controller construction
approaches like robust or optimal control theory are applied, the resulting con-
troller is also given in the state-space form — but now the states are constructed
by the mathematical machinery and they do no more have any physical rele-
vance. The only thing that counts is the input-output behavior of the controller.

The question that arises is: How should we define the state vector of the model
so that some of the model properties would be enhanced? Or, more specifically,
how should the matrix L be selected so that the essence of the state components
would be revealed1?

When the controller is constructed using robust or optimal control theory, the
resulting controller is usually high-dimensional. There are practical difficulties
when using this kind of controllers — it may take long time to calculate the
control actions and it may take a long time before the controller reaches the
correct operating state after startup. In many cases, the models need to be
simplified for practical purposes.

It is typical that some of the states are more relevant than the others. Could
we reduce the number of states without losing too much, without essentially
changing the dynamic behavior of the model? It sounds plausible that the
methodologies presented in the previous chapters could be applied for this pur-
pose, and, indeed they can. Now it is the most relevant dynamic modes that we
would like to retain, while ignoring the less significant ones. We would like to de-
termine the transformation matrix L so that the relevance of different variables
would be easily assessed in the resulting state vector2 .

1What is this “essence” in the data — again, it can be noted that mathematical machinery
cannot judge the real relevance of the phenomena. But if we are less ambitious, useful results
can be reached

2A traditional way to solve this model reduction problem was to concentrate on the most
significant modes, those that are nearest to the unit circle, thus being slowest and decaying
last, and simply “forget” about the less significant modes altogether. Often this approach
works — the slowest decaying modes are visible longest and determine the overall system
behavior. However, pole-zero studies miss one crucial point: The gains of the modes cannot
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10.2.2 Preliminary experiments

For a moment, study the following simplified system model:

{
x(κ + 1) = Ax(κ)

y(κ) = Cx(κ). (10.5)

Assume that A can be diagonalized, so that there exists a matrix of eigenvecors
Θ so that there holds

A = Θ · Λ · Θ−1. (10.6)

Defining x′ = Θ−1x, the model (10.5) can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(κ + 1) = Λx′(κ) =

⎛

⎜⎝
λ1

. . .
λd

⎞

⎟⎠ · x′(κ)

y(κ) = CΘ · x′(κ).

(10.7)

Now it is evident that all modes have been separated — each of the state ele-
ments xi(κ) only affects itself; furthermore, the eigenvalues λi determine their
decay rates. However, there are problems. First, the matrix A may not be di-
agonalizable; what is more, when the general model (10.3) is studied, this diag-
onalization of the matrix A alone cannot guarantee independence of the modes:
It is the matrix B that routes the exogenous input u(κ) into the system, and
depending on the connections between the state elements as determined by B,
the modal structure gets blurred, state elements becoming mutually correlated;
this approach clearly does not solve the problem.

Of course, one possibility would be to analyze again the state covariance ma-
trix 1

k ·
∑k

κ=1 x′(κ)x′T (κ) = L · 1
k ·
∑k

κ=1 x(κ)xT (κ) · LT in the same way as in
the previous chapters, defining the state transformation matrix L so that the
covariance becomes identity matrix. This procedure separates the states — but
there are various problems: First, the output is not taken care of in the con-
struction of x′; second, this kind of transformation is not determined exclusively
by the system structure but also by the input signal properties — this kind of
dependency of the external conditions is not what is needed.

Something more sophisticated needs to be done. What one would like to have is
a state reduction technique that would find a realization that is only dependent
of the system structure, and that would be somehow balanced between input
and output.

be seen if only the locations of the transfer function roots are studied. There may be a mode
that is located far from the unit circle but having so high gain that — even though decaying
fast — its transients start from such high values that they are still most significant. On the
other hand, the qualitative pole-zero analyses cannot reveal the role of interactions between
the modes: A nearby zero can essentially shadow the effects of some otherwise relevant pole.
What is needed is a numerical methodology for reducing the system order
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10.2.3 Balanced realizations

It turns out to be a good strategy to study how the signal energy is transferred
through the system; how the past inputs affect the future outputs through the
system state variables [10].

Let us study how the state x at time κ relays the signal energy from input to
output in the model (10.3). First, calculate the contributions of the past inputs
on the current state (assuming system stability):

x(κ) = Bu(κ −1) + ABu(κ −2) + A2Bu(κ −3) + · · ·

This can be expressed as

x(κ) =
(

B AB A2B · · ·
)
·

⎛

⎜⎝
u(κ −1)
u(κ −2)

...

⎞

⎟⎠

= MC ·

⎛

⎜⎝
u(κ −1)
u(κ −2)

...

⎞

⎟⎠ ,

(10.8)

where MC is the (extended) controllability matrix. On the other hand, the effect
of the current state x(κ) on the future outputs can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(κ) = Cx(κ) Output at time κ
y(κ + 1) = CAx(κ) Output at time κ + 1
y(κ + 2) = CA2x(κ) Output at time κ + 2

...

(10.9 )

This can be written in a compact form using the (extended) observability matrix
MO:

⎛

⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

C
CA
CA2

...

⎞

⎟⎟⎟⎠
· x(κ) = MO · x(κ). (10.10)

These two expressions (10.8) and (10.10) can now be combined, resulting in the
expression for signal that goes from input to output through the single state
x(κ):

⎛

⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞

⎟⎟⎟⎠
= MOMC ·

⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠
. (10.11)

The matrix H = MOMC is known as the Hankel matrix. For a discrete system,
the Hankel matrix has a close connection to the system properties, and it can
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be constructed simply from its pulse response: The element on the i’th row and
j’th column in the Hankel matrix is the i+ j−1’th element of the system pulse
response.

The total power of the output (summing the powers of all output signals to-
gether) can be expressed as

yT (κ)y(κ) + yT (κ + 1)y(κ + 1) + yT (κ + 2)y(κ + 2) + · · ·

=

⎛

⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞

⎟⎟⎟⎠

T ⎛

⎜⎜⎜⎝

y(κ)
y(κ + 1)
y(κ + 2)

...

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠

T

· MT
C MT

OMOMC ·

⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠
.

(10.12)

In the static case, structuring of data was reached through maximization of
(co)variance; similarly, it turns out that the power transfer properties can be
structured through an optimization procedure: Now the goal is to maximize the
power in output when the total input power is fixed (but the power in input
may be arbitrarily distributed):

uT (κ −1)u(κ −1) + uT (κ −2)u(κ −2) + · · ·

=

⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠

T ⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠

= 1.

(10.13)

The criterion to be maximized also becomes

Maximize

⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠

T

· MT
C MT

OMOMC ·

⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠
,

when

⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠

T ⎛

⎜⎜⎜⎝

u(κ −1)
u(κ −2)
u(κ −3)

...

⎞

⎟⎟⎟⎠
= 1.

(10.14)

The method of Lagrangian multipliers can again be applied, and it turns out
that, again, an eigenproblem is found:

MT
C MT

OMOMC · ui = λi · ui. (10.15)

Elements of vector ui have the same interpretation as the elements in the infinite
dimensional input signal vectors above; the problem now is that the infinite
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dimensional eigenproblem is slightly questionable! However, there is a nice
trick available here: Multiply (10.15) from left by the matrix MC , so that

MCMT
C MT

OMO · MCui = λi · MCui. (10.16)

It turns out that the vector MCui must now be the eigenvector of the finite-
dimensional matrix MCMT

C MT
OMO, the eigenvalues remaining the same as in

the original eigenproblem. Note that this equality of eigenvalues holds only for
the nonzero ones; the higher-dimensional problem of course has high number
of additional eigenvalues, but they are all zeros. The matrix MCMT

C · MT
OMO

consists of two low-dimensional parts:

• The Controllability Gramian contains only the input-related factors:

PC = MCMT
C =

∞∑

κ=0

AκBBT (AT )κ

= BBT + ABBT AT + A2BBT A2T + · · ·
(10.17)

• The Observability Gramian contains only the output-related factors:

PO = MT
OMO =

∞∑

κ=0

(AT )κCT CAκ

= CT C + AT CT CA + A2T CT CA2 + · · ·
(10.18)

It is easy to show that the Gramians satisfy the linear matrix equations

APCAT −PC = −BBT

AT POA −PO = −CT C.
(10.19 )

Gramians are closely related to the controllability and observability properties
of a system: If PC is positive definite, the system is controllable, and if PO

is positive definite, the system is observable. Compared to the standard con-
trollability and observability matrices, the Gramians offer a more quantitative
method to studying the system properties.

If some similarity transform is applied to the system states, so that A′ = LAL−1,
B′ = LB, and C′ = CL−1, the Gramians will be modified as

P ′
C = LPCLT and

P ′
O = L−T POL−1.

(10.20)

It is also possible to change the Gramians by selecting the state transformation
matrix L appropriately. However, it turns out that the product of the Gramians

P ′
CP ′

O = L · PCPO · L−1 (10.21)

is a similarity transtorm of the original Gramian product PCPO; regardless of
the state transformation the eigenvalues of

P ′
CP ′

O · MCui = λi · MCui (10.22)
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remain invariant. It is possible to select L so that the new Gramian product
P ′

CP ′
O becomes diagonal by diagonalizing it using eigenvalue decomposition:

P ′
CP ′

O =

⎛

⎜⎝
λ1

. . .
λn

⎞

⎟⎠ =

⎛

⎜⎝
σ2

1
. . .

σ2
n

⎞

⎟⎠ . (10.23)

The parameters σi are very important system characterizing constants, and they
are called Hankel singular values, being the singular values of the corresponding
Hankel matrix. As was shown, Hankel singular values are invariant in a system
under state-space representation. The Hankel singular values also determine, in
a way, the “maximum gain” and the “minimum gain” of the system; the largest
of the Hankel singular values is called the Hankel norm of the system.

The system realization where the state transformation has been selected in this
way is said to be in the balanced form (the signals should also be appropriately
normalized). In the balanced realization each of the state components is inde-
pendent of the others; what is more, each state component is as well “visible”
in the output as it is “excitable” from the input.

10.2.4 Eliminating states

The above discussion gives us concrete tools for state reduction: Drop those
state components from x′ that have the least importance in signal power transfer
between input and output; these state components are exposed by the lowest
Hankel singular values.

Noticing that x = L−1x′, it can be recognized that the most of the input-output
mapping is transferred through those states in x′ that correspond to those rows
of L−1 standing for the largest Hankel singular values. If dimension reduction is
to be carried out using the balanced realization, the state mapping matrix θT is
constructed from these rows of L−1. Note that because PCPO is not generally
symmetric, the eigensystem is not orthogonal; that is why, the reduced system
matrices cannot be constructed as A′ = θT Aθ, etc., but one first has to calculate
the full matrices A′ = L−1AL, B′ = L−1B, and C′ = CL, and only after that
eliminate the rows and columns that correspond to the eliminated state elements
in z = x′. The matrix D is not affected in the reduction process.

It needs to be recognized that there are some practical limitations what comes
to balanced system truncation. First, the system has to be asymptotically
stable (otherwise the Gramians do not remain bounded). Second, again, one
fact needs to be kept in mind: Mathematical optimality does not always mean
good design3 .

3For example, for physical reasons, we may know that the overall system gain should
be unity; state truncation in the above way does not assure that this system property is
maintained — see Exercises
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10.3 State estimation

Another example of the surprises that one can attack using “multivariate think-
ing” is taken from the field of state estimation: Given the system structure and
the measurement signals, the problem is to determine the system state. Now, it
is assumed that the system model has the form of (9 .4), also containing stochas-
tic components. Further, assume that only the output y(κ) can be measured,
and, of course, u(κ) is known. The goal is to find out x(κ) using only these past
system inputs and outputs:

{
x(κ + 1) = Ax(κ) + Bu(κ) + ϵ(κ)
y(κ) = Cx(κ) + Du(κ) + e(κ). (10.24)

The state estimators generally has the (recursive) form

x̂(κ + 1) = Ax̂(κ) + Bu(κ) + K(κ) · (y(κ) −ŷ(κ)) , (10.25)

where

ŷ(κ) = Cx̂(κ) + Du(κ). (10.26)

The expression y(κ)−ŷ(κ) represents the error in the model output as compared
to the real system output. The state estimate follows the assumed system model,
but if there is error in the model output, the estimate is corrected appropriately.
Our goal is to determine the matrix K(κ) so that the actual state would be
recovered as well as possible using the observed system behavior. It is reasonable
to define this “goodness” in terms of the state estimation error

x̃(κ) = x(κ) −x̂(κ). (10.27)

The goal is now to minimize the covariance matrix E{x̃(κ)x̃T (κ)}. This is
accomplished by the so called Kalman filter.

10.3.1 Kalman filter

The solution to the state estimation problem is based on induction: Assume
that P (κ) is the minimum error covariance having been found using the mea-
surements that were available before the time instant κ. The matrix K(κ) is
now determined so that the covariance at the next time point also is minimal.

Subtract the state estimator, as given by (10.25), from the system state, as
defined in (10.24):

x̃(κ + 1) = x(κ + 1) −x̂(κ + 1)
= (A −K(κ)C) x̃(κ) + ϵ(κ) −K(κ)e(κ). (10.28)

Multiply both sides by their transposes and take the expectation values — on
the left hand side, one has the next step estimation error covariance matrix to
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be minimized:

P (κ + 1)
= E{x̃(κ + 1)x̃T (κ + 1)}

= (A −K(κ)C)P (κ)(A −K(κ)C)T

+ Rxx + K(κ)RT
xy + RxyKT (κ) + K(κ)RyyKT (κ)

= AP (κ)AT + Rxx

−
(
AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1 (
AP (κ)CT + Rxy

)T

+
(
K(κ) −

(
AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1
)
·

(
CP (κ)CT + Ryy

)
·(

K(κ) −
(
AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1
)T

.

The last part of the equation above (last three rows) is a quadratic form and
the matrix in the middle CP (κ)CT + Ryy is positive semidefinite. This means
that the minimum for the overall expression is reached if this last part is made
zero, or if one selects

K(κ) =
(
AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1
. (10.29 )

In this case the minimum covariance becomes

P (κ + 1) = AP (κ)AT + Rxx

−
(
AP (κ)CT + Rxy

) (
CP (κ)CT + Ryy

)−1 ·(
AP (κ)CT + Rxy

)T

= AP (κ)AT + Rxx −K(κ) ·
(
AP (κ)CT + Rxy

)T
.

(10.30)

Often in time-invariant environments a constant gain matrix is used instead:

K̄ =
(
AP̄CT + Rxy

) (
CP̄CT + Ryy

)−1
, (10.31)

where P̄ is the positive semidefinite solution to the Riccati equation

P̄ = AP̄AT + Rxx

−
(
AP̄CT + Rxy

) (
CP̄CT + Ryy

)−1 (
AP̄CT + Rxy

)T
.

(10.32)

10.3.2 Optimality vs. reality

The above solution to the state estimation problem is also optimal. However,
let us study what may happen in practice — assume that the system is one-
dimensional, with only one input and two outputs as

⎧
⎨

⎩

x(κ + 1) = ax(κ) + bu(κ) + ϵ(κ)
(

y1(κ)
y2 (κ)

)
=
(

1
1

)
· x(κ) +

(
e1(κ)
e2 (κ)

)
,

(10.33)
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so that essentially the scalar state is measured two times. Intuitively, this should
of course enhance the estimate, or, at least, it should not have any catastrophic
effects. However, study the resulting steady-state gain matrix:

K̄ =
(
ap̄ ·

(
1 1

)
+ Rxy

)
·(

p̄ ·
(

1 1
1 1

)
+
(

E{e2
1(κ)} E{e1(κ)e2 (κ)}

E{e1(κ)e2 (κ)} E{e2
2 (κ)}

))−1

,
(10.34)

so that the properties of the estimator are essentially dictated by the invertibility
of the matrix

p̄ ·
(

1 1
1 1

)
+
(

E{e2
1(κ)} E{e1(κ)e2 (κ)}

E{e1(κ)e2 (κ)} E{e2
2 (κ)}

)
. (10.35)

Clearly, the first term is singular regardless of the numeric value of the scalar p̄
— the whole sum becomes uninvertible, at least, if there holds e1(κ) = e2 (κ).
If the same variable is measured, most probably the different measurements are
correlated — if the measurements happen to be exactly identical, the whole esti-
mator explodes, and even if they are not, the matrix may still become arbitrarily
badly conditioned.

Consider some sensor fusion tasks, for example: The Kalman filter is often
used for combining more or less reliable measurements, and often the number
of measurements is very high — for example, take the weather models, where
thousands of measurements are used to gain information about atmospheric
phenomena. Blindly trusting the Kalman filter is dangerous: Even though it is
optimal it may sometimes work against intuition4 .

10.3.3 Reducing the number of measurements

The above uninvertibility problem was caused again by the collinearity of the
measurements. It is not a surprise that the multivariate analysis techniques turn
out to offer valuable tools for attacking this kind of problems. So, assume that
we want to reduce the output dimension so that redundancies are eliminated.
We search for the directions where the measurements are most informative as
determined by the symmetric, positive semidefinite matrix

CP̄CT + Ryy. (10.36)

What is “informative” is again a matter of taste; if the PCA type approach is
chosen, the task is to find the eigenvectors corresponding to the largest eigen-
values in

(
CP̄CT + Ryy

)
· θi = λi · θi. (10.37)

Assume that the dimension is reduced by, say, the PCA technique. The reduced
basis is assumed to be θ and the corresponding eigenvalues are on the diagonal
of Λ; then one can write

CP̄CT + Ryy ≈θ · Λ · θT . (10.38)
4In practice, there is no exact information about the noise properties, and to avoid prob-

lems, the covariance matrices are usually assumed diagonal ... but the optimality of the
estimator is of course ruined when the system model is incorrect!
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Now Λ is low-dimensional and well-conditioned, so that its inverse is easily
calculated; approximately there holds

(
CP̄CT + Ryy

)−1 ≈θ · Λ−1 · θT . (10.39 )

Substituting this in (10.31) gives

K̄ ≈
(
AP̄CT + Rxy

)
· θΛ−1θT

(
AP̄CT θ + Rxyθ

)
Λ−1θT , (10.40)

so that the estimator becomes

x̂(κ + 1) =
Ax̂(κ) + Bu(κ) +

(
AP̄CT θ + Rxyθ

)
Λ−1θT · (y(κ) −Cx̂(κ) −Du(κ)) .

This formulation efficiently helps to avoid anomalies caused by the measurement
redundancy.

10.4 SISO identification

Finally, yet another systems engineering application field is studied where the
multivariate problem setting becomes relevant. We will study the prediction
error methods for black-box identification (see [29 ], [26]). The traditional ap-
proaches that are still the mainstream technology (for example, see the System
Identification Toolbox for Matlab) suffer from the problems that have been
demonstrated in previous chapters, and analogous solutions to the problems can
be proposed. Note that for practical parameter estimation purposes in dynamic
systems, subspace identification (as explained in Chapter 9 ) is recommended.

10.4.1 Black-box model

The behavior of a linear, strictly proper, d’th order discrete time system can be
expressed as a difference equation

y(κ) = a1y(κ −1) + · · · + ady(κ −d)
+ b1u(κ −1) + · · · + bdu(κ −d), (10.41)

where u(κ) denotes the (centered) scalar process input and y(κ) the scalar out-
put at time instant κ. Using vector formulation, this can be written (following
the earlier notations) as

y(κ) = xT (κ) · f, (10.42)

where

x(κ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(κ −1)
...

y(κ −d)
u(κ −1)

...
u(κ −d)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and f =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ad

b1
...
bd

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.43)
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This means that the dynamic nature of the process has been transformed into a
representation where virtually static time series samples are used; the dynamic
complexity has been changed to dimensional complexity.

The structure of the linear dynamic system is assumed to be extremely simple,
consisting of one input and one output signals; further, it is assumed that the
dynamic dimension of the system is exactly known. If it is still assumed that the
signals are persistently exciting, and no unmodeled noise is present, identifying
the parameters of the model should be a trivial task. This is what standard
theory says; however, in practice, problems often emerge. These problems can
again be studied in the framework of statistical data analysis.

10.4.2 Recursive least-squares algorithm

The parameter vector f can be solved off-line, as a batch for some set of data; in
this way, the methods presented in earlier chapters can directly be utilized (in
practice, it seems to be customary to stick to the basic MLR or its derivations).
However, in many cases measurements are obtained one at a time, and it is
reasonable to rearrange the calculations so that the computational load would
be minimized. To derive the on-line recursive identification algorithm, define
the exponentially weighted cost criterion as

J(k) =
k∑

κ=0

λk−κ · e2 (κ), (10.44)

where the prediction error is defined as

e(κ) = y(κ) −xT (κ)f. (10.45)

The exponential weighting emphasizes the newest measurements, that is, if the
forgetting factor λ has value less than one, old measurements are gradually
forgotten. Note that the so called ARX system structure is chosen, again essen-
tially assuming that the error is summed only to the output; otherwise the noise
becomes colored and algorithms give biased estimates. Minimizing the criterion
can be carried out as follows:

d J(k)
d f = −2 ·

∑k
κ=0 λk−κ · x(κ) ·

(
y(κ) −xT (κ)f

)

= −2 ·
∑k

κ=0 λk−κx(κ) · y(κ) + 2 ·
∑k

κ=0 λk−κx(κ)xT (κ) · f
= 0,

or

k∑

κ=0

λk−κx(κ)xT (κ) · f =
k∑

κ=0

λk−κx(κ) · y(κ), (10.46)

so that the parameter estimate can be solved as

f̂ =

(
k∑

κ=0

λk−κx(κ)xT (κ)

)−1

·
k∑

κ=0

λk−κx(κ) · y(κ). (10.47)
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However, this is not yet in the recursive form, so that the new parameter es-
timate f̂(k) would be received from the old estimate f̂(k −1) by updating it
using some fresh information. To reach such a formulation, define

Rxx(k) =
∑k

κ=0 λk−κx(κ)xT (κ)
= x(k)xT (k) + λ ·

∑k−1
κ=0 λk−κx(κ)xT (κ)

= x(k)xT (k) + λ · Rxx(k −1)
(10.48)

and

Rxy(k) =
∑k

κ=0 λk−κx(κ)y(κ)
= x(k)y(k) + λ ·

∑k−1
κ=0 λk−κx(κ)y(κ)

= x(k)y(k) + λ · Rxy(k −1).
(10.49 )

Formula (10.46) can be expressed using these matrices as Rxx(k)·f̂(k) = Rxy(k),
so that the new parameter estimate can be written as

f̂(k) = R−1
xx (k) · Rxy(k)

= R−1
xx (k) · (x(k)y(k) + λ · Rxy(k −1))

= R−1
xx (k) ·

(
x(k)y(k) + λ · Rxx(k −1) · f̂(k −1)

)

= R−1
xx (k) ·

(
x(k)y(k) +

(
Rxx(k) −x(k)xT (k)

)
· f̂(k −1)

)

= f̂(k −1) + R−1
xx (k) ·

(
x(k)y(k) −x(k)xT (k) · f̂(k −1)

)

= f̂(k −1) + R−1
xx (k) · x(k) ·

(
y(k) −xT (k) · f̂(k −1)

)
.

Rewriting this and collecting the results together (and defining R = Rxx), the
final Gauss-Newton type identification algorithm becomes

f̂(k) = f̂(k −1) + R−1(k)x(k) ·
(
y(k) −xT (k)f̂(k −1)

)

R(k) = λR(k −1) + x(k)xT (k).
(10.50)

The matrix inversion lemma could be applied here to make the algorithm more
efficient in practice; however, in this context overall comprehensibility of the
algorithm is preferred. On the first line, the parameter estimate vector is up-
dated; the size of the update step is determined by the prediction error, whereas
the update direction is determined by the matrix R(k). What is this matrix,
then — this can be seen if one studies the expectation values:

E{R(k)} = λ · E{R(k −1)} + E{x(k)xT (k)}, (10.51)

where E{R(k)} = E{R(k −1)} = E{R}, so that

E{R} =
1

1 −λ
· E
{
xxT

}
. (10.52)

This means that R is the (scaled) data covariance matrix estimate — sounds
familiar ...!
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Figure 10.1: A figure illustrating the fact that short sampling intervals
(shown on the left) make the successive samples mutually dependent:
They have almost equal values, or, at least, assuming smooth signal
behavior, they are almost on the same line, thus being collinear

10.4.3 Structure of dynamic data

The data x(κ) was constructed from successive signal measurements. However,
there are peculiar dependencies between the delayed signals that are not taken
into account by the standard SISO identification algorithms. The problems are
(as in the MLR case) concentrated on the invertibility of the data covariance
matrix R.

The successive samples are most probably highly correlated because they should
represent continuous dynamic evolution. This redundancy between the signal
samples is the main reason for the structural identifiability problems — the
data is collinear, and this linear dependency between variables becomes more
and more dominating when the sampling interval is made smaller (see Fig. 10.1).

The numerical problems inherent in the data are emphasized by the recursive
“forgetting” of the algorithms: Older information gets ignored as time evolves,
and it may be that the numerical properties of the data covariance matrix are
gradually ruined, the identification process becoming badly behaving.

Because of the relevance of the robustness issues in practical approaches, various
more or less heuristic approaches have been proposed, including different kinds
of constant trace, regularization, or variable forgetting algorithms (see [19 ] and
[21], for example). A close relative of Ridge Regression (as written in recursive
form) is the so called Levenberg-Marquardt identification algorithm that keeps
R invertible by adding a minor positive definite factor to it during each step:

f̂(k) = f̂(k −1) + R−1(k)x(k) ·
(
y(k) −xT (k)f̂(k −1)

)

R(k) = λR(k −1) + x(k)xT (k) + q · I2d.
(10.53)

It can be shown that as q varies from zero to higher values, the continuum from
Gauss-Newton and simple gradient method is spanned.

Another family of identification methods (or, actually, data preprocessing meth-
ods) is found when the system parameterizations are studied. The dynamic na-
ture of a system can be captured in an infinite number of ways; even though the
above time series approach is rather natural, it is only one alternative — and
not a very good choice, as it has turned out. As an example, study Fig. 10.1:



174 Lesson 10. Relations to Systems Engineering

Using the traditional shift operator q formalism (or, equivalently, using delay
operators q−1) all systems finally become integrators as the sampling period h
goes towards zero! A very simple alternative to the standard parameterization
is the δ parameter formalism [12]; the idea is that rather than taking the mea-
surements themselves as a basis, the differentiated signals are used: Differences
between successive samples are analyzed rather than the original signal values.
It has been shown that this parameterization enhances the numerical proper-
ties of many algorithms (not only identification algorithms). More sophisticated
parameterizations are studied, for example, in [9 ] and in [20]5 .

10.4.4 Further analysis: System identifiability*

The properties of the data covariance matrix are, of course, determined by
the data properties themselves — but not exclusively. As was seen above, the
system dynamics dictates what is the relation between successive measurements,
and this is reflected also in the data covariance. Now study the structural
identifiability properties of a dynamic system. This analysis was carried out
originally in [22].

Differentiating (10.42) with respect to f , one has

d y

d f
(κ) = x(κ), (10.54)

so that the data covariance matrix can be written as

E
{
x(κ)xT (κ)

}
= E

{(
d y

d f
(κ)
)(

d y

d f
(κ)
)T
}

. (10.55)

What are these signal derivatives? One can differentiate the response y(κ) in
(10.41) with respect to all the parameters, so that a set of difference equations
is found:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂y

∂ai
(κ) =

d∑

j=1

ajq
−j · ∂y

∂ai
(κ) + q−i · y(κ)

∂y

∂bi
(κ) =

d∑

j=1

ajq
−j · ∂y

∂bi
(κ) + q−i · u(κ).

(10.56)

Neglecting the initial conditions, these 2d difference equations of order d can be
written in a 2d-dimensional state space form

x′(κ + 1) = A′x′(κ) + B′u(κ) (10.57)
5In the multivariate framework, one straightforward approach to enhancing the matrix

invertibility properties would be to reduce the dimension of R, just as has been done so many
times this far. However, now it cannot be assumed that the properties of data remain invariant
— the original reason to use recursive algorithms was to be able to react to changing system
properties — and the matrix R does not remain constant: The eigenvalue decomposition
should be computed, in principle, during each step, and the computational burden would
become excessive
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defined by the matrices

A′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 · · · ad

1 0
. . .

1
b1 b2 · · · bd a1 a2 · · · ad

1
. . .

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
0
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This state-space system will here be called the “sensitivity system” correspond-
ing to the model (10.41). The control signal in this system is the original input
u(k), but the state vector is

x′(κ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂y

∂b1
(κ)
...

∂y

∂bd
(κ)

∂y

∂a1
(κ)

...
∂y

∂ad
(κ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
d y

d f
(κ). (10.58)

The motivation for these definitions is that the covariance structures for the
data vector x and the state vector x′ must be identical; and the behavior of
the dynamic system state can be easily analyzed. The data covariance matrix
(10.55) can also be written as

E

{(
dy

df
(κ)
)(

dy

df
(κ)
)T
}

= E
{
(B′u(κ −1) + A′B′u(κ −2) + · · ·) ·

(B′u(κ −1) + A′B′u(κ −2) + · · ·)T
}

= ru(0) ·
(
B′B′T + A′B′B′T A′T + A′2B′B′T A′2T + · · ·

)

+ ru(1) ·
(
A′B′B′T + B′B′T A′T + · · ·

)

+ ru(2) ·
(
A′2B′B′T + B′B′T A′2T + · · ·

)

+ · · ·
= ru(0) · M ′

C
+ ru(1) ·

(
A′M ′

C + M ′
CA′T )

+ ru(2) ·
(
A′2M ′

C + M ′
CA′2T

)

+ · · ·

(10.59 )

It turns out that the matrix M ′
C equals the Controllability Gramian for the

sensitivity system; additionally, the input signal autocorrelation function values
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are involved here:

ru(0) = E{u2 (κ −1)} = E{u2 (κ −2)} = · · ·
ru(1) = E{u(κ −1)u(κ −2)} = E{u(κ −2)u(κ −3)} = · · ·

= E{u(κ −2)u(κ −1)} = E{u(κ −3)u(κ −2)} = · · ·
ru(2) = E{u(κ −1)u(κ −3)} = E{u(κ −2)u(κ −4)} = · · ·

= E{u(κ −3)u(κ −1)} = E{u(κ −4)u(κ −2)} = · · ·
...

This gives us a possibility of estimating the “efficiency” of the input signal
what comes to its capability of helping in the parameter identification. On
the other hand, optimization of the input can also be carried out: One can
determine the autocorrelation function values so that (10.59 ) becomes easily
invertible, and after that construct realizations of such a signal applying spectral
factorization. However, note that there are physical constraints what comes to
the autocorrelation function — for example, ru(0) must always be the largest
of all ru(i) for the signal to be realizable.

More anqalysis is needed here: Formal identifiability differs from actual identifi-
ability. To avoid the problems that are inherent to traditional model structures,
new model structures need to be introduced. Such efforts are illustrated in the
last chapter.
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Computer exercises

1. Study the power of the dimension reduction technique; run the following
command sequence various times. Select (interactively) the number of
states in different ways — what kind of non-physicalities are seen in the
approximations?

d = 10;
A = randn(d,d); A = A/(1.1*norm(A));
B = randn(d,1);
C = randn(1,d);
regrBal(A,B,C);

Construct a discrete-time system for implementing a pure delay of d time
steps, and try to reduce the model:

d = 10;
A = zeros(d,d); A(2:d,1:d-1) = eye(d-1);
B = zeros(d,1); B(1,1) = 1;
C = zeros(1,d); C(1,d) = 1;
[Ared,Bred,Cred] = regrBal(A,B,C);

What is the problem? In this special case, that specific problem can
be circumvented by the following modifications without altering the in-
put/output behavior. However, what can you say about all possible “op-
timal” model reductions now?

A = 0.9*A;
B = B/0.9^d;

2. Study the robustness of recursive identification: Check how much the
behavior of the parameter estimates changes as the underlying system
structure varies by running the following commands various times. Also
try the effects of the forgetting factor λ.

lambda = 0.99;
u = randn(100,1);
[u,y] = dataDyn(3,u,1);
regrIdent(u,y,3,lambda);



Lesson 11

Conclusion:*
About “Emergent Models”

Statistical methods seem to be efficient tools for data analysis. But will these
methods always be inferior to first-principles models — are they only describing
surface-level reflections of internal phenomena, can they ever capture the true
essence of systems?

What is this “essence”, then? Modeling is about hiding details and concen-
trating information, one has to abstract away irrelevant details. Again, when
determining what is irrelevant, one is facing ontological assumptions. We al-
ready know how to model simple systems, but when studying complex systems,
new ways of thinking are needed.

This final chapter tries to illustrate the possibilities that may someday come
true. It is shown here how the multivariate statistical methods can perhaps
offer new conceptual tools for mastering the complexity in systems. It is the
differences that make a difference: If there exist phenomena that cannot be seen
in observations, they can be ignored. And it is the multivariate methods that
can capture such phenomena — if the way of looking at systems is adjusted in
an approprite way. The traditional methods only capture narrow projections
of the behavioral wealth, whereas the multivariate methods can give a more
holistic view. This view is presented in closer detail in [?]; here, only excerpts
from there are reviewed.

11.1 Capturing semantics in data

To make it possible to apply multivariate methods for capturing the system
essence, the data needs to be defined so that the phenomena of relevance are
represented there. The key question is: How to capture the essential infor-
mation, or domain-area semantics in the data? To define data so that the
important features are available there for further modeling, one needs a con-
crete application area. Here, the application area throughout this chapter is the
realm of chemical systems.

179
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11.1.1 What is “semantics”?

The model should be an interface between the system and outside world, pro-
viding best possible information transfer. The model structure should be a
compromise between the properties of the system and the properties of the ap-
plications. What are the model structures like that support the new tools and
new ways of thinking, simultaneously taking into account the system itself?

When searching for good models, philosophical questions cannot be avoided: It
is such modeling issues that have been studied for millennia — what is the
nature of systems, and and how they should be represented. Indeed, what there
is, what one can we know about them, these problem fields are called ontology
and epistemology, respectively. Earlier in this report, ontological questions have
been discussed in simple terms — now these discussions need to be extended
slightly. Here all these mutually related issues are collected under the common
concept of semantics: What is the essence of a system, and how this essence
should be interpreted?

Semantics conveys meaning. Traditionally, it is thought that semantics cannot
exist outside human brain. However, to reach “smart models” that can adapt
in new environments, one needs to make this meaning machine-readable and
machine-understandable. Otherwise, no abstraction of relevant vs. irrelevant
phenomena can be automatically carried out. Indeed, one is facing a huge
challenge here, but something can be done.

Just as was done earlier when ontologies were studied, now this semantics is
formalized: This very abstract concept is given here very concrete contents,
compromizing between intuitions (what would be nice) and reality (what can
be implemented in reality). It can even be said that a good model formalizes
the semantics of the domain field, making it visible. Now there are two levels of
semantics to be captured:

1. Low-level semantics. The formless complexity of the underlying sys-
tem has to be captured in concrete homogeneous data. The “atoms”
of semantics constitute the connection between the numeric representa-
tions and the physical realm, so that the properties of the system are
appropriately coded and made visible to the higher-level machineries. In
concrete terms, one has to define “probes” and put them in the system
appropriately. The measurements delivered by the probes still need to be
interpreted, or features need to be extracted from the measurements by
applying appropriate data preprocessing.

2. Higher-level semantics. The high number of structureless low-level
features have to be connected into structures of semantic atoms. As-
suming that the semantic atoms are available, this higher-level task is
simpler, being more generic. In our numbers-based environments, a prac-
tical approach towards such contextual semantics, where relevant lower-
level structures are to be appropriately combined, is again offered by
correlations-based measures. As has been shown before, assuming that
information is conveyed in co-variations among data, structuring of lower-
level data can be implemented by the mathematical machinery without
need of outside expert guidance.
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Indeed, analyses of this higher-level semantics processing have been carried out
already a lot in this report, and they can be implemented implicitly by the pre-
sented multivariate statistical tools. But representation of the low-level domain-
area features is domain-area specific, and needs to be studied separately in each
case. To have a solid grounding, one somehow needs to limit the overwhelming
diversity of available measurements by applying some assumptions concerning
the nature of systems being studied.

11.1.2 Neocybernetic starting points

The traditional models need to be explicitly controlled by the domain area
expert, and the structure needs to be determined before the machinery (iden-
tification algorithms, etc.) take over. When modeling complex systems, the
structure is hidden, it is not known beforehand. The objective is automatic
abstraction, letting the structures automatically emerge. And the statistical
tools naturally carry out abstraction: Individual observations are not assumed
to be significant, only phenomena that remain consistent over the long-term
observation periods.

To use statistical methods in a plausible way, the observations need to have
statistical relevance. To reach this, the observations need to be stationary, that
is, there need to exist some consistent statistical structure in the data. To make
this possible, to be able to collect stationary data from a complex process, there
has to be balance, at least as seen in the wider scale.

To find general ways of modeling, something has to be assumed. It turns out that
such a rigid enough structural modeling framework where there is possibility of
individual structures to emerge is that of neocybernetics: One assumes dynamic
balance in the system where the internal interactions and feedbacks implement
tensions that maintain the system integrity. One can forget the underlying
interaction structures if they are just capable of providing appropriate stabilizing
internal controls.

In the neocybernetic framework, one does not study all mathematically possible
systems — only the physically reasonable ones that are in balance with their en-
vironment. Natural systems typically fulfill this assumption, and one would like
the industrial systems to fulfill this assumption. What is more, good controls,
however they are implemented, keep the system near its setpoint, regardless of
the environmental disturbances: This means that linearity of the models can
reasonably be assumed.

So, to apply multivariate methods, one has to concentrate on such (thermo)dynamic
balances. The data needs to be selected so that is reflects this framework to
make it possible to later determine appropriate models. As it turns out, the
domain of chemical systems offers a compact framework for such studies.

11.1.3 Modeling chemical systems

Study a hypothetical example reaction, where there are α reactants on the left
hand side, being denoted as Ai, 1 ≤ i ≤ α, and the β products on the right
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hand side are Bj , 1 ≤ j ≤ β:

a1A1 + · · · + aαAα
kB⇔
kA

b1B1 + · · · + bβBβ , ∆H. (11.1)

Processes are typically reversible, so that the reaction can take place in both
directions (kB being the reaction speed in forward and kA in backward direction).
Symbol ∆H denotes the change in enthalpy, or inner energy, when the reaction
takes place.

One needs a mathematically more compact representation for chemical reac-
tions. How to “cybernetize” chemical reaction models applying the neocyber-
netic principles?

Information representation

The first problem is to represent such a chemical reaction formula in a practical
numeric form. It seems that a practical way to code the reactions in a mathe-
matically applicable form is to employ the vector formulation: Define a vector
C containing all chemical concentrations so that all Ai and Bj are represented
there among the elements. The “chemical state” can assumedly be captured
in this vector, and individual reactions determine equations in that chemical
space: If the coefficients −ai and bj from (11.1) corresponding to the chemicals
are collected in the vector G, one can express the total concentration changes
in the system as

∆C = G ζ. (11.2)

Here, ζ is a scalar that reveals “how much” (and in which direction) that reaction
has proceeded. When there are many simultaneous reactions taking place, there
are various vectors Gi; the weighted sum of reaction vectors ζiGi reveals the
total changes in chemical contents, the weighting factors being collected in the
vector ζ.

Using the above framework, metabolic systems can in principle be modeled: If
one knows the rates of reactions, or the scalars ζi, the changes in the chemical
contents can be determined. This idea of invariances within a chemical system
have been widely applied for metabolic modeling; the key term here is flux
balance analysis (FBA) (for example, see [?]). However, the rates x are not
known beforehand, and, what is more, the reactions are typically not exactly
known.

In many ways, the model structure (11.2) is not yet what one is looking for. The
main problem there is that the flux balances only capture the stoichiometric,
more or less formal balance among chemicals. It does not capture the dynamic
balance, whether or not the reactions actually take place or not. Luckily, there
exist also other ways to represent the chemical realm.

Thermodynamic balance

There is a big difference between what is possible and what is probable, that is,
even though something may happen in principle, it will not actually happen. To
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understand the dynamic balance, the reaction mechanisms need to be studied
closer.

Assume that it takes a1 molecules of A1, a2 molecules of A2, etc., according to
(11.1), for one unit reaction to take place. This means that all these molecules
have to be located sufficiently near to each other at some time instant for the
forward reaction to take place. The probability for one molecule to be within the
required range is proportional to the number of such molecules in a volume unit;
this molecular density is revealed by consentration (when the unit is mole/liter;
by definition one mole always contains 6.022 · 1023 particles). Assuming that
the locations of the molecules are independent of each other, the probability
for several of them being found within the range is proportional to the product
of their concentrations. On the other hand, the reverse reaction probability is
proportional to the concentrations of the right-hand-side molecules. Collected
together, the rate of change for the concentration of the chemical A1, for exam-
ple, can be expressed as a difference between the backward reaction and forward
reaction rates:

dCA1

d t
= −kBCa1

A1
· · · Caα

Aα
+ kACb1

B1
· · · C

bβ
Bβ . (11.3)

In equilibrium state there holds d CA1
d t = 0, etc., and one can define the constant

characterizing the thermodynamic equilibrium (for example, see [?]):

K =
kB

kA

=
Cb1

B1
· · · C

bβ
Bβ

Ca1
A1 · · · Caα

Aα

. (11.4)

Linearity objective

One of the neocybernetic objectives is that of linearity. Clearly, the expression
(11.4) is far from being linear — indeed, it is purely multiplicative. It turns out
that applying a purely syntactic trick, linearity of the structures can be reached:
Taking logarithms on both sides there holds

log K ′ = b1 log CB1+ · · ·+ bβ log CBβ −a1 log CA1+ · · ·−aα log CAα .(11.5)

To get rid of constants and logarithms, it is also possible to differentiate the
expression:

0 = b1
∆CB1

C̄B1

+ · · · + bβ
∆CBβ

C̄Bβ

−a1
∆CA1

C̄A1

+ · · ·−aα
∆CAα

C̄Aα

, (11.6)

where the variables ∆Ci/C̄i are deviations from the nominal values, divided by
those nominal values, meaning that it is relative changes that are of interest.
The differentiated model is only locally applicable, valid in the vicinity of the
nominal value.

Multivariate representation

A single reaction formula can also be expressed in a linear form when the vari-
ables are appropriately selected. However, to model complex systems consisting
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of various reactions, the data representation needs to be extended: The differing
data vectors containing different sets of variables (the reactions employing dif-
ferent chemicals) have to be embedded in the same vector space to make them
compatible.

Assume that the vector v is a vector containing all relevant variables captur-
ing the state of the environment and the system itself, including, for example,
relative changes in all chemical concentrations. This means that the vector Γi

representing a single reaction can contain various zeros, assuming that the cor-
responding chemicals are not contributing in the reaction i. If the vectors Γi are
collected as columns in the matrix Γ, one can write the individual expressions
in (11.6) in the matrix form where one row is allocated to each of the reactions:

0 = ΓT v. (11.7)

This expression needs to be compared to flux balance analysis: Now one only
needs to study levels of concentrations, not changes in them. This is indeed
essential in complex chemical systems, where the energy and matter flows can-
not be exactly managed. The key point to observe here is that analysis of
complicated reaction networks can be avoided: No matter what has caused
the observed chemical levels, only the prevailing tensions in the system are of
essence. The underlying assumption is that the system is robust and redun-
dant: Individual pathways are of no special importance as there exist various
alternative routes in the network.

It turns out that reactions can in principle be characterized applying linear al-
gebra in the space of chemical concentrations, being compatible with the multi-
variate methods. However, the results still need to be interpreted appropriately.
Nothing mathematically very special is being done — as there seldom is in the
field of linear theory! — but when seen from the appropriate point of view, new
conceptual tools for modeling of complex systems can be available.

11.2 From constraints to degrees of freedom

As shown above, the domain-area information can be captured in data. How-
ever, this representation feels somewhat hollow, and it is difficult to believe
that domain-area knowledge could ever be captured this way. However, it can
be claimed that freedoms-oriented way of modeling is just as natural as the
constraints-oriented approach is. To understand the meaning of this claim,
closer analyses are needed.

11.2.1 Constraint-based models

Traditional models are typically based on constraints. This means that system
properties are captured by formulas of the general form

0 = f(v), (11.8)

where f is some scalar or vector-valued function of the variable vector v. For
example, the chemical model in (11.7) is a special (linear) case consisting of
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various independent equations or constraints in a matrix form. What is more,
the linear multivariate models that have been studied in previous chapters, or
the models of the form y = FT x, can be written as 0 = FT x −y, so that when
one defines

Γ =
(

F
−I

)
, and v =

(
x
y

)
, (11.9)

this is again of the form (11.7), and simultaneously a special case of (??). Note
that such models are not unique — the vectors Γi can be freely scaled without
affecting the validity of the equations. So, to make such a presentation less
ambiguous, from now on assume that the vectors in Γ are normalized to unit
length, so that ΓT

i Γi = 1.

To better understand the structure of models that are presented in such constraints-
oriented form, study a single-output case, so that yi is scalar, and Γi is a vector.
Whereas yi = FT

i x defines a one-dimensional null-space in the high-dimensional
variable space of v, and because the inner product ΓT

i v between the data and
the vector Γi is zero, this vector defines a unit vector that is orthogonal to this
subspace.

Further, to illustrate the above fact, for a moment study a case where the input
data also is scalar, so that there holds y = ax for some scalar a. This case is
shown in Fig. 11.1: As the variable x varies, the variable y follows it following the
linear dependency. When the x–y pairs are projected onto the normal vector,
the projection length for variable pairs that fulfill the constraint is always zero.
However, because of noise, this seldom exactly holds, and one has e = ΓT v
for some non-vanishing e. Because of the orthonormal nature of Γi, the dot
product ΓT

i v directly tells the distance between the data point v and the model.
This gives an explicit solution to the error-in-variables problem presented in
chapter 4: All variables have similar roles, all containing noise. Indeed, cleverly
minimizing this model error gives yet another regression strategy, and this will
be briefly studied in what follows.

11.2.2 Total Least Squares

One approach to implementing the EIV model (see Sec. 4.2.1) is the Total Least
Squares (TLS) algorithm [11]. Following the idea presented above, search for
such a regression hyperplane that when data points are orthogonally projected
onto this plane, the (squared) distances reach minimum.
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Here we continue with the single-output study for output yi, so that

yi = FT
i x = Fi,1x1 + · · · + Fi,nxn, (11.10)

equalling

0 = ΓT
i v (11.11)

for

Γi =

⎛

⎜⎜⎜⎝

Fi,1
...

Fin

−1

⎞

⎟⎟⎟⎠
, and v =

⎛

⎜⎜⎜⎝

x1
...

xn

yi

⎞

⎟⎟⎟⎠
. (11.12)

The dimension of the “augmented” data space of v, and the length of the vector
Γi, is n + 1. As was observed above, Γi is orthogonal to the subspace that
is “allowed” by the model. Further assuming that Γi is normalized, so that
∥Γi∥ = 1, the dot product e = ΓT

i v directly tells the shortest distance (positive
or negative) from the point v to the regression hyperplane (for points lying
exactly on the plane this measure, of course, giving 0, according to the model).
the average of squared distances for a set of points v(1) to v(k) can be expressed
as

1
k
·

k∑

κ=1

e2(κ) =
1
k
·

k∑

κ=1

(
ΓT

i v(κ) · vT (κ)Γi

)
=

1
k
· ΓT

i · V T V · Γi, (11.13)

where

V
k× n+1

=
(

X Yi

)
. (11.14)

To minimize this with the requirement that the normal vector must be normal-
ized,

Minimize 1
k · ΓT

i · V T V · Γi

when ΓT
i Γi = 1,

(11.15)

leads to the Lagrangian formulation (see page 20) where one has
{

f(Γi) = 1
k · ΓT

i · V T V · Γi, when
g(Γi) = 1 −ΓT

i Γi.
(11.16)

The cost criterion becomes

J(Γi) =
1
k
· ΓT

i V T V Γi + λi(1 −ΓT
i Γi). (11.17)

This results in

d

d Γi

(
1
k
· ΓT

i V T V Γi + λi(1 −ΓT
i Γi)

)
= 0, (11.18)
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giving

1
k
· 2V T V · Γi −2λi · Γi = 0, (11.19)

or

1
k
· V T V · Γi = λi · Γi. (11.20)

The distance minimization has become an eigenvalue problem with the searched
normal vector Γi being an eigenvector of the data covariance matrix R = 1

k ·
V T V . However, as compared to principal component analysis, the searched
normal vector is given by the principal component corresponding to the least
significant eigenvalue — zero eigenvalue meaning exact match with the assumed
model structure: In such a case, there must exist an exact linear dependency
between the variables, and this dependency can be extracted as the model.
Remembering the definition of the vector Γi, the final regression formula solved
as

yi =
Γi,1

Γi,n+1
· x1 + · · · + Γi,n

Γi,n+1
· xn. (11.21)

For a multivariate system, the same analysis can be repeated for all outputs
yi separately; note that the eigenproblem is generally different for all outputs.
However, one needs to be careful: In the derivation yi was interpreted as any of
the other input variables, meaning that it is not the output that was explicitly
being explained (as is the case with MLR). This means that the TLS model not
necessarily gives a good regression model for estimating the output.

This TLS method can also be called “last principal component analysis”, as
compared to PCA, where the solution (to the problem of maximizing variance
rather than minimizing variation) is given in terms of the most significant prin-
cipal components. This is an indication of the need for new thinking, indeed,
inverse thinking: Rather than concentrating on the null space, or the con-
straints, one concentrates on freedoms, what is left outside, where there still
exists non-nullified information.

TLS is an example of experiments when trying to rehabilitate the old way of
thinking. However, the problems of very high dimensions are not solved. If there
is a high number of redundant variables, many of the eigenvalues are practically
zero. Which of the minor eigenvectors to select, then? This selection becomes
very sensitive: With another data with another noise realization the ordering
can become very different — giving a completely different model. This means
that the noise sensitivity of the TLS model is increased unreasonably. And,
as observed before, it is this noise sensitivitity that is a crucial matter when
constructing good regression models.

11.2.3 Emergent models

Mathematically speaking, if there are n separate variables, there are n degrees
of freedom in the data space, but each (linear) constraint decreases the number



188 Lesson 11. Towards “Emergent Models”
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view
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Figure 11.2: Schematic illustration of the covariance structure among
data when there are few constraints (on the left), and when there are
many constraints (on the right). The simplest presentation for the system
properties changes as the number of constraints increases, or when the
remaining degrees of freedom accordingly decrease

of degrees of freedom by one — specially, if there are ν linearly independent
constraints, the number of remaining degrees of freedom is only N = n −ν.
Summarizing: The linear constraints constitute a null space within the data
space: This means that in these directions there is no variability. The remaining
N directions in the data space constitute a linear subspace where all variation
among variables is concentrated.

What do these degrees of freedom mean in practice? Originally, if there were
completely separate unconnected variables (subsystems), there would be the
maximum number of freedoms. When subsystems become connected, when
interactions between them are established, the variables become coupled, thus
reducing the number of free variables. Further, when feedbacks are introduced,
the remaining inputs and outputs of the subsystems can still be connected. It
is specially typical in cybernetic systems where this scenario holds: Ability to
recover after disturbances is a manifestation of tightly interconnected system.
In such systems it is only a few degrees of freedom that remain more or less
loosely controlled.

The key point here is that essentially the same dependencies among variables
can be captured in terms of degrees of freedom as with constraints. At some
point, when the number of constraints increases, the most economical represen-
tation changes: The simplest model with the least parameters is no more the
constraints-oriented model but the freedoms-oriented model (whatever it will
be). According to the Ockham’s razor, one needs to switch to emergent models
when the system is cybernetic enough. In Fig. 11.2, the covariance structure
of the data space is schematically depicted: When the null space of constraints
is dead and dull, all interesting behaviors are concentrated in the directions of
remaining freedoms.

It is difficult to escape the traditional ways of thinking: Traditional methods
for analysis (modeling) and design (synthesis) are always based on models that
are based on constraints.
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it is the multivariate statistical methods that directly attack the degrees of free-
dom, abstracting away the structural details, that help to escape the constraints.
Even though this opposite view of modeling sounds unintuitive, it turns out that
the freedoms-oriented models are more intuitive than the constraints-oriented
models, being based on the explicit time-domain features, as visualized below.

11.2.4 Examples

To visualize the freedoms-oriented model structures, exploit dynamic intuitions:
Assume that the available variables are successive measurements of some signal
y, so that samples are indexed as y(κ), y(κ−1), etc. Originally, it is assumed that
these samples are independent of each other — it is the task of the (dynamic)
model to connect the variables together. Assuming that the constraint-oriented
model is

y(κ) = ay(κ −1), (11.22)

there is a direct connection to Fig. 11.1. Constructing the augmented data space
as

v(κ) =
(

y(κ −1)
y(κ)

)
, (11.23)

the whole data space S is spanned by the constraint vector and the freedom
vector together:

S =
(

Γ θ
)

=

(
a√

1+a2
1√

1+a2
−1√
1+a2

a√
1+a2

)
. (11.24)

The freedom-oriented way of describing the model is also

θ =
(

a
−1

)
/
√

1 + a2. (11.25)

It is difficult to see here anything that would outperform the original model.
However, now assume that there are three variables that are connected together
by a model:

{
y(κ) = ay(κ −1)
y(κ + 1) = ay(κ). (11.26)

This exactly corresponds to the model (11.22) where there are redundant vari-
ables. The key point here is that one does not know beforehand whether some of
the variables are redundant — when modeling complex systems, this is typically
the case. The data vectors are now

v(κ) =

⎛

⎝
y(κ −1)

y(κ)
y(κ + 1)

⎞

⎠ . (11.27)
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In this case, the constraint vectors without normalization are

Γ =

⎛

⎝
a 0
−1 a
0 −1

⎞

⎠ . (11.28)

The constraints span a two-dimensional subspace in the three-dimensional vari-
able space – the remaining degree of freedom can be solved by orthogonalization,
for example applying the Gramm-Schmidt procedure. To start with, one can take
any linearly independent vector:

⎛

⎝
a 0 1
−1 a 0
0 −1 0

⎞
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⎛
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a a2

1+a2
1
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⎞

⎟⎠ .

(11.29)

This means that the model becomes

θ =

⎛

⎝
1
a
a2

⎞

⎠
/√

1 + a2 + a4. (11.30)

The “axis of freedom” clearly has an exponential outlook in the data space. This
is in exact correspondence with the actual time-domain behavior of a system
that is characterized by a model of the form (11.22). Indeed, the degrees of
freedom determine “behavioral fragments”, so that the actual observations can
be constructed as combinations of them. The patterns can be scaled arbitrarily
to optimize the match — these scaling factors are the latent variables in z.

When working on simple cases, the approach is not crucial. But when new
variables are introduced, each of them typically comes with an accompanying
constraint, and it is only the degrees of freedom that truly reflect the essential
dependency structures in the system. When modeling complex systems, it is
assumed that the number of variables should not be limited artificially: Each of
the new variables can contain some fresh information — the “accdompanying
constraint” does not necessarily reduce the degrees of freedom in the augmented
space exactly by one. Whereas the constraints-oriented modeling approach be-
comes a unmanageable mess, the freedoms-oriented models become clearer and
clearer as the data dimension increases. The higher the number of variables is,
the more appropriate is the pattern-based representation seems to become.

How about the interpretations when there is a higher number of remaining
degrees of freedom? Study the model

y(κ) = a1y(κ −1) + a2y(κ −2), (11.31)

or

0 = a0y(κ) −a1y(κ −1) −a2y(κ −2). (11.32)
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Now there is one constraint in the three-dimensional space, and two remaining
degrees of freedom:

Γ =

⎛

⎝
a0

a1

a2

⎞

⎠ and v(κ) =

⎛

⎝
y(κ)

y(κ −1)
y(κ −2)

⎞

⎠ . (11.33)

The degrees of freedom for such a dynamic system have always the same in-
terpretation: Typically, if there is considerable inertia in the system, the most
significant principal component stands for a filter for finding the average mo-
mentary value of y, as being revealed by the latent variable z1(κ), and the second
principal component stands for the trend prototype: The latent variable z2(κ)
reveals the rate of change in the signal (see exercises). In this sense, there again
exist very natural interpretations for the model structures.

In this kind of rather simple cases, there is a trade-off between approaches.
The constraints-based model is stronger when it comes to analysis of dynamic
phenomena (as the roots of the coefficient polynomial reveal the dynamic modes
beyond the signal), whereas for the freedoms-oriented model such time-domain
analyses need to be separately carried out (as presented in chapter 9), meaning
that a heavier machinery needs to be employed.

The freedoms-oriented model is based on features taht constitute patterns that
together explain the observations in the data space, assuming that there are
some dependencies and redundancies in the behaviors. Determination of the
system state becomes a pattern recognition task. Specially, when in the case
of chemical systems, it is “chemical pattern matching” that is being carried
out — and this is carried out automatically by the underlying thermodynamic
processes.

11.3 Case studies

To illustrate the above approaches, two practical application examples are pre-
sented, where the “chemical semantics” is appropriate. Both of these complex
processes are being currently studied at HUT Control Engineering Laboratory.

11.3.1 Characterizing the state in practical processes

To apply the ideas, the theoretical derivations still need to be extended towards
practice. The data vector v needs to be further studied to make it possible
to capture all internal tensions in complex chemical systems. As it turns out,
the following extensions can, for example, be implemented without ruining the
linear structure among the variables:

• Temperature. According to the Arrhenius formula, the reaction coeffi-
cients are functions of the temperature, reactions becoming faster as the
temperature rises, so that k ∝ exp(c/T ). This means that when this is
substituted in the formulas, and when logarithms and differentiations are
carried out, the model remains linear if the new variable is defined as
vT = ∆T/T̄ 2.
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• Acidity. The pH value of a solution is defined in terms of a nonlinear
formula: pH = −lg CH+ . Because it is essentially logarithm taken of
a concentration variable, one can directly include the changes in the pH
value among the variables, vpH = ∆pH.

• Voltage. In electrochemical reactions, one should characterize the the
“concentration of electrons”. However, it turns out that acording to the
Butler-Volmer theory [?], the amount of free electrons is exponentially
proportional to the voltage. This means that, after taking the logarithms,
the “electron pressure” can be characterized by the variable ve− = ∆U .

• Dissipation. It has been assumed that the systems being studied are in
thermodynamic balance. This homeostasis can be extended, however: The
steady state can be determined not only in terms of the variables, but also
in terms of their derivatives. This means that one can study dissipative
systems, where the rate of change remains constant, a constant flow of
chemical flowing into or out from the system. Looking at the formula
(11.3), it is clear that model linearity is not lost if one has variables like
vĊ = ∆Ċ/ ¯̇C.

• Mass flows. The concentration-oriented variables can be transformed
into masses (molarities) when multiplied by volumes, meaning that after
taking logarithms, the structure is linear. Similarly, the volumetric dissi-
pation rates change into mass flows; further, surface phenomena (coating,
etc.) are related to the surface area, so that if the volumes or areas change,
one can include variables of the form vA = ∆A/Ā and vV = ∆V/V̄ .

• Physical phenomena. It is evident that structures that are originally
linear, like phenomena that represent diffusion between compartments,
etc., can directly be integrated in the model, assuming that appropriate
variables (deviations from the nominal state) are included among the vari-
ables. What is more, smooth nonlinearities become affine when they are
locally linearized, and, further, they become linear when developed around
the nominal state.

In strong liquids one cannot always apply concentrations, but one has to employ
activities instead, or actual activation probabilities. If it is assumed that these
activities are some power functions of the concentration so that A = a1Ca2,
after taking logarithms the model still remains linear in terms of the original
concentrations. This means that — even though linearity is not compromized
— the variables may become multiplied by some unknown factors, so that there
is some scaling effect.

The vector v selected here is the measurement vector, containing all possible
quantities that can affect the system behavior — internal system variables and
external environmental variables alike. This data presentation can capture the
chemical domain semantics, and in different environments the models have dif-
ferent interpretations.
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11.3.2 Case 1:
Modeling an industrial nickel plating process1

In printed wiring boards, one needs a layer of nickel as an oxidation barrier
between the copper electric circuitry and gold finishing (see Fig. 11.3). This
nickel-phosphor layer can be created, for example, using electrochemical pro-
cesses. The properties of the nickel layer can be affected by changing its phos-
phor content. It is clear that one should be capable of monitoring and controlling
the layer thickness, and also its phosphor content so that the set values would
be reached.

The chemical reactions taking place in the plating process are very complex, and
not completely known. Four contradictory sets of reactions have been proposed
to characterize the process, but none of them seems to satisfactorily explain
observed behaviors. Not only is the exact process structure unknown — not
all chemicals are either known, as the compositions of the commercial reagents
are business secrets. However, the processes are slow, and it is evident that
the appropriately operated coating process remains well in balance. All these
observations are well in line with the assumptions beyond the freedoms-oriented
modeling.

The process state can be characterized in terms of its acidity or pH (controlled
using ammonia to be between 4.7 and 5.0), temperature (to be around 80 de-
grees centigrade), nickel concentration (controlled by adding nickel sulphate),
and electrical potentials. The dynamics is also affected by the loading, or the
total area to be plated simultaneously in the bath. In addition to these, addi-
tional chemicals are present, some of them are known, like the reducers (sodium
hypophosphite), and some are not (different kinds of activators and inhibitors);
the contribution of the residues of reaction chemicals is also estimated: The
variable MTO (or “metal turn-over”) descibes the aging of the process liquids,
being supposedly proportional to the concentrations of the unspecified chem-
icals. All these state variables can be recorded or calculated in a practically
continuous manner.

It is the properties of the final nickel surface that cannot be measured on-line:
The layer thickness should be around 4 µm, and it should contain some 7 – 10
weight percent phosphor. Information of these is available only after laboratory
analyses, once or twice a day, and a model is needed to estimate these quantities
in a reliable way. To implement such soft sensors, the multivariate regression
models were constructed.

As it is typically the case, the model (or data preprocessing) needs to be tailored
to match the problem domain. The state variables were mean-centered and
normalized in the traditional way — but, in addition to these variables, new
ones could also be employed. This nicely illustrates the benefits of the simple
linear model structure.

Because the relative changes in the momentary layer growth rate assumedly
are linear functions of changes in the other state variables, the overall relative
change is reached when one integrates the momentary rate over the bath time.
And because of the linearity of this mapping model F , the integration can be

1The simulations were carried out by Mr. Hans-Christian Pfisterer
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a b c

Figure 11.3: Cross-
section of a test plate:
a - the Ni-P layer
(about 5 µm); b - cop-
per layer; c - base
(epoxy laminate)

moved “through” the model:

∆l(t) =
∫ t

t0

∆l̇(τ)/̄l̇dτ =
∫ t

t0

FT v(τ) dτ = FT

∫ t

t0

v(τ) dτ. (11.34)

This means that if one includes the integrals of relative changes among the
x variables, a linear model should be capable of capturing the layer changes
around the nominal cumulation rates. These nominal absolute values need to
be separately modeled, or if the bath time of the board is also included among
the input variables, it is the same model that suffices.

It is always difficult to evaluate the performance of the models in an unbiased
way — however, in this case we are lucky: There is an explicit model derived
specially for this process, starting from physico-chemical first principles, the
free parameters being optimally tuned to match the observations. It can be
assumed that this model is the best model one can construct for the process,
as that modeling effort gained the the Best Diploma Thesis Prize of 2004 in
Finland (as granted by TEK, the Finnish Association of Graduate Engineers).
The results are shown in Figs. 11.4 and 11.5: Even though not all phenomena can
be estimated by the model of four PCA-based latent variables (see Fig. 11.5),
it seems that the same problems are faced by all models regardless of their
construction. The data-oriented model where no process-specific knowledge is
exploited is well comparable with the expert-tuned physical model that is based
on a set of highly nonlinear differential equations: The validation errors for fresh
data have the same orders of magnitude (results for two set of validation data
shown in the figures).
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Figure 11.4: Estimates for nickel layer thickness
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Figure 11.5: Estimates for phosphor content
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11.3.3 Case 2:
Modeling genetic networks and metabolic systems2

The previous example was a man-made system based on more or less designed
chemical reactions, the reaction mechanisms being predetermined to explicitly
implement intended behaviors, and a (more or less accurate) first-principles
model could also be constructed. Now, study a natural system that is still
much more complex, so that finding the explicit reaction mechanisms is even
more complicated — perhaps the same principles of freedoms-based modeling
apply?

When studying metabolic reactions, it is complex chains of reactions based on
organic chemistry that should be mastered. What is more, these reactions are
dictated by the genetic processes, where enzymes are produced. On the other
hand, the chemical state affects the gene activities — this means that there are
interacting genetic and metabolic networks that should be mastered. The closed
control loops cannot be distinguished from each other, and the only realistic
approach is to assume “pancausality”, where the interactions and feedbacks
constitute the tensions keeping the system in balance. As studied in chapter
2, genetic networks can be modeled applying the same model structures as
the chemical processes — the metabolic processes are fast, whereas the genetic
ones are slow (see Fig 11.6). Both of the levels can be combined in one model
structure, making it perhaps possible to reach systemic biology. In the figure,
the linear pattern recognition processes are expressed in terms of dynamic state-
space models.

In the project SyMbolic (Systemic Models for Metabolic Dynamics and Gene
Expression), funded by TEKES during 2004 – 2006, new kinds of models were
derived for representing the cellular dynamics, and one of the approaches was
the exploitation of the idea of emergent models [?].

There is plenty of data: The modern ChIP techniques, etc., provide huge
amounts of measurements, as all gene activities can be simultaneously mea-
sured (for example, see [?]). Indeed, measuring gene activities (in terms of
active messenger-RNA) is more straightforward than measuring the metabo-
lites. Even though there is plenty of data, it is not optimally conditioned for
dynamic identification purposes: The dimension of data (in thousands) is higher
than what is the number of samples (in hundreds), and the excitation sequences
are not persistently exciting (being step experiments). What is more, the data
is very noisy — partly because of the uncertainties in the measurement process,
and partly because measurements carried out in different laboratories seem not
to be quite compatible. This means that the statistical multivariate methods,
and specially the latent variable approaches, are well motivated also from the
pragmatic point of view.

Implicitly, the latent variable methods assume that there is redundancy among
genetic and cellular functionalities — and, indeed, it has been shown that there
are typically groups of genes rather than individual genes that are responsible
for the functionalities. And also on the metabolic level: Processes in the cyto-
plasm are well buffered, and typically there are negligible responses if one only
considers a single input and a single output. The multivariate methods make it

2The simulations were carried out by Mr. Olli Haavisto, M.Sc.
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possible to study the whole grid of proteomic/metabolomic phenomena simul-
taneously — this means that one does not need to employ excessive excitation
signals, or huge dosages, resulting in considerable disturbances in the cell be-
havior, or even death. The gentle approaches are necessary when one wants to
study living cells rather than pathological, more or less irrelevant cases.

As an application example, modeling of data from yeast cell cultivations were
used (see [?]). There were a few dozen experiments, where different kinds of
step changes in the environment were executed, and the resulting gene activity
transients were recorded. Modeling this data was quite a challenge, as there
was not enough data. Even though the applied model structure was robust, no
conclusive conclusions can be drawn.

As was observed above, metabolite concentrations and gene activities could
be represented in the linear model structure, variaqbles being collected in a
single vector. However, now the model was restructured so that dynamics was
captured: The environmental variables (substrate properties, temperature, etc.)
were collected in the input vector u, and the gene expression levels were collected
in the output vector y. Mean-centering and normalization of data was carried
out. The dimensions of the vectors were such that nu was about ten, and m was
about 4000; the number of latent variables N was selected as 4, and stochastic-
deterministic subspace identification was applied.

The assumption beyond the adopted modeling approach is that balances are
more characteristic to cellular systems than the transients are. And, indeed, it
seems that the steady states are nicely modeled, whereas the transient behaviors
are not reproduced by the model (see Fig. 11.7). Still, it seems that the extreme
compression of the variable space does not ruin the steady-state correspondence.
There seem to exist only few degrees of freedom left in the behavioral data.

It can be claimed that the degrees of freedom in a cellular system character-
ize metabolic behaviors or functions. When the environment changes, the new
balance is found along these axes in the chemical space whan “chemical pat-
tern matching” is carried out. For example, assuming that available glucose
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Figure 11.7: Two open-loop experiments with the model, showing 256
“stress genes” (red color meaning activity increase, green meaning ac-
tivity decrease). In the leftmost figures, hydrogen peroxide step is being
simulated for two hours, and in the rightmost ones, nitrogen step is sim-
ulated. In both cases, the actual behaviors in the genetic state are shown
on the left, and the estimates given by the four-state model are shown on
the right. Despite the transients, there is a good correspondence between
the observations and the very low-dimensional model (see [?])

goes up, it is also mannose production that goes up, or some other processes
that exploit glucose. There is only balance pursuit taking place: But after “an-
thropocentric”, finalistically-loaded interpretations are employed, when some
chemicals are interpreted as nutrients, some others as metabolic products, and
the rest as waste, one reaches “emergent interpretations”. When complexity
cumulates, the balance reactions start looking goal-oriented, pre-planned, and
“clever”. Scarcity of some chemicals changes the balance appropriately, trying
to compensate for the shortage.

11.4 Towards “artificial cells”

New conceptual tools become available as further interpretations are employed.
In complex chemical systems, there seem to exist reserve mechanisms for com-
pensating for the disturbances. This kind of buffering is characteristic not only
to metabolic systems, but it seems to apply also in more general terms: Le
Chatelier principle states that changes in environment are compensated by
changes in the balance, so that the system tries to “escape” the changes. In
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Figure 11.8: From data modeling (on the left) towards system model-
ing (on the right). The variables being measured are system variables:
Because of pancausality, changing them also changes the system state

[?], the idea of “elastic systems” is proposed to characterize the reactions of
cybernetic systems in general.

When the variables are selected appropriately, so that system semantics is cap-
tured, and if the pancausality assumption holds, the constructed modes are
not only data models — they are system models. They can capture the fun-
damental essence of systems. They can be used not only for monitoring, but
also for design and control construction: Changing variables appropriately also
changes the resulting balance (see Fig. 11.8). The remaining degrees of freedom
in the system reveal the possibilities of further controls to make the system
still more balanced; in this sense, process data mining becomes possible, where
information can be gathered directly from the behaviors, not from model-based
assumptions. New kinds of models make it possible to implement new kinds of
controls — higher-level controls. However, new challenges are faced: When new
feedbacks are introduced, the set of freedoms changes. Control design becomes
an iterative task, and new kinds of design tools are needed.

The ideas of biological cybernetic systems can be extended to technical (bio)pro-
cesses: The still unbounded degrees of freedom can be regulated, new feedbacks
can be constructed. Still better balanced “superorganisms” are constructed.
The industrial systems are becoming like artificial cells themselves: Industrial
plants also have metabolism, raw materials being exhausted and others being
produced. Originally, the production can be far from optimum, but as soon as
dependencies among variables are recognized, they can be used for construct-
ing new feedback structures to implement more efficient and robust — better
balanced — production. In both cases, in natural and man-made cells alike,
it turns out that the goal of “evolution” is overall efficiency of production, no
matter whether it is humans that are acting as agents for development or not.
This can be reached by implementing mechanisms for reaching best possible pro-
duction conditions; and this system integrity needs to be maintained without
collapses. To maintain such balance, the system has to respond appropriately
to the spectrum of disturbances coming from the environment.

It seems that the new approaches offer new possibilities for attacking the mys-
teries of evolutionary processes from a fresh point of view — such visions are
studied closer in [?]).
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Computer exercises

1. Assume that data of an oscillating system is collected and its time-series
is analyzed, that is, dynamics is being captured in data, and study the
covariance structure:

y = sin([1:100]/2)’;
V = [y(1:98),y(2:99),y(3:100)];
theta = regrPCA(V)

Interpret the distribution of the eigenvalues. Also interpret the first and
second eigenvector as patterns characterizing the signal.

2. Applying the same data, study the eigenvector with the vanishing eigen-
value (carrying out the Total Least Squares regression analysis):

G = regrPCA(V,-1) % Also "regrTLS" available
abs(roots(G))

Interpret the result. What happens with the above analyses (freedoms vs.
constraints) if the data is extended so that

V = [y(1:97),y(2:98),y(3:99),y(4:100)];
theta = regrPCA(V)

Try to interpret the eigenvectors and eigenvalues now. What can you say
about the extensibility and robustness of the two approaches?
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20. Hyötyniemi, H. and Ylinen, R.: Improving Robustness of Parameter Es-
timation. Proceedings of the First Asian Control Conference (ASCC’94),
Tokyo, Japan, July 27–30, 1994, Vol. 1, pp. 415–418.
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Appendix A

Structure from Data

The top-down (qualitative, structural) and bottom-up (quantitative, numeric)
modeling approaches are fundamentally incompatible1. This report concen-
trates on the data-oriented modeling approach: The discussions were based
exclusively on data. However, here in these Appendices we try to bridge the
gap between the two extremes — or, at least, we try to bring the two approaches
nearer to each other.

This first appendix concentrates on the approach from data towards structure,
that is, it is assumed that analysis of data suggests some underlying structure
explaining the observations. The data-suggested structure is typically seen as
the clustered nature of the data. The latter appendix concentrates on the ap-
proach from structure towards data, that is, the data is explicitly modified to
match the known structure. In both cases, these structure-oriented analyses are
carried out before the actual data modeling, or regression analysis, is done.

A.1 Cluster analysis

Determination of the system structure is, a complex and knowledge-intensive
task. Typically, when doing multivariate modeling, no a priori information
about the underlying subprocesses exists. This complexity is reflected in the
data: The emergence of relevant clusters cannot be foreseen. There exist no
unique solutions to the data clustering problem, and clustering is typically based
on more or less heuristic algorithms. Because of the nonlinear and noncontinu-
ous nature of the clustering problem, there exist only iterative, trial-and-error
algorithms for this purpose.

In what follows, two prototypical clustering approaches will be studied a little
closer. Both of them work well only for “nice” data, hoping that the clusters
are more or less clearly distinguishable in the measurements.

1It is as in artificial intelligence (AI) — either you do it symbolically with expert systems,
etc., or you do it numerically with neural networks, etc. — and there seem not to exist natural
combinations in between
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A.1.1 K-means algorithm

The K-means algorithm is the basic approach that is used for clustering: Start-
ing from some initial guesses, the clusters are refined by moving samples from
a cluster to another depending on which of the clusters happens to be clos-
est. When samples are redistributed, the cluster centers also evolve; iteration is
needed to reach convergence.

The algorithm that searches for N distinct clusters (parameter N being fixed
beforehand) can be written as follows (references to the clusters are now shown
as superscript indices):

1. Choose a set of original cluster centers v̄1, . . . , v̄N arbitrarily, for example,
let v̄1 = v(1), . . . , v̄N = v(N).

2. Assign the k samples to the N clusters using the minimum Euclidean
distance rule: Sample v(κ) belongs to cluster c, or v(κ) ∈ Γc, if ∥v(κ) −
v̄c∥ ≤ ∥v(κ) − v̄c′∥ for all c′ ̸= c.

3. Compute new cluster center prototypes v̄c ←
∑

v(κ)∈Γc v(κ)/#{Γc}, where
#{Γc} denotes the number of vectors in cluster Γc.

4. If any of the cluster prototypes changes, return to step 2, otherwise, stop.

Note that it is assumed that v contains now all available information, containing
both the input variables (later denoted x) and the output variables (later y);
in some sources this approach is called “input-output clustering”. It is also
possible to use x exclusively2.

If one determines some topology (indeed, a metric) among the clusters, so that
some of the clusters are assumed to be “nearer” to each other than some others,
one can easily extend the K-means algorithm towards self-organizing map. If it
is not only the cluster itself whose center is moved towards the local data center,
but also its “neighbors” are slightly adapted in the same direction, one has (a
version of) the Batch-SOM algorithm [?]. In the converged cluster organization,
the “neighboring” clusters will stand for nearby data samples, so that a “map”
is constructed.

The K-means clustering method works reliably, and sometimes it gives useful
results. However, there is a basic problem: The distances are calculated using
the Euclidean norm. If searching for linear dependency models within the clus-
ters, it is not pointwise but linear, “longish” data clusters that support linear
model construction. How this can be achieved, is studied next.

A.1.2 EM algorithm

The Expectation Maximization (EM) algorithm is a more sophisticated approach
as compared to the basic K-means algorithm: Clustering is serched for in the
maximum likelihood sense, fitting Gaussian distributions with data in a more

2Indeed, this is the normal approach: When the models are applied, it is only the input x
that is available for determining the cluster
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complicated way ... needless to say that there is no guarantee about the con-
vergence or the uniqueness of the solutions. It is not only the cluster centers, or
means of the distributions, but also the “outlooks”, or covariance matrices, that
need to be determined here; this means that the number of free modl parameters
is very high. As there exist various local minima, bootstrapping the algorithm is
also complicated — typically the initial guesses for clusters are calculated using
the K-means algorithm.

First, study the Gaussian distribution (2.1) a bit closer. Probability density
reaches maximum simultaneously as its (natural) logarithm does; this means
that one can define the log-likelihood measure for each cluster:

ln(p(v)) = − dim{v}
2 · ln(2π)

− 1
2 · ln(det{Rc})
− 1

2 · (v − v̄c)T (Rc)−1(v − v̄c).
(A.1)

This criterion can be applied for determining into which cluster a data sample
should be put to maximize the overall model fit with the data. The first term
above is constant for different clusters, and it can be neglected; the role of
the second term, regulating the a priori cluster probability to fixed level, is to
prevent the cluster from growing unboundedly. Finally, the third term matches
the data points against the Gaussian models within clusters; essentially one
calculates the Mahalanobis distance from the data point to the cluster c:

(v − v̄c)T (Rc)−1(v − v̄c). (A.2)

This measure determines how “longish” the distribution is; searching for the
locations of the equidistant points in the v space using this distance measure,
ellipsoids are found. Based on log-likelihood, the EM algorithm can be written
as

1. Choose a set of original cluster centers v̄1, . . . , v̄N arbitrarily, for exam-
ple, using the K-means algorithm; the cluster covariances are originally
identity matrices, or Rc = I.

2. Assign the k samples to the N clusters using the minimum (balanced)
Mahalanobis distance rule: Sample v(κ) belongs to cluster c, or v(κ) ∈ Γc,
if ln(det{Rc}) + (v(κ) − v̄c)T (Rc)−1(v(κ) − v̄c) becomes minimum.

3. Compute new cluster center prototypes v̄c ←
∑

v(κ)∈Γc v(κ)/#{Γc} and
covariance estimates Rc ←

∑
v(κ)∈Γc(v(κ)− v̄c)(v(κ)− v̄c)T /#{Γc} where

#{Γc} denotes the number of vectors in cluster Γc.

4. If any of the cluster prototypes changes, return to step 2, otherwise, stop.

Note that K-means algorithm results if it is explicitly assumed that in all clusters
Rc ≡σ2 · I for some σ2. The EM algorithm can be made more stable if some
additional assumptions can be made. For example, if one can assume that the
nonlinearity within the data is simple affinity, so that only the cluster centers
vary while the internal structures within the clusters remains unchanged, there
holds Rc = Rc′ for all c and c′ — this effectively reduces the problem complexity.
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Figure A.1: Incorrect, K-means
type clustering result

Figure A.2: Intuitively correct
clustering result

The presented EM algorithm matches well with the (Gaussian) mixture model
scheme that was discussed in Chapter 2: Data samples within the clusters have
the direct probability interpretation, so that the combination of the submodels
constructed for individual clusters can be carried out in the maximum likelihood
sense.

A.2 Classification

Sometimes the appropriate classes are already known — but they are known
only by examples. Then one is facing a classification problem: How to determine
the decision boundary between the classes, so that, when facing fresh data, the
probability of false classifications would be minimized?

A.2.1 Fisher discriminant analysis

Knowing the clusters, it would be good to know some structure among the
clusters. Additionally, sometimes it would be nice to have a linear criterion
for determining how well a new sample matches a cluster and how near it is to
the neighboring clusters. One would like to find a projection axis so that data
belonging to different clusters, as projected onto this axis, would be maximally
distinguishable.

From the classification point of view, one can assume that the clusters carry the
classification information, whereas the variation around the cluster centers can
be interpreted as noise. One can try to find such a projection of the data that
the signal-to-noise ratio is maximized. So, first define the “noise sequence” so
that the cluster centers v̄c(κ) corresponding to each of the classified sample v(κ)
is eliminated:

vnoise(κ) = v(κ) − v̄c(κ). (A.3)
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The signal sequence, then, is the sequence of cluster centers:

vsignal(κ) = v̄c(κ). (A.4)

Assume that the projection axis that is being searched for is θi. A data sample
v(κ) projected onto this axis is vT (κ)θi; its square thus is θT

i v(κ)vT (κ)θi. The
average of this, or the variance, can be written separately for the signal and the
noise sequences, giving

1
k ·

∑k
κ=1 θT

i vsignal(κ)vT
signal(κ)θi

= θT
i · 1

k ·
∑k

κ=1 vsignal(κ)vT
signal(κ) · θi

= θT
i · Rbetween · θi,

(A.5)

and

1
k ·

∑k
κ=1 θT

i vnoise(κ)vT
noise(κ)θi

= θT
i · 1

k ·
∑k

κ=1 vnoise(κ)vT
noise(κ) · θi

= θT
i · Rwithin · θi.

(A.6)

Here, the matrices Rbetween and Rwithin denote the “between-classes” covariance
and the “within-classes” covariance, respectively. Now the problem of maxi-
mizing the between-classes variance while keeping the within-classes variances
constant can be expressed as a constrained optimization task

Maximize θT
i · Rbetween · θi

when θT
i · Rwithin · θi = 1.

(A.7)

This can be formulated in the Lagrangian framework (see page 20) when select-
ing

{
f(θi) = θT

i · Rbetween · θi

g(θi) = 1 − θT
i · Rwithin · θi.

(A.8)

Using the Lagrange multipliers, the optimum solution θi has to obey

d J(θi)
dθi

=
d

dθi
(f(θi) − λi · g(θi)) = 0 (A.9)

or

Rbetween · θi − λi · Rwithin · θi = 0, (A.10)

giving

Rbetween · θi = λi · Rwithin · θi. (A.11)

If the matrix Rwithin is invertible, this can further be solved as

R−1
withinRbetween · θi = λi · θi. (A.12)
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!
1

Maximum likelihood discriminant curveFisher discriminant line

Figure A.3: Fisher discriminant axis θ1 in a two-cluster case with un-
equal covariances. Note two things: First, the discriminant axis is not
pointed from one cluster center to the other, the covariance structure
of the clusters affecting its orientation; second, the maximum likelihood
discriminant surface between clusters is generally not a plane but an hy-
perellipsoid (or some other generalized conic section determined by the
equi-distance points in the Mahalanobis sense)

This is an eigenproblem (and (A.11) is so called generalized eigenproblem)3.
That is, the best projection axes are given as eigenvectors of the above problem.
The eigenvector corresponding to the largest eigenvalue is the best in this sense.
Note that if there are only two clusters, the axis is unique (the rank of Rbetween

being 1, all but one of the eigenvalues being zeros).

As an example, assume that there are only two clusters with equal covariances.
In this case the discriminant (hyper)plane between the clusters is defined by
those points that lie on the hyperplane going through the center point between
the clusters and being perpendicular to the axis θ1. However, if the clusters do
not have equal covariance structures, the linear Fisher discriminant no longer
gives the theoretically correct separation between the clusters (see Fig. A.3).

If one is trying to find an appropriate way of scaling ones data, the FDA model
can also give some intuition. The signal-to-noise ratio information can directly
be used for weighting purposes according to the weighting scheme (B.31). This
approach is generally used, more or less knowingly, for example, in data mining:
The relevance of different words in textual documents is estimated by checking
how often they are found in “interesting” documents and, on the other hand,
in “non-interesting” ones. This information about frequency variations can be
used for weighting the words appropriately.

A.2.2 Support Vector Machines (SVM)

One of the most promising modern classification methods is called a Support
Vector Machine or SVM for short [?]. It is a result of sophisticated mathematics,
optimization, and statistical learning theory — and, surprisingly, the basic ideas
are very well compatible with the ideas of multivariate regression as studied in
this report:

• The structural complexity of the decision boundaries is substituted with

3Later we will see how often the same problem formulation pops up in multivariate analysis
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dimensional complexity, that is, the original data space is augmented with
a high number of feature variables.

• In the high-dimensional feature space, it is assumed that the patterns are
linearly separable from each other, and very efficient linear classification
methods are applied.

• The structural information about the samples can be expressed as kernel
matrices, representing “similarities”, being closely connected to associa-
tion matrices that were studied before.

There are also some differences in interpretations. First, in pattern recognition
applications it is assumed that the number of features is huge — typically the
number of samples is lower than the number of features, k ≤ n. Because of this,
the kernel matrices, for example, are calculated “horizontally” for the sample
vectors. Note that the covariance properties remain here essentially the same,
only the matrix dimensions become lower.

It is also the objective — classification rather than regression — that means that
there are some complications. After all, the adaptation is necessarily nonlin-
ear and iterative: It is only those samples (“support vectors”) that are located
nearest to the decision boundary that are of essence in classifier training, the
other samples are automatically correctly classified. The SVM algorithm maxi-
mizes the error margin; it maximizes the minimum distance between the support
vectors and the separating hyperplane.

The SVM’s are not concentrated on here in more detail. Perhaps it suffices
to say that — despite its mathematically simple and elegant ideas, it often
outperforms more sophisticated nonlinear approaches.
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Computer exercises

1. You can test the behaviors of different clustering algorithms by using
the analysis and data construction routines in Regression Toolbox for
Matlab. For example, you can try the following commands:

DATA = dataClust(3,5,50,20,100); % See "help dataclust"
clustersKM = regrKM(DATA,5);
regrShowClust(DATA,clustersKM);
clustersEM = regrEM(DATA,5);
regrShowClust(DATA,clustersEM);

2. Extend the K-means algorithm regrKM in the Regression Toolbox so
that it approximately implements the Batch-SOM algorithm. For simplic-
ity, you can restrict to one-dimensional maps, so that the clusters c − 1
and c + 1 are the nearest neighbors of the cluster number c.



Appendix B

Structure into Data

Above, the data was analyzed to find structures, clusters or classes. In this
appendix it is assumed that there already exists some knowledge about the
system where the data is coming from, and this structural knowledge is applied
to enhance the measurements, to get back to the actual behaviors beyond the
noisy observations.

There are different kinds of structures that can be utilized: First, there is the
physical structure, including not only the actual system structure but also the
hierarchic structure determined by the instrumentation of the measurement de-
vices; second, there is the mathematical structure as determined by theoretical
dependencies among variables; and, third, the observed a posteriori structure
among the measurements themselves can be utilized. Each of these alternatives
is illustrated separately in what follows — what is possible and what is not
is very much dependent of the practical system being modeled. Here, only a
glimpse into these issues can be given, introducing the challenges and possibili-
ties.

The data is manipulated so that the structural constraints are automatically
taken care of when models are constructed for that data. Exploitation of
the structures typically introduces new constraints among variables; these con-
straints become visible in the degrees of freedom in the data. In some cases
this reduction in degrees of freedom is reflected as explicit reduction of the data
vector dimension. However, if this is not done, explicitly reducing the degrees
of dreedom in the data makes the data linearly dependent and collapses the
analyses that are based on invertibility of covariance matrices — it turns out
that multivariate methods are specially valuable when modeling that data.

B.1 Data reconciliation

The system structure and and measurement variables are, of course, closely
linked together. The system structure and its parameters determine what is
being measured; on the other hand, these measurement realizations are used
to determine the parameters. This report mainly concentrates on the issue
of how to utilize the measurements to determine the system structure (or, at
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least, its parameters). In this appendix, the known a priori structure is used to
determine (or adjust) the measurements: Understanding of the physical system
structure is utilized for trying to reconstruct the actual variables beneath the
noisy measurement data — what the data values probably should have been.
This kind of interference in the actual measurements is called data reconciliation.

Assume that vector ν represents the noisy measurements, and v is the vector
of polished variable values after the structural constraints have been taken into
account. The problem of finding variable values v near to measurements, subject
to a set of (linear) constraints, can be written in the Lagrangian framework as

Minimize 1
2 · (ν − v)T R−1(ν − v)

when Γv = γ.
(B.1)

Here it is assumed that the measurements ν are distributed normally around the
(unknown) correct values v having covariance matrix R; minimizing the above
criterion gives the maximum likelihood estimates for v (see Chapter 2). The
linear constraints are expressed in the form Γv = γ, where Γ and γ are a matrix
and a vector of compatible sizes.

Note that even if the measurements were exactly correct, delivering the mo-
mentary variable values with no error at all, data reconciliation can still be
motivated: The measurements only give information of temporary nature, they
are not necessarily representative, they do not necessarily deliver essential in-
formation. It is the cumulative effect that is relevant; how the quantity has
affected the system behavior over the longer sampling interval.

To apply the Lagrangian methodology, one can first construct the Hamiltonian
as

J(v) =
1
2
· (ν − v)T R−1(ν − v) + µT · (Γv − γ). (B.2)

Note that each constraint equation (as determined by individual rows i in Γ and
γ) has a multiplier µi of its own; above, this set of constraints has been collected
into a single matrix expression, µi’s being collected in vector µ. Minimizing the
Hamiltonian gives the following expression for the gradient:

dJ(v)
dv

= −R−1(ν − v) + ΓT µ = 0, (B.3 )

resulting in

v = ν −RΓT µ. (B.4)

For eliminating the other unknown µ from the above expression, one needs
to utilize the constraint equation Γv = γ. Recognizing that when (B.3 ) is
multiplied from the left by ΓR, the only term with v can be substituted, resulting
in

µ =
(
ΓRΓT

)−1 (Γν − γ), (B.5)

so that one finally has (assuming that ΓRΓT is invertible)

v = ν −RΓT
(
ΓRΓT

)−1 (Γν − γ). (B.6)
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It is evident that if the measurements ν fulfill the constraints, so that Γν = γ,
these values are directly transferred to v, otherwise they are modified accord-
ing to maximum credibility as expressed in the above formula. Note that the
above derivation only modifies data, and constraints directly on the final model
parameters cannot be given — see Section B.1.1.

As an example, look at Fig. B.1: Because no accumulation is possible in this
subsystem, there must hold

Q1 + Q2 = Q3. (B.7)

Assuming that the flow values are the only available measurements, so that

ν =
(

Q̃1 Q̃2 Q̃3

)T
, (B.8)

one has a constraint that can be expressed as

Γ =
(

1 1 −1
)

with γ =
(

0
)
. (B.9)

If there are various measurements of the flows from different time instants,
similar constraints have to be written for each time instant separately.

Often the variables are not linearly separable, and the above data reconciliation
approaches cannot directly be applied. However, often such problems can still be
(approximately) solved. For example, assume that also the concentration values
are measured in Fig. B.1, and these values should also be polished. Now the
dependencies between variables are highly nonlinear: When the mass balance
equations are constructed, in addition to the above volume balance (B.7), one
has another weighted average constraint for the solutions:

Q1C1 + Q2C2

Q1 + Q2
= C3. (B.10)

This expression is nonlinear in variables, if all of the measurements are studied
simultaneously; on the other hand, if the problem is divided in two separate
(suboptimal) optimization tasks, both of these problems are linear. This means
that one first solves for the new values for the flow variables as shown above,
and when these values are regarded as fixed, one has in the second phase the
measurement vector

ν =
(

C̃1 C̃2 C̃3

)T
, (B.11)

and the mass balance constraint can then be expressed (using the already fixed
values for Qi’s) as

Γ =
(

Q1
Q1+Q2

Q1
Q1+Q2

−1
)

with γ =
(

0
)
. (B.12)
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The final variable vector v can be reconstructed from these data; this approach
is not exactly optimal, because the concentration measurements cannot affect
the values of the flow variables.

As a more complicated example, study the system in Fig. B.2 that is character-
ized by the flows Q1 and Q2 and the volume V . One knows that the volume at
time κ is dependent of the net flow, or, more accurately, the change in volume,
V (κ + 1) − V (κ), is the same as the effective net flow, Q1(κ) − Q2(κ) multi-
plied by the sampling interval ∆t. If one wants to capture all information that
concerns a specific time instant, the data vectors have to be of the form

ν(κ) =
(

Q̃1(κ) Ṽ (κ) Q̃2(κ) Ṽ (κ + 1)
)T

. (B.13 )

It is now evident that successive measurement vectors ν(κ− 1), ν(κ), ν(κ + 1),
etc., are linked together because of the shared variables V , and the constraint
matrix (consisting of a band of non-zero entries) becomes huge:

⎛

⎜⎜⎜⎜⎝

...

· · ·
1

∆t −1 −∆t 1
∆t −1 −∆t

· · ·

...

⎞

⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
Q1(κ)
V (κ)
Q2(κ)

Q1(κ + 1)
V (κ + 1)
Q2(κ + 1)

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

...
0
0
0
...

⎞

⎟⎟⎟⎟⎠
.

Note that it is not necessary that all of the quantities needed to construct the
structural constraints are measured. The elements in R corresponding to such
unmeasured variables can have high values, so that these dummy variables are
not weighted. The process can be iterated to reach convergence.

B.1.1 Explicit constraints on parameters

Above, it was the data that was assumed to have some internal structure; it is
also possible that the structure exists among the parameters of the final model.
For example, assume that the (dynamic single-output) system being modeled
can be expressed in the form

yi(k + 1) = ayi(k) + bu(k), (B.14)

or

yi(k + 1) =
(

a
b

)T (
y(k)
u(k)

)
= FT

i x(k), (B.15)



and, further,

Yi = XFi. (B.16)

Assuming that we know that this system represents an ideal mixer, we know
that the steady-state gain of the model must equal 1, meaning that there must
hold

a + b = 1. (B.17)

This can be expressed as
(

1 1
)
Fi = 1, (B.18)

or, more generally, in the form

GFi = g. (B.19)

Here, G can also be a matrix and g can be a vector, assuming that there are
various constraints to be matched simultaneously. However, G must have more
columns than there are rows — otherwise there are no degrees of freedom left
for optimization.

To find a model for data, the same procedure as shown above can be applied
for constrained optimization:

Minimize 1
2 (Yi −XFi)T (Yi −XFi)

when GFi = g.
(B.20)

The difference here as compared to the above derivation is that the intended
result cannot be assured by data manipulations alone; now the model construc-
tion has to be modified. In this sense, the results here differ from other examples
in this chapter, but being closely related to data reconciliation, this case is also
studied in this context. Differentiating the Hamiltonian

d
dFi

(
1
2 (Yi −XFi)

T (Yi −XFi)− µT (GFi − g)
)

= XT XFi −XT Yi −GT µ = 0,
(B.21)

giving

Fi =
(
XT X

)−1 (
XT Yi + GT µ

)
. (B.22)

To solve for the vector of Lagrange multipliers µ, one can first multiply the above
expression from the left by G, and observe that according to the constraint this
must equal g:

GFi = G
(
XT X

)−1
XT Yi + G

(
XT X

)−1
GT µ = g, (B.23 )

so that

µ =
(
G
(
XT X

)−1
GT
)−1 (

g −G
(
XT X

)−1
XT Yi

)
, (B.24)



and, finally,

Fi =
(
XT X

)−1
(

XT Yi + GT
(
G
(
XT X

)−1
GT
)−1

(
g −G

(
XT X

)−1
XT Yi

))
.

(B.25)

From the outlook of this expression one can see that the nominal solution of the
least-squares minimization is modified by an additive factor that goes to zero if
the nominal solution fulfills the given constraint.

What if a more sophisticated regression approach is to be applied, so that the
mapping is to go through a subspace spanned by some matrix θ? Assume
that the data is first projected onto the latent basis by the mapping matrix
F 1 =

(
θT θ

)−1
θT , just as have been done earlier, so that Z = XF 1, but the

final mapping from the latent basis to the output, F 2
i , is modified from the

nominal least-squares fitting so that the overall mapping Fi = F 1F 2
i fulfills the

constraint GFi = GF 1F 2
i = g. It is then evident that exactly the above formula

(B.25) can be applied if one only selects

X ← Z = X
(
θT θ

)−1
θT , and

G ← GF 1 = G
(
θT θ

)−1
θT .

(B.26)

The expression (B.25) now actually only gives the mapping F 2
i , so that the final

result, or the mapping from input directly to output that fulfills the constraints,
with F 1 =

(
θT θ

)−1
θT , is

Fi = F 1
(
(XF 1)T XF 1

)−1

(
(XF 1)T Yi + (GF 1)T

(
GF 1

(
(XF 1)T XF 1

)−1 (GF 1)T
)−1

(
g −GF 1

(
(XF 1)T XF 1

)−1 (XF 1)T Yi

))
.

B.2 Observing functional hierarchy

Different quantities are measured in different ways, using different kinds of de-
vices. Typically, there is some measurement error present, and one can try to
enhance the quality of the data by utilizing various independent (even though
somewhat redundant) devices for measuring the same quantity. The number of
measurements grows, but — as has been shown — special means are developed
to make the models tolerate high dimensionality.

However, the more or less mechanical approaches that were recommended for
preprocessing the wealth of measurements do not take into account the func-
tional structure between individual measurements, and the results may be un-
optimal. For example, in Chapter ?? it was said that a good approach to reach
well-conditioned data is to make the measurements all have the same variance
— then the information available from different channels is best balanced. This
is a good rule of thumb — but it can be considerably enhanced if additional
information is available.
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Figure B.3 : Hierarchy among measurements

Look at Fig. ??. It is assumed there that a subset of measurements together try
to capture a single physical quantity; the reliability of different measurements (as
characterized by the measurement variance) may be different. However, assum-
ing that the devices are independent, all of them deliver some fresh information,
and also the less reliable measurements should contribute in the determination
of that quantity.

Study an example where n zero-mean measurements of the same quantity v
are available, so that vi = νi + ei for all 1 ≤ i ≤ n. All measurements have
characteristic noise properties, so that the variances var{ei} may vary between
measurements; it is assumed that all measurements are unbiased. How should
one scale these measurements to reach the best possible estimate v̂ =

∑n
i=1 wivi

for v? Scaling of the variables means that the variances are also multiplied, so
that var{v̂} =

∑
i var{wivi} =

∑
i w2

i · var{vi}. Minimization of the overall
variance when the sum of weights is fixed, results in the Lagrangian formulation
(see page 20)

{
f(w1, . . . , wn) =

∑n
i=1 w2

i · var{vi}, and
g(w1, . . . , wn) = 1−

∑n
i=1 wi.

(B.27)

The former expression tries to minimize variance, whereas the second expression
keeps the estimate v̂ unbiased, the sum weights equalling unity. This problem
formulation gives

J(w1, . . . , wn) =
n∑

i=1

w2
i · var{vi} + λ ·

(
1−

n∑

i=1

wi

)
, (B.28)

so that
⎧
⎪⎪⎨

⎪⎪⎩

d J(w1,...,wn)
d w1

= 2w1 · var{v1}− λ = 0
...

d J(w1,...,wn)
d wn

= 2wn · var{vn}− λ = 0.

(B.29)

Because λ is the same in all of the above equations, it turns out that in the



optimum there must hold for all i

wi · var{vi} = constant. (B.3 0)

This is only possible if the weight is inversely proportional to the corresponding
error variance. The optimal weighting between the measurements can also be
accomplished as

v̂ = α ·
(

1

var{v1}
· · · 1

var{vn}
)
· ν. (B.3 1)

Essentially, forgetting the scalar normalization factor α, the measurements are
divided by the observed variances. It seems that division by the standard devi-
ations

√
var{vi}, or normalization of the measurement variances to unity — as

proposed later — is not the best way to determine the measurement scaling in
this kind of a sensor fusion case, where the subset of measurements are tightly
coupled together.

Note that still better estimates could be achieved, if not only the variances,
but also the covariances between measuring devices were taken into account.
In such case, the sensor fusion can best be carried out by applying principal
component analysis (see Chapter 5) for the subset of measurements alone, or, if
there is additionally some dynamics in the measurements, by applying Kalman
filter (see Chapter 9.1). This means that it is not necessary (not even wise) to
do all data processing in a centralized manner; if there are clearly independent
data analysis subtasks that can be carried out separately, implementing this
kind of hierarchical structure in the data processing enhances the overall system
robustness and transparency.

B.3 Dimensional analysis

In addition to the above considerations concerning physical structure among
the measurements, mathematical structure can in some cases also be utilized in
a (semi)automatic manner.

Dimensional analysis utilizes the theoretical compatibility properties among
variables having different domains: The units have to match to result in mathe-
matically valid expressions. All of the measurements do have some mathematical
structure as expressed in terms of basic SI units — distances are written in me-
ters (m), velocities are written as distances divided by time intervals (m/sec),
etc. Only such multiplicative combinations of variables are allowed that make
all dimensions among additive terms match with each other.

However, to utilize the above idea in practice, one has to make strong assump-
tions about structure among the variables. It is assumed that the dependency
among the n variables can be written in the following form:

νf1
1 · · · · · νfn

n = (dimensionless) constant. (B.3 2)

This means that the model structure has to be multiplicative, and no additive
terms can be allowed in the model (see Sec. ??). In this case it is only some



distinct combinations of the exponents (parameters) fi that make the units
compatible in (B.3 2), and this fact is now extensively utilized: Determine a set
of parameters so that their all combinations result in valid expressions.

The ideas of dimensional analysis are best explained through an example. As-
sume that the pressure drop in a tube, ∆p, is a function of the tube length l, its
diameter d, viscosity of the fluid µ, average speed of the fluid w and its density
ρ, so that there exists some function

g(l, d, µ, ρ, w, ∆p) = 0. (B.3 3 )

How to find the functional dependency between the variables based on measure-
ment data? To proceed in the spirit of dimensional analysis, one has to assume
that — according to (B.3 2) — that there holds

lf
′
1 · df ′

2 · µf ′
3 · ρf ′

4 · wf ′
5 · ∆pf ′

6 = (dimensionless) constant. (B.3 4)

In principle, even though the functional structure has already been considerably
constrained, huge amounts of measurements would still be needed to find all six
f ′

i parameters (see Sec. ??). Each variable has the unit of its own, though,
and they cannot be freely combined; this reduces the degrees of freedom in the
search space. Let us study these units:

Variable Unit
Length l [l] = m
Diameter d [d] = m
Viscosity µ [µ] = kg · m−1 · sec−1

Density ρ [ρ] = kg · m−3

Velocity w [w] = m · s−1

Pressure drop ∆p [∆p] = kg · m−1 · sec−2.

In these expressions, only three basic units are found: meter m, kilogram kg,
and second sec. It can be shown (as originally shown in [6]) that if there exist
n0 basic units among the n variables, the degrees of freedom of the formula can
be spanned using only n − n0 artificial dimensionless variables: The variables
increase the degrees of freedom, whereas each basic unit introduces a constraint
of its own, reducing the degrees of freedom by one.

Intuitively, the idea is that if all variables that are manipulated are dimension-
less, they can be freely multiplied together without problems emerging due to
compatibility; any values for exponents are valid (from the mathematical point
of view). In this case, one should find those 6− 3 = 3 dimensionless variables
vi, so that the same functionality as in (B.3 3 ) can be reached in the form

g′(v1, v2, v3) = 0, (B.3 5)

or, more specifically, solving (B.3 4) for v3, for example,

v3 = f0 · vf1
1 · vf2

2 . (B.3 6)

When searching for the dimensionless variables vi, there are various ways to
proceed — the methods and also the results are not unique. One practice that



results in easily manageable expressions is to first select n−n0 variables that one
thinks are the most relevant, and have the dimensionless variables specifically
reflect these (note that the rest of the variables have to contain all base units).
For example, if one now wants to find a model for pressure drop, it is reasonable
to select ∆p among the relevant variables; additionally, let us select l and w.
This means that, according to [6], the dimensionless variables are constructed
as

⎧
⎨

⎩

v1 = ρφ11µφ12dφ13 · l
v2 = ρφ21µφ22dφ23 · w
v3 = ρφ31µφ32dφ33 · ∆p.

(B.3 7)

The exponents φij are now selected so that the units of vi become dimensionless:

⎧
⎪⎨

⎪⎩

[v1] =
(
kgm−3)φ11 (kgm−1sec−1

)φ12 (m)φ13 · m = kg0m0 sec0

[v2] =
(
kgm−3)φ21 (kgm−1sec−1

)φ22 (m)φ23 · msec−1 = kg0m0 sec0

[v3] =
(
kgm−3)φ31 (kgm−1sec−1

)φ32 (m)φ33 · kgm−1sec−2 = kg0m0 sec0 ,

or
⎧
⎪⎨

⎪⎩

(kg)φ11+φ12 · (m)−3φ11−φ12+φ13+1 · (sec)−φ12 = kg0m0 sec0

(kg)φ21+φ22 · (m)−3φ21−φ22+φ23+1 · (sec)−φ22−1 = kg0m0 sec0

(kg)φ31+φ32+1 · (m)−3φ31−φ32+φ33−1 · (sec)−φ32−2 = kg0m0 sec0 .

From these one can construct a linear set of equations, and the solution for this
set becomes

⎧
⎨

⎩

φ11 = 0
φ12 = 0
φ13 = −1,

⎧
⎨

⎩

φ21 = 1
φ22 = −1
φ23 = 1,

and

⎧
⎨

⎩

φ31 = 1
φ32 = −2
φ33 = 2.

(B.3 8)

The dimensionless variables also are
⎧
⎪⎨

⎪⎩

v1 = ρ0µ0d−1 · l = l
d

v2 = ρ1µ−1d1 · w = wdρ
µ

v3 = ρ1µ−2d2 · ∆p = ∆pd2ρ
µ2 .

(B.3 9)

Expression (B.3 6) can then be written as

(
d2ρ∆p

µ2

)
= f0 ·

(
l

d

)f ′
1

·
(

wdρ

µ

)f ′
2

. (B.40)

The original problem has been considerably simplified. The expression can be
further reduced if there is additional information available: For example, if it is
known that the pressure drop is linearly proportional to the tube length, instead
of having two separate variables, one can introduce a new independent variable

ξ = ∆p/l (B.41)



having the unit kgm−2sec−2. After this, there only exist n = 5 independent
variables, and one only needs two dimensionless variables.

It seems that the dimensionless variable v2 above (accidentally) has the defi-
nition of the Reynold’s number that is familiar from fluid mechanics. This is
typical: One often ends up having the same variables when using dimensional
analysis — there exist much less freedom among dimensionless variables than
there exist dimensioned variables.

It needs to be remembered that this astonishing reduction in the number of
variables has its price: First, the assumed functional form (B.3 4) must be ap-
propriate; second, note that the whole construction collapses if there are, in
addition to the variables, some constants that do have some dimension. It
seems, however, that in fluid mechanics, for example, this kind of assumptions
hold, and dimensional analysis is a standard technique in those fields.

Note that in later phases in modeling (as in control engineering in general) the
units of the variables are ignored altogether.

B.3.1 Fixing missing data

The above data manipulations were (more or less) well motivated, because the
information that was utilized for modifying the data was additional, received
from independent external sources — from our a priori understanding of the
physical or mathematical structure of the system being studied. This last section
here, on the other hand, utilizes for modifying the data a posteriori structure,
determined using a model that has been estimated (as was explained in earlier
chapters) by using that same data. This means that the steps of data fixing
and model construction become an iterative process with some kind of positive
feedback1.

When using the computer, all data structures have to be filled in, there must be
no inhomogeneity in the data. In practice, one often has missing values among
measurements, meaning that some of the variables vi are unknown; this may be
caused, for example, by measurement problems. In the data such problems are
often reflected as outliers (see next chapter), lone samples far from the nominal
distribution, and it is reasonable to eliminate such erroneous values from the
data. however, if there is scarcity with data, or if a contiguous sequence of
data is needed for modeling purposes, it may be reasonable to try and fix the
incorrect variable values, not to have a “hole” in the data set.

The traditional approach is to substitute the missing values by some kind of
average values, either using the average over the whole data set, or calculating
the average between the predecessor and the successor (assuming that the same
quantity has been measured various times). However, it is clear that such ap-
proximations can be extremely crude, and the data distribution may become
distorted, resulting in biased models.

The missing value estimate can also be refined iteratively, so that the model

1It needs to be kept in mind that fixing data in this way can be extremely dangerous:
Using one’s intuition about what the data should look like, and using such “tailored” data for
modeling, makes the model follow this intuition — however incorrect the assumptions were;
fresh data should be used where possible!



will be minimally affected by the errors in the fixed variables. One starts with
a crude approximation, and step by step makes that value more appropriate, or
less conflicting with the other measurements.

As will be shown later, the models that will be constructed later in this report
essentially consist of one single matrix F that tries to map a subset of variables
vin onto another subset of variables vout, so that there should hold vout = FT vin.
Assume that the regression model with the mapping matrix F̃ has been con-
structed using crudely fixed, incorrect data. Then the reconstruction error (the
data vectors assumedly containing fixed data in some entries) can be written as

e = vout − F̃T vin =
(

Im −F̃T
)
·
(

vout

vin

)
= Mv. (B.42)

Now, one can rearrange the variables in v so that all variables to be fixed are
collected on top, no matter if they belong to the input or output variables.
Note that the rows in the matrix M also need to be reordered accordingly. This
rearranged set of equations can be written as

e =
(

MNO MOK

)
·
(

vNO

vOK

)
, (B.43 )

or

e = MNOvNO + MOKvOK. (B.44)

The variables in vOK are assumed to be known a priori, whereas the variables
in vNO should be modified to better match the model. The next approximation
for the missing variables to be fixed can be found when such new values are
selected that the matching error e is minimized, so that one has

d(eT e)
d vNO

= d
d vNO

(MNOvNO + MOKvOK)T (MNOvNO + MOKvOK)
= d

d vNO

(
vT

NOMT
NOMNOvNO + vT

NOMT
NOMOKvOK

+ vT
OKMT

OKMNOvNO + vT
OKMT

OKMOKvOK

)

= 2MT
NOMNOvNO + 2MT

NOMOKvOK

= 0.

This gives

vNO = −
(
MT

NOMNO

)†
MT

NOMOKvOK. (B.45)

So, having found better approximates for the missing values, a new model can
be constructed, where the error due to the missing data should be smaller; this
refinement procedure can be continued until the parameters converge. The more
there are missing values, the more probably the process converges in some local
rather than global minimum. Note that the above pseudoinverse may be rank
deficient, if too many variables are unknown in a single sample.

Above, it was assumed that one can concentrate on a single issue at a time
— now, the data was fixed utilizing the knowledge of some existing structures,



and it is assumed that other issues, like constructing the actual model, can be
concentrated on later, separately. The same step-by-step approach has been em-
ployed troughout this report, introducing new ideas only after the motivation for
them can be understood; this understanding being engineering-like “hands-on”
understanding rather than mathematically exhaustive mastering of details. Of
course, some level of iteration cannot be avoided: It is clear that in engineering
work iteration is necessary — on both conceptual and practical levels — be-
cause more can be found in the underlying issues if there is some understanding
of the entity. The linear methods that have been elaborated on facilitate fast
execution times, so that different kinds of iterative refinement schemes become
feasible.



Computer exercises

1. Define original data and constraints as follows:

v = [1,1,1]’;
R = eye(3);
G = [1,1,1];
g = 1;

Vary the covariance matrix changing the first variance between zero and
very high values and study the results:

R(1,1) = input(’Give variance of the first measurement: ’);
RegrReconc(v,R,G,g)

2. Test the outlier detection using, for example, the following commands:

[X,Y] = dataxy(10,2,2);
X(1,1) = 10;
outl([X,Y]);

Iteratively fix the missing value of the previous exercise by the following
commands:

Wx = ones(size(X));
Wy = ones(size(Y));
Wx(1,1) = 0;
for i = 1:5

F = mlr(X,Y);
[X,Y] = fixval(X,Y,F,Wx,Wy)

end

What may happen in the fixing process if there are too many degrees of
freedom, say,

[X,Y] = dataxy(10,5,5);
X(1,1) = 10;



Part II

Practical Toolbox
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About the Regression Toolbox

One reason why data-oriented methods have become so popular during the last
years is the availability of high-capacity computers and efficient software tools.
There is a wealth of alternative tools available — different kinds of tools for
different needs.

There exist many ways to categorize the software tools. One characterization
goes along specialization: For example, general-purpose programming languages
like C++ and Java make it possible to implement any algorithm — if there is
enough time available. Specialized program products (like SIMCA, etc.) make it
easy to do the standard operations on data appropriately; however, one is bound
to the ready-to-use routines. Matlab is there in between, offering a programming
framework for implementing generic algorithms that can directly operate on
high-level concepts from linear algebra. Based on this Matlab platform, various
more or less sophisticated toolboxes have been implemented that are tailored for
special purposes: For example, the following toolboxes are available, either in
public domain or commercially:

• Statistics Toolbox (indeed, various versions exist) for statistical data
analysis

• PLS Toolbox for PCA/PLS modeling, etc.

• Chemometrics Toolbox for model calibration, etc.

• System Identification Toolbox for analysis of dynamic systems.

Additionally, there exist dozens of toolboxes that concentrate on some specific
approach, like Neural Networks Toolbox, Optimization Toolbox, FastICA
Toolbox, etc. It seems that as these toolboxes have been deloped by professional
domain-area experts, they often are rather unpenetrable: They are difficult to
understand, meaning that they are difficult to modify or experiment with.

That is why, there is need for yet another toolbox. The implemented Regression
Toolbox for Matlab specially supports the theoretical derivations discussed in
Part 1. The routines are not polished or optimized. But because the used codes
are so simple, they can be understood also by a non-expert, and they can be
easily experimented with, and extended if needed.

Just as in the theoretical discussions before, the main goal in the Toolbox is to
present all methods in a homogeneous framework, and to show how simple all
the algorithms (in principle) are. The routines in this Toolbox are not intended
for professional use.

Installation

The Regression Toolbox version 1.1 can be downloaded through the address
http://saato014.hut.fi/hyotyniemi/publications/01 report125.htm.

There are two compressed files, one for the commands, and one for the accom-
panying data for experimenting. The compressed files have to be uncompressed
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using WinZip, for example, and the files should be expanded to a separate tool-
box folder.

Within the Matlab environment, the search path has to be modified so that
the toolbox folder is included (preferably in the beginning of the search path).
After that, the commands should be operational. The toolbox was developed in
the Matlab version 5.3 environment, and the compatibility with other versions
is not guaranteed; however, only the very basic functionality of Matlab is used.

Standard Matlab style command line help scripts are supplied for all routines.
No special user interface is available; the commands are run from command
line (because of this, the Toolbox may be operational also in other versions of
Matlab).
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Commands at a glance

The Regression Toolbox consists of the following commands (summarized here
in not in alphabetical but in “logical” order). Each of the commands is explained
in more detail in the attached Reference Guide. The help command of Matlab
is available for on-line use.

Preprocessing commands

◦ regrCenter: Mean centering of data

◦ regrScale: Normalization, variable variances getting scaled

◦ regrWeight: Weighting of data samples

◦ regrWhiten: “Whitening” of data: covariance becomes identity matrix

◦ regrFixval: Iterative fixing of missing data values.

Cluster management

◦ regrFDA: Fisher Discriminant Analysis for distinguishing between clusters

◦ regrForm: Histogram equalization (or deformation) model construction

◦ regrDeform: Histogram equalization model application

◦ regrEM: Expectation Maximization clustering

◦ regrKM: K-Means clustering of data

◦ regrOutl: Visual outlier detection.

Structure refinement

◦ regrPCA: Standard Principal Component Analysis

◦ regrPLS: Partial Least Squares analysis, formulated as an eigenproblem

◦ regrCR: Continuum regression basis determination

◦ regrCCA: Canonical Correlation Analysis

◦ regrICA: Independent Component Analysis

◦ regrRBFN: Radial Basis Function Network construction.

Model construction and regression

◦ regrMLR: Multi-Linear Regression

◦ regrMLRC: Multi-Linear Regression with linear constraints

◦ regrOLS: Orthogonal Least Squares algorithm

◦ regrTLS: Total Least Squares regression

◦ regrRR: Ridge Regression

◦ regrRBFR: Radial Basis Function Regression.
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Functions for dynamic systems

◦ regrBal: Balancing and reducing a dynamic state-space system

◦ regrCyb: Iterative “cybernetic regression”

◦ regrIdent: Black-box identification of ARX models

◦ regrSSI: SubSpace Identification of dynamic systems
◦ regrSSSI: Stochastic SubSpace Identification of dynamic systems.

Iterative demonstration algorithms

◦ regrCYB: “Cybernetic” adaptation of PCA

◦ regrFACTOR: Factor analysis applying the neocybernetic approach

◦ regrHAH: Hebbian - Anti-Hebbian regression

◦ regrPPCA: PCA using the power method
◦ regrGHA: PCA using the Generalized Hebbian Algorithm

◦ regrIICA: “Interactive” ICA.

Analysis and visualization

◦ regrP: Fit data against a Gaussian distribution

◦ regrCrossval: Cross-validation of the model
◦ regrShowClust: Visualize the structure of clustered data

◦ regrKalman: Implement discrete-time Kalman filter

◦ regrKalm: Implement stochastic discrete-time Kalman filter

◦ regrAskOrder: Visual tool for model order determination.

Test material

◦ dataXY: Generate random input-output data
◦ dataClust: Generate random clustered data

◦ dataIndep: Generate data consisting of independent signals

◦ dataDigits: Handwritten digits (Warning: Large file)

◦ dataDyn: Generate random dynamic data

◦ dataHeatExch: Heat exchanger data

◦ dataEmotion: Voice signal data (Warning: Large file).



233

dataClust

Function generates random clustered data.

Syntax

[X] = dataclust(n,N,kk,cm,cd)
[X] = dataclust(n,N,kk,cm)
[X] = dataclust(n,N,kk)
[X] = dataclust(n,N)
[X] = dataclust(n)
[X] = dataclust

Input parameters

◦ n: Data dimension (default 3)

◦ N: Number of clusters (default 2)
◦ kk: Data samples in each cluster (default 100)

◦ cm: Deviation of the cluster centers (default 1)

◦ cd: Cluster spread, “longest” axis vs. “shortest” (default 1)

Return parameter

◦ X: Data matrix (size kk · N × n)

Comments

The cluster centers are normally distributed around origin, the centers having
standard deviation cm.

The individual clusters have internal normal distributions determined by param-
eter cd: If this ratio between the distribution principal axes is 1, the clusters are
circular. Otherwise, the standard deviations in randomly selected orthogonal
directions are determined so that the deviation widths are equally spaced on
the logarithmic scale, the ratio between widest and narrowest deviation being
cd. The determinant of the covariance matrix is always 1.
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dataDigits

Challenging data: Handwritten digits (thanks to Jorma Laaksonen, Dr.Tech.)

Syntax

datadigits

Comments

Running the command defines the 500 × 256 matrix DIGITS containing 500
samples of handwritten digits in a 16×16 grid. Each row represents one sample,
packed in a vector row by row; this means that the data can be visualized in
the following way:

digit = DIGITS(index,:);
feature = zeros(16,16);
for j = 1:16

feature(j,:) = digit((j-1)*16+1:j*16);
end
colormap(gray);
imagesc(feature);

Figure B.4: Index 1: Example of the digit “0”
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dataDyn

Generate random data coming from a state-space system.

Syntax

[U,Y] = datadyn(n,nu,m,k,sigma)
[U,Y] = datadyn(n,nu,m,k)
[U,Y] = datadyn(n,nu,m)
[U,Y] = datadyn(n,nu)
[U,Y] = datadyn(n)
[U,Y] = datadyn

Input parameters

◦ n: State dimension (default 1)

◦ nu: Input dimension (default 1); see below
◦ m: Output dimension (default 1)

◦ k: Number of data samples (default 100)

◦ sigma: Standard deviation of the noise (default 0)

Return parameters

◦ U: Input sequence (size k × ν)
◦ Y: Output sequence (size k × m)

Comments

Function generates sequences of random dynamical data, starting from zero
initial condition. Parameter sigma determines all the noise processes: The
standard deviation of the state noise and the measurement noise.

If the input parameter nu is zero, the system has no inputs, being driven by a
stochastic process; if nu is vector or matrix, this data is directly interpreted as
the input data.
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dataEmotion

Command file defines sound signal samples.

Syntax

dataemotion

Comments

There are no expicit inputs or outputs in this command file; running it constructs
matrix DATA in the workspace. DATA contains five sequences of sound signals
from different sources; these sources are presented in DATA as separate columns.

dataemotion;
sound(DATA(:,1),16000);
sound(DATA(:,2),16000);
sound(DATA(:,3),16000);
sound(DATA(:,4),16000);
sound(DATA(:,5),16000);

Because no compression of the signals has been carried out, this file is rather
large.
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dataHeatExch

Command file defines heat exchanger data.

Syntax

dataheatexch

Comments

There are no expicit inputs or outputs in this command file; running it constructs
two matrices X and Y in the workspace, where the input data X stands for
temperature measurements along the heat exchanger (see Fig. B.5), and the
matrix Y is interpreted as follows:

• Y1: Temperature of the incoming cold flow

• Y2: Temperature of the incoming hot flow

• Y3: Temperature of the outgoing cold flow

• Y4: Temperature of the outgoing hot flow.

This data is used, for example, as the training material for the Regreswsion
Course, and different regression methods can be experimented with and their
properties can be compared: A model should be constructed for estimating y
when x is given. Note that the causality structure is here blurred — the values
in y cannot be interpreted as being functions of x, but prediction models can
still be implemented.

x2 0x1

y2

y1

y4

y3

Figure B.5: “Instrumentation” of the heat exchanger
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dataIndep

Function mixes independent data sources.

Syntax

[X] = dataindep(k,func1,func2,func3,func4,func5,func6)
[X] = dataindep(k,func1,func2,func3,func4,func5)
[X] = dataindep(k,func1,func2,func3,func4)
[X] = dataindep(k,func1,func2,func3)
[X] = dataindep(k,func1,func2)
[X] = dataindep(k,func1)
[X] = dataindep(k)
[X] = dataindep

Input parameters

◦ k: Number of data samples (default 1000)

◦ funci: If funci is string, it is evaluated as a function of time index k
(note that in the text this variable is called κ). There are some functions
directly available:

· ’f1’: Harmonic, xi(k) = sin(k/5)
· ’f2’: Saw-tooth, xi(k) = (rem(k, 27) − 13)/9
· ’f3’: “Strange curve”, xi(k) = ((rem(k, 23) − 11)/9)5

· ’f4’: Impulsive noise, xi(k) = binrand(k) · log(unifrand(k)), where
“binrand” and “unifrand” denote random binary and uniform se-
quences, giving two alternative values -1 or 1 and continuum of values
between 0 and 1, respectively

Default is func1=’f1’, func2=’f2’, func3=’f3’, and func4=’f4’.

Return parameter

◦ X: Data matrix (size k × n, where n is the number of selected functions)

Comments

Linear mixing, mean centering, and whitening is applied to the set of signals
automatrically.
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dataXY

Function generates random input-output data.

Syntax

[X,Y] = dataxy(k,n,m,dofx,dofy,sn,sm)
[X,Y] = dataxy(k,n,m,dofx,dofy)
[X,Y] = dataxy(k,n,m)
[X,Y] = dataxy(k)
[X,Y] = dataxy

Input parameters

◦ k: Number of samples (default 100)

◦ n: Input data dimension (default 5)

◦ m: Output data dimension (default 4)

◦ dofx: Non-redundant input data dimension (default 3)
◦ dofy: Non-redundant output data dimension (default 2)

◦ sn: Input noise level (default 0.001)

◦ sm: Output noise level (default 0.1)

Return parameters

◦ X: Input data matrix (size k × n)

◦ Y: Output data matrix (size k × m)

Comments

This data is specially intended for visualizing the differences between MLR,
PCR, and PLS regression methods. There is redundancy in X , making problems
of MLR visible; but not all of the input variation explains the output, so that
the difference between PCR and PLS is also demonstrated.
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regrAskOrder

Interactively determine the model order.

Syntax

[N] = regraskorder(LAMBDA)

Input parameter

◦ LAMBDA: Vector of latent vector weights

Return parameter

◦ N: Selected model order

Comments

Function plots the values in LAMBDA and lets the user select how many of the
latent variables will be used in the model construction.

This function is intended to be used only by other routines (regrPCA, regrCCA,
regrPLS, regrICA, regrTLS, regrBal, regrSSI, and regrSSSI) if the model
order is not explicitly determined.

Figure B.6: Selection of the model order. Note that the figure “X% of
maximum” only means how much of the absolute achievable maximum
is captured
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regrBal

State-space dynamic system balancing and reduction.

Syntax

[Ared,Bred,Cred,theta,sigma] = regrbal(A,B,C,N)
[Ared,Bred,Cred,theta,sigma] = regrbal(A,B,C)

Input parameters

◦ A, B, C: System matrices

◦ N: Number of remaining states (optional)

Return parameters

◦ Ared, Bred, Cred: Reduced system matrices
◦ theta: State transformation matrix, z=theta’*x

◦ sigma: Hankel singular values

Comments

If the reduced model order is not given, graphical interaction with the user is
used (see regrAskorder).

If none of the states is dropped, the model is just balanced.
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regrCCA

Canonical Correlation Analysis (CCA) model construction.

Syntax

[theta,phi,lambda] = regrcca(X,Y,N)
[theta,phi,lambda] = regrcca(X,Y)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ N: Number of latent variables (optional)

Return parameters

◦ theta: Input block canonical variates

◦ phi: Output block canonical variates

◦ lambda: Canonical correlation coefficients

Comments

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the Canonical Correlation Regression can easiest be
implemented as

F = regrmlr(X,Y,regrcca(X,Y));
Ytest = Xtest*F;
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regrCenter

Function for mean centering the data.

Syntax

[X,barX] = regrcenter(DATA,barX)
[X,barX] = regrcenter(DATA)

Input parameter

◦ DATA: Data to be modeled

◦ barX: Point in space included in the model (optional)

Return parameters

◦ X: Transformed data matrix
◦ barX: Center of DATA

Comments

Returning to the original coordinates can be carried out as

Data = X + barX;
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regrCR

Continuum Regression basis determination.

Syntax

[theta,lambda] = regrcr(X,Y,alpha,N)
[theta,lambda] = regrcr(X,Y,alpha)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ alpha: Continuum parameter from ≈ 0 (MLR) to 1 (PCR) through 0.5
(PLS)

◦ N: Dimension of the latent structure (optional)

Return parameters

◦ theta: Latent basis vectors

◦ lambda: Corresponding eigenvalues

Comments

The determination of the CR latent basis is not carried out exactly as explained
on page 98; the reason is that the powers of an k × k matrix should be calcu-
lated, resulting in an huge eigenvalue problem; on the contrary, a shortcut using
singular value decomposition is applied.

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the actual Continuum Regression can easiest be im-
plemented as

F = regrmlr(X,Y,regrcr(X,Y,alpha));
Ytest = Xtest*F;
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regrCrossVal

Function for cross-validation of linear regression models.

Syntax

[E] = regrcrossval(X,Y,expr,seqs)
[E] = regrcrossval(X,Y,expr)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ expr: String form expression resulting in F , given X and Y

◦ seqs: How many cross-validation rounds (default k, meaning “leave-one-
out” cross-validation approach)

Return parameter

◦ E: Validation error matrix (size k × m)

Comments

Cross-validation leaves a set of samples out from the training set, constructs the
model using the remaining samples, and tries to estimate the left-out samples
using the model.

Parameter seqs determines how many continuous separate validation sets are
used; default is k, meaning that the model construction is carried out k times,
always with k − 1 samples in the training set.

In this routine, it is assumed that the string expr, when evaluated, returns the
mapping matrix F , so that Y = X · F . References within the string to input
and output blocks must be X and Y, respectively, no matter what are the actual
symbols.

Remember that validation of the constructed model with fresh samples is cru-
cial — otherwise MLR would always give the seemingly best model, explicitly
minimizing the cost criterion for the training data, even though its robustness
is weak.
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regrCYB

Function that implements adaptation of data structures in the “neocybernetic
model”.

Syntax

[A,B,Uhat,Xbar] = regrCYB(U,A,B,lambda,S,nonlin,maskA,maskB)
[A,B] = regrCYB(U,A,B)

Input parameters

◦ U: Input data block (size k × ν)

◦ A: Feedback matrix A (n × n)

◦ B: Feedforward matrix B (n × ν)

◦ lambda: Forgetting factor (scalar)

◦ S: Sparsity - how many variables used

◦ nonlin: If non-zero, nonlinear cut modeling

◦ maskA: Masking matrix for A

◦ maskB: Masking matrix for B

Return parameters

◦ A: Modified feedback matrix A

◦ B: Modified feedforward matrix B

◦ Uhat: Estimate of the input

◦ Xbar: State variable sequence in balance

Comments

This routine implements the “neocybernetic model” in a simplified form (for
more information, see http://www.control.hut.fi/cybernetics). In the lin-
ear and non-sparse-coded form principal subspace analysis is carried out; if the
masking matrix maskA in adaptation of A is triangular, principal component
analysis results (accepting the default, the last feature will represent the most
significant principal component direction). Principal subspace analysis is now
iterative, no explicit data covariance matrix is constructed; in this sense, this
method can even be useful for analysis of very high-dimensional data, for ex-
ample, when doing image analysis:

dataDigits; % Loading challenging data
n = 10; % Dimension of latent basis
A = 0.01*eye(n);
B = 0.01*randn(n,size(DIGITS,2));
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% Iteration repeated until convergence
[A,B] = regrCYB(DIGITS,A,B,0.8);
[A,B] = regrCYB(DIGITS,A,B,0.8);
...

After this, the pattern vectors are stored as columns in the data structure
(inv(A)*B)’. In the algorithm, the internal dynamics of a neocybernetic model
is abstracted away. What is more, the structure is streamline somewhat: Inter-
nal iterations are eliminated, making the Matlab implementation relatively fast.
However, these modifications can result in problems if nonlinearity is employed.
Specially, when employing the cut nonlinearity (nonlin = 1), it can be benefi-
cial to “invert” some of the features; assume that feature number i is stuck in
negative weights, so that there never holds xi > 0, one can make it active by
writing

invert = zeros(n,1); invert(i) = 1;
B = B - 2*(invert*ones(1,size(B,2))).*B;
A = A - 2*(invert*ones(1,size(A,2))).*A;
A = A - 2*(ones(size(A,1),1)*invert’).*A;
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regrDeForm

Function for equalizing data distributions.

Syntax

[X,W] = regrdeform(DATA,defmatrix)

Input parameters

◦ DATA: Data to be manipulated (size k × n)
◦ defmatrix: Matrix containing deformation information (see form)

Return parameters

◦ X: Data with (approximately) deformed distribution (size k × n)

◦ W: Validity vector containing “1” if measurement within assumed distri-
bution, “0” otherwise

Comments

Note that the histogram of the deformed data follows the intended distribu-
tion only with the resolution that was determined by the number of bins in the
equalization model construction function form. That is, if only 10 bins, for ex-
ample, are used, histograms plotted with higher resolution will still be unevenly
distributed (even for the training data).
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regrEM

Function for clustering using Expectation Maximization algorithm.

Syntax

[clusters] = regrem(X,N,centers,equal)
[clusters] = regrem(X,N,centers)
[clusters] = regrem(X,N)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of clusters
◦ centers: Initial cluster center points (by default determined by K-means,

see km)

◦ equal: “1” if distributions within clusters are assumed equal (default “0”)

Return parameter

◦ clusters: Vector (size k × 1) showing the clusters (1 to N) for samples

Comments

Sometimes, for difficult combinations of clusters, the procedure may get stuck in
the clustering given by K-means algorithm; that is why, the initial centers can
be given also explicitly. Also, setting equal to “1” makes the algorithm more
robust; this can be utilized if there is only affinity difference between clusters.

Only the set membership information is given out; the actual properties for
cluster 1, for example, can be calculated as

cl = regrem(X,N)
count1 = sum(find(cl==1));
center1 = mean(X(find(cl==1),:))’;
covariance1 = X(find(cl==1),:)’*X(find(cl==1),:)/count1 ...

- center1*center1’;
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regrFACTOR

Function that implements adaptation of data structures in the “neocybernetic
model”.

Syntax

[Exu,Uhat,Q] = regrFACTOR(U,Exu,Q,lambda,nonlin,XXref)
[Exu,Uhat,Q] = regrFACTOR(U,Exu,Q)

Input parameters

◦ U: Input data block (size k × m)

◦ Exu: Model matrix (format n × m)

◦ Q: “Stiffnesses” (diagonal matrix n × n)

◦ lambda: Forgetting factor (scalar, default no learning)

◦ nonlin: Nonlinearity applied (default “1”=true)

◦ XXref: Scalar/vector of xi variances (default levels at 1)

Return parameters

◦ Exu: Modified model matrix

◦ Uhat: Balance data estimate outside the system

◦ Q: Related to error covariances (diagonal matrix n × n)

Comments

This routine implements the “neocybernetic model” in a simplified form (for
more information, see http://www.control.hut.fi/cybernetics). Principal
subspace analysis is carried out, and within that subspace, sparse coding is
searched for. The code below shows this coding for the digit data:

% Load hand-written digits
dataDigit; U = DIGITS;

% Parameters
[k,m] = size(U);
n = 16; lambda = 0.9;

% Initialize model structures
Exu = 0.01*randn(n,m);
Q = 1*eye(n);

while 1 == 1
[Exu,Uhat,Q] = regrFACTOR(U,Exu,Q,lambda,1);
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% Visualization
for i = 1:n
feature = zeros(16,16);
for j = 1:16, feature(j,:) = Exu(i,(j-1)*16+1:j*16); end
subplot(sqrt(n),sqrt(n),i); imagesc(feature); colormap(’hot’); drawnow;

end
end

Figure B.7: 16 factors extracted from the handwritten digits
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regrFDA

Fisher Discriminant Analysis (FDA) for discriminating between classes.

Syntax

[theta,lambda] = regrfda(X,clusters,N)
[theta,lambda] = regrfda(X,clusters)

Input parameters

◦ X: Input data block (size k × n)

◦ clusters: Cluster index between 1 and N for all k samples (size k × 1)

◦ N: Number of discriminant axes (optional)

Return parameters

◦ theta: Discriminant axes (size n × N)

◦ lambda: Corresponding eigenvalues

Comments

If the number of discriminant axes N is not explicitly given, it is queried inter-
actively (see regrAskOrder).

The vector clusters can be constructed, for example, by the EM algorithm
(see em):

X = dataclust(3,2,50,5,5);
clusters = regrem(X,2);
theta = (X,clusters,1);
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regrFixVal

Function tries to fix missing values matching data against model.

Syntax

[Xhat,Yhat] = regrfixval(X,Y,F,Wx,Wy)

Input parameters

◦ X: Data matrix to be fixed (size k × n)
◦ Y: Output matrix to be fixed (size k × m)

◦ F: Model matrix, assuming that Y = X*F

◦ Wx: Matrix containing “1” for each valid data in X (size k × n)

◦ Wy: Matrix containing “1” for each valid data in Y (size k × m)

Return parameters

◦ Xhat: Fixed input data matrix (size k × n)
◦ Yhat: Fixed output matrix (size k × m)

Comments

Function tries to fix uncertain elements in X and Y (as pointed out by zeros
in the matrices Wx and Wy, respectively) to have more plaussible values, so that
the reconstruction error E = Y −XF would be minimized. This procedure can
be repeated as meny times as needed:

for i = 1:10
F = mlr(Xhat,Yhat);
[Xhat,Yhat] = regrfixval(Xhat,Yhat,F,Wx,Wy);

end
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regrForm

Function for “equalizing”, finding mapping between distributions.

Syntax

[defmatrix] = regrform(DATA,normdist)
[defmatrix] = regrform(DATA,bins)
[defmatrix] = regrform(DATA)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

◦ normdist for vector argument: Intended distribution form
◦ bins for scalar argument: Number of “bins”, data sections

(default distribution being Gaussian between −3σ to 3σ, number of bins
being 10 if no argument is given)

Return parameters

◦ defmatrix: Matrix containing deformation information. For each variable
(column) of DATA, there are the starting points of the data bins, and
between these there is the “steepness” of the distribution within the bin;
there are this kind of bin/steepness pairs as many as there are bins (and,
additionally, the end point of the last bin), altogether the matrix size being
2 · bins+ 1 × n.

Comments

Too special distributions, or if there are too many bins as compared to the
number of data, may result in difficulties in the analysis. These failure situations
are stochastic, being caused by a random process dividing samples in bins: This
means that retrial may help.
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regrGHA

Principal Component Analysis using Generalized Hebbian Algorithm.

Syntax

[theta,lambda] = regrgha(X,N,gamma,epochs)
[theta,lambda] = regrgha(X,N,gamma)
[theta,lambda] = regrgha(X,N)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of latent variables to be extracted
◦ gamma: Step size (default γ = 0.001)

◦ epochs: Number of iterations (default 10)

Return parameters

◦ theta: Extracted eigenvectors (size n × N)

◦ lambda: Corresponding eigenvalues

Comments

As compared to regrPCA or even regrPPCA, convergence here is slow; however,
no explicit covariance matrix needs to be constructed.
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regrICA

Eigenproblem-form Independent Component Analysis (ICA).

Syntax

[theta,lambda] = regrica(X,alpha,N)
[theta,lambda] = regrica(X,alpha)
[theta,lambda] = regrica(X)

Input parameters

◦ X: Input (whitened) data block, mixture of signals (size m × n)

◦ alpha: Type of signals being searched (default 1)
◦ N: Number of latent vectors (default all)

Return parameters

◦ theta: Independent basis vectors

◦ lambda: Corresponding eigenvalues

Comments

This function calculates independent components using an eigenproblem-oriented
approach called FOBI. The (prewhitened) data is modified so that the anoma-
lies in the distribution become visible in the second-order properties; this is
accomplished in the following way:

x′(κ) = ∥x(κ)∥α · x(κ)

It can be shown that for α = 1 the standard, kurtosis-based independent com-
ponent analysis results. Different values of α may emphasize different statistical
moments.

For α = 1, the kurtosis in direction θi can be calculated as λi − n − 2.
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regrIdent

Identify SISO system recursively.

Syntax

[f] = regrident(u,y,n,lambda,f)
[f] = regrident(u,y,n,lambda)
[f] = regrident(u,y,n)

Input parameters

◦ u: Scalar input sequence (size k × 1)

◦ y: Scalar output sequence (size k × 1)
◦ n: System dimension

◦ lambda: Forgetting factor (default 1, no forgetting)

◦ f: Initial parameter vector (default zero)

Return parameters

◦ f: Final parameter vector

Comments

Very simple SISO identification algorithm based on the ARX model structure.
The structure of the model is

y(κ) = a1y(κ − 1) + · · · + any(κ − n) + b1u(κ − 1) + · · · + bnu(κ − n),

and the parameter vector is

f =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

an

b1
...

bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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regrIICA

“Interactive” Independent Component Analysis (ICA).

Syntax

[theta] = regriica(X)

Input parameter

◦ X: Input (whitened) data block, mixture of signals (size k × n)

Return parameters

◦ theta: Independent basis vectors

Comments

The method presented in Sec. 7.3.3 results, in principle, in n · (n2 + n)/2 provi-
sional independent components. This function lets the user interactively select
those that are most interesting.
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regrKalm

Discrete time stochastic Kalman filter.

Syntax

[Xhat,Yhat] = regrkalm(Y,A,C,Rxx,Ryy,Rxy,x0)
[Xhat,Yhat] = regrkalm(Y,A,C,Rxx,Ryy,Rxy)

Input parameters

◦ Y: Output data block (size k × m)

◦ A, C, Rxx, Ryy, and Rxy: System matrices

◦ x0: Initial state (default 0)

Return parameters

◦ Xhat: State sequence estimate

◦ Yhat: Corresponding output estimate

Comments

The assumed stochastic system structure is
{

x(κ + 1) = Ax(κ) + ϵ(κ)
y(κ) = Cx(κ) + e(κ),

where the white noise sequences ϵ(κ) and e(κ) are characterized by the covari-
ance matrices E{ϵ(κ)ϵT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ϵ(κ)eT (κ)} =
Rxy.

This function augments the stochastic model and calls regrKalman function.
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regrKalman

Discrete time Kalman filter.

Syntax

[Xhat,Yhat] = regrkalman(U,Y,A,B,C,D,Rxx,Ryy,Rxy,x0)
[Xhat,Yhat] = regrkalman(U,Y,A,B,C,D,Rxx,Ryy,Rxy)

Input parameters

◦ U: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ A, B, C, D, Rxx, Ryy, and Rxy: System matrices

◦ x0: Initial state (default 0)

Return parameters

◦ Xhat: State sequence estimate

◦ Yhat: Corresponding output estimate

Comments

The assumed stochastic system structure is
{

x(κ + 1) = Ax(κ) + Bu(κ) + ϵ(κ)
y(κ) = Cx(κ) + Du(κ) + e(κ),

where the white noise sequences ϵ(κ) and e(κ) are characterized by the covari-
ance matrices E{ϵ(κ)ϵT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ϵ(κ)eT (κ)} =
Rxy. The implementation of the procedure is very elementary — for example,
the Riccati equation is solved using a fixed-length iteration, meaning that for
badly conditioned matrices the results can be inaccurate.
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regrKM

Function for determining the clusters using the K-means algorithm.

Syntax

[clusters] = regrkm(X,N,centers)
[clusters] = regrkm(X,N)

Input parameters

◦ X: Data to be modeled (size k × n)

◦ N: Number of clusters

◦ centers: Initial cluster center points (optional)

Return parameter

◦ clusters: Vector (size k × 1) showing the clusters for samples

Comments

If no initial cluster centers are given, the N first samples are used as centers.
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regrMLR

Regression from X to Y, perhaps through a latent basis.

Syntax

[F,error,R2,stds] = regrmlr(X,Y,theta)
[F,error,R2,stds] = regrmlr(X,Y)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ theta: Latent basis, orthogonal or not (optional)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors (size k × m)

◦ R2: Data fitting criterion R2

◦ stds: Estimated standard deviations of the parameters (n × m)

Comments

This is the basic regression function in the Toolbox, used by most of the other
regression methods.

If no θ is given, least-squares mapping from X to Y is constructed; otherwise,
the data is first projected onto the latent basis, no matter how it has been
constructed.

The matrix stds has the same structure as the model matrix F , revealing the
estimated accuracies of the parameters. Depending on the assumed probability
distribution of the error, one can study whether the parameter value “0” is
plausible. If there is the latent structure θ defined, standard deviations are not
calculated.
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regrMLRC

Regression from X to Y, perhaps through a latent basis, when there are addi-
tional linear constraints for parameters.

Syntax

[F,error,R2,stds] = regrMLRC(X,Y,G,g,theta)
[F,error,R2,stds] = regrMLRC(X,Y,G,g)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)
◦ G and g: Linear constraints in the form GF = g

◦ theta: Latent basis, orthogonal or not (optional)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors (size k × m)

◦ R2: Data fitting criterion R2

◦ stds: Estimated standard deviations of the parameters (n × m)

Comments

If no θ is given, least-squares mapping from X to Y is constructed; otherwise,
the data is first projected onto the latent basis, no matter how it has been
constructed. In both cases, the final mapping between the input and the output
fulfills the given constraints.
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regrOLS

Orthogonal Least Squares (OLS).

Syntax

[F,error] = regrols(X,Y)

Input parameters

◦ X:Input data block (size k × n)
◦ Y: Output data block (size k × m)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors

Comments

Model construction is carried out using the QR factorization of X .



265

regrOutl

Interactive elimination of outliers.

Syntax

[W] = regroutl(X,W)
[W] = regroutl(X)

Input parameters

◦ X: Data to be modeled (size k × n)

◦ W: Old vector (size k × 1) containing “1” for valid samples (optional)

Return parameters

◦ W: New vector containing “1” for valid data (size k × 1)

Comments

Function eliminates outliers interactively. Feedback is given on the graphical
screen — mouse clicks toggle the status of the nearest point (“1” for valid data
and “0” for invalid), and the vector of these values W is returned.

Vector W can also be refined if it is given as input argument.

Outlier
points

Figure B.8: Outliers, lone samples
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regrP

Fitting data against a Gaussian distribution.

Syntax

[p] = regrP(X1,X2)

Input parameters

◦ X1: Input data block determining the distribution (size k1 × n)
◦ X2: Data block to be fitted (size k2 × n)

Return parameters

◦ p: Probabilities for data in X2 to match X1

Comments

For each vector in X2, a probability value is returned — how well that vector
matches the assumedly Gaussian distributions determined by data in X1, or
“how probably a vector truly belonging to that distribution is farther from the
center than vector in X2 is”.

Assuming that x has normal distribution, the measure xT E{xxT }−1x has χ2

distribution, and this understanding is exploited.
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regrPCA

Principal Component Analysis (PCA) model construction.

Syntax

[theta,lambda,Q,T2] = regrpca(X,N)
[theta,lambda,Q,T2] = regrpca(X)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of latent variables (optional)

Return parameters

◦ theta: Latent basis
◦ lambda: Variances in latent basis directions

◦ Q,T2: Fitting criteria Q and T 2 (sizes k × 1)

Comments

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the Principal Component Regression can easiest be
implemented as

F = regrmlr(X,Y,regrpca(X));
Ytest = Xtest*F;
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regrPLS

Partial least Squares (PLS) model construction.

Syntax

[theta,phi,lambda] = regrpls(X,Y,N)
[theta,phi,lambda] = regrpls(X,Y)

Input parameters

◦ X: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ N: Number of latent variables (optional)

Return parameters

◦ theta: Input block latent basis

◦ phi: Output block latent basis

◦ lambda: Correlation coefficients (unnormalized)

Comments

If the number of latent vectors N is not explicitly given, it is queried interactively
(see regrAskOrder).

Based on this command, the actual regression can easiest be implemented as

F = regrmlr(X,Y,regrpls(X,Y));
Ytest = Xtest*F;
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regrPPCA

Principal Component Analysis using iterative power method.

Syntax

[Z,L,iter] = regrppca(X,N,iterlimit)
[Z,L,iter] = regrppca(X,N)
[Z,L,iter] = regrppca(X)

Input parameters

◦ X: Input data block (size k × n)

◦ N: Number of latent variables (optional)
◦ iterlimit: Maximum number of iterations (optional)

Return parameters

◦ theta: Eigenvectors

◦ lambda: Corresponding eigenvalues

◦ iter: Number of iterations needed

Comments

If there are eigenvectors with practically same eigenvalues, the convergence may
be slow.
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regrRBFN

Radial Basis Function regression model construction.

Syntax

[rbfmodel,error] = regrrbfn(X,Y,clusters,sigma)

Input parameters

◦ X: Input data block (size k × n)
◦ Y: Output data block (size k × m)

◦ clusters: Cluster index between 1 and N for all k samples, constructed,
for example, by K-means (see km)

◦ sigma: Distribution of the Gaussians

Return parameters

◦ rbfmodel: Matrix containing the model (see below)

◦ error: Prediction errors

Comments

The structure of rbfmodel is the following:

rbfmodel = [centers;sigmas;weights]

where

◦ centers: Vector (size n × N) containing cluster centers
◦ sigmas: Standard deviations in the clusters (size 1 × N)

◦ weights: Mappings (size m × N) from clusters to outputs

This routine can be used as:

model = regrrbfn(X,Y,regrkm([X,Y],N));
Yhat = regrrbfr(X,model);
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regrRBFR

Radial Basis Function regression.

Syntax

[Yhat] = regrrbfr(X,rbfmodel)

Input parameters

◦ X: Input data block (size k × n)
◦ rbfmodel: Matrix containing the model

Return parameters

◦ Yhat: Estimated output data block (size k × m)

Comments

See regrRBFN.
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regrReconc

Data reconciliation.

Syntax

[v] = regrreconc(v,R,G,g)

Input parameters

◦ v: Data vector (size n × 1)
◦ R: Measurement error covariance matrix (size n × n)

◦ G and g: Linear constraints in the form Gv = g

Return parameter

◦ v: Modified data vector

Comments

After this operation, the data vector fulfills the given set of linear constraints.
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regrRR

Ridge Regression.

Syntax

[F,error] = regrrr(X,Y,q)

Input parameters

◦ X: Input data block (size k × n)
◦ Y: Output data block (size k × m)

◦ q: “Stabiliaztion factor”

Return parameters

◦ F: Mapping matrix, so that Ŷ = X · F
◦ error: Prediction errors
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regrScale

Function for normalizing data variances.

Syntax

[X,backmap] = regrscale(DATA,w)
[X,backmap] = regrscale(DATA)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

◦ w: Intended variable variances or “importances” (optional)

Return parameters

◦ X: Scaled data matrix (size k × n)
◦ backmap: Matrix for getting back to original coordinates

Comments

The original coordinates are restored as

DATA = X*backmap;
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regrShowClust

Function for visualization of clusters.

Syntax

regrshowclust(X,c)
regrshowclust(X)

Input parameters

◦ X: Data matrix (size k × n)

◦ c: Cluster indices for data (optional)

Comments

Samples classified in different classes are shown in different colours. If only one
argument is given, one cluster is assumed.

The user is interactively asked to enter (in Matlab list form) the principal axes
onto which the data is projected. If only one number is given, the horizontal axis
is time k; if two or three axes are given, a two-dimensional or three-dimensional
plot is constructed. The three-dimensional view can be rotated using mouse.
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regrSSI

Combined stochastic-deterministic SubSpace Identification (simplified)

Syntax

[A,B,C,D,Rxx,Ryy,Rxy] = regrssi(U,Y,maxdim,N)
[A,B,C,D,Rxx,Ryy,Rxy] = regrssi(U,Y,maxdim)

Input parameters

◦ U: Input data block (size k × n)

◦ Y: Output data block (size k × m)

◦ maxdim: Assumed maximum possible system dimension

◦ N: System dimension (optional)

Return parameters

◦ A, B, C, D: System matrices

◦ Rxx, Ryy, Rxy: Noise covariances

Comments

If the number of states N is not explicitly given, it is queried interactively (see
regrAskOrder). The implementation of the ideas of subspace identification is
very simple, so that internally it is simple PCA that is applied, and Ridge
Regression is used for carrying out the internal mappings.

The assumed system structure is compatible with the following structure:
{

x(κ + 1) = Ax(κ) + Bu(κ) + ϵ(κ)
y(κ) = Cx(κ) + Du(κ) + e(κ),

where the white noise sequences ϵ(κ) and e(κ) are characterized by the covari-
ance matrices E{ϵ(κ)ϵT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ϵ(κ)eT (κ)} =
Rxy.
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regrSSSI

Stochastic SubSpace Identification (simplified)

Syntax

[A,C,Rxx,Ryy,Rxy] = regrsssi(Y,maxdim,N)
[A,C,Rxx,Ryy,Rxy] = regrsssi(Y,maxdim)

Input parameters

◦ Y: Output data block (size k × m)

◦ maxdim: Assumed maximum possible system dimension

◦ N: System dimension (optional)

Return parameters

◦ A, C: System matrices

◦ Rxx, Ryy, Rxy: Noise covariances

Comments

If the number of latent states N is not explicitly given, it is queried interactively
(see regrAskOrder). The implementation of the ideas of subspace identification
is very simple, so that internally it is simple PCA that is applied, and Ridge
Regression is used for carrying out the internal mappings.

The assumed system structure is compatible with the stochastic Kalman filter
(see regrKalman):

{
x(κ + 1) = Ax(κ) + ϵ(κ)
y(κ) = Cx(κ) + e(κ),

where the white noise sequences ϵ(κ) and e(κ) are characterized by the covari-
ance matrices E{ϵ(κ)ϵT (κ)} = Rxx, E{e(κ)eT (κ)} = Ryy, and E{ϵ(κ)eT (κ)} =
Rxy.
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regrTLS

Total Least Squares regression.

Syntax

[F,error] = regrtls(X,Y)

Input parameters

◦ X: Input data block (size k × n)
◦ Y: Output data block (size k × m)

Return parameters

◦ F: Mapping matrix, Ŷ = X · F
◦ error: Prediction errors (size k × m)
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regrWeight

Function for weighting the data.

Syntax

[X] = regrweight(DATA,w)

Input parameters

◦ DATA: Data to be manipulated (size k × n)
◦ w: Data sample importances (size k × 1)

Return parameters

◦ X: Weighted data matrix (size k × n)

Comments

This function makes it possible to condition heteroscedastic data. Assuming
that invs contains the inverses of the sample-wise a priori error variances, the
following formulations can be employed:

theta = regrpca(regrweight(X,sqrt(invs)));
F = regrmlr(regrweight(X,sqrt(invs)),regrweight(Y,sqrt(invs)),theta);
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regrWhiten

Function for whitening the data.

Syntax

[X,backmap] = regrwhiten(DATA)

Input parameters

◦ DATA: Data to be manipulated (size k × n)

Return parameters

◦ X: Scaled data matrix (size k × n)

◦ backmap: Matrix for getting back to original coordinates

Comments

The original coordinates are restored as

DATA = X*backmap;


