Preface

Research is a cumulative enterprise — new results are based on earlier ones.
Analysing properties for classes of systems, for example, and deriving algo-
rithms for these purposes, the frontiers of knowledge can be pushed forward.
Where is the limit? If enough effort is invested, can these frontiers be pushed
indefinitely? Proceeding in the traditional way, one is tempted to assume
that there exist no boundaries, no qualitative leaps can be reached.

It seems that most surprising results can be found when different kinds of
paradigms are combined: It turns out that computability theory offers nice
ways to attack the fundamental system theoretic problems in a fresh way.
One of the most powerful concepts available in computability theory is that
of Godelian undecidability — all frameworks that are powerful enough are
either incomplete or inconsistent. And, as it turns out, some classes of
systems constitute such frameworks; stability of such systems, for example,
cannot be exhaustively solved.

This report studies a specific nonlinear system structure and shows that
for this class of systems the undecidability issues become acute. Tools are
introduced to utilize this framework, so that systems with special properties
can be determined, and after that, different kinds of “killer systems” can be
constructed.

A concrete “compiler” for transforming rather high-level descriptions written
in a specialized programming language into a discrete-time dynamic state-
space system of the form z(k + 1) = g(Ax(k)) is presented. This compiler
has been implemented in Python script language and it is available (together
with this report, and some sample program files) in Internet at

http://saato.hut.fi/hyotyniemi/publications/02 report133/.

I am grateful to Mr. Lauri Kovanen, who acted as a Summer trainee at
the Control Engineering Laboratory of HUT in 2002: He implemented the
compilation from the £++ language into Matlab matrix form using Python
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Chapter 1

Introduction

The behavior of linear systems is exactly known: No qualitative surprises are
faced no matter what is the initial state and no matter what is the dimension
of the system. On the other hand, if the system is nonlinear, it seems that
everything can collapse. It has been proven that very complicated behaviors
can emerge, for example, in nonlinear continuous-time systems (see [13]),
in hybrid systems ([2]), and even in cellular automata ([16]). What this
complexity means — briefly, it can be argued that there exist such systems
that will for ever defy analysis attempts, no matter how the theories will
proceed (these issues will be elaborated on later in this report).

In what follows, we will concentrate on discrete-time, autonomous nonlinear
state-space systems of the general form

s(k+1) = g(s(k)). (1.1)

Of course, complicated functions g can result in complicated behaviors; for
example, for sinusoidal function form having an infinite number of changes
in the derivative sign, extraordinary behavioral complexity can be reached
even if s were scalar (see [11]). On the other hand, when the dimension
of the state vector s increases, the behavior can become qualitatively more
and more complicated even for simple-looking (vector-valued) nonlinearities
(see [1]). Dimensional complexity can be used as a substitute for structural
complexity.

Defining the system as a combination of linear and nonlinear parts, so that
s(k+1) =g(As(k)), (1.2)
where the nonlinearity g is defined elementwise, meaning that

9i(s) = g(si), (1.3)
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one can interpret the resulting system as a recurrent, discrete-time neural
network structure, with matrix A determining the “synaptic weights”, and
g being the “activation function” of the neurons. Because of the current
interest on neural networks, the capabilities of such systems have gained
special emphasis; it has been shown (see [14] and [15]) that for sigmoidal
activation functions various kinds of Godelian undecidability results apply.
Also for piecewise linear (saturating) nonlinearities the same holds.

In this report, a special nonlinear discrete-time dynamic system structure
will be concentrated on:

S+ 1) = f(As(R)). (1.4)

Here the “generalized cut” function f,,, : Rdim(s) _, Riim(s) is defined ele-

mentwise as’

N ) s, ifs; >0, and
Feuei(s) = { 0, otherwise, (1.5)
foralli =1,...,dim(s). This means that for positive values the nonlinearity

vanishes, whereas for negative values the values themselves vanish. Even
though the nonlinearity is, in a sense, the simplest possible, just cutting off
the negative entries, the behavior of the class of such systems is extremely
complex, as will be studied later.

There exists an infinite number of different types of nonlinearities — why
should one be specially interested in the cut function (1.5)7?

One motivation is the extreme simplicity of the nonlinearity — but it also
turns out that such positive systems with strictly non-negative state vari-
ables can efficiently be used as frameworks for natural phenomena. Typ-
ically, in the theory one concentrates on positive linear systems [5], but,
as shown in [9] and [10], the explicit nonlinearity makes it also possible to
study applications to cognitive systems in the complex systems framework.

Earlier studies concerning the system structure (1.4) were presented in [6]
and [7]; now a more detailed discussion is presented.

LA note on notations: Subindices refer to vector elements, or in the case of matrices,
the first index refers to rows and the second one to columns



Chapter 2

Computability with Systems

Running a computer program is a dynamic process; however, in the com-
puter logic the state transitions are determined in very complex ways. From
the dynamic systems point of view, such processes typically have too loose
structure to be truly interesting. There are exceptions — some computers
can be determined in an extremely fixed, rigid framework: It turns out that
the simple general system structure (1.4) can emulate the operation of a
programmable computer. To recognize the connections between theoretical
computer science and dynamic systems analysis, some computability theory
is first needed.

2.1 About computability

According to the basic axiom of computability theory, all computable func-
tions can be implemented using a Turing machine. There are various ways
to realize a Turing machine; it can be shown that if a function is Turing
computable, it can be coded using the language £ that only includes four
operations, being defined in the Backus-Naur (BNF) form as follows:

Program == Commands*

Commands = LineNumber INC VarName
LineNumber DEC VarName
LineNumber GOTO LineNumber

= LineNumber IF VarName = 0 SKIP 1.

This means that one only needs increment and decrement commands, branch-
ing capability and a simple conditional structure; all algorithms can be im-
plemented in that framework when the basic structures are repeated suffi-
ciently. The variables above can only have positive integer values.

7
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The above extremely simple language £ can be made more practical if some
additional functionality is included. So, define the extended language L++
as follows:

Program = Variables™ Commands™

Variables == LineNumber VarDef

VarDef == VarName = Constant % Initial value
Commands u=  LineNumber Operations

= LineNumber IF Condition*
LineNumber THEN Operations
LineNumber ELSE Operations

Condition = VarName =0 % Test

Operations = Modifications* Jump

Modifications = VarName ADD Constant % Increment
= VarName SUB Constant % Decrement

Jump 2= GOTO LineNumber % Branch

Above, Constant € N can be any positive value; VarName is a charac-
ter string. All variables are assumed to have non-negative integer values;
if an operation would make the variable value negative, zero value is used
instead. It is assumed that all lines in the code must have a distinct line
number; the line numbers must be successive integers starting from 1. Note
that a conditional branch always exhausts three lines, so that the line num-
ber counter is incremented by three (the reason for this peculiarity is seen
later). The Kleene stars “*” mean that there can be an arbitrary number
of corresponding constructs.

It can be shown that a the above language L4+ is in one-to-many corre-
spondence with the dynamic system structure (1.4).

2.2 The “Turing System”

The state transition matrix A in (1.4) can be defined so that any program
in language L4+ can be presented as a discrete-time process. Running a
program means that the process (1.4) is iterated until the state no more
changes, or until a fixed state is found — the final variable values, or the
calculation results, can be seen in the resulting state vector. The proof of
this is very similar to that presented in [7], and instead of the actual proof, a
procedure for implementing the language £4+ in the form (1.4) is presented.

To implement a “compiler” for the language L4+, an extension of the basic
BNF syntax is used, so that the semantics of the parsed constructs are si-
multaneously defined. First, the source code is matched against patterns in
the RCL style using depth-first search; operations (indented lines) are exe-
cuted in order of appearance, immediately after the preceding subsequences
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of source code have been parsed. Because of the simple syntactical structure
of the language L£++, there exist no problems with backtracking.

Before the compilation procedure is started, the data structures are initial-
ized. The dimensions of A and s are dependent of the program complexity,
so that there is a separate entry in the “snapshot vector” s corresponding to
every program line, and A is defined to have compatible size. All elements
in A and s(0) are initially set to zero. In addition the these, there are in-
ternal variables that are needed to take care of appropriate control flow in
the compiler. Below, subindices refer to matrix (vector) rows and columns,

respectively.

Program

Commands

Operations

Modifications ::

Jump

Variables* Commands*
If program successfully parsed, then:

Set SEntryPoint(O) =1

LineNumber Operations
For all variables v:
Set A#v,C’urrentLine = Varsy,
LineNumber “IF” Condition*
If recognized, then:
Set AC’urrentLine—l—I,CurrentLine =1

Set AC’urrentLine+2,CurrentLine =1
LineNumber Then-block

LineNumber Else-block
For all variables v:
Set A#v,C’urrentLinefl = Then#v - Else#v
Set A#v,C’urrentLine = Else#y

Modifications™® Jump
Set AJump,C’urrentLine =1

v € Strings “ADD” ¢ € Z
If recognized, then:
Set Varsy, = Varsy, +c
v € Strings “SUB” c € Z
If recognized, then:
Set Varsy, = Varsy, —c

“GOT0” i € N
If recognized, then:
Set Jump =1

[432]

% 1If ignored, go to the next line
Set Jump = CurrentLine + 1



10 Chapter 2. Computability with Systems

Condition u= v € Strings “= 0"
If recognized, then:
Set ACurrentLine-i—l,#v =-1
Then-block = “THEN” Operations

Set Then = Vars

Else-block m=  “ELSE” Operations
Set Else = Vars
Set AJump,CurrentLine—l
= AJump,C’urrentLinefl -1

LineNumber = 1eN
If recognized, then:
Set CurrentLine =1
For all variables v:
Set Varsy, =0

Variables = LineNumber VarDef
Set EntryPoint = CurrentLine + 1

VarDef = v € Strings “=" ce N
If recognized, then:
Define #v = CurrentLine
Set A#v,#v =1
Set 54, (0) = c.

To achieve context dependent features in the compilation process, there are
some additional compilation-time integer-valued variables (LineNumber,
EntryPoint, Jump) and vecors having entries for each of the variables de-
fined in the program (Vars, Then, and Else).

Earlier version of the compiler was presented in [8]; however, the original
formulation of the compiler was flawed in that respect that correct operation
of the IF-THEN-ELSE structure could be guaranteed only if there existed
only one reference to a single variable within a THEN-ELSE structure; the
new formulation has no such limitations. On the other hand, the original
formulation produced “elegant” matrices having only 1, —1, and 0 valued
elements; generally, this cannot be guaranteed any more. The new formu-
lation tends to produce “denser” matrix structures, that is, there are fewer
zero entries in the matrix A.
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2.3 Sketch of proof

It is the state vector s that contains the program snapshot, including variable
values and the program counter, and matrix A determines how this snapshot
is changed. First, the basic structure representing a program row, A, 41, =
1, transfers the “program counter” from row n to row n + 1. On the other
hand, looking at the implementation of the variable definitions, Ay 4y = 1,
it is evident that basically one has a discrete-time integrator:

sv(k+1) = sv(k).

References to the variable may change the integrator contents: for example,
Auvyy, = v means that v is added to the variable contents if there happens
to be 1 in s,. Subtractions operate like negative additions; because of the
cut function, negative values become zeros.

It is evident that various additions can be combined and carried out simul-
taneously; further, a branch can also be included in the same structure, so
that can be accomplished parallel during one step. Indeed, the operation
of a combined IF-THEN-ELSE block with various simultaneous manipu-
lations can be integrated. Assume that one has the following code in the
program:

n: IFW1:0W2:0...
n+1: THEN V; ADD ¢; V5, ADD t5 ... GOTO mp
n+2: ELSE V; ADD e; V5 ADD e ... GOTO mp,

and assume that originally the snapshot contains the following entries:

( sp(k) = 1
snt1(k) =
Sn+2(k) = 0
swy(k) = w €{0,1,2,...}
¥

swo(k) = we €{0,1,2,...

sy (k) = v1€{0,1,2,...}
sy (k) = vy €e{0,1,2,...}
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After the next step, the distribution of the values will be

( sp(k+1) =
8n+1(k + ].)
3n+2(k + 1) =

SWh (k + 1)
swy(k+1)

syi(k+1) =
spk+1) =

Smp(k+1) =
L Smp(E+1) =

and after the next step,

( sp(k+2) =
8n+1(k + 2)
snt2(k+2) =

3W1(k+2) =
SW2(I€+2) =

Sy, (k + 2) =

SV, (k + 2) =

Smp(k+2) =

Smp(k+2) =

\

0
fcut( wl_w2_)
1

w1
w3

U1
V2

0
0,

there holds

0
0
0

w1
w2

fcut(vl+fcut 1 w1—w2—---)-(t1—el)+el)
Jeut U1+t1, fw=wy=---=0
feus(v1 +€1), otherwise
fcut /02+fcut wl—wg—"-)-(t2—62)+62)
fcutv2+t2 fw=wy=---=0
feus(v2 + €2), otherwise
fCut ( cut ]- — w1 —wy — ))
1, fwy=wy=---=0
0, otherwise
fcut 1 cut( — w1 _w2—))
0, fwy =wy=---=0
1, otherwise.

This means that the manipulations have been carried out just as expected.
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2.4 Implementation aspects

The “pseudocode compiler” above can be readily implemented in different
environments; for example, a simple version for Matlab already exists, and a
more polished Python version [17] has been constructed (indeed, Perl, etc.,
would do just as well; however, general-purpose programming languages like
C, etc., are unnecessarily heavy tools for this). Some general implementation
guidelines are given below.

Simplification of syntax. There are some pragmatic aspects to be taken
care of to make programming easier for the end-user. First, it is not rea-
sonable to ask the user to keep track of the actual line numbers — these
can be automatically completed by the compiler. Correspondingly, branches
with absolute addresses are extremely cumbersome in practice, and rather
than asking the programmer to use absolute line numbers, some labeling
mechanism is needed; for example, as an example of possible syntax,

Label: ..
GOTO Label

This means that the compilation becomes a two-step process: During the
first step the symbol table is constructed and references resolved (and also
the size of the data structures, the variable n, is determined), and only after
that in the step two the final compilation takes place.

In addition to the mnemonic names, there are various minor enhancements
that can make the life easier for the programmer. For example, the “empty”
ELSE branches (if only the THEN portion is needed in the code) can be
completed automatically by the compiler. Label End denotes termination;
there is no need to implement such a row, GOTO End just means that the
program counter vanishes and the program halts. The GOTO commands
can be neglected; in such a case control flow continues from the next line.

Additionally, it is assumed that comments (preceded by “%”) can be placed
on any line; all characters after this are ignored on that line.

Macros. If the proposed language is really to be used for some practical
task, yet another pragmatic shorthand can be introduced in the language:
Because simple tasks (like copying a variable, or adding a value of a variable
to another) consist of a large number of elementary operations, a mechanism
like macro expansion might be useful. Assume that the code

Add(Varl Var?2)
Continue:
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is mechanically substituted with the code

Add: IF Var2 = 0

THEN GOTO AddBack

ELSE Varl ADD 1 Var2 SUB 1 VarAdd ADD 1 GOTO Add
AddBack: IF VarAdd = 0

THEN GOTO Continue

ELSE Var2 ADD 1 VarAdd SUB 1 GOTO AddBack
Continue:

considerable simplifications in the code outlook can be reached. The macros
are expanded during the preprocessing of the code (first pass of the com-
piler). Note that there may exist various invocations of the same macros,
and the labels have to be made uniquely distinguishable in the compilation
phase.

If there are hidden variables within a macro code, the rows implementing
the variables are added within the code: This makes resolving the variables
simpler during the first pass of the compilation, but it must be remembered
that these lines are not executable and they are skipped by the program
counter. Note that to make a macro re-entrant, the original values of the
hidden variables need to be restored (in the above code VarAdd is automat-
ically reset to 0 after execution). The next row number after the macro is
resolved by the compiler; references to End in the macro are automatically
substituted by this number. All these modifications are explicitly shown in
the .log file. When implementing the macros, the only extension to the
programming language syntax is

Commands
= LineNumber MacroName “(” v* “)” Jump

MacroName n=m € Strings

that is, the macro invocation with the arguments listed between parentheses
is given as a single operation on one line. The Jump can be omitted; but if
it is included, references to End within the macro code are substituted by
this label.

When a macro call has been detected in a code, the predefined macro folder
is searched for a file with the macro name. The idea is that the macro files
have exactly the same format as the main routines themselves — this means
that the macros can be run also as stand-alone programs and debugged
separately. The key point is that the variables having no initial values
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defined in the code are interpreted as input parameters; on the main routine
level, these variables are queried from the user, but within a macro, they
are interpreted as input arguments (in the given order). Yet another point
needs to be mentioned: If there are external Matlab commands within a
file, these lines are collected in the set of all external commands; but these
lines are only executed if the control is within the corresponding block.
This means that one needs to keep track of the invocation order and test it
before running the external codes (this means that macro externals are only
executed while running that macro; but the main program externals are not
executed there!).

Extensions of control structures.! There is no reason why the logical
THEN and ELSE branches could not contain more than just one set of
operations. Indeed, the only problem that emerges is that there is need
to keep track of program flow, that is, jumping to the actual beginning of
the ELSE branch, rather than simply to “two rows below”. Nesting the IF
— THEN - ELSE structures may introduce ambiguous structures; one way
to circumvent these if some kind of ENDIF is introduced in the end of all
conditional structures, but in that case the principle “one row in program,
one dimension in matrix” has to be compromized. Another possibility is to
impose indentations, etc., in an organized way: The originally ambiguous
structure

IF ... % Outer IF structure

THEN ...

ELSE ...

IF ... % Outside the ELSE branch
THEN ...

ELSE ...

becomes unambiguous after indentation (the latter IFF-THEN-ELSE being
inside the outer ELSE branch):

IF ... % Outer IF structure

THEN ...

ELSE ...
IF ... % Within the ELSE branch
THEN ...
ELSE ...

Note that the matrix-form evaluation of program structures makes it easy to
extend the standard sequential control flow: Parallel, simultaneous processes

'These extensions have not yet been implemented in the current compiler
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can be carried out at the same time. However, the program syntax is not
extended here in that direction (special syntax is needed to define branching
of the control flow, and merging of different flows).

Note that in the sieve code in [9], some syntactical extensions were utilized
to reach lower-dimensional structures: There it is allowed to write conditions
like “IF A — B = 0”. Looking closer at the compiler it is easy to see how
such an extension can be implemented — A and B just contribute in the
opposite directions — but because it would be difficult to implement such a
structure in a consistent always-working way, it is left out from the general
syntax description.

About compilation and execution processes. The compiler reads an
ASCII file containing the program code. An ASCII log file with the same
name, but with extension “.log” can be created in the same folder; in this
file the program code is printed, as seen by the compiler — that is, the
“completed” program code with explicit line numbers is listed — and the
warnings and errors are printed next to the lines where they were detected.
The compilation results are also written into an ASCII file with the same
name, but with extension “.m”. This means that Matlab-form data struc-
tures are constructed, so that they can readily be loaded into the Matlab

environment. The produced Matlab file consists of the following parts:

1. The definition of the matrix A (because of its sparsity, it is reasonable
to represent this as A = zeros(n,n); A(i,j) = c, etc.).

2. Some kind of user interface for determining the initial values that are
omitted in the code, and a mechanism for constructing the vector s(0)
out of them.

3. Implementation of the loop s(k+1) = g(As(k)) and appropriate moni-
toring mechanisms for maintaining the computing process (see below).

Normally, the iteration continues until convergence is reached, that is, until
the program counter vanishes, and this should be detected by the system.
But there are also other possible ways of running programs, and these should
be supported: For example, as shown in [9], to implement “emergent phe-
nomena”, the process can continue infinitely, some external operation just
being carried out if some special condition is fulfilled — say, a text is printed
on the screen if some variable has some specific value, or if some line in pro-
gram code has been reached.

This inclusion of extra code also offers possibilities for implementing easy
debugging facilities. For example, the Matlab command keyboard within a
function temporarily transfers the command to outside, letting the user test
the values of the variables, etc.
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The achieve this extended functionality, the program syntax has to be
slightly augmented:

Program ::= Variables™ Commands* Externals™

Externals == Any Matlab code.

In the external Matlab code, references to symbols (line labels or variables)
are possible; the appropriate data structures are substituted. The Matlab
code needs to be parsed through by the compiler; if references to program
variables or labels are detected, they are substituted with the references to
appropriate vector s elements. It seems to be reasonable to define yet an-
other variable that is available within Matlab: Variable ProgramCounter
contains the number of the line where the control currently is (so that con-
structs like “if ProgramCounter == <label> ...” are possible). These
external operations are carried out before each program iteration.
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Chapter 3

Universality and Beyond

Universal machines are Turing machines that are capable of emulating other
Turing machines, that is, if the program code and the inputs are given, the
same final state and outputs will be found. It needs to be noted, however,
that the dynamics is typically very different: Interpreting other programs is
a time-consuming process.

Applying the tools developed in the previous chapter, one can construct a
compiler for the language £ using the language £++. In what follws, this
kind of compiler construction is first carried out, and, after that, this com-
piler is applied for implementing algorithms with pathological decidability
properties. Because of the correspondence between the algorithms and sys-
tems of the form (1.4), the same undecidability phenomena apply also to
such systems.

3.1 Coding the programs

To make it possible for algorithms to “speak about each other” that is, to
construct algorithms that can analyze other algorithms the program struc-
tures need to be collapsed — without losing their information content!

A unique, compact representation for programs presented in £ needs to be
determined, so that the program (and the variable values) can be coded
as a single number for handy manipulation of programs. This process of
enumerating the programs is called Gdodel numbering, and, based on the
properties of primes, the Godel number G of a program can be constructed
of parts, so that the total Gédel number is the product of the components,
G =G - - Gy. First, let us study the representation of variables:

e For each variable V, introduce a unique odd prime, say, py.

e If V has value v, the contribution of this variable is Gy = p!.

19
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Second, let us study the representation of program lines:

e For each line L, introduce a unique odd prime, say, p;.

e Depending on the contents of the line, apply some of the following:

If the line reads INC V, the contribution of the line is G, = p!".
— If the line reads DEC V, the contribution of the line is G, = pz'p".

— If the line reads IF V=0 SKIP 1, the contribution of the line is
2
G, =pt P,

3.
— If the line reads GOTO N, the contribution of the line is G, = pf b

Now, given some Godel number G, the program can be restored by calcu-
lating how many times a specific prime is included in G, that is, how many
times the prime divides the Gédel number. For simplicity, in what follows,
it is assumed that successive primes are applied in order of appearance; with
no loss of benerality, it is also assumed that there is only one output Y (so
that p, = 3) and one input X (so that p, = 5). This means that the first
executable program line corresponds to p, = 7. Below, some examples of
Godel numbering are presented; the numbers typically grow extremely fast!

e Implementation of “INC Y”:

Y=0
X ==
INC Y

This means that the Gédel number is 3° - 5% - 73; at its simplest, defining the
(dummy) 2z = 0, one has 343.

e Implementation of “INC Y / INC Y”:

Y =
X =
INC
INC Y

< 8 O

This means that the Gédel number becomes 3° - 5% - 73 . 113; at its simplest,
having (dummy) z = 0, one receives 456533.

e Implementation of signum, or “Y = sign(z)”

Y=0
X ==z
IF X = 0 SKIP 1
INC Y

This means that the Gédel number becomes 3° - 52 - 72°5 . 113,
or 106203506442121573331 - 5*.

Applying the above notations, not all numbers G represent valid programs; for
example, using the above coding, no even Gdédel numbers can exist.
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3.2 Interpreting the codes

Next, a straightforward implementation of the universal machine based on
the above Godel numbering is presented. Below, the algorithm is presented
as pseudocode; in Appendix B, an explicit formulation is presented using
the language L4+, and employing the help functions given in Appendix A:

Variables:

Start:

Add:

Sub:

Skip:

Goto:

Y = Resulting output of the interpreted program

X = Godel number of the program to be interpreted
(with initial values)

PC = Program counter in the interpreted code

ROW = Code for the current row

Set ROW = How many times PC divides X
If no times, end of program

If ROW cannot be divided by 2 at all, go to Add

If ROW can be divided by 2 exactly once, go to Sub
If ROW can be divided by 2 exactly twice, go to Skip
Else go to Goto

Multiply X by the remaining value of ROW
Change PC to point to the next line
Return to Start

If divisible, divide X by ROW

Change PC to point to the next line
Return to Start

If X is divisible by ROW add PC by two
Otherwise change PC to point to the next line
Return to Start

Move remaining value of ROW to PC
Return to Start

The behavior of the universal machine, given some simple programs, is il-

lustrated below:

e Assume that the input to the universal machine is

Koo = 343 = 305073.
this means “INC Y” with Y =0 and X = 0 (PC = 7).

After 53431 steps (see Fig. 3.1) this converges in

Xunsw = 1029 = 315°73;
this means “INC Y” with Y =1 and X = 0 (PC = 11).

Interpretation: Starting from Y = 0 the program INC Y halts in a state where

Y=1.
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e Assume that the input to the universal machine is

Xumiv = 1029 = 315°73;
this means “INC Y” with Y =1 and X =0 (PC = 7).

After 160929 steps this converges in

Xuniv = 3087 = 325°73;
this means “INC Y” with Y = 2 and X = 0 (PC = 11).

Interpretation: Starting from Y = 1 the program INC Y halts in a state where
Y =2

e Assume that the input to the universal machine is

Kuniv = 117649 = 305072-3;
this means “DEC Y” with Y = 0 and X =0 (PC = 7).

After 7520543 steps this converges in

Kuniv = 117649 = 305072-3;
this means “DEC Y” with Y = 0 and X = 0 (PC = 11).

Interpretation: Starting from Y = 0 the program DEC Y finally halts with no
changes.

e Assume that the input to the universal machine is

Xumiv = 352947 = 3150723,
this means “DEC Y’ with Y=1and X =0 (PC = 7).

After 18971679 steps this converges in

Xuniv = 117649 = 3950723,
this means “DEC Y” with Y = 0 and X = 0 (PC = 11).

Interpretation: Starting from Y = 1 the program DEC Y finally halts in a state
where Y = 0.

3.3 Eternal mysteries

As shown by Godel, all frameworks that are powerful enough are either
incomplete or inconsistent. One way to put this is that in such environments
one can implement the liar’s paradoz (expressed in some technically sound
way). It will now be shown that in the case of dynamic systems, the paradox
takes the form the system is not stable if and only if it can be shown to
be stable. The only possibility is that there can never exist a method for
determining the stability for such systems.

Assume that the system structure (1.4) can be exhaustively analyzed by
some procedure or algorithm G, and assume that this algorithm returns
“1” if some property applies, and “0” otherwise. The idea in the paradox
construction is to tailor the system and its input so that, for example, it
halts (converges) if and only if the algorithm says it would not:
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Halt: Universal(Y,G (Halt))
IFY=0
THEN GOTO End
ELSE GOTO Halt.

Indeed, to implement the paradox, two additional simplifications are avail-
able:

1. The algorithm only needs to analyze one single fixed system.

2. The algorithm only needs to analyze this single fixed system for one
single fixed input; this input is the Godel number of this algorithm
itself!.

In each case, a logical contradiction is found: For example, the system
remains bounded only if the algorithm says it does not, and vice versa —
the only possibility is that such an analysis algorithm cannot exist.

It has been known that such system exist, and they have been constructed,
but it has been estimated that such systems would have dimension some-
where around 1000 (actually, this has been constructed for a saturating
nonlinearity) — but, as shown here, this estimate is too high at least for
feus- It turns ot that the mortality problem “Given an arbitrary initial state,
does the system converge to origin or not” is undecidable for a 338 x 338
dimensional system matrix A (see Appendix C and Fig. 3.2). Some 10% of
the dimension could rather easily be dropped if more optimized (but fragile)
program structures were introduced in the language £4+. The understand-
ability of the universal machine implementation could also be compromized
to bring the dimension down. In addition to this, some explicit extra states
are now introduced in the codes only to keep the structure of A simple; in
this implementation, only three alternative values (-1, 0, and 1) are employed
in the matrix.

One can still strengthen the result: There does not only exist a single patho-
logical system, but there exists an infinite number of counterexamples. To
prove this, one lemma is needed:

The state vectors s can be freely scaled by some (positive) factor
a; this does not qualitatively alter the behavior of the system.

LOf course, this number, even though it is fixed, is not known before the algorithm is
implemented; this means that, in practice, one has to define a general algorithm, capable
of analysing all inputs for the given system, and only after this general algorithm is
implemented, the input can be fixed to attack the simpler problem — this means that
Simplification #2 cannot really be utilized in the presented way. However, the key point
is that no inputs are any more needed, and the problem of “infinite recess” (having as
input the code with the same input) can be avoided
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Proof. Assume that a system is defined as s(k + 1) = f...(As(k)) for some
A and state sequence s(k). If one defines another vectors as s = « - s, it
turns out that

feu(Asa(k)) = foula- As(k))
= a- fo(As(k)) (3.1)
= sa(k+1).

It turns out that during each state transition, the parameter « simply tra-
verses through the formula, no matter how many times the formula is iter-
ated; this means that, finally, it is the end state of the original process that
is multiplied by a when the modified process is iterated. The states can
thus be freely scaled — still the number of steps exhausted by the system
dynamics remains intact.

The above result means that if one is capable of finding one state s(0)
for which some undecidability result applies, one can instantly determine an
infinite number of other initial states s,(0) for which the same result applies
(if @ # 1, no exact match with the original algorithm form any more exists).

3.4 “Star Systems”

It is a well-known fact that the state-space representations of systems are not
unique; interchanging of state variables does not alter the system dynamics,
if all references to these variables are also interchanged. This means that
the visual outlook of the system matrix A can be altered by permuting its
rows and columns (so that horizontal permutations are always followed by
corresponding vertical permutations).

Note that in the “prime sieve” structure in [9] the rows and columns are shuf-
fled to reach more homogeneous looking matrix structure; this means that,
after constructing the n x n dimensional matrix A, and the n dimensional
vector s(0), some permutation of the numbers from 1 to n is determined,
and the rows in s(0) and rows and columns in A are reordered correspond-
ingly. It turns out that the dynamics of the process remains intact also after
this modification.

Because of the nature of the control flow in the original program, some of
the state variables are more tightly coupled to other variables than other
ones are in A; the state variables corresponding to normal program lines
typically are loosely coupled, whereas state variables standing for variables
in the algorithm are often referred to from other locations. This means that
there typically exist a few state variables inducing “dense” horizontal and
vertical lines in A. To alter the overall outlook of the matrix, these lines
can be relocated.
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For example, one can collect the horizontal and vertical lines in the center
of the matrix, and distribute the other dots along the matrix diagonals (of
course, this cannot be accomplished exactly; some kind of iterative opti-
mization is needed). This kind of rearrangement means that some kind of
“star-like” system form emerges (see 3.3).

All programs can be transformed to this kind of star form — for complex
programs there typically exist various more or less good-looking alternatives.
Each dot is essential, otherwise the star collapses (into a “neuron star”?)!



26

Chapter 3. Universality and Beyond
A
1 Y
1
0 time
0 10000 20000 30000 40000 53431
1000 X 1029
800
600
400
200
0 time
0 10000 20000 30000 40000 53431
10 PC 11
8
6
4
: Ll
0 [ ‘ | time
0 10000 20000 30000 40000 53431

Figure 3.1: Behavior of the system emulating the operation “INC Y”.
The universal machine starting from the state where X = 343 = 73,
it finally ends up in state where X = 1029 = 3! . 73, meaning that
variable Y has been incremented from 0 to 1. Seen from a distance,
the behaviors of the variables resemble the operation of registers in
real digital computers. Even this trivial operation takes a long time,
over 50000 steps
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Figure 3.2: The matrix A representing the system corresponding to
the Bomb3 algorithm (see Appendix C). There exist only numbers -1,
0, and 1 in the above system maftrix; these values are illustrated so
that entries with -1 are shown in blue color, entries with 1 in red,
whereas entries with 0 are left blanc



28 Chapter 3. Universality and Beyond

ST miam 2 T SRR WEwe e s e SR " e W 2 pes
SRS g g e TR v ":‘-,'i!"-’:L‘“.“}" SR L R N TR H S
] ¥

L

Figure 3.3: The system of Fig. 3.2 when the rows and columns have
been appropriately permuted, thus revealing a “star form” represen-
tation A* (one of various alternatives) of the original Bomb3 system.
The state variable sp standing for input = has been changed to sjgg;
sg, or the contents of PC (originally 7) has been moved to sj;5; and
s4, or the universal machine program counter has been moved to
S5g6, S0 that s35g(0) = 1. All other entries in the “star state” s* are
originally zeros
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Appendix A

Simple Samples

In what follows, some simple functions obeying the syntax defined in Chapter
1 are presented. These functions are used later as macros to implement the
universal machine (see Appendix B), and, after that, the “Bomb Systems”
(see Appendix C). There are a few points that need to be explained first:

e It needs to be noted that local variables are intentionally avoided in the
functions (macros) to reach lower dimensional structures; the variables
are assumed to be defined and initialized on the higher level and are
passed to macros as parameters.

e Notations are kept consistent as far as possible; the function outputs
are denoted normally as Y (or Y1, Y2, etc., in the multi-output cases),
and inputs as X. The local variables are written in lowercase letters.

e For debugging purposes, the assumed variable bindings are shown as
comments next to the variable definitions; that is, on the left hand
side of the arrow it is shown what the value must be before the macro
invocation, and on the right hand side it is shown what the value will
be after the execution is completed.

e All of the functions are available in Internet, as well as the Python
form compiler; after installation, they can readily be compiled and
tested.
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Zero

First, there are three simple functions to initialize variables, Zero, Zero2
and Zero3, zeroing one, two, and three variables, respectively.

var Y hy-=>0

Zero: IFY=0
THEN GOTO end
ELSE Y SUB 1 GOTO Zero

Zero2
var Y1 hyl-=>0
var Y2 hy2 ->0
Zero2: IFY1=0Y2=0
THEN GOTO end
ELSE Y1 SUB 1 Y2 SUB 1 GOTO Zero2
Zero3
var Y1 hyl >0
var Y2 hy2->0
var Y3 hy3 >0
Zero3: IF Y1 =0Y2=0Y3=0

THEN GOTO end
ELSE Y1 SUB 1 Y2 SUB 1 Y3 SUB 1 GOTO Zero3
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Destructively move the contents of the variable X into the variable Y, zeroing
the source. If the destination is not originally zero, the old and new contents
are added together.

Move:

Copy

var Y hy >y +x
var X hx->0
IFX=0

THEN GOTO end
ELSE Y ADD 1 X SUB 1 GOTO Move

Copy the contents of the variable X into the variable Y, without (perma-
nently) affecting the source. If the destination is not originally zero, the old
and new contents are added together.

Copy:

Reset:

var Y hy >y +x
var X % x -> x

var a %0 ->0
IFX=0

THEN GOTO Reset

ELSE X SUB 1 Y ADD 1 a ADD 1 GOTO Copy
IF a=0

THEN GOTO end

ELSE X ADD 1 a SUB 1 GOTO Reset
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Subtract

Subtract two variables X1 and X2 from each other, simultaneously zeroing
the latter. The result will be returned in Y. Of course, negative results are
cut to zero.

var Y % 0 —> max(x1-x2,0)
var X1 % x1 -> x1

var X2 % x2 >0

var a %0 ->0

Subtract: Copy(Y X1 a)
Begin: IF X2 = 0
THEN GOTO end
ELSE Y SUB 1 X2 SUB 1 GOTO Begin

Mult

Multiply two integers X1 and X2, simultaneously zeroing the latter. The
result will be returned in Y.

var Y % 0 —> x1*x2

var X1 % x1 -> x1

var X2 %h x2 >0

var a %0 ->0

var b %0 ->0
Mult: IF X2 = 0

THEN GOTO end
Copy(a X1 b)
Back: IF a =0
THEN X2 SUB 1 GOTO Mult
ELSE Y ADD 1 a SUB 1 GOTO Back
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Test if the variable X2 exactly divides X1. The result in Y will be zero if
there is no remainder, otherwise Y is something else.

Divisible:
Begin:
Back:

RawDiv

var Y % 0 => 0 if divisible, otherwise > O
var X1 % x1 > x1

var X2 % x2 -> x2

var a %0 >0

var b %0 ->0

Copy(a X1 b)

Copy (Y X2 Db)

IFa=0

THEN GOTO end

IFY=0

THEN GOTO Begin
FLSE a SUB 1 Y SUB 1 GOTO Back

Assuming that X2 exactly divides X1, carry out the division.

RawDiv:
Back:

var Y % 0 -> x1/x2 (assumed divisible)
var X1 % x1 >0

var X2 % x2 -> x2

var a %0 >0

var b %0 ->0

Copy(a X2 b)

IFX1=0a=20

THEN Y ADD 1 GOTO end

IF a=0

THEN Y ADD 1 GOTO RawDiwv

ELSE X1 SUB 1 a SUB 1 GOTO Back
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Divide

Appendix A. Simple Samples

Divide X1 by X2, giving out the integer part in Y and the remainder in REM.

Divide:
Back:

Reset:

DivBy2

var Y % 0 —> int(x1/x2)
var REM % 0 => rem(x1/x2)
var X1 % x1 ->0

var X2 %h x2 > x2

var a %0 ->0

var b %0 >0

Copy(a X2 b)

IF X1 =0
THEN GOTO Reset
IF a=0

THEN Y ADD 1 GOTO Divide

ELSE X1 SUB 1 a SUB 1 GOTO Back
IFa=20

THEN Y ADD 1 GOTOD end

Subtract (REM X2 a b)

Special function for implementing division by 2. Even numbers in YX are
divided in place, whereas odd numbers are left intact. The remainder (0 or
1) is returned in REM.

DivBy2:
Back:

Even:

Zero:

var REM % 0 —> rem(x/2)
var YX % x -> x, or x/2 if divisible
var a %0 -—>7

Copy (REM YX a)

IF REM = O

THEN GOTO Even

ELSE REM SUB 1

IF REM = O

THEN GOTO Zero

ELSE REM SUB 1 a ADD 1 GOTO Back
Zero (YX)

Move (YX a) GOTO end

REM ADD 1
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CalcPower

Find out how many times PC can divide X without leaving a remainder.
This function can be used to find out the prime decomposition of natural
numbers; this is needed to resolve the unique Goédel numbering of programs
(see Appendix B).

var ROW %0 ->R

var PC hr >r

var X % Rz > rRazy

var a %0 ->0

var b %0 >0

var ¢ %0 ->0

var d %0 >0

var e %0 ->0
CalcPower:Copy(b X c)
Forward: Move(a b)

Divide(b ¢ a PC d e)

IF ¢c =0

THEN ROW ADD 1 GOTO Forward
Reset: IFa=0b=0c=0

THEN GOTO End
ELSE a SUB 1 b SUB 1 ¢ SUB 1 GOTO Reset
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FindNextP

Appendix A. Simple Samples

Find the next prime larger than a given (odd) prime in P; the result is
calculated in place.

FindNextP:

Back:

1
A\

b
b
b
b
b

var

var
var

var

0o o e d
O O oo
| |
vV V Vv V
o O O

var

P ADD 1

P ADD 1

Zero(a)

Copy(a P b)

a SUB 1

a SUB 1

a SUB 1

IF a=20

THEN GOTO end

ELSE a ADD 1
Divisible(b P a ¢ d)
IF b=20

THEN GOTO FindNextP
Zero(b) GOTO Back

succp (p)
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Universal Machine

Below, a program written in the £4+ language that is capable of emulating
any program written in the simpler £ language is presented. The Godel
number of the program code, together with the original variable bindings
(see Chapter 2), is given as the input X. The variable PC contains the current
row number being executed (presented in the “prime form”; see Chapter 2).
The (decoded) output of the program is finally given in Y, the final row is
in PC and the program state is in X.

var Y ? Output

var X ? Input: Program to be interpreted
var PC Program counter

var ROW

-~

var % Some additional local variables

var

var

O O O O O I

A
B
var C =
D
var E

Start: Zero2(ROW C)
% Decode the current line:
CalcPower(ROW PC X A B C D E)
IF ROW = 0 % If row does not exist
THEN GOTO Output

% Powers of 2 determine the command:
DivBy2(B ROW C)
IFB=20
THEN GOTO NoAdd
ELSE B SUB 1 GOTO Add
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NoAdd:

NoSub:

Add:

Sub:

Forward:

Skip:

StepTwo:

Goto:

Next:

Output:

Appendix B. Universal Machine

DivBy2(B ROW C)

IF B =20

THEN GOTO NoSub

ELSE B SUB 1 GOTO Sub
DivBy2(B ROW C)

IF B=20

THEN GOTO Goto

ELSE B SUB 1 GOTO Skip

% "Add one":
Mult(B X ROW D E)
Zero (X)
Move (X B) GOTO Next
% "Subtract one (if possible)":
Divisible(B X ROW D E)
IF B =20
THEN GOTO Forward
Zero(B) GOTO Next
RawDiv(A X ROW B D)
Move (X A) GOTO Next
% "Skip one line":
Divisible(B X ROW D E)
IFB=0
THEN GOTO StepTwo
ELSE GOTO Next
FindNextP(PC B A D E) GOTO Next
% "Go to line":
Zero (PC)
Move (PC ROW) GOTO Start

% "Continue with next line":
FindNextP(PC B A D E) GOTO Start

% Finally, resolve the value of Y:
ROW ADD 1
ROW ADD 1
ROW ADD 1
CalcPower (Y ROW X A B C D E)
ROW SUB 1
ROW SUB 1
ROW SUB 1
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Bomb Systems

Next the conclusion: Using the presented guidelines it is possible to con-
struct fixed systems of the form (1.4) having predefined matrices A that will
defy analysis attempts for ever. Below, some such unsolvability results are
shown — and new ones could easily be found following similar ideas!

The input values = below are undefined while the system is being compiled;
its value is dependent of the proposed analysis method. What is sure is that
for any analysis algorithm, some z can be found so that the system beats
the algorithm.

Unsolvability of boundedness

If there existed an algorithm that could tell for all initial states whether the
system of the form (1.4) with the matrix A defined by Bomb1 below would for
ever remain bounded or not, there would exist an infinite number of initial
states for which the system would diverge if and only if the algorithm would
say it would not do that, and vice versa:

VAR Y =0
VAR X = x % Unsolvable for some z
VAR PC =7
Bomb1: Universal(Y X PC)
IFY=0

THEN GOTO End
ELSE GOTO ToInf
TolInf: Y ADD 1 X ADD 1 PC ADD 1 GOTO ToInf
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Unsolvability of convergence

If there existed an algorithm that could tell for all initial states whether the
system of the form (1.4) with the matrix A defined by Bomb2 below would
finally converge to some constant state or not, there would exist an infinite
number of initial states for which the system would converge if and only if
the algorithm would say it would not do that, and vice versa:

VAR Y =0
VAR X = x % Unsolvable for some z
VAR PC =7

Bomb2: Universal(Y X PC)

ForEver: if Y =0
THEN GOTO End
ELSE GOTO ForEver

Unsolvability of stability

If there existed an algorithm that could tell for all initial states whether the
system of the form (1.4) with the matrix A defined by Bomb3 below would
finally go to zero or not, there would exist an infinite number of initial states
for which the system would go to zero if and only if the algorithm would
say it would not do that, and vice versa (this could also be rephrased as the
“mortality problem”, or convergence to origin):

VAR Y =0
VAR X = x % Unsolvable for some z
VAR PC =7
Bomb3: Universal(Y X PC)
IFY=0

THEN GOTO ToZero
ELSE GOTO End
ToZero: Zero3(Y X PC)



