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LIST OF SYMBOLS 

• a: Zero mean white noise signal 
• C(·): Controller transfer function 
• e, E: Scalar error signal and a k×m matrix containing error signal values 
• f(·): Arbitrary function 
• F: Linear mapping matrix of dimension n×m 
• G(·): Transfer function (for a process, closed loop system etc.) 
• i,j: Indices for vector and matrix elements 
• J(·): Cost function 
• k: Number of data samples, i.e., local iteration steps 
• K: Number of global iteration steps 
• Kc: Critical gain of the controller 
• KOL: Open loop gain of the process 
• KP: Proportional gain of the PID controller 
• L: Time lag, delay 
• L(·): Filter transfer function 
• m: Number of quality measures; dimension of output space 
• M: Number of latent basis vectors in output oriented subspace 
• n: Number of the parameters; dimension of input space 
• N: Number of latent basis vectors in input oriented subspace 
• q, Q: Quality measure vector and matrix, dimensions m×1 and k×m, respectively; 

shift operator 
• r: Reference signal; setpoint 
• Rn: n-dimensional linear space 
• s: Laplace variable 
• t: Continuous or discrete time index 
• Tc: Period of the critical oscillation 
• TI: Integration time 
• TD: Derivation time 
• TR: Rise time 
• TS: Settling time 
• X: Random variable 
• u: Input signal, control signal 
• v: Disturbance signal 
• w: Weight vector of compatible size 
• y: Output signal 
• z, Z: Latent variable vector and matrix, dimensions N×1 and k×N, respectively 
• α: Arbitrary scalar constant; size of a statistical test 
• β: Arbitrary scalar constant 
• φ, ϕ: Eigenvectors; input and output oriented subspace basis vectors, respectively 
• Φ: Set of basis vectors 
• γ: Scalar step size 
• κ: Data sample index 
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• λ: Eigenvalue; Lagrange multiplier 
• θ, Θ: Parameter vector and matrix, dimensions n×1 and k×n, respectively 
• σ: Standard deviation 
• σ2: Variance 
• τ: Time constant of a process 
• ψi: Impulse weight coefficient on lag i 
• ζ: Damping coefficient of the process 
 

 

NOTATIONS 

• M*: Optimal or objective value of M 
• M : Nominal (prevailing) value of M 
• M̂ : Estimate of M 
• M~ : Error of M (e.g. estimation error) 
• M : Mean value of M 
• MT: Transpose of M 
• M°: Unit vector parallel to vector M 
• Mi: The ith column of the matrix M or ith element of vector M 
• Mij: The element on the ith row and jth column of matrix M 
• |·|: Absolute value (for scalars); Euclidean vector norm (for vectors) 
• cov{·}: Covariance (matrix) 
• det{·}: Determinant 
• dim{·}: Dimension of vector 
• E{·}: Expectation 
• var{·}: Variance 
• ∆: Difference of two variables 
 

 

ABBREVIATIONS 

• CCA/CCR: Canonical Correlation Analysis/Regression 
• CPA: Control Performance Assessment 
• CR: Continuum Regression 
• FCOR: Filtering and Correlation (algorithm) 
• IAE: Integral of Absolute value of Error 
• IFT: Iterative Feedback Tuning 
• ILC: Iterative Learning Control 
• IMC: Internal Model Control 
• IRT: Iterative Regression Tuning 
• ITSE: Integral of Time-weighted Squared Error 
• LQG: Linear Quadratic Gaussian 
• LS: Least Squares (method) 
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• MCMC: Markov Chain Monte Carlo (simulation) 
• MIMO: Multiple inputs, multiple outputs (model, system) 
• MLR: Multilinear Regression 
• MRAC: Model-Reference Adaptive Control 
• MV: Minimum Variance (controller, performance index) 
• MVR: Multivariate Regression 
• PCA/PCR: Principal Component Analysis/Regression 
• PLS: Partial Least Squares 
• PPA: Process Performance Assessment 
• PRBS: Pseudo Random Binary Sequence 
• SISO: Single input, single output (model, system) 
• SPM: Statistical Process Monitoring 
• STR: Self-tuning Regulator 
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1 INTRODUCTION 

This report introduces a novel method, called Iterative Regression Tuning, for 
simultaneous tuning of multiple controllers and the results obtained from its first 
industrial scale application. The report is based on the master’s thesis of Halmevaara 
/6/, in which new approaches initially presented by Hyötyniemi /21,22,23/ are studied 
and applied. 

The goal of the thesis was to test the Iterative Regression Tuning (IRT) method in 
practice. The method has already been experimented in toy examples (see /22/). In /6/ 
it was tested whether the approach could be scaled up to real life industrial processes. 
A dynamical simulator representing a realistic power plant process was applied in the 
test case. This report summarizes /6/ in order to provide a comprehensible overview of 
the proposed tuning technique, its application possibilities and the obtained results 
with the example process. 

The research of the master’s thesis was carried out in connection with the Testing 
Manager project that was a cooperative research and development project of Technical 
Research Center of Finland (VTT) and Helsinki University of Technology (HUT) 
during the years 2003 - 2004. National Technology Agency (TEKES) and Finnish 
industry (Fortum Nuclear Services and Metso Automation) were involved in funding 
the project. The goal of the Testing Manager project was to provide a flexible and 
comprehensible environment for simulation assisted testing and tuning of industrial 
automation systems. This covers well-defined working practices, practical tools 
supporting the testing and commissioning phases, as well as open connectivity of the 
simulation and automation software. However, the software architectural solutions 
were beyond the scope of the master’s thesis and thus also in this report the emphasis 
will be exclusively on the IRT technique.  

1.1 Motivation and background 
Despite all the improvements in the last decades in the field of control theory, the most 
common control algorithm used in process industry is still the PID algorithm. The 
more advanced control methods, such as, e.g., the optimal control theory, have not 
gained as much interest of the practicing control engineers as the less sophisticated 
algorithms. This is reflected as a smaller number of implementations on industrial 
processes. Another fact that has been recognized is that as many as about 60 % of the 
industrial PID controllers are behaving inefficiently or even detrimentally, i.e., far 
from the optimal achievable control performance /13/. This is due to the common 
“tuning” principle according to which some educated guesses or default values offered 
by the automation suppliers are used instead of any considerate way to tune the 
controllers. Also the amount of controllers in an industrial process is one reason that 
must dampen the tuning enthusiasm of the control engineers. As explained in /38/, one 
process engineer may be responsible for several hundred control loops. 

In recent years, miscellaneous controller tuning methods and process performance 
assessment (PPA) techniques have drawn more and more attention. The research has 
mainly concentrated on single loop methods although the controllers are known to 
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have considerable joint effects. This usually results in rather conservative tuning of the 
controllers as one wants to ensure the stability and the robustness of the system. The 
systems that are multivariate by nature are often split into pieces and handled with 
tools that are developed for SISO (single input, single output) systems since the MIMO 
(multiple inputs, multiple outputs) systems theory is often considered too cumbersome 
and intangible. 

Modern simulation software makes it possible to simulate the dynamic process models 
faster than in real time. And as the computational power of computers has increased it 
is possible to construct models and run simulations that are more detailed and accurate 
than ever. This increased simulation power introduces new possibilities in system 
engineering. 

Modern automation and simulation systems produce huge amounts of measurement 
data. However, only a minority of the available data is utilized in a sensible way. 
Reasons for this in addition to lack of theoretical tools are the noise and the 
redundancy in the measurements. One inevitably faces numerical problems when noisy 
and collinear signals are used for modeling and analyzing the system performance. In 
the recent years attempts have been made to overcome these problems with different 
methods that can be gathered under the term data mining. In some cases concrete 
results can be reached. 

1.2 General idea of the Iterative Regression Tuning 
Let us examine the block diagram in Figure 1 that represents a model of a dynamic 
process and a system for its performance evaluation. Note that the model may well 
describe a rather large system, e.g., a whole power plant. Usually, the model of a 
system is identified in order to forecast the process responses to certain input signals. 
However, if the system is viewed in a somewhat wider scope and one is more 
interested in the quality of the performance rather than the actually resulting output 
signals, the concept of quality measure can be introduced /21/. Quality measures, q, are 
characteristic figures that measure how acceptable or desirable the performance of the 
system is. For instance, a quality measure could be defined as the variance of the end 
product properties, the efficiency in power production or the setpoint tracking ability 
of a controlled variable. 

Here it is assumed that the systems parameters θ somehow define the current 
performance of the system, at least in statistical sense. Further, this unknown 
dependency between θ and q can be modeled if only a large enough data set of 
parameter values θ and the corresponding quality measures q is available. The input 
and output signals, u and y, can be interpreted as realizations of stochastic processes, 
and the performance (whether good or bad) is determined partly by the system 
parameters. Hence, the modeling of the originally dynamic system transforms into 
describing the static stochastic dependency between θ and q. After the relationship 
between parameters θ and quality measures q is modeled, one is able to optimize the 
system performance with respect to its parameters, e.g., by using iterative optimization 
methods such as gradient descent algorithm. 
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Figure 1. A dynamic model describes the response y of a system to an input u. 
Seen on the higher level of abstraction, the quality measures q that describe the 
system performance depend on the parameters θ /modified from 21/. 

Although this report will focus on control parameter tuning, it does not imply that the 
IRT method is only applicable to this area. The set of parameters that is tuned does not 
have to be restricted to the control parameters only but it may well include any other 
process parameters as well, e.g., setpoint values (certain assumptions must hold 
however; see Chapter 4). 

1.3 Introductory example 
To have some intuition of how the method works an extremely simple case is studied 
below. Assume that a first-order process  
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        (1) 

is being controlled using a P controller (see Figure 2), the proportional control 
parameter being P. The closed-loop transfer function becomes 
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This system can be characterized (for example) in terms of P, so that one can select the 
parameter vector as θ = P. The quality of the system behavior can be measured, for 
example, in terms of the steady state error: 
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Figure 2. Simple system with one tunable parameter. 
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Now, this error can be minimized using the gradient method: 
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or, in this case, 
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where K is the iteration index. This algorithm gives one the possibility of gradually 
changing the parameter to enhance the system behavior. 

It needs to be recognized that the above example is extremely simple, so that analytic 
solutions could also be found. Iterative optimization methods are applied, since in 
practice the process model is not known exactly and the dependency between the 
parameters and the quality measures does not necessarily stay fixed over the whole 
parameter space as it was assumed above. Finding the process model and defining the 
criterion becomes more and more difficult as the complexity and the size of the system 
increase. Theoretical approaches often fail to scale up; the proposed methodology, on 
the other hand, is rather insensitive to system complexity. 

Typically, the parameter – quality measure model has to be based on data. As will be 
shown, the proposed optimization idea still works for such data-based models. To 
master the high-dimensional data-based models corrupted by noise, new approaches 
have to be employed instead of the traditional control engineering methodologies, i.e., 
multivariate statistical methods. These new tools will also be discussed in this report. 

The above example also illustrates the shortcomings of the IRT methodology. It simply 
implements parametric adaptation towards local minimum, assuming it exists – and in 
the above case, it does not: The value of the parameter P should be increased infinitely 
in the above example, resulting in problems. 

It can be claimed that one of the main contributions of the proposed approach is that it 
makes the underlying assumptions explicit: What are the consequences of the selected 
criteria. In this way, the domain area expert may reach new intuition and understanding 
of the process. For example, when looking at the above process, one can see that the 
selected criterion is not good for this system; or, rather, another control structure 
should be selected (controller with integrative action). 

1.4 Structure of the report 
The structure of the report is divided into two parts. The first part (Chapters 2 – 3) 
consists of short literature surveys that review the current status of process 
performance assessment and controller tuning. In the second part (Chapters 4 - 7) the 
IRT method, the case study and its results are introduced along with some discussion. 
In Appendices A and B some mathematical tools are presented. 
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In Chapter 2 different approaches to process performance assessment are discussed. 
Several performance indices are introduced and their application as quality measures is 
considered. At the end of the chapter also some remarks on the multivariable 
extensions of performance measures are made. 

Chapter 3 introduces in general terms different controller tuning techniques. In 
addition to the conventional tuning guidelines, auto-tuners and principles of adaptive 
control, also a couple of more recently proposed tuning methods are presented. 

In Chapter 4 the Iterative Regression Tuning (IRT) method is explained more 
thoroughly. Different application practices of the tuning technique concerning different 
phases in the control system life cycle are also introduced. Finally, assuming that the 
new methodology is used for constructing a generic parameter tuning tool, some 
requirements and necessary functionality of the user interface and the software 
environment are discussed. 

Chapter 5 presents the simulated process and the controllers that were tuned in the case 
study. Further, some comments about choosing the parameters and defining the quality 
measures are made. 

In Chapter 6 the obtained results are presented. The validity of the assumptions 
concerning the IRT method is inspected and the applicability of the different 
multivariate regression methods in this context is discussed. 

In conclusion, Chapter 7 presents the most important observations concerning the 
results and some interesting areas of further studies are highlighted in this section.  

Appendix A shortly sums up the basic idea of statistical testing. These techniques are 
rather mature branch of statistics and thus an appropriate way to conduct conclusions, 
e.g., whether an improvement in the process performance is significant also in the 
statistical sense.  

Different multivariate regression methods that can be used within the developed tuning 
technique are introduced in Appendix B. First, the ordinary Least Squares (LS) 
modeling is introduced, and after that, some improvements on this technique are 
presented. 
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2 PROCESS PERFORMANCE ASSESSMENT 

In Introduction it was explained that the performance of a system can be evaluated in 
terms of quality measures q (see Figure 1). This means that suitable mathematical 
expressions giving numerical values for different control objectives should be defined. 
These quality measures naturally depend on the examined system since the 
performance objectives can vary considerably from one process to another. In case of 
controller tuning these quality measures can be associated with the concept of control 
performance assessment (CPA) and related performance indices. This chapter presents 
some measures reported in the literature along with traditional textbook 
characterization methods. In the following, the more general term process performance 
assessment (PPA) will be used instead of CPA to emphasize that it is the whole 
process whose behavior one is interested in optimizing. 

In the last decade the PPA has drawn much attention, at least the attention of the 
academic people. Various techniques for evaluation of process performance have been 
developed and published. However, according to Harris et al. /13/, in 1999 only a 
minority of the industrial plants utilized any system for reviewing the performance of 
the controllers relative to their design objectives. Not until recently, i.e., during the last 
couple of years, the number of the implemented applications in the industry has been 
increasing /19,26/. 

CPA is just one part of the process monitoring task that includes also diagnosis, 
isolation and clearing the faults. According to Stanfelj et al. /34/, monitoring the 
control loops performance is a matter of defining the best achievable (or desirable) 
performance, testing whether this is achieved and finally determining the steps to 
improve the current performance. For that reason it should be kept in mind that the 
concept of CPA is quite useless alone if the successive steps (tuning or changing the 
control strategy) are not considered. 

2.1 Traditional characterizations 
Traditionally, the evaluation of process performance has been based on deterministic 
measures, such as overshoot, rise time, settling time and decay ratio. Most of these 
measures, or indices, are meant to characterize the response of the system to a setpoint 
change or load disturbance. Typically, the indices have many slightly different 
definitions. In process industry fast recovering capability after a load disturbance (or 
insensitivity to load disturbances in the first place) is usually considered as good 
performance. Responses to set point changes are, on the other hand, not that much of 
interest and often it is sufficient to have smooth responses without excessive 
overshoot. However, for controllers that operate as slave controllers in cascade 
configurations also the setpoint tracking ability is important. The above discussion 
reflects the fact how the control performance objectives vary substantially from one 
control loop to another. 
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2.1.1 Deterministic measures 
The performance measures mentioned above are illustrated here with an example. 
Figure 3 presents a step response of an underdamped 2nd order system to a setpoint 
change. 

TR TS

h1

h2

L

 

Figure 3. A step response to a setpoint change of ∆r = 1. TS is the settling time, TR 
the rise time, L the dead time, and h1 and h2 are the heights of the successive 
oscillation peaks of the response. 

The magnitude of the overshoot h1 is usually expressed proportional to the size of the 
setpoint change ∆r and its value is given in percents,  

%1001 ⋅
∆

=
r

hOS .       (6) 

The rise time TR is determined in the literature in many ways. One typical definition is 
the 68% rise time. If it takes t time units after the setpoint change until the response 
has risen 68 percents of ∆r, the rise time is 

 LtT −=R ,        (7) 

in which L is the dead time. 

The settling time TS is usually defined as the time that is needed until the values of the 
controlled variable settle down inside some predefined limits, e.g., inside 2% error 
margin (see Figure 3). 

The decay ratio DR measures how fast the oscillations die out after a load disturbance 
and it is defined as a ratio of two successive oscillation peaks 
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h
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Controlled systems are also characterized based on their frequency responses. E.g., 
such measures as bandwidth and resonance frequency of a closed loop system describe 
the frequency interval where the disturbance rejection is successful and the frequency 
of maximal amplification, respectively. These measures are, however, mainly used in 
controller design rather than in PPA. (For more details, see, e.g., /4/.) 

2.1.2 Error signal integrals 
One typical group of process performance characteristics is the error signal integrals of 
the form 

∫
∞

0

)( dttet βα ,        (9) 

where the error e(t) is defined as the difference between the setpoint value and the 
process measurement. For example, the IAE index (Integral of absolute value of error) 
is obtained with α = 0 and β = 1 whereas the ITSE index (Integral of time-weighted 
squared error) with α = 1 and β = 2. These kinds of measures are usually considered 
quite problematic because they do not offer any limits for the index values, which 
make their interpretation difficult for a human. (However, see the discussion in 
Chapter 2.4). Thus, the process performance is often measured against some kind of a 
benchmark.  

One natural way to overcome the problem of unlimited and hard-to-interpret index 
values is to use a reference model as a benchmark. This means that the system 
performance is compared to the objective model used in controller design. Such a 
working practice helps in decoding the obscure figures produced by the performance 
indices and clarifies how far from the target the prevailing performance is. E.g., the 
value of IAE index is much more comprehensible if one knows also the index value for 
an objective model in the same situation. Reasonable selection of the objective model 
is, nevertheless, far from trivial. 

2.2 Examples of PPA indices 
The PPA boom in the academic control theory society has resulted in a number of 
special purpose PPA indices. Common to all these indices is that they try to express 
the goodness of the process performance in a form that is somehow easier to 
understand than the original time series signals produced by the automation system. In 
a way it is a matter of highlighting some interesting phenomena and the aim is to assist 
the monitoring task, as the number of control loops in an industrial application may be 
several dozens. In this chapter a couple of control loop characterization methods are 
introduced. 

2.2.1 Oscillation index 
One typical form of bad process performance caused by improper controller tuning is 
continuous oscillation of the controlled variable. Oscillations cause increased energy 
and raw material consumption and non-uniform end product quality. In /24/ Hägglund 
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proposes an automatic oscillation detection procedure. The method studies the value of 
IAE index calculated between successive setpoint crossings of the controlled variable 
(assume that these happen at instants ti-1 and ti): 

( )∫
−

=
i

i

t

t

dtteIAE
1

  .       (10) 

Every time the observed value of IAE is greater than a predefined threshold IAElimit, 
one can conclude that a load disturbance has occurred. By using exponential weighting 
the number of occurred load disturbances is summed together. If the occurrence 
frequency is high enough, the number of detected load disturbances exceeds the value 
of parameter nlimit, which indicates that the loop is oscillating. Hägglund gives 
guidelines for selecting the parameters IAElimit, exponential weighting coefficient and 
nlimit. The detection procedure has been implemented in an industrial process controller 
and, according to Hägglund, it has given good results in practice. Hägglund also points 
out that there are many possible reasons for the oscillation in the control loop along 
with the poor controller tuning. The most typical reason is the friction in the control 
valve. Another reason might be an oscillating load disturbance that may result from 
another oscillating control loop. In /36/ Thornhill and Hägglund propose some 
methods for the characterization of oscillations. 

2.2.2 Idle index 
According to Hägglund /25/ most of the controllers in process industry are rather 
conservatively tuned to avoid instability and oscillations in varying operating points. 
Consequently, these controllers give sluggish responses to load disturbances, which 
means long-lasting deviations from the setpoint and thus even decreased product 
quality in the end. Thus, he introduces the Idle index for detecting the sluggish control 
loops. First, the time periods, when the correlation between the signal increments 
(derivatives) of control signal and process measurement is positive and negative, are 
determined: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎩
⎨
⎧

≥∆∆
<∆∆+

=

⎩
⎨
⎧

≤∆∆
>∆∆+

=

0 if  ,
0 if  ,

0 if  ,
0 if  ,

neg

neg
neg

pos

pos
pos

yut
yuht

t

yut
yuht

t
      (11) 

where h is the sampling interval. Then the Idle index is defined by 

negpos

negpos
I tt

tt
I

+

−
=         (12) 

and its values are bounded to the interval [-1,1]. Positive values close to 1 suggest that 
the tuning is sluggish whereas negative and small positive values ( II < 0.4 ) indicate 
acceptable controller tuning. However, negative values close to -1 are also obtained if 
the loop is oscillating. In the calculation of the index it is assumed that the sign of the 
static process gain is known and the load disturbances should be steps or at least 
abrupt. The method is also sensitive to noise and therefore it is important to filter the 
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signals. The detection procedure of the sluggish control loops can be applied both on-
line and off-line.  

2.2.3 Minimum variance index 
The behavior of the process is not completely explained by the deterministic models. 
The actual process values always differ somewhat from the assumed performance, no 
matter how precise the model is. This is due to the random phenomena (stochastic 
disturbances, noise) affecting the process, its control system and instrumentation 
devices. E.g., it is unlikely that the process measurement ever meets its expected value 
exactly in a steady state but varies randomly around it. Thus it is convenient to have 
some tools for evaluating the system performance also in the stochastic framework. 
Many basic statistical characteristics, such as variance, auto- and cross-correlation, 
turn out to be quite useful and they can be used for many diagnostic purposes.  

For regulatory control it is reasonable to observe the variance of the controlled 
variable. However, also the values of the variance are unbounded and thus 
incommensurable, just as the error signal integrals discussed earlier. In this case a 
sensible benchmark is the variance achieved with the so-called minimum variance 
controller. Harris first proposed this practice in 1989 /11/. The minimum variance 
index (MV index) or the Harris index is usually expressed either as 

( ) 2
MV

2

σ
σ

ξ yL = ,        (13) 

where the index ranges ξ(L) ≥ 1, or 

( ) 2

2
MV1

y

L
σ

σ
η −= ,       (14) 

where 0 ≤ η(L) ≤ 1 /13/. In (13) and (14) L is the dead time, σy
2 is the observed 

variance of the controlled variable and 2
MVσ  is the minimum achievable variance. 2

MVσ  
can be defined as 

( ) 22
1

2
1

2
MV 1 aL σψψσ −+++= ,     (15) 

where σa
2 is the noise variance and ψi is the impulse weight on lag i. Equation (15) 

suggests that the controller cannot influence the MV part of the total variance by any 
means due to the dead time L. Instead, all of the impulse weights after the lag L are 
zero if a minimum variance controller is applied. This reflects the biggest drawback 
common to MV based PPA methods: A priori knowledge of the process dead time is 
required. If the estimate of the dead time is inaccurate, the method will inevitably 
provide rather poor results. Many techniques for the calculation of the MV index in 
practice have been proposed in the literature. E.g., Huang and Shah /17/ introduced a 
filtering and correlation based method, FCOR, to estimate 2

MVσ  and η(L).  

The idea of using minimum variance control as a benchmark does not imply that the 
performance of the minimum variance controller would always be desirable or even 
possible. Under minimum variance control the manipulated variable (or the control 
signal) is assumed to work very aggressively in a large range, which may not be 
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possible in practice. And if the process transfer function is non-invertible, it is 
impossible to implement a minimum variance controller. Still, the minimum 
achievable variance serves as a good benchmark because it offers a theoretically 
justified lower bound for the variance. Based on the idea of Harris, further 
development has been made in order to obtain good and easy-to-calculate PPA indices. 
These improvements are reported, e.g., in /12,14,34/. 

In /34/ Stanfelj et al. present a hierarchical PPA method that first identifies the 
deviation from control objectives, and when necessary (i.e., when a noticeable 
deviation is found), it determines the minimum achievable variance with the current 
control structure and the steps needed to improve the process performance. The 
method is based on statistical analysis of the plant time series data using the 
autocorrelation and cross-correlation functions. 

2.3 Multivariate PPA 
Although the above presented process performance measures are developed for the 
SISO systems, some of them have been experimented also in assessing of MIMO 
systems. The goal of this attempt is comprehensible but in most of the cases designing 
MIMO extensions is not a straightforward task. 

In /14/ an expert system is used to assess control loops in the whole plant. It collects 
sets of data from the plant, evaluates the current control performance of the loop and 
compares it to the previous results. The system archives relevant performance data and 
reports about the discovered problems. In this application the process performance was 
measured with the before mentioned Harris index. 

PPA methods of truly multivariable control systems have also been developed. For 
example, in /12/ Harris et al. present an extension of the minimum variance index to 
multivariable case. Similarly as in the SISO case, the calculation of performance 
bounds for MIMO systems requires knowledge of the delay structure of the system, 
i.e., the interactor matrix, which may become a problem in some cases. In /18/ Huang 
et al. propose an extension of the FCOR method to the MIMO systems. Also their 
approach assumes the interactor matrix to be known. 

2.4 General remarks on the PPA indices 
One defect common to all PPA techniques is that they only provide the answer 
whether something should be done or not. They do not solve the actual problem of 
controller tuning. Of course, control performance indices support the tuning task as 
they point out which controllers are performing badly and in which manner. Still, the 
actual job of choosing the new parameters is left to the control engineer responsible for 
the tuning. 

In /13/ Harris et al. remind that selecting appropriate and applicable PPA measures is 
not an easy task in an industrial setting: It is always a trade-off between the complexity 
of the method, its invasiveness and the information content it offers (see Figure 4). 
One has to consider whether one method gives crucial and adequate information about 
the control systems performance with respect to the control objectives. At the same 
time, if one strives for accurate and informative monitoring methods, the system 
should be modeled to a sufficient precision, which requires dynamic experiments on 
the process and thus inevitably interference in the production. One should also 
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consider the amount of complexity (regarding the computational effort and a priori 
process knowledge) that is justified. 

Precision of
information

Simplicity Non-invasiveness  

Figure 4. The trade-off concerning the selection of PPA indices in practice 
/modified from 13/. 

The controller and its parameters are naturally not the only factors affecting the system 
behavior. The process dynamics (e.g., non-invertible zeros, dead time, non-linearities), 
disturbances, limits on the manipulated variables and the operating point also have 
their influence on the performance of the system. These factors differ from process to 
process and thus it is difficult to set any general definitions for good process 
performance. Also the control objectives are different in every application, for 
example, servo vs. regulator problems.  

The PPA is a continuous task that cannot be accomplished in one go. Wear and other 
malfunctions in the control system, e.g., in sensors and actuators, cause a constant drift 
to the optimal control parameters. These characteristics should be kept in mind in the 
PPA task and one should monitor the changes in the process performance rather than 
just the present behavior. 

2.4.1 PPA indices as quality measures 
If one wants to use some of the preceding PPA indices as quality measures q 
(discussed in Chapter 1.2) they must fulfill some requirements. First of all, the quality 
measures have to be continuous functions of the qualifiers θ. Furthermore, these 
functions should behave such that they do not perform any abrupt changes, i.e., they 
should be “smooth”. The reason for this is obvious, if one aims to use the gradient 
descent algorithm in the optimization or any other method that involves differentiation. 

Figure 5 presents four different quality measures. Quality measure q1 is totally 
inappropriate because it is non-differentiable. Also q2 would be a problematic choice 
since it is impossible to determine the gradient direction of this function in every point 
of the θ axis. Instead, q3 and especially q4 are suitable for the purpose in this context. 
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Figure 5. The quality measures q3 and q4 represent good examples of quality 
measures whereas one cannot determine the gradient direction of q1. Also quality 
measures of type q2 are problematic. 

Most of the performance measures described above, e.g., the MV index, the Idle index 
and the Oscillation index, are defined such that their values range over some specific 
interval. In this manner the relevant information gained from the data can be 
compressed to a single (bounded) numerical value that is easier to interpret and 
compare by a human mind. E.g., it is quite hard to say whether 100 or 1000 are big or 
small values, if there is no information about the overall magnitude. Instead, if one 
knows that the values range from 0 to 1000, it is much easier to rate the index value 
100. However, if the PPA indices are used as above-described quality measures, the 
scaling of their values with some kind of benchmarks is not required. Because an 
algorithm handles the interpretation of the values, the situation is completely different 
as compared to traditional approaches. Mathematical machinery is able to obtain a 
picture of the correlation structure of the data, no matter whether the quality measure 
values are bounded to some interval or not. And in fact, the less the data is crushed the 
better the results are. 
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3 CONTROLLER TUNING TECHNIQUES 

As Stanfelj et al. argued in /34/, CPA is only one step forward if the process 
performance enhancement is pursued. After diagnosing which control loops are 
behaving badly and in which manner, the actual tuning task can begin. Traditionally, 
the developed controller tuning methods have mainly been concentrating on the SISO 
systems. Later on, the results have been adjusted to the needs of the MIMO systems as 
well. The concentration of the research almost exclusively on the SISO systems and to 
their tuning is easy to understand if the status of the PID controller is considered: More 
than 90 % of all control loops are of PID type /13/. E.g., many of the multivariable 
control systems operate in cascade mode such that the multivariable controller is 
providing set point values for the lower level PID controllers. This makes the PID 
controllers essential building blocks of multivariable control systems and their proper 
tuning is a necessity for the satisfactory performance of the overall system. 

When considering any alternatives to PID controller one always ends up with the same 
problem: Advanced control algorithms, e.g., the general linear controllers, are more 
troublesome to design and tune. The number of the control parameters increases as the 
controller structure becomes more complicated and thus the appealing simplicity of the 
PID controller is lost. Usually, the tuning methods for the advanced controllers assume 
that the whole process is fairly well known. This means that the transfer function(s), 
step or frequency response(s) characterizing the behavior of the system should be 
modeled at least to a certain precision. 

3.1 Conventional tuning principles 
The early tuning methods were in practice only guidelines to control engineers, who 
were supposed to do the tuning of the controllers, i.e., one relied on the experience of 
the practicing control engineers. The dominant status of the PID controller as 
compared to the other control strategies implemented in the industry must have 
contributed to the slow development and adoption of the controller tuning methods: 
Three intuitively understandable parameters of the PID are still quite easily adjusted in 
a sensible way without fancy tuning tools. This might be the case at first sight, but as 
the number of these simple PID controllers operating in the same system increases, the 
tuning becomes more and more complex task due to interactions between controllers.  

3.1.1 Ziegler-Nichols tuning 
Ziegler and Nichols gave the first and still commonly used tuning principles of the PID 
controller in 1942. These general rules of thumb are still widely used although it has 
been recognized that they are not able to offer acceptable performance in many cases. 
E.g., long dead time may be a reason for the unsatisfactory control performance if the 
controller is tuned with the Ziegler-Nichols principles. The reason for the popularity, 
despite all the disadvantages, may be the simplicity of these rules.  

In the Ziegler-Nichols tuning the critical point of the frequency response is first 
determined. In practice, this point can be found by increasing the gain of the purely 
proportional controller until the controlled system reaches the stability limit and starts 
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to oscillate. By denoting the oscillation period with Tc and the corresponding gain of 
the P controller with Kc, the Ziegler-Nichols choice for the PID parameters is 

c c c
P I D,   ,   

1.7 2 8
K T TK T T= = = ,      (16) 

for a PID controller of the form 
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where KP, TI and TD are gain, integration and derivation time, respectively. The 
disadvantages of this tuning method are quite obvious: It is rather laborious to tune 
many controllers one by one and, furthermore, driving the process to stability limit is 
neither practical nor appropriate way of enhancing the performance. And after all, the 
Ziegler-Nichols method does not take into account the individual control objectives of 
a loop but assumes that a certain controller tuning could be satisfactory for every 
single PID controller. 

3.1.2 Internal Model Control (IMC) 
Another control design method that has been used also for fixed structure controller 
tuning is the internal model control (IMC) method. There are many variants of this 
method that can handle also more general model structures, but in this context it is 
adequate to examine one simple example. If a system is approximated using a first 
order plus time delay model of the form 
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and the model parameters KOL, τ and L (open-loop gain, time constant and time delay 
of the process, respectively) are determined from an open-loop step response, the IMC 
tuning for a PID controller of the form (17) is obtained with 
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where α is a tuning parameter corresponding to the desired closed-loop time constant 
/29/. In many cases α is denoted with λ which gives rise to the name lambda tuning. In 
most cases the IMC design technique results in reasonably good control structures. 
Also, it is quite easy to use as there is only one tuning knob. Problems may occur on 
processes with non-invertible zeros or long time delays that are approximated, e.g., 
with Padé approximations. And, especially, if the process is assumed to follow a model 
type that is incorrect, the resulting control performance is unlikely desirable. 

3.2 Automatic tuning techniques 
A few decades ago the automatic tuning of controllers became a popular research 
topic. In 1970’s and 1980’s the intensive research work resulted in a wide variety of 
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approaches to automatic tuning. Automatic tuning (or auto-tuning) means methods for 
automatic control parameter tuning on demand from the operator.  

One of the first auto-tuning techniques, originally proposed by Bristol /2/, was based 
on pattern recognition. This method monitors the behavior of the error signal after a 
load disturbance or a setpoint change. The observed response is compared to the user-
specified objective by using distinctive features, such as peaks and troughs, time 
between peaks, and the steady state error. A major drawback of this method is the need 
of consecutive setpoint changes or load disturbances for successful auto-tuning of 
control parameters. Also, determining a reasonable objective behavior for the process 
may be difficult. 

Hang et al. present in /10/ an extensive state-of-the-art review of relay auto-tuning that 
is another common auto-tuning technique. According to them one of the first relay 
feedback auto-tuning methods that was commercialized was the one proposed by 
Åström and Hägglund in 1984. Neither open-loop tests nor large setpoint changes were 
required when using this auto-tuning method, which was a great improvement as 
compared to its predecessors such as the Bristol method. However, this method 
focuses on simple SISO controllers. The tuning is based on the estimation of the 
process frequency response at the critical frequency and applying then the Ziegler-
Nichols tuning principles. This means that the relay auto-tuning shares the same 
disadvantages as the applied tuning principle (see Chapter 3.1.1). 

Later on, many improvements on this technique have been reported, e.g., modifications 
for processes with long time delays and oscillating dynamics. There have also been 
attempts to generalize the method to more advanced controllers, such as cascade 
controllers and Smith predictors. E.g., Hang presents in /7/ an extension to 
conventional relay feedback auto-tuning that can be used to online tuning of cascade 
controllers. 

The relay auto-tuning methods have been experimented also on multi-loop PID control 
systems and multivariable controllers. These attempts have been reviewed in /10/. 
Luyben, e.g., presented an iterative auto-tuning approach for multi-loop PID controller 
/30/. This method tunes the multivariable system loop by loop by using sequential 
relay tuning approach and Ziegler-Nichols tuning principles. One drawback of this 
method is that the process dynamics should be known to some extent, either in transfer 
function or frequency response form. This makes the method dependent of the process 
at hand and the generality (process independence) is lost. Another unfavorable feature 
is that the method is limited to open-loop stable systems only. And, finally, the 
stability of the system cannot be guaranteed with this auto-tuning method and therefore 
a heuristic “detuning factor” is introduced. 

It can be concluded that common to all relay feedback auto-tuning methods is their 
applicability to only certain types of processes and controllers. Furthermore, they are a 
bit cumbersome to apply for tuning of multivariate systems. 

A third way of finding the critical point of the process frequency response is described 
by Hang and Sin /9/. They use the cross-correlation of a pseudo-random-binary-
sequence (PRBS) test signal and the process output to calculate the impulse response 
of the system. This is numerically transformed into frequency response and finally the 
controller tuning is performed with the Ziegler-Nichols rules. This procedure has some 
advantages, e.g., it operates on-line in closed loop system and it does not require 
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operation near the stability boundary. But then, the use of PRBS test signal induces 
extra perturbation in the controlled variable that is, of course, undesirable. 

The three different approaches to auto-tuning (relay auto-tuning, pattern recognition 
and cross-correlation based auto-tuner) are compared with three different process 
models by Hang and Sin in /8/. It was discovered that relay feedback auto-tuner 
produced the most conservative tuning results in every case. The cross-correlation 
based auto-tuner using the refined Ziegler-Nichols tuning formulas gave the best 
responses to both setpoint changes and load disturbances. 

3.3 Adaptive control 
Few decades ago another progressive research area explored the adaptive control 
structures. The concept of adaptive control departed from the auto-tuners such that the 
control parameters were tuned automatically online without operator intervention. 
According to Åström and Wittenmark, an adaptive controller is a controller that 
modifies its behavior in response to changes in the process dynamics and disturbance 
characteristics /39/. Figure 6 presents the basic structure of the adaptive control. The 
reasoning concerning the adjustment of the control parameters is based on setpoint, 
control and output signals of the control system. In practice, a model of the plant is 
estimated based on the signals and the controller is tuned respectively to give the 
desired response. The methods can be divided into direct and indirect methods. In the 
indirect methods the process is identified online and the identified process parameters 
are used for solving the underlying controller design problem, i.e., the control 
parameters. A direct adaptive method means that the controller is directly 
parameterized in terms of the model parameters. In the following, a couple of different 
adaptive control schemes are outlined based on the classification presented in /39/.  

PlantController

Parameter
adjustment

Setpoint

Control
signal

Controller
parameters

Output

 

Figure 6. The basic structure of adaptive control /39/. 

3.3.1 Gain scheduling 
The gain scheduling was initially developed for the flight control systems. The basic 
idea of the control strategy is to change the control parameters as the operating point 
changes. Normally, it is rather easy to find a measurable process variable that indicates 
the changes in the operation conditions. For example, production rate of a plant can be 
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chosen as a scheduling variable since the time delays and the time constants of a 
system are typically inversely proportional to the production rate. This simple system 
can be implemented, e.g., as a lookup table into which suitable parameter values 
corresponding to different operating points are stored beforehand. 

3.3.2 Model-Reference Adaptive Control (MRAC) 
If the process performance specifications are given in the form of a reference model, 
one is able to calculate the desired system response to any input. As this desired output 
y*(t) is compared to the actual response of a system y(t), one can use, e.g., the MIT 
rule for updating the parameters, i.e., 

 
θ

γθ
∂
∂

−=
yy

dt
d ~~ ,        (20) 

in which θ are the control parameters, γ is the update step size and *~ yyy −=  is the 
error between actual and desired response. This parameter adjustment mechanism is 
the one originally used in the MRAC. The MIT rule can be interpreted as a gradient 
method approach to minimize the squared error 2~y . 

3.3.3 Self-Tuning Regulators (STR) 
In the Self-Tuning Regulators the process parameters are estimated online and the 
corresponding control parameters are calculated by solving the controller design 
problem with the estimated process parameters. The so-called certainty equivalence 
principle is applied, i.e., the estimates are used as if they were the true parameters. The 
STR scheme is flexible with respect to the techniques used for identification and 
controller design tasks. 

3.4 Iterative feedback tuning 
Recently, the Iterative feedback tuning (IFT) method has gained much interest and 
many successful applications have been reported. The method was originally suggested 
by Hjalmarsson et al. in /16/. The basic idea in the IFT method is to find the control 
parameters θ* that minimize the LQG type design criterion, i.e., 
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in which Ly and Lu are frequency weighting filters, E{·} stands for taking mathematical 
expectation, α expresses the relative importance of the restriction on the control signal 
compared to the limitation of y~  that is the error between the achieved y(θ) and desired 
y* response: 

( ) ( ) *~ yyy −= θθ .       (23) 

The notation y(θ) emphasizes that the achieved response is assumed to be a function of 
the control parameters θ as the process disturbance and the reference signal are 
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assumed to be realizations of independent stationary stochastic processes. This model 
reference problem becomes an ordinary LQG tracking problem if the desired response 
is set equal to the reference signal.  

Typically, minimization of J(θ) with respect to θ cannot be solved analytically since 
J(θ) may depend on θ in a rather complicated way. Their mathematical dependency 
involves the expressions of the true system G and the disturbance characteristics v, 
both assumed to be unknown. However, the solution can be found iteratively, e.g., by 
means of the gradient descent algorithm, according to which the new parameters for 
iteration step K+1 are 

( ) ( ) ( )( )KJRKK KK θγθθ ′−=+ −11 ,     (24) 

where RK is a positive definite matrix (e.g., an identity matrix or an estimate of the 
Hessian of J(θ)) and γK is the step size (the subscript K means that R and γ  are not 
necessarily assumed to stay constant on each iteration step). The gradient of the design 
criterion ( )θJ ′  in (24) is troublesome to calculate exactly and therefore it is replaced 
with an approximation that is calculated based on a data sample: If the signals ( )θy~  
and ( )θu , and their gradients ( )θy ′~  and ( )θu′ , are known, ( )θJ ′  can be approximated 
with (assuming Ly = Lu = 1) 
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where k is the number of the data points, t is the discrete time index and ( )θ,~̂ ty ′  and 
( )θ,ˆ tu′  are the estimates of the gradients of the error and control signals with the 

current parameters θ, respectively. These gradients cannot be solved analytically 
because they depend on the unknown system G. In /16/ an approach is presented to 
approximate these signals. A special “gradient experiment” is required on a process to 
obtain unbiased estimates of these gradients. Hjalmarsson et al. give also instructions 
for selecting an appropriate size for the iteration step γ. 

Altogether, the above-described IFT tuning method gives a rather good control 
performance as compared to three conventional tuning methods (Ziegler-Nichols, ISE 
and IMC tuning), as is pointed out by Lequin et al. in /29/. According to them the IFT 
tuned controller can deal with setpoint changes, disturbances and model mismatch 
(e.g., due to changes in the process after the tuning has been accomplished) resulting in 
a very good performance with a reasonable control effort.  

In practice the method requires experiment data generation with the true process on 
each iteration step. However, these experiments can be executed within normal 
operation of the system, although they require manipulations of the reference signal. 
One can use this tuning method also quite restfully, according to Hjalmarsson et al., as 
it is proven that for a small enough iteration step size and large enough data set the 
method always converges towards a (local) minimum. Another advantage of IFT is 
that a model of the system is not required. An estimate of the gradient direction of the 
design criterion can be calculated based on closed loop measurement data that is 
obtained with an experiment arrangement described in /16/. 
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In /5,15/ Gunnarsson et al. and Hjalmarsson & Birkeland have investigated the 
possibilities to use IFT in tuning MIMO systems. Gunnarsson et al. use a 2 × 2 system 
as an example. In their approach the decoupling controllers (the non-diagonal elements 
of the transfer function matrix) are first tuned separately one element at a time, after 
which the diagonal controllers are tuned simultaneously. Hjalmarsson and Birkeland 
show that as only one additional gradient experiment is required to tune all the control 
parameters within a SISO controller, in MIMO systems the number of extra 
experiments rises to n × m, where n and m are the number of control signals and 
measured outputs, respectively. In addition, in the MIMO extension of the IFT /15/ the 
elements of the transfer function matrix are tuned one by one. This kind of procedure 
obviously results in a non-optimal solution, as the overall performance of the MIMO 
system is not considered. 

The above described IFT method has many similar features as the Iterative Regression 
Tuning method. E.g., the basis assumptions that the control parameters define the 
performance of the system in the long run (at least to a certain extent), and the 
interpretation of measurement signals as realizations of stochastic processes are 
common to both methods. Further, the iterative data based approach to find the local 
optimum is also similar. In a way, the IRT method presented in this report is a 
generalization of the IFT method. The IRT method does not restrict to LQG type 
design criterion but allows the user to define the tuning targets. 

3.5 Iterative learning control 
Batch processes are rather common especially in the chemical industry in 
manufacturing special chemicals, such as pharmaceutical products and polymers. The 
operation of a batch process differs quite a lot from the continuous processes. Running 
consecutive batches introduces strong nonlinearities to the plant behavior, which 
makes the use of a linear controller inadequate. Thus, a method called Iterative 
learning control (ILC), initially developed for training and controlling of robots and 
other mechanical systems under repetitive operations, have been applied to batch 
process control.  

ILC is a control technique that is developed to improve the transient tracking 
performance of the process during identical, repeatedly executed operations /28/. The 
objective is to find an input signal (or profile) for the next batch run, based on the 
information gathered from previous batches, such that  

 ( )  as ke t k→ → ∞0 .       (26) 

In (26) e(t) represents the (finite length) error signal of the controlled variable and k is 
the batch number. For instance, the input profile can be updated from batch to batch 
according to  

 ( ) ( ) ( )tLetutu kkk 11 −− += ,      (27) 

where L is called the learning filter that is represented by some dynamic filter L(s) or 
L(z). Thus, the problem of the ILC design reduces to finding a suitable learning filter 
L. Initially, generic fixed structure filters were applied whose parameters where tuned 
to achieve the convergence of the error signal. Alternatively, model based algorithms 
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have also been studied, in which one tries to find the learning filter L based on the 
direct inversion of the plants input-output transfer function G, such that 1−= GL . 

According to Lee & Lee /28/, even nowadays most industrial batch processes are 
operated with rather elementary sequence controls and many of them still require 
occasional manual operation. Introducing ILC type methods to batch process control 
has given promising results. However, further challenges still remain to be studied, 
e.g., treatment of unequal batch lengths. 

The novel tuning technique that was originally presented in /21/ has certain similarities 
with the ILC approach. In the proposed controller tuning technique, at least when the 
simulator based approach is applied, the same “batches” are repeated over and over 
again, and the parameters are tuned accordingly. The problem setting is, however, 
completely different.  
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4 ITERATIVE REGRESSION TUNING 

As the preceding review of the common controller tuning techniques in Chapter 3 
showed, there exist actually rather few multivariate tuning techniques that are 
applicable to any multivariable control structure. And, further, it seems to be hard to 
find a tuning method that would take into account also the interactions of the multiple 
single loop controllers. In the majority of the multi-loop tuning techniques proposed in 
the literature the controllers are tuned one loop at a time. This is a motivating starting 
point when a new multivariate tuning method is to be proposed. 

The underlying idea of the Iterative Regression Tuning method was already introduced 
in Chapter 1.2. In this chapter the method is introduced in more detail. First, the role of 
dynamic simulation in the controller tuning is discussed in Chapter 4.1. In Chapter 4.2, 
the tuning method is introduced in a framework that focuses on finding the initial 
tuning for the controllers during a plant start-up. This introduction is founded on the 
publications of Hyötyniemi /21,22,23/. Then, several other ways to apply the same 
tuning technique are presented in Chapter 4.3. Finally, in Chapter 4.4, the structure of 
the software application and the use of the resulting tuning system are considered. 

4.1 On simulation and its application in controller tuning 
The tuning method that is presented in the following chapter utilizes dynamic 
simulation, instead of real process measurements, to obtain an insight of the system 
behavior. This approach differs somewhat from the techniques presented in Chapter 3 
that usually involve the actual process in the tuning task. Therefore the IRT method 
could be characterized as an “off-process” method. 

The use of simulation has many benefits and, unfortunately, some drawbacks as well. 
When employing simulation the production on the real process is not disturbed with 
the experiments. This is naturally desirable, if the economical aspects and the safety of 
the plant are considered. It also means that the amount of the experiments is not 
restricted, which can be the case when experimenting on the real process. Another 
advantage is that running simulations can be performed faster than in real time. 
Further, running consecutive test cases with the simulator is much easier (and also 
faster) since snapshots of a certain initial state of the process can be reloaded 
instantaneously. In fact, it is rather impossible to conduct exactly identical repetitive 
experiments on a real process since some stochastic variation is always present. 

On the other hand, the model of the system never exactly equals the real process and 
therefore the obtained tuning results are not directly applicable in practice. However, it 
can be assumed that nowadays the modeling precision has increased to a sufficient 
level thanks to advanced simulation software and increased computing capacity. 
Therefore, the provided results are at least highly indicative although not precisely 
accurate. 

Indeed, the proposed methodology could be based on the actual process measurements 
rather than on simulations as will be discussed in Chapter 4.3. In this research project, 
however, the role of simulation was deliberately emphasized. One of the basic 
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assumptions was that the importance of the simulation will increase in the future: For 
instance, if the process design phase output the simulation models for the following 
automation system design, it would open the possibility to compare different control 
strategies easily by evaluating their performances in various situations. 

The proposed tuning technique is an excellent example of computationalism. This term 
is used for describing the modern approach to tackle large problems with the increased 
computing capacity of computers, rather than employing increased human 
contribution. The IRT method involves iteration in three distinct levels: First, during a 
simulation run the state of the dynamic simulator is solved iteratively for each 
simulation time step t. Secondly, to obtain enough data points around the prevailing 
parameter values, the same simulation run is repeated k times, i.e., k local iterations 
are performed for different parameter values. And, on the highest level, a certain 
amount of global iteration steps is required to optimize the tuning of the parameters 
until the performance of the system meets its objectives. In the following, K is used as 
a symbol for the number of performed global iteration steps. As the above discussion 
implies, a huge amount of computation is involved when using this technique. 

4.2 Method description 
Let us return to Figure 1 on page 9 that illustrated a dynamic system, hereafter denoted 
with G, and a system for its performance evaluation. If an input signal u is introduced 
to the system G, it evokes the response signal y (note that G can be a MIMO system). 
The performance of the system can be evaluated by calculating quality measures q 
based on the input and output signals. In a statistical sense, the resulting performance 
expressed by means of q is more or less the same as long as the system parameters θ 
are held constant. In other words, the performance is assumed to be a function of the 
parameters, q = f(θ). This function includes some uncertainties due to the stochastic 
variation in the measurement signals. However, it still gives us the opportunity to 
improve the performance of the system G by optimizing the values of the parameters 
θ. 

What are these quality measures in practice then? Defining the quality measures q in a 
sensible way requires always the knowledge and the assistance of a domain-area 
expert. If one uses control parameters as the qualifiers θ, it might be reasonable to 
measure the quality by means of control performance concepts like stability, speed, 
robustness, accuracy, etc. The set of chosen quality measures should somehow reflect 
the overall objectives of the control strategy that is being tuned. What is essentially 
obligatory, what is desirable and what is the behavior that one wishes to avoid? 

Sensible parameter adjustment requires a model describing the dependency between 
the parameters and the quality measures. Because no physical model is assumed to be 
available, the model has to be based on the observed data. Therefore, a representative 
sample of parameter value combinations and the corresponding quality measure values 
are required. 

A practical model type can be found by examining the data and its distribution more 
closely and by making a couple of quite realistic assumptions. First, the data is 
assumed to be unimodal, which means that it comes from a single multivariate 
Gaussian distribution. This assumption is motivated by the Central limit theorem 
stating that if a number of independent variables are added together the resulting 
distribution approximates Gaussian, no matter what the original distribution of the 
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variables was. It turns out that the Gaussianity assumption is justifiable also in practice 
(see Chapter 6.2.1). Because of the Gaussianity assumption the dependency between 
the variables θ and q is linear in the maximum likelihood sense /33/. However, it must 
be noted that the linear models can be applied only locally.  

The unimodality assumption of the data requires the quality measures to be defined 
rather carefully: Their values should be smooth functions of the parameters over the 
whole θ axis (as was discussed in Chapter 2.4.1). When there are no abrupt changes in 
the values of the quality measures, the data sample tends to be more or less Gaussian 
(due to the Central limit theorem), and it is well justified to use local linear models for 
approximating the dependency q = f(θ).  

After these assumptions there exist a great number of powerful tools available for 
modeling, such as ordinary linear algebra and multivariate statistical methods. The 
large enough data set that is required for the modeling can be obtained with Markov 
Chain Monte Carlo (MCMC) simulation. This means that the values of the qualifiers θ 
are varied randomly around some point and the corresponding quality measure values 
q are recorded. Let us assume that modeling involves n qualifiers and m quality 
measures that can be presented as vectors 
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After k samples of the data points are gathered (in k local iterations) they can be 
expressed in a matrix form  
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From now on, it is assumed that the required preprocessing of data is always taken care 
of without special notice. This means that the sets of data samples are locally centered 
and scaled to unit variance (see, e.g., /20/ for more details).  

Based on a training data set a linear model F can be estimated such that 

 θ⋅= TFq ,        (30) 

in which FT is the mapping matrix from n-dimensional input space to m-dimensional 
output space 

mnT RRF →: .       (31) 

The same mapping for the data set of k samples in the matrix form can be presented as 

FQ ⋅Θ= .        (32) 

Appendix B presents a short review over conventional and some more recent methods 
for finding the mapping matrix F. The review is based on /20/. Now, the matrix F 
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determines the dependency of the quality measures q and the parameters θ, i.e., the 
information that is needed to improve the performance by means of parameter tuning.  

The separate quality measures can be aggregated into a single optimization cost criteria 
J, which, e.g., could be formulated as 
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where w is a m × 1 weighting vector (see Chapter 6.4). If, e.g., the elements of w are 
set to unity the above cost criterion emphasizes the different quality measures equally 
in the optimization. 

However, the estimated linear model (30) is meaningful only in the neighborhood of 
current parameter values, hereafter referred to as the nominal parameters θ . This 
means that the optimal solution 

( )( )θθ
θ

qJminarg* =        (34) 

cannot be found with a single calculation and one has to accept the approach of taking 
short update steps towards the optimum. One has to apply iterative optimization 
approaches, e.g., gradient descent algorithm. The gradient, which indicates the 
direction of the maximal growth of the cost function J, is obtained by differentiating 
the equation (33), i.e.,  

 ( ) FwFw
d
d

d
dJ TT == θ

θθ
.      (35) 

Thus, if it is assumed that the objective is to minimize the values of the quality 
measures, the parameters are updated to negative gradient direction according to   

( ) ( )

( ) ( ) .

1

wKFK

d
dJKK

⋅−=

⋅−=+

γθ

θ
γθθ

      (36) 

Above, K is the global iteration step index and γ is the length of the parameter update 
step. The notation F(K) emphasizes the fact that the matrix F is estimated over and 
over again, in every global iteration step. Also the values of γ and w can vary during 
the optimization procedure, e.g., the update step can be shortened as the optimum is 
approached. (Note that if the objective was to maximize the values of the quality 
measures, the minus sign in the parameter update formula (36) should be changed to a 
plus sign). 

By using a short enough update step γ and large enough data set size k the algorithm 
becomes robust against random variations in the time series signals. In this context the 
word robust stands for the fact that the iterative algorithm changes the parameters 
inevitably towards the desired direction in the long run if only such a direction can be 
found in the parameter space. 
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4.2.1 Summary 
The optimization procedure consists of K global iteration steps (see Figure 7). Through 
these steps the values of the parameters are gradually tuned towards their optimal 
values. Each step consists of a local iteration process, i.e., k simulations are run with 
slightly varied parameter values and the corresponding quality measures are calculated. 
A local linear model is estimated from the data if the Gaussianity assumption is not 
violated. The subsequent parameter update is based on the calculation of the gradient 
of the cost criterion. Global iteration steps are taken until the performance of the 
system meets its objectives or as long as significant improvements on performance can 
be observed.  

In Figure 8 the same parameter optimization procedure is presented from the 
simulation point of view. Here, the simulation run is further split up into distinct 
simulation events. These events are either process or operator events that are of special 
interest as the values of the quality measures are calculated. 

 

θ1

θ2

q q̂

 

Figure 7. The optimization procedure consists of K successive global iteration 
steps (in this figure, K = 4). During each step, k data points are produced in local 
iteration. The data is used for modeling the local interdependence between the 
parameters θ and the quality measures q. 

 

 



 34

 

Figure 8. The tuning procedure (circled with red) consists of K global iteration 
steps (blue). A global iteration step consists of k local iteration steps (black), i.e., 
simulation runs. During a simulation, certain amount of successive simulation 
events (green) is run. 

4.3 Alternative applications 
In the previous chapter it was assumed that the IRT method was applied during the 
plant commissioning (or commissioning of the revised automation system). In that 
case the aim is to find a set of parameters that would result in a satisfactory 
performance, at least in the beginning. One would not have to start the plant operation 
with the time-consuming controller tuning task, but the tuning system could provide 
the user a good starting point. Next, some other examples of applying the IRT are 
discussed. 

4.3.1 Adaptive control approach 
As the operation of a plant has settled to a stationary condition, one might want to 
enhance the performance of the system by re-tuning the controllers. Now the required 
information, i.e., the qualifier – quality measure data, can be obtained directly from the 
process, and the tuning results obtained with the simulator can be further improved. 
The values of the parameters θ can be varied quietly around the nominal parameters θ  
and the performance with each combination is evaluated and recorded. After a 
sufficient amount of data is gathered, one can use the above-presented update 
paradigm to move slowly towards the optimal performance. 

The biggest problem with the above approach is that the stability of the system cannot 
be guaranteed. Thus, this kind of automated parameter tuning system faces the same 
inconveniences as the conventional adaptive control schemes. 

4.3.2 Gain scheduling approach 
Besides the stability problem, the previous “adaptation” process is rather slow and it 
cannot follow any abrupt changes in the operation conditions. Thus, the idea of the 
gain scheduling presented in Chapter 3.3.1 could be applied here. Two distinctive 
control parameter sets, Aθ  and Bθ , e.g., appropriate for producing products A and B, 
can be found beforehand by using simulation. Then, by using a suitable scheduling 
variable, all control parameters can be changed simultaneously when necessary. 
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4.3.3 Multivariate ARS controller 
Another interesting way of applying the IRT idea, originally presented in /23/, is 
illustrated in Figure 9. Industrial processes are typically controlled with several simple 
PID controllers. The three “tuning knobs” of the PID controller, i.e., gain, integration 
and derivation time, and their effect on the response of the controlled process are 
intuitively comprehensible. Similarly, it seems appealing to have a multivariable 
controller that would retain the clarity of PID and at the same time could control a 
large process entity with a number of controlled and manipulated variables. Further, a 
set of industrial controllers cannot typically be optimized once and for all, since the 
changing operating conditions require also changes to control parameter values.  

As was discussed in the previous chapters, the dependency between a large amount of 
parameters and quality measures could be captured with statistical multivariate 
methods. Thus, by defining the “slopes” regarding quality measures like Accuracy, 
Robustness and Speed, the whole set of the PID controllers could be tuned all at a time 
by using an upper level ARS controller whenever the operating conditions change.  

 

Figure 9. Multivariable ARS controller – simple as PID /23/. 

4.3.4 Tuning of the simulation model 
Also the simulator and its parameters can be tuned once measurement data from the 
actual process is available (see Figure 10). Now the objective of the tuning is in 
minimizing the difference between the actual and the simulated responses as the same 
input signals are applied. The simulator (or actually its parameters) is modified to 
better correspond the true behavior of the process. In other words, the optimization 
problem turns into a minimization task of the modeling error with respect to the model 
parameters. 

P(θP)C(θC) ( )MθM

The actual system S 
The dynamic model M 

of the system  

Figure 10. The data obtained from the actual system S can be used for the tuning 
of the model parameters θM. 
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4.3.5 Tuning of the process parameters 
In the Introduction it was already mentioned that the object of the tuning does not 
necessarily have to be the parameters of the controllers. Just as well, the tuning could 
concentrate on the values of any other parameters, such as the setpoint values or the 
ramping parameters defining the operation point changes. In these cases either a 
dynamic simulator of the process or the actual process itself can be used for the 
generation of the data. The same assumptions as before hold also here regarding the 
properties of the parameters, i.e., they should be continuous.  

4.4 Software application of the tuning method 
This chapter outlines some essential issues concerning the software implementation of 
the IRT technique and the use of the resulting system. First, what kind of information 
and intervention the system requires from the user before and during the controller 
tuning procedure is discussed. After that, suitable techniques for presentation of the 
tuning results are considered. 

In the following, a rather long list of initializing issues is presented and the 
requirements of the user interface of the tuning tool are considered. During the test 
case it was realized that the tuning system should have a deliberately designed user 
interface that would support the user in specifying the necessary initializations. 
However, the studies on the user interface requirements are still incomplete at this 
stage and therefore the following discussion remains bit summary. 

4.4.1 Initializing 
Before the actual tuning procedure can begin, the user is supposed to provide the 
tuning system with a certain amount of initial information. In Figure 11 the initial steps 
that precede the tuning procedure are presented (by using the same terminology as in 
Figure 8). 

First of all, one has to specify the tuning objectives for the tuning software in terms of 
exact mathematical functions. It cannot be overemphasized that at this point the 
knowledge about the characteristic behavior of the process and the conventional 
disturbances and problems affecting it, is invaluable. It might be advantageous to start 
with the problems plaguing the existing or the conventional control structure, and 
think, what kind of improvements would be desirable and possible to achieve with 
controller tuning (i.e., without changing the process conditions or the control 
structure).  

Regarding global iteration steps one has to specify the number of successive 
simulations k, i.e., the number of local iterations. The system should be able to propose 
a reasonable default value for k (more about topics that require further research is 
discussed in Chapter 7). A single simulation run consists of the events that the user 
specifies. These events are closely related to the quality measures. E.g., if the 
overshoot after a setpoint change is of particular interest it must be included in the set 
of simulated events. The user has to define also the order of the events in the 
simulation and what is the initial state from which the simulation begins. And at this 
stage also the variables, whose time series signals should be logged during the 
simulations, are specified. Further, every simulation event has to be defined in detail. 
This means specifying the process events, such as the disturbances, and the operator 
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interventions that are assumed to occur. What is also crucial is the length of the event, 
which naturally depends on the dynamics of the process. 

Finally, the parameters that will be modified have to be selected. This can be done 
rather generously since the success of the tuning is not jeopardized even though the 
procedure would involve also some excessive parameters. However, it is essential that 
the user provides the system with the a priori information, e.g., about the known 
stability limits of the control parameters, magnitudes of the parameter values, etc. 
Further, one is assumed to give a somewhat sensible initial tuning for the controllers. 
At this point the magnitude of the parameter variation in the MCMC simulations is 
also specified. 

 

START TUNING

PARAMETERS

SIMULATION EVENT
SPECIFICATION

SIMULATION RUN
SPECIFICATION

ITERATION STEP
SPECIFICATION

TUNING
PROCEDURE
SPECIFICATION

 

Figure 11. The initializing steps that are required before the launch of the 
parameter tuning procedure.  

4.4.2 Tuning procedure 
In the following, the progress of the tuning is presented in a procedural form. The 
procedure consists of K global iterations. Every global iteration step begins with 
checking whether the stopping condition is reached. After that, the MCMC simulation 
is run around the prevailing nominal parameters and the values of the quality measures 
corresponding to the different parameter combinations are calculated. The Gaussianity 
of the data is ascertained and if the data violates severely the assumptions, a warning 
message is generated and the control of the tuning system is transferred to the user. 
Otherwise, the required preprocessing of data is performed and the dependency of the 
parameters and the quality measures is modeled and the update on the parameter 
values is calculated. The procedure is carried on until the stop condition is fulfilled. 
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while (stopping condition not fulfilled) { 

for (κ = 1 … k) { 

  change the parameter values randomly; 

  run the predefined simulation run; 

  calculate the quality measures; 

 } 

if (the data is not Gaussian) { 

  notify the user and ask further instructions; 

 } 

 center and scale the data; 

construct the local parameter - quality measure model; 

determine the gradient direction; 

update values of the parameters; 

} 

 

4.4.3 Viewing the results 
After the tuning is completed one is naturally interested in seeing the results. A flexible 
system should support several ways to view the achieved performance improvements. 
The time series plots of process variables are naturally an easy and comprehensible 
way to view the results. If the process responses before and after the tuning are plotted 
in the same figure, it is possible to judge their differences roughly. Another possibility 
is to inspect the plots of the cost function, the quality measure and the parameter 
values as functions of iteration step index. From these plots it can be concluded 
whether it pays to continue the tuning or has the optimization already converged. If 
one is interested in proving the enhancement of performance in a more formal way, 
statistical testing can be applied (See Appendix A). 
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5 POWER PLANT CASE STUDY 

In this chapter the simulation model that was applied in the development of the tuning 
technique is presented. First, the power plant process and its Apros simulation model 
are presented. Then, the qualifiers and the quality measures are introduced. Finally, the 
practical arrangements of the test case are briefly introduced. 

Apros is a professional simulation software that is designed for modeling and 
simulation of combustion and nuclear power plants, and pulp and paper mills. It 
provides large model libraries of process and automation components for construction 
of realistic industrial process models. For example, Apros has been used for 
constructing training simulators for several power plants using fossil fuels. Also, in 
many process analysis projects on power plants and paper mills, Apros has been 
applied successfully. Further information about Apros is available, e.g., in /1/. 

5.1 Process description 
The following short description of the process is not a comprehensive introduction to 
operation of a power plant. The actual aim, instead of introducing the process in detail, 
is more like showing that the applied process model was a rather complex system: 
Grasping the general view of a large and realistic simulation model of an industrial 
process is a demanding task. This is, however, the motivation behind the new tuning 
methodology. Since human mind is unable to comprehend the underlying 
interdependencies as the size of a system increases, advanced statistical multivariate 
methods are required to capture the emerging higher abstraction level concepts. 

In the simulations a model of an oil burning power plant was used. The model consists 
of boiler (Figure 12), turbine (Figure 13) and feed water (Figure 14) sections and the 
related controllers (Figure 15), altogether 9 PI and 3 PID control loops. These sections 
are interconnected along the arrows marked into the figures. 

The modeled power plant process uses oil as fuel and the heat that the combustion 
gases contain is first employed in the superheaters (Figure 12), from where the gas 
flow continues to the reheaters (between high and low pressure turbines in Figure 13). 
The last remains of the heat energy are used for heating of the feed water in the 
economizer (in Figure 12). 

The feed water circulation is completely closed in the model, i.e., water that leaves the 
feed water tank also finally returns to it. First, the feed water is pumped from the tank 
(in Figure 14) through two heat exchangers to the economizer and to the superheaters. 
From there it continues to the high and low pressure turbines. The remaining water 
returns to the feed water tank through the condenser. Also the amount of water that is 
vaporized in the turbine section is returned to the feed water tank. 
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Figure 12. The boiler section of the power plant model. 

 

 

Figure 13. The turbine section of the power plant model. 
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Figure 14. The feed water section of the power plant model. 

 

 

Figure 15. The primary control structures of the power plant model. 
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Figure 15 presents the most important control structures of the power plant. The 
produced active power is controlled by calculating a suitable setpoint for the fuel flow. 
The oil valve position is controlled by measuring the difference of the oil mass flow 
and the calculated setpoint value. The PI controller responsible for the control of the 
rotation speed of the feed water pump follows the setpoint signal that is calculated 
based on the currently produced active power. The air flow to the combustion and the 
oxygen correction are controlled by two PI controllers. The temperatures of the 
superheated and reheated steam flows are controlled with similar cascade control 
structures, in which the operator gives the setpoint values for the temperatures and the 
spray attemperator flows are used as manipulated variables. Additionally, the level 
control of the condensers is presented in Figure 13, and the level controllers of the high 
and low pressure heat exchangers in Figure 14. 

5.2 Qualifiers and quality measures 
Already Stanfelj et al. /34/ came to the conclusion that the top-level process 
performance assessment is always closely related to the process in question. The 
monitored variables and their objective behavior have to be considered separately to 
each control system under inspection. It is difficult to find objectives that would fit for 
many processes. Defining a mathematical expression for the concept of quality or for 
the desired performance even for an individual process is a challenging task whereby 
the assistance of domain area experts is required. 

Thus, two researchers working at the VTT who had experience on power plants were 
interviewed. The goal was to form a set of practical quality measures that would 
describe the desirable operation of the power plant. The quality measures should be 
chosen such that they would characterize different essential aspects on the system 
performance in different operating situations. Some of the measures should be 
designed for assessment of the steady state situation whereas the others for evaluating 
the system response to load disturbances, noisy measurements and setpoint changes. 
Resulting from certain simplifications in the modeling, (e.g., the district heating 
network was not modeled), selecting realistic goals for the process was a bit 
complicated task. Thus, some liberties were taken: It was assumed that the plant was 
meant to answer the changing power demand, i.e., the responses of the produced active 
power to setpoint changes were considered essential. 

In the case study the performance (characterized with 3 quality measures) of three 
controllers was tried to optimize simultaneously with respect to 7 parameters. The 
tuning was focused on a cascade control structure, where a PID controller calculates 
the setpoint for the PI controller responsible for the oil flow control. The master 
controller calculates the setpoint based on the difference between the measured and the 
desired produced active power. Also the parameters of the PI controller adjusting the 
rotation speed of the feed water pump were tuned. The quality measures that were 
optimized (minimized) were 

• the settling time of the produced active power after a setpoint change (into 4 
percent error margin), 

• the overshoot of the produced active power after a setpoint change, and 
• the variance of the produced active power after a pressure stroke in the 

combustion. 
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As the results are presented and discussed in the following chapter, the above quality 
measures will be referred to with the symbols q1, q2 and q3, respectively.  

5.3 Practical arrangements of the test case 
Since a ready implemented platform for simulation assisted automation tuning was not 
available, the corresponding operations had to be constructed for the test case. The 
testing arrangements consisted of Apros and Matlab software. All automation 
functionality was implemented on Apros together with the process model and an 
external automation system was not involved at all.  

The simulation model was managed with command queue files in which the simulated 
events were specified by using the Apros command language. One file contained the 
specification of k repeated simulation runs, i.e., one global iteration step. The time 
series signals of the variables were logged to text files. By applying the basic 
operations offered by the Apros component libraries, a new simulation block was 
constructed and attached to the model to take care of the random variation of the 
parameters around the prevailing nominal values. Matlab was used for calculating the 
quality measures out of the signals, modeling the dependency of the parameters and 
the quality measures, and finally for determining the new parameter values for the next 
iteration step. This routine was repeated in every global iteration step of the tuning 
procedure.  



 44



 45

6 RESULTS 

In this chapter the results of the test case are presented. First, improvements on the 
process performance after applying the novel tuning technique are assessed. Then, the 
validity of the assumptions presented in Chapter 4.2 is examined. The last part of this 
chapter introduces comparison of the different latent variable methods and some 
discussion on the aggregation of the quality measures into a sensible overall cost 
function. 

6.1 Performance improvements 
In Chapter 4.4.3 the presentation of the results to the user was shortly discussed and 
three possible approaches to view the success of the tuning procedure were introduced. 
In the following, the process performance with the parameters proposed by the tuning 
tool is first compared to the initial performance of the system. Then the plots of the 
cost function, the quality measure and the parameter values as functions of the global 
iteration step index are presented. Finally it will be shown how the significance of the 
performance improvement is ascertained with the statistical testing methods. 

In Table 1 and Figure 16 the initial performance of the system is compared to the result 
after 18 global iteration steps. The improvement of the performance is obvious as the 
settling time, the overshoot and the effect of the pressure stroke in the combustion are 
assessed. There is no perceivable overshoot left in the step response after the parameter 
tuning and the time that is required to settle inside the error margins has decreased also 
notably. Also an improvement in the disturbance rejection ability can be seen: The 
resulting magnitude and the duration of the perturbation have both become smaller. 
Along with the minimization of the settling time the tuning has succeeded to shorten 
the rise time as well. 

Although the goals of the tuning procedure were reached in the test case, one might 
still question whether these goals were reasonably selected in the first place. The 
achieved response to the setpoint change, e.g., is at first considerably rapid after which 
the process variable, however, drifts notably slow to its new setpoint. This clearly 
indicates inappropriate definition of the tuning objectives. As will be discussed in 
Chapter 6.4, the overshoot, e.g., should have been determined differently. In this sense, 
the presented methodology helps the experts to refine their intuition concerning the 
process and goals of performance. This can be seen as one of the major contributions 
of the Iterative Regression Tuning methodology. 

Table 1. The values of the settling time TS, the overshoot OS, the error signal 
variance var{e(t)} (from the signal values t ∈ [360s…720s]) and the cost function J 
initially and after 18 global iteration steps. 

K T S [s] OS  [%] var{e (t )} J
0 183 11,7 5,11E+05 3,000

18 57 0,2 3,41E+05 0,725  
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Figure 16. The responses of the produced active power to a setpoint change taking 
place at the time instant t = 0s and to a pressure stroke in the combustion (t = 
360s) before (blue) and after (red) 18 global iteration steps. 

In the following three figures (Figure 17, Figure 18 and Figure 19) the trends of the 
cost function, the parameter and the quality measure values are presented. It can be 
seen that minimization of the cost function has obviously succeeded and finally 
converged to a level from which any significant improvement of the performance by 
means of the control parameter tuning is difficult to find. The development of the 
parameter values during the tuning procedure of 75 iteration steps is shown in Figure 
18. Each of them evolves rather consistently towards their new values in the beginning 
and a certain slowing-down in the update steps can be detected as the optimization 
procedure starts to converge. The Figure 19 presents the trends of the quality measures 
q1, q2 and q3 during the optimization. The behavior of q1 is heavily nonlinear due to its 
inconsiderate definition (see Chapter 6.2). Its influence on the values of the overall 
cost function is perceptible in the Figure 17. The Table 2 presents the values of the 
parameters at four different steps. The original parameter values were chosen to give a 
“good enough” performance, i.e., in their tuning any formal tuning method was not 
used. 

 

Figure 17. The development of the values of the overall cost function during 75 
global iteration steps. 
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Figure 18. The trends of the parameter values, θ1, θ2, …, θ7, during 75 global 
iteration steps. 
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Figure 19. The development of the quality measure values, q1, q2 and q3, during 75 
global iteration steps. 

Table 2. The nominal values of the parameters at Kth global iteration step. θ1, θ4 
and θ6 are proportional gains, θ2, θ5 and θ7 integration times and θ3 derivation 
time of PI(D) controllers. 

K θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7

0 4,00E-07 70,00 2,00 5,00E-03 20,00 4,00E-02 15,00
18 5,31E-07 114,89 2,36 8,74E-03 8,18 3,68E-02 16,81
50 1,11E-06 128,00 3,27 9,91E-03 0,32 3,01E-02 18,04
70 1,42E-06 144,40 4,13 1,02E-02 0,30 2,86E-02 18,56  

The achieved performance improvement is obvious already based on the above 
examination. However, the change in performance can be proved to be significant also 
in the statistical sense and not only heuristically. By using the methodology presented 
in Chapter A.1.1 in Appendix A the test can be expressed as follows: The significance 
level for the test is set to α = 0.0005 (i.e. the probability that the new achieved value of 
the quality measure qi would be an observation from the initial distribution is 0.0005 at 
the maximum) and the hypotheses are formulated such that 
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where ( )Kqi  is the obtained value of the quality measure qi after K global iteration 
steps and ( )0iq  is the initial (or conventional) value of the same quality measure. The 
initial values of q1, q2 and q3 were estimated by calculating the mean value of hundred 



 49

observations, although the methodology assumes the null value to be known exactly. 
The estimates for K = 18 were calculated in the same way and the variances of the 
quality measure observations were estimated. The T-distributed normalized test 
statistic was defined as in equation (A5) resulting in the values 
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Since with 99 degrees of freedom the probability of obtaining the values of the test 
statistic T ≥ 3.4 is 0.0005, one can conclude that the observed values of ( )( )18ˆ

1qT , 
( )( )18ˆ

2qT  and ( )( )18ˆ
3qT  are far too rare to be from the initial distribution. Thus the 

null hypothesis can be rejected with a minimal probability of committing the Type 1 
error (see Chapter A.1) and the alternative hypothesis stating that the process 
performance is better after 18 iterations can be accepted. 

Although the statistical testing offers an established way of conducting conclusions, it 
is an ill-founded approach in this case. Since the variation in the obtained values of the 
quality measures is not originated from the actual process and its disturbance sources, 
but from the mathematical imprecision of the solver in the dynamic simulator, the 
resulting quality measure distribution does not correspond to any realistic situation. 
That is one explanation for the exceptionally high values of the test statistics, and thus 
the results of the hypothesis testing can be considered truthful only in the mathematical 
sense. However, as the tuning results are applied into practice, the above methodology 
offers an uncompromising way to compare the improved performance to the initial 
state. 

6.2 Validity of the assumptions 
In Chapter 4.2 some assumptions were made related to IRT method. First it was 
assumed that a linear model describes the dependency of θ and q with appropriate 
precision. For instance in /33/ it is shown that within a multinormal distribution the 
unknown variables (the dependent variables) can be modeled as linear functions of the 
known ones (the regressors). Here, the Gaussianity of the data is used as justification 
for linearity. 

It has to be assumed that the data is unimodal, i.e., it forms a single distribution rather 
than separate clusters. In the following, it will be discussed how to define the quality 
measures so that their values conflict the Gaussianity and unimodality assumptions as 
little as possible (some bad examples of quality measure definitions are given to depict 
the possible consequences). However, it can be claimed that the above assumptions are 
quite realistic in practice assuming that the quality measures are defined carefully. 

6.2.1 Unimodality 
The definitions of the three quality measures q1, q2 and q3 were presented in Chapter 
5.2, and at first glance they seem to be reasonably selected. However, two of these 
quality measures could have been determined more wisely. This points out how the 
conventional performance characteristics can be totally inappropriate in this context. 
Therefore, the objectives of the optimization must be defined really carefully since the 
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results can be only as good as the objectives set to the problem. (However, as 
presented in Chapter 6.1, notable improvements on the performance were achieved in 
the test case, despite the deficiencies.) Here, while discussing the properties of the data 
distribution, we will study the reasons behind the first one of these flaws whereas the 
other will be treated in Chapter 6.4.  

Let us first examine the distributions of the quality measures. The histograms of the 
centered and scaled quality measures are presented in Figure 20. It is clear that the 
distribution of q1 (the settling time) does not fulfill the assumed normality.  

 

Figure 20. Histograms of the three quality measures, q1, q2 and q3, k = 100. 

If the dominating bar in the settling time histogram is examined a bit closer, it turns out 
that it actually hides a unimodal distribution, see Figure 21. The unsatisfactory nature 
of the original distribution is due to the inconsiderate definition of the quality measure. 
The problems result from the 4 percent tolerance boundaries that make the quality 
measure behave in this manner. 

 
Figure 21. The histogram of the settling time values after the diverging data 
points are removed. 

Let us study the consequences with an example: In Figure 22 six step responses of 
second order systems with different damping coefficients are presented. If the settling 
time is defined with tolerance boundaries, its values divide into separate clusters 
instead of forming a unimodal distribution. The quality measure becomes 
discontinuous and thus non-differentiable as illustrated in Figure 23. Obviously, this 
kind of behavior is not acceptable and it severely violates the assumptions made in the 
previous chapters. Thus, instead of using crisp boundaries, some kind of time weighted 
error signal integral of the form (9) could lead into better results, when the concept of 
settling time is of importance. 
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Figure 22. Six step responses of a second order system with different values of 
damping coefficient. The settling time distribution, if defined through tolerance 
boundaries, divides into three separate clusters. 

q = TS

θ = ζ

q = TS

θ = ζ  

Figure 23. The settling time is a discontinuous function of the damping coefficient 
if it is defined through crisp tolerance boundaries. 

Figure 24 presents distributions of two quality measure values from the same global 
iteration step. On the left, a distribution of a well behaving quality measure q3 is shown 
(variation caused by a pressure stroke in the combustion), resulting in rather normally 
distributed values, and on the right, the distribution of q1 (settling time) is shown. 
Three separate clusters are visible for the reason explained above. A linear model is 
not sufficient to explain this behavior, which can be seen also from Figure 25, where a 
similar data distribution is presented as a projection onto a plane. 

 

Figure 24. The values of quality measures that are approximately normally 
distributed (on the left) and divided into three clusters (right). 
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Figure 25. A quality measure distribution from an iteration step that involves 
some diverging data points. The data is projected to a plane spanned by its two 
major principal components. 

6.2.2 Properties of the quality measures 
In Chapter 2.4 the properties of a good quality measure q were considered and in 
Figure 5 some examples were presented. The optimization of smooth and 
monotonically decreasing quality measures, like q3 and q4 in Figure 5, would be rather 
straightforward. Unfortunately, the quality measures are more troublesome in practice. 
The difficulties that arose when a quality measure was not continuous over the whole θ 
axis were described above. Figure 26 illustrates another situation that is undesirable 
but still rather realistic. Many of the quality measures behave in this manner: The 
values of the function evolve rather moderately as the optimum is approached, but 
quite sharply after the optimal point the values of the quality measure explode. For 
instance, the settling time as a function of the proportional gain behaves in this 
manner: By increasing the controller gain, faster responses are obtained until at some 
point the system starts to oscillate, and, finally, the stability limit is reached, settling 
time becoming infinite. 

q

θθ *θ CRθ  

Figure 26. The optimal value of the quality measure q is achieved with the 
parameter value θ*. As θ* is passed by and θCR is approached the performance 
starts to degrade fast. 
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In practice, one faces the biggest problems when the varied parameter is close to some 
boundary, e.g., when the integration time has very small (but still positive) value. If the 
value of the parameter is accidentally changed to negative the process response 
“explodes” and so do the values of the most quality measures like the error signal 
integrals. The inappropriate parameter values may in some cases even cause 
divergence of the simulator, which will most probably terminate the whole tuning 
procedure. 

To avoid these problems within the MCMC simulations, the range of the parameter 
variation should be considered. The magnitude of the parameter value variation can be 
bound to the parameter value itself (as was done in the test case) or it can be 
proportioned to the feasible region of the possible parameter values. In the latter case 
the boundaries of the feasible region should be known beforehand. This is, of course, 
impossible in many cases. Standard deviation of 5 percents (relative to the absolute 
value of the parameter) was used which turned out to be a practical choice.  

The outlier detection and removal is an essential task when real process data are 
employed, e.g., for process modeling, because faulty measurements or missing values 
cause inaccuracy to the model. And when the data is obtained from a real plant it 
always contains some errors. But when the data is produced with a dynamic simulator 
all data points are valid (in theory) and should be used within the model estimation. 
However, the simulated data can contain rare values that cause some problems. The 
effects of these diverging observations on the success of the update step were studied 
in the test case. It did not seem to have any drastic consequences whether the out of 
line data were employed in the modeling or not. The resulting update step proposal 
was more or less the same in both cases, at least regarding the direction of the update. 
Typically, the direction of the proposed parameter update was not changed and only 
the magnitude of the update step was slightly affected. 

6.2.3 Reliability of the parameter update 
In the simulations the parameter updates were based solely on the estimated model. 
The estimation was assumed to be successful during every update step without any 
verification. The number of local iterations in an update step was fixed to an amount 
considered “certainly enough”, and for that reason checking of the modeling precision 
was not considered necessary. However, as the previous discussion implies, check on 
the unimodality of the data distribution could prevent from the difficulties described 
above. 

By examining the data distribution it can be predicted whether the estimation of the 
qualifier – quality measure model and therefore the calculated parameter update will 
be successful. If the unimodality assumption is severely violated at some global 
iteration step, there is no reason to believe that the resulting update based on the linear 
model would be towards optimal direction. Several methods are available for testing 
the normality of the distribution (see Appendix A). 

If the tuning is performed with a simulator, a somewhat easier methodology can be 
used. The new parameters can simply be tested with the simulator without any risks of 
damaging the actual system. If the resulting performance is unsatisfactory or worse 
than before the update step, the modeling around the previous parameter values can be 
repeated. 
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6.3 On MVR models and parameter updates 
The applicability of the PCR, PLS, CCR and CR methods (see Appendix B) was 
studied in the test case. In practice, during every iteration step these four different 
models were estimated such that the best latent structure (i.e., the number of latent 
basis vectors) was defined for every one of them. Here, the word “best” refers to the 
best estimation capability when an independent validation data was used. The 
evaluation of the estimation capability was done by comparing the mean estimation 
errors per data point. Being precise, the best latent structure was defined for 14 models 
on every iteration step since the CR model was estimated with eleven different values 
of the parameter α, i.e., α ∈ [0, 0.1, 0.2, …, 1]. 

6.3.1 Comparison of the MVR techniques 
Generally, it can be claimed that any major differences in the applicability of the 
different latent variable regression methods were not perceived. Only when the 
estimation capabilities of the different models were evaluated by comparing the mean 
estimation errors per data point, the CCR and CR seemed to outperform the PCR and 
PLS methods. It should be kept in mind, however, that it requires more calculation to 
define the best CR model than any of the others (about ten times more in this case), 
since it has one parameter more than the competing methods. The modeling has to be 
done separately for every value of the parameter α and thus the computational effort 
increases.  

The figures below (Figure 27 and Figure 28) depict how accurately the four regression 
methods are able to model the slope of the settling time on the first and on the 20th 
global iteration step. The observations are arranged in the order of magnitude with 
respect to the true perceived values. As can be seen, the estimation of the descent 
direction from the validation data becomes much more difficult when the data set used 
for the modeling consists of separate clusters rather than a unimodal distribution. 

 

Figure 27. Settling time values from the first iteration step. The PLS estimates are 
denoted with blue asterisks, PCR with red, CCR with green and CR estimates 
with cyan. Black circles denote the true obtained values of settling time. 
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Figure 28. Settling time values from the 20th iteration step. The PLS estimates are 
denoted with blue asterisks, PCR with red, CCR with green and CR estimates 
with cyan. Black circles denote the true obtained values of settling time. 

6.3.2 Observations on parameter convergence 
First of all, in most of the cases every MVR method resulted in a more or less identical 
parameter update proposal. Especially the direction of the update was usually common 
to the different methods and differences were perceivable only in the length of the 
update steps.  

Figure 29 presents the convergence of the proposed parameter update for θ1 using 
different MVR techniques in four different global iteration steps. Note that the vertical 
axes are not in the same scale. During the tuning procedure the parameter was 
gradually changed from θ1(1) = 4.00·10-7 to θ1(70) = 1.42·10-6 (see Table 2), i.e., the 
desired update direction is increasing. As can be seen, the necessary amount of data 
points, k, varies quite a lot. The largest data set (until the correct update direction is 
found with every MVR method) is required in the step K = 20. In that step k ≥ 40 data 
points are necessary. The reason is most likely the clustered data as discussed above. 
On the contrary, in the step K = 1 the right update direction seems to be clear to all 
MVR methods already after 10 simulations. Further, as K = 70 the update procedure is 
nearly converged and the update with every method is rather conservative (see also 
Figure 18). 

At first it sounds a bit strange that seven parameters could be adjusted in a sensible 
way with respect to three quality measures by using only about ten data points. The 
answer lies in the idea of the latent variables. Put heuristically, if the number of the 
input variables can be reduced for instance to three and the number of the outputs to 
two, one has to estimate only 3×2 = 6 parameters instead of the original amount (7×3 = 
21). 

Since the parameter update was calculated based on the formula (36) the length of the 
resulting update step is directly relative to the magnitude of the coefficients in the F 
matrix. Strong correlation between some qualifier – quality measure pair shows up as a 
large value of the corresponding element in F. If the elements on one row in F have 
different signs the objectives are contradictory with respect to the corresponding 
parameter. In such case defining an unambiguous update turns into a troublesome task 
whereby the decision making has to be involved. Smaller coefficients in F are 
indications of weaker correlation between qualifier – quality measure pairs. If some 
parameter does not have any correlation between the quality measures all elements in 
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the corresponding row in F matrix are near zero (at least their expected value in the 
long run is zero). Thus, including extra parameters to the tuning procedure has no 
unfavorable effects either on the success of the tuning or on the values of these 
parameters. 

K = 1 K = 10

K = 20 K = 70

 

Figure 29. The convergence of the parameter update for θ1 on global iteration 
steps K = 1, 10, 20 and 70 subject to the number of the data points. (Red line is the 
PCR, blue PLS, green CCR and cyan CR proposal.) 

6.4 On optimality and multiple objectives 
In the simulations the overall cost function to be minimized was defined as a weighted 
sum of the quality measures 
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in which K is the index for the global iteration step and wi is a weight for the quality 
measure qi. The initial values of the quality measures are scaled to unity to make the 
progress of the tuning procedure easier to follow. If the update is performed according 
to (36), in which the mapping matrix F is estimated from centered and scaled data, all 
the quality measures are automatically equally weighted in the optimization despite 
their original magnitudes. However, comparing the importance of different quality 
measures (even if their values have been scaled) can be somewhat arbitrary. The 
decision making between multiple objectives that is required is discussed in more 
details, e.g., in /31/. 

In Chapter 6.2.1 it was implied that in addition to the badly defined q1 (the settling 
time) also one of the remaining two quality measures could have been determined 
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more wisely. This refers to the minimization of the overshoot after the stepwise 
setpoint change. The minimization was determined by the expression 

 ( )( ) rtyOS
t

−= max        (39) 

rather than, e.g., by 

 ( )( ) rtyOS
t

−= max .       (40) 

Above, r refers to the reference signal. The difference between the two minimization 
tasks is obvious: The first one tries to “push” the response signal y(t) below the 
reference signal r all along the inspection period whereas the second expression 
minimizes the deviation of y(t) from r. The definition (39) would be applicable if also 
an opposite minimization goal was defined. Thus, the best possible optimization results 
were not obtained although evident improvements in performance were reached, as 
discussed in Chapter 6.1. 

The problem of incommensurable objectives is one of those arising when 
multiobjective optimization is considered. The above described method for mastering 
the multiple objectives of the optimization, that is an example of scalarization attempt, 
is extremely simplified. Scalarization means converting a multiobjective problem into 
single objective form. Adding the values of the optimized functions together gives a 
practical although slightly dubious way to manage several targets of interest with a 
single scalar valued function. In a way, the weighting of the quality measures in (38) 
represents decision making between the objectives: Preferences and further knowledge 
about the phenomena being optimized can be used to weight the relevance of the 
quality measures. More general and better justifiable methods for multiobjective 
optimization can be found from the literature, e.g., /31,35/. 

The multiobjective optimization can be performed without the scalarization such that 
every single quality measure is optimized at the same time. This results in a Pareto 
optimal solution, which means that improvement on any of the optimized attributes is 
impossible without deteriorating the others. The Pareto optimal solution may be 
different depending on the initial state of the optimized system. Formulating such 
multiobjective optimization problems is rather ambiguous. Too many conflicting 
objectives can prevent the optimization of the quality measures as a whole. The 
mathematical machinery is unable to find any direction from the regressor space that 
would result in better values of quality measures, if the objectives include 
contradictory goals. Thus, the objectives have to be stated carefully and certain amount 
of realism should be kept in mind (or one can always abandon the Pareto optimality 
and apply scalarization approaches). 

It is yet another question, whether any of the Pareto optima is “good enough” or 
whether it pays to spend time on finding “the very best” Pareto optimal solution. It 
depends crucially on the application at hand. If the optimization is continued within the 
Pareto optimal solutions, one has to use decision making between separate objectives. 
In some cases this is unavoidable as the set of Pareto optimal solutions may enclose 
major parts of the parameter space (i.e., the objectives are heavily contradictory). In 
practice, the solution that gives the most desirable overall behavior might as well lie 
outside the set of Pareto optimal parameter combinations. This might be due to 
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imprecise mathematical formulation of the objectives and the stochastic nature of the 
phenomena or deficient objective specification. 
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7 CONCLUSIONS 

In Chapters 2 and 3 several techniques for PPA and control parameter tuning were 
introduced. This naturally raises the question what is the motivation of developing yet 
another method. In the beginning of 1990’s the computational power of computers 
used in process control was much lower than today. This fact resulted in industrial 
implementation of extremely economical algorithms only. This can be seen for 
instance in the hierarchical PPA approach proposed by Stanfelj et al. /34/ in which the 
problem of process monitoring is split in several levels. The overall process 
performance is monitored separately from the controller performance and controller 
tuning, which are considered only if a major deterioration of process performance is 
perceived. Due to the explosion of the computing capacity construction and simulation 
of large and detailed process models is not an issue anymore. Therefore one has the 
opportunity to overcome the earlier problems and implement just as demanding 
algorithms as desirable.  

The influence of dozens of control parameters on the process performance is a good 
example of a large complex system. Typical (and only possible) solution has been over 
decades to split the problem into pieces of manageable size. This kind of approach 
inefficiently takes into account the interactions between the control loops as they are 
tuned separately. The same disadvantage appears also in the iterative tuning algorithms 
of the multi-loop control systems /10,30/. The statistical multivariate methods 
proposed in /21,22,23/ instead enable the direct tuning of the control parameters 
against the objective behavior of the process. Applying these methods makes new 
concepts, covering the whole process and its performance, emerge from the amount of 
conventional single loop control performance characterizations. On the higher 
abstraction level, terms like accuracy, robustness and speed of the control system can 
be applied in the overall process performance context. 

The Iterative Regression Tuning method can be applied also to other tuning tasks. For 
example, instead of control parameters, other continuous process parameters such as 
setpoints can be tuned to enhance the systems performance. Alternatively, after the 
plant is operating the actual measurement data from the process can be used to tune the 
parameters of the simulator so that it corresponds better with the reality. 

Even though this report focused on the controller tuning during the commissioning of 
an automation system, the same tuning procedure could be used during the normal 
operation as well. E.g. changes in the production rate, raw material properties or other 
circumstances may require different tuning of the controllers. If the variations in the 
raw materials are known to be larger than normally for some reason or another, it 
might be advantageous to change the tuning of the controllers into more robust 
direction. Or if the plan of the near future operation consists of several setpoint 
changes (e.g. different grades are to be produced), the tracking ability of the overall 
control system is of particular interest. Now, if the different process performance 
objectives could be organized under a couple of intuitively understandable terms, the 
simultaneous tuning of all controllers could be as easy as the tuning of an easy-to-
understand PID controller. Although more and more intelligent algorithms can be 



 60

implemented for controller tuning purposes it does not necessarily mean that the 
complexity of the tuning system would increase as well at the expense of the usability.  

The future work on the development of the IRT method will consist of, e.g., defining 
more accurately the properties of quality measures that are best applicable in this 
context. A sort of function library approach could be a practical solution for the 
implementation of the tuning system. A collection of ready-implemented functions that 
are known to behave in an acceptable manner would decrease the possibility of facing 
severe difficulties caused by inconsiderate definition of quality measures. Similarly, a 
few different cost function types could be offered to user from which an appropriate 
one could be selected. For instance, one could decide whether to apply multiobjective 
optimization or decision making approach in the optimization. 

The different alternative parameter update techniques should be studied in more detail, 
since the applied gradient descent algorithm is only one (simple) possibility to perform 
the iterative optimization. Also the number of required local iterations, which seems to 
have a certain connection to the number of significant latent variables in the data 
space, needs to be studied further.  

Some sort of control on the reliability of the update step (i.e., the correctness of the 
proposed update direction) might by reasonable to implement as well, e.g., in form of 
normality testing. Whether the assumption of Gaussianity is severely violated, the 
system could at least provide the user with a warning of possible failure in the 
estimation of the parameter – quality measure model.  

In the experiments, more or less identical “batches” were repeated in the local 
iterations to eliminate random effects and to speed up the parameter convergence. It 
can be questioned whether the obtained results can directly be applied in cases where 
the simulation runs cannot be controlled in the same way. However, there exist plenty 
of applications also for the presented simplified approach. For example possibilities of 
applying the methodology for optimizing the grade changes (the transient periods 
between operating points) in a paper machine are being studied. 
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APPENDIX A: STATISTICAL TESTING 

In this chapter an (extremely brief) overview of the statistical testing methodologies is 
presented. The introduction is based on /32/, where the subject is discussed in more 
details. The concept of Statistical Process Monitoring (SPM) is also introduced shortly. 
At the end of the chapter some ideas are proposed how to utilize the statistical testing 
methods in the context of the IRT method and how to test the normality of a data 
distribution. 

First, let us define some terminology used in this chapter: A distribution of a random 
variable X and a sample of k observations, X1, X2, …, Xk, is studied. The true 
population parameter q can be approximated with a sample estimate q̂  that is 
calculated based on the observations. The population parameter is assumed to describe 
some essential characteristic of the whole population or the underlying distribution 
from which the sample is drawn. For example, this parameter might describe the 
expected value of the random variable { }Xq E=  that can be approximated with the 
arithmetic mean of the sample Xq =ˆ . 

A.1 Hypothesis and significance testing 
Normally statistical testing is directed to an estimation problem of an (unknown) 
population parameter q. The classical hypothesis testing involves always two 
competitive and contradictory hypotheses related to the value of the estimated 
population parameter q̂ . The first one of these, H0, is the null hypothesis that is related 
to the null value of the population parameter q0 whereas H1 is the alternative or 
research hypothesis. The experimenter tries to untangle whether the value of the 
sample estimate q̂  refers to H0 or H1. 

A.1.1 Tests on the mean value 
The hypotheses are usually defined such that H0 is tried to reject and H1 stands for 
something desirable. Further, the equality of q with some preconceived value (null 
value q0) is attached with the null hypothesis. For example, if the testing is conducted 
on mean value of the sample, i.e., the test statistic is Xq =ˆ , the hypotheses could be 
stated as 
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:
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00

qqH
qqH

>
=

        (A1) 

The goal of the experiment is to show that with a certain level of significance it can be 
stated that the observed sample mean q̂  represents an expected value of q that is 
higher than its preconceived value q0. The preceding form of the hypotheses is called 
right-tailed test and the test is called left-tailed if the research hypothesis is formulated 
as 
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 01 : qqH < ,        (A2) 

or two-tailed if 

 01 : qqH ≠ .        (A3) 

It must be pointed out that also the estimate of the population parameter q̂  that is used 
as a test statistic is a random variable and its value varies from one sample to another 
with a certain mean value and variance. In other words, its values are determined by 
some distribution. To be able to determine any probability levels concerning the values 
of the test statistic q̂  the underlying distribution should be known, at least 
approximately. If the test statistic reaches a value that is considered significantly rare 
as the null hypothesis is assumed to hold, one can reject the null hypothesis H0 in favor 
of H1. On the other hand, if the observed value of the test statistic is common under the 
assumption of true null hypothesis, the rejection of the null hypothesis fails. 

Hypothesis testing involves two possible errors that can be encountered. Type 1 error 
means that one incorrectly rejects the null hypothesis. Type 2 error occurs if the 
rejection of the null hypothesis is failed although the research hypothesis is true. 

In hypothesis testing the values of the test statistic that will lead to rejection of the null 
hypothesis are set beforehand by fixing the size of the test α, e.g., α = 0.05. It means 
that the probability of the observed value of the test statistic that is considered small 
enough to lead to rejection of the null hypothesis is fixed to α. The values of test 
statistic that are less probable than α form the critical or the rejection region for the 
test.  

In significance testing it is studied what is the probability or the P value of the 
observed value of the test statistic, if it is drawn from the null distribution. Small P 
values suggest that the observations are probably from another distribution than the 
one determined by the null hypothesis, i.e., the null hypothesis should be rejected. 

As it was already mentioned the distribution of the test statistic has to be known. If the 
random variable X is normally distributed with mean q0 = E{X} and variance 2σ  and a 
random sample of size k is observed then the normalized test statistic 

{ } ( )E
~ 0,1

X X
N

kσ
−

       (A4) 

is normally distributed with zero mean and unit variance. In above it is assumed that 
the variance of X is known which is not true in many cases. If the variance is 
approximated with the sample variance 2σ̂  it can be shown that the respective 
normalized test statistic 

{ }
1

E
~

ˆ k

X X
T

kσ −

−
       (A5) 

follows the Tk-1 distribution, i.e., T distribution with k-1 degrees of freedom. If X is not 
normally distributed T tests should be performed only if the sample size is large, i.e., k 
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≥ 25. Then the probabilities of Type 1 and 2 errors are not significantly increased /32/. 
Tests based on the statistic (A5) are commonly called T tests. 

A.1.2 Tests on the variance 
Statistical tests on the variance can be performed with the same general form of the 
hypothesis testing as in (A1). The variance is compared to its preconceived value 2

0σ . 
Now the distribution of the test statistic is however different. When sampling from a 
normal distribution, the test statistic 

 ( ) ( )
2

2
2
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~ 1

k
k

σ
χ

σ
−

−        (A6) 

is known to follow a chi-squared distribution with k-1 degrees of freedom. Check on 
the normality must be made and if the data turns out to be non-Gaussian the preceding 
testing method cannot be applied.  

A.2 Testing for normality 
Several methods are available for testing the normality of distributions. For smaller 
samples visual inspection methods are usually proposed in the literature. A couple of 
these graphical methods are presented, e.g., in /32/. For bigger data samples also more 
sophisticated methods have been developed.  

One that is recommended for data sets, in which k ≥ 50, is called Chi-square test for 
normality /32/. The goal of the test is to find out whether there is enough evidence that 
the tested sample of random variables, X1, X2, …, Xk, is not from a normal distribution. 
This is done by means of hypothesis testing.  

First, the real axis is divided into N mutually exclusive categories. The lower and the 
upper boundaries of the ith category are denoted here with bi,L and bi,U, respectively. 
(The first and the last one are open-ended in practice). Then estimates for sample mean 
and variance are calculated based on the formulas 
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where Oi is the number of observations falling into ith category, Mi is the midpoint of 
the ith category and k is the sample size. After that, the probabilities pi that an 
observation falls into category i are estimated. For example, for the ith category  
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where Z is obtained by a normalization similar to (A4) and it is N(0,1) distributed. 
Then, the expected number of observations falling into category i is estimated by 

 ii pkE ˆˆ = .        (A10) 

Finally, the hypotheses  
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are tested using the test statistic 
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that follows approximately the chi-square distribution with N - 3 degrees of freedom. If 
the probability to obtain the value of the test statistic or a bigger value, when sampling 
from a normal distribution, is considered too small (smaller than the beforehand 
chosen test size α), the null hypothesis is rejected and the distribution of the random 
variable is concluded to be non-Gaussian. 

A.3 Statistical process monitoring 
Classical statistical testing can be used in the monitoring and detection of process 
performance problems /13/, e.g., one can determine whether changes have occurred in 
some characteristic figures of the system in the long run. Such changes could be, for 
instance, increased steady state variance of a controlled variable or change in any 
performance index. This kind of approach is called Statistical Process Monitoring 
(SPM). 

Tyler and Morari /37/ have proposed a method for detection of process performance 
deterioration based on statistical testing. In their approach the acceptable process 
performance is expressed as constraints on closed loop impulse response coefficients. 
These constraints are derived from the performance specifications, e.g., for settling 
time, decay rate and output variance. The performance is evaluated by choosing 
between two alternative hypotheses: 

.objectives  the violateseperformanccurrent  The : 
.objectives  thesatisfies eperformanccurrent  The :

1

0

H
H

 

Tyler and Morari claim that by selecting properly the performance objectives, this 
testing method outperforms, e.g., the Harris index as a monitoring tool. The proposed 
method is claimed to be insensitive to irrelevant changes in the noise dynamics but at 
the same time it is capable of sensing changes in the system model under examination. 

As in SPM one tries to detect the change of process performance to the undesired 
direction, the same methodology can be applied to detect the improvements on 
performance as well. If a control system is tuned and the performance is evaluated 
against quality measures q, statistical testing can be used to detect the favorable 
changes in the plant behavior. 
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For example, it is rather difficult to judge whether the variance of a signal has 
decreased along with the controller tuning or does it only seem to have done so. With 
significance testing the changes in the performance can be related to some probability 
level. For instance, one can suggest that with 95 % confidence the expected value of 
the variance has decreased from its initial value.  

In practice the testing can be done by estimating the quality measure q̂  k times from 
independent samples. If one can assume that the values of ( ) ( ) ( )kqqq ˆ ..., ,2ˆ ,1ˆ  are 
normally distributed, the tests introduced in Chapter A.1.1 can be applied directly. 
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APPENDIX B: MULTIVARIATE REGRESSION 
METHODS 

In this chapter a few Multivariate Regression (MVR) methods for constructing linear 
models of MIMO systems are presented. The presentation follows rather closely the 
report written by Hyötyniemi /20/ concentrating on the issues that are relevant when 
applying these methods. Therefore, most of the proofs and derivations are omitted. 

In the following chapters the necessary data preprocessing is always assumed without 
extra emphasis. This includes centering and scaling of the data to zero mean and unit 
variance. More about these practical steps preceding the actual modeling task can be 
read from /20/. 

B.1 On multidimensional data and linear models 
In this short chapter the notation used for the multidimensional data is introduced. In 
order to retain the brevity on symbols in this report, the input and output variables are 
denoted here with θ and q, respectively, rather than, e.g., with u and y or x and y as 
conventionally on the system engineering literature. This choice makes it possible to 
use unified notations throughout the chapters of the report. 

Let us assume that a system has n input variables θi, i = 1, …, n, and m output 
variables qj, j = 1, …, m. θ and q without any subscripts are used as symbols for 
multidimensional input and output column vectors, respectively, such that 
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If k samples of inputs θ and corresponding outputs q are available, the data set can be 
expressed in a matrix form 
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Note that vector (and scalar) signals and variables are denoted with the lower case 
symbols whereas the upper case symbols denote a collection of k samples of these 
vector valued variables. Furthermore, it will be assumed that k is much higher than n or 
m. 

The purpose of the modeling is to find a linear model F such that 

 θ⋅= TFq ,        (B3) 
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or for the data in matrix form, 

 Q F= Θ⋅ .        (B4) 

In the following, different techniques to find linear models for the MIMO systems are 
presented. 

B.2 Multilinear regression 
If a linear model structure between input and output variables is assumed the technique 
that is usually applied in the modeling is the Least Squares (LS) method proposed by 
Gauss already in the 1800’s. On many applications it results in feasible models but as 
the number of variables grows, and especially if the data is not well conditioned in 
numerical sense, the method gets into troubles. Let us first study a MISO (multiple 
inputs, single output) model where only the ith output is considered. Naturally, the 
estimates based on a regression model never coincide perfectly with the true output 
values but there is a modeling error Ei present such that 

iii EFQ +Θ= .       (B5) 

Qi and Fi are the ith columns of the Q and F matrices and Ei is a column vector that 
contains k error terms corresponding to k observations of Qi. Naturally for a good 
model Fi the errors Ei should be rather small. Thus, finding such parameters Fi that 
minimize the sum of the squared errors should lead to a sound model: 

( ) ( ) ( )ii
T

iii
T
i

k

i FQFQEEE Θ−Θ−==∑
=1

2

κ

κ ,    (B6) 

in which ( )κiE  denotes the modeling error of ith output on the κth data sample. By 
differentiating the equation (B6) with respect to model parameters Fi and setting the 
result equal to zero (vector), gives an equation whose solution is an extremum point of 
the sum of the squared errors: 
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For a second order polynomial the extremum is unique and thus it is a global 
extremum. And because the second derivative matrix, 
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is positively semidefinite, the extremum is a global minimum. Thus, solving the 
equation (B7) gives the optimal parameters Fi in the least squares sense: 
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If there are m output variables, the above expressions can be combined as 
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The obtained model F is called Multilinear Regression (MLR) model. 

B.2.1 Problems and improvement ideas 
In the MLR approach the ordinary assumptions relative to linear regression model 
should hold /33/. First of all, the relationship of the regressors and the dependent 
variables is assumed to be linear as in (B5). Secondly, the regressors should be non-
stochastic. Furthermore, it is assumed that there exists no exact linear dependency 
between any of them. The error terms Ei in (B5) are assumed to have a zero expected 
value and a constant variance for all observations (i.e. homoscedasticity assumption). 
The errors of the outputs Qi and Qj at samples κ1 and κ2, Ei(κ1) and Ej(κ2), are also 
assumed to be statistically independent for all i, j, κ1, κ2 (also for the case i = j, if only 
κ1 ≠ κ2). 

In practice the above assumptions are violated more or less and so the MLR has some 
deficiencies. For instance the linear model type turns out to be the optimal solution 
only if the data is Gaussian. As MLR attempts to model all of the variation in the 
output variable direction, it accidentally models also some of the random variations in 
the dependent variable values. This causes troubles when the model is used for 
forecasting values of Q with an independent input variable set Θ. Another and maybe 
even more severe problem is the collinearity in the variables. E.g., if there are two 
nearly identical variables in the Θ matrix, one of the eigenvalues of the corresponding 
covariance matrix ΘΘ⋅ Tk1  approaches zero, i.e., the matrix becomes rank deficient. 
Now the matrix inversion in equation (B10) is no longer defined. Even though one 
succeeded to calculate the inversion of a nearly singular covariance matrix, the model 
would become very sensitive to noise and quite useless for the estimation purposes. 

In the following, some techniques are presented to overcome these inconveniences. 
These methods share the same fundamental idea of how to enhance the regression 
model and they are known as statistical multivariate regression methods or 
multivariate subspace projection methods. Let us study their philosophy a bit closer. It 
is a fairly realistic assumption that all measurement signals are more or less noisy and 
redundant (collinear) in practice, but on the other hand all of them carry some fresh 
information as well. If some of the variables are omitted in order to remove the 
redundancy, crumbs of information are also lost. And naturally one wants to get rid of 
the redundancy and noise only. The problem is solved if the data dimension can be 
reduced in a sophisticated way, i.e., an appropriate subspace can be found from the 
original data space. 

Let us study an example: Figure 30 presents a collinear two-dimensional data set in its 
original coordinate system, i.e., using variables θ1 and θ2. Unit vectors 1θ  and 2θ  with 
the same directions as θ1 and θ2 constitute the so-called natural basis, Φθ, of the 
variable space. However as can be seen from the figure, most of the variation is 
explained by the variable φ1, which is a linear combination of θ1 and θ2. If the variation 
in the direction of φ2 is assumed to be nothing but noise, one is able to describe the 
relevant information using only one variable. Thus, Φ = ( φ1 ) can be selected as a 
basis vector set (in this case consisting of only one vector) that spans a (one-
dimensional) subspace in the original two-dimensional space spanned by Φθ = ( 1θ  | 
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2θ  ). Now, if the original data set is first projected onto this subspace, the linear 
mapping to output space can be done from Φ without any problems caused by 
collinearity, i.e., one can use the MLR approach for the regression. The modeling is 
divided into two linear mappings:  

QZ FF ⎯→⎯⎯→⎯Θ
21

,       (B11) 

where Z are the variables in the subspace spanned by Φ. In the following these new 
variables are called latent variables. In practice the mapping can be combined finally 
into a single calculation such that 

( ) FFFZFQ Θ=Θ== 212 .      (B12) 

Thus, to result in a satisfactory regression model F one has to find suitable basis 
vectors spanning the subspace Φ. This will be elaborated in the following chapters and 
several techniques will be presented. The properties of bases and linear mappings are 
discussed in more details, e.g., in /20/. 

φ1

θ1

θ2
φ2

 

Figure 30. A data distribution in two dimensions: variables θ1 and θ2 are mutually 
correlated, i.e., collinear. The same data distribution can be expressed also as a 
function of φ1 and φ2. 

B.3 Latent variable methods 
In the following subchapters four different regression methods are presented. The 
overall idea of dimension reduction is common to all of them. Only the principles how 
this is obtained differ from one method to another. Here these methods are presented 
through the same eigenproblem approach although their customary definitions in the 
literature usually might look quite different. 

B.3.1 Principal Component Regression 
The Principal Component Regression (PCR) is based on Principal Component 
Analysis (PCA), which assumes that the information content in a data set is carried by 
the covariation. Therefore, in PCR the basis vectors spanning the subspace Φ are 
selected such that they explain the major part of the variation in the input data (like in 
the example presented in Chapter B.2.1). The purpose is to omit the directions of the 
data variation where the signal-to-noise ratio is smallest, and use the latent variables 
for regression purposes. This is motivated by the assumption that the uncorrelated 
noise is evenly distributed in every direction, whereas real underlying phenomena are 
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typically reflected in various original variables. E.g., in Figure 30 φ1 points to the 
direction of the major variation whereas the direction of φ2 is of minor significance. A 
reasonable selection for the subspace basis in this case would be Φ = φ1, as discussed 
earlier.  

Let us assume that φi is an arbitrary direction in the data space. If the input data Θ is 
projected onto this vector, i.e., 

iiZ φΘ= ,        (B13) 

the variance of the projections (latent variables) is 
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If the aim is to find the direction of the maximum variance, one ends up in a 
constrained optimization (maximization) problem with respect to φi: 
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Above f(φi) is the objective function that is maximized with the restriction g(φi). If the 
length of the vector φi were not restricted the values of the function f(φi) would grow 
without limit. The optimization problem can be solved using the method of Lagrange 
multipliers resulting in a cost function 

 ( ) ( ) ( )iiii gfJ φλφφ ⋅−=       (B16) 

in which λi is a Lagrange multiplier. By differentiating the above cost function with 
respect to the parameter vector φi (mapping parameters from input data to latent 
variables), and setting it to zero,  
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By substituting (B15) in (B17), calculating the derivatives and reorganizing the terms 
the equation can be expressed as an eigenvalue problem 
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The above equation is the eigenvalue formulation of the data covariance matrix and 
any of its eigenvectors φi corresponding to an eigenvalue λi solves the equation (B18). 
Thus, all the eigenvectors of the data covariance matrix represent extremum points for 
the original optimization problem (B15). For the n × n symmetric covariance matrix, 
there are n orthogonal eigenvectors (corresponding to real and non-negative 
eigenvalues, see /20/) which are all possible solutions to the above equation. However, 
it can be shown that maximum is only reached with the eigenvector corresponding to 
the largest eigenvalue. 
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The eigenvectors of the covariance matrix are called the principal components of the 
data. Choosing the most relevant principal components to the basis set Φ gives many 
advantageous properties to the regression model. The orthogonality of the eigenvectors 
assures uncorrelatedness of the latent variables. This means that the covariance matrix 
of the latent variables is always invertible if only the eigenvalues are not zero. Further, 
the eigenvectors of the covariance matrix can be extracted now one by one. 

If all the n eigenvectors are included to the basis set Φ, all the information content of 
original Θ data can be expressed with the latent variables Z. However, in PCR it is 
appropriate to omit some of the minor principal components from the basis. If N most 
significant eigenvectors are included to the basis ΦPCA = ( φ1 | … | φN ) the PCR model 
is implemented as 
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where estQ̂  is the estimated output corresponding to input Θest. 

B.3.2 Partial Least Squares 
PCR tried to express the covariation of the multidimensional input data in lower 
dimensional subspace with latent variables. The attempt is understandable but instead 
of maximizing the variation of the input variables of the regression model, it sounds 
even more reasonable to maximize the correlation between input and output variables. 
This approach is taken in Partial Least Squares (PLS) regression to find the latent 
variables. Here, it should be emphasized that PLS is usually defined in an algorithmic 
form. However, in this context an eigenproblem approach is taken. It can be proved 
that only the most significant eigenvector directions found with the eigenproblem 
formulation coincide exactly with the results of the algorithmic form. 

In the PLS the latent structure is searched not only from the input variable space but 
also from the output space. Thus the regression can be thought to consist of a three-
step procedure: 

QZZ FFF ⎯→⎯⎯→⎯⎯→⎯Θ
321 21 .     (B20) 

Above Z1 and Z2 are the variables in the input and output oriented subspaces, spanned 
by the bases Φ1 = ( φ1 | … | φN ) and Φ2 = ( ϕ1 | … | ϕM ), respectively. Maximization 
of the correlation of the latent variables Z1 and Z2 results similarly as in the PCA case 
in a constrained optimization problem, now with two constraint equations: 
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Using the method of Lagrange multipliers again results in a pair of eigenvalue 
problems 
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The eigenvectors solving the above equations reveal the directions of the correlation 
extrema between input and output oriented latent variables. Again, the magnitude of 
the eigenvalue defines the significance of the corresponding latent variable. The three-
step regression procedure in (B20) reduces in practice to a single matrix operation, 
because all the necessary dimension reduction is achieved in the first projection to the 
basis Φ1 = ( φ1 | … | φN ). Therefore the PLS regression can be expressed as 
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where ΦPLS = ( φ1 | … | φN ) and N ≤ min{n, m}. 

B.3.3 Continuum Regression 
The above two methods originate in slightly different foundations. In the PCA the 
modeling emphasis is exclusively on the input data whereas in the PLS both input and 
output data are considered. In both methods the latent variables are searched with an 
optimizing procedure: In PCA, the variance of the latent variables in the input space is 
maximized, and in PLS the correlation between input and output oriented subspace 
variables is maximized. Now one might ask which solution is better. The question is 
hard to answer since there is no physically optimal solution for the latent structure. 
And as it turns out, there are also several other ways in addition to the preceding two to 
define the latent basis structure. 

The Continuum Regression (CR) attempts to combine the MLR, PCR and PLS 
methods into a single framework. Actually an innumerable amount of different 
regression methods can be defined with the same idea that will be presented in the 
following (see /20/ for more precise derivation). The latent variables can be defined as 
solutions to the eigenproblem 
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The resulting latent basis coincides with  

• PCR if α1 = 0 and α2 is an arbitrary number 
• PLS if α1 = 1 and α2 = 0 and 
• “MLR” if α1 = 1 and α2 = -1. 

Above the MLR is in quotes because it actually is not a subspace projection method. 
However, it can be thought that in the MLR the emphasis is on explaining the maximal 
amount of the output variation with the regression model. The eigenproblem should 
not be solved in the preceding form since the matrix ( ) TT QQQQ 2α  is huge in 
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dimension (k × k) but the matrix power should be calculated with the singular value 
decomposition. 

Both α1 and α2 can be expressed as a function of a parameter α such that the above 
“definitions” hold. There are several possibilities to define the functions α1(α) and 
α2(α), e.g., 

( )
( ) .12

12

2

2
1

−=
++−=

ααα
αααα

       (B25) 

With these selections MLR is given with α = 0, PLS with α = ½ and PCR with α = 1. 
Now we have a continuum between the before-mentioned methods and thus we are not 
forced to confine to them only, but any value of α can be chosen. After the best 
parameters N and α for the particular modeling task are found and the resulting latent 
basis ΦCR = ( φ1 | … | φN ), N ≤ min{n, m}, is constructed, the final regression model 
based on the CR looks once again quite familiar, i.e., 

( ) .

ˆ

CR
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CRCRCRest

CRestest

Q
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    (B26) 

B.3.4 Canonical Correlation Analysis 
In the Canonical Correlation Analysis (CCA) the basic idea is very close to that of 
PLS: The aim is to find the subspace basis vectors such that the correlation of the input 
and the output variables is maximized. The difference is that the length of the basis 
vectors is not constrained in the optimization but the length of the projected data 
vectors, Zi = Θφi, is kept constant instead. This leads to the following constrained 
optimization problem 
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     (B27) 

Proceeding similarly as above, the problem results in a pair of eigenproblems, 

( ) ( )
( ) ( )

1 1

1 1
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i i i
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    (B28) 

that can be expressed also as a generalized eigenproblem: 
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In (B28) it is assumed that both ΘTΘ and QTQ are invertible, which is clearly against 
the discussion in Chapter B.2. Thus, if either of them is close to singular, one of the 
generalized eigenproblems in (B29) should be solved. 

Contrary to PCA and PLS basis vectors the CCA eigenvectors may have physical 
explanations as well. Also, the CCA bases are generally not orthogonal. Therefore the 
resulting regression formula reduces to a different form than before: With a subspace 
basis ΦCCA = ( φ1 | … | φN ), N ≤ min{n, m}, the estimation is performed as 

( ) ( ) .

ˆ
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