
Preface

This report is a result of a long-lasting search for simple and general ap-
proaches to modeling of neuronal behavior.

The original paper was submitted for publication in Neural Networks in early
2003. Valuable comments were given, and a revised, extended version was
submitted in the end of 2003. Again, reviewer comments were given — one
of the main criticisms was about the excessive length of the paper. Con-
sequently, the paper was divided in three parts and resubmitted in June
2004. However, as one of the reviewers, for example, commented that “I do
not think linear approaches are interesting”, it seems that the publication
process will still take a long time.

However, it seems that the linear structures are extremely flexible and exten-
sible, and the results of the papers are being implemented in theoretical and
practical applications (see “http://www.control.hut.fi/cybernetics”).
The papers are now published as a laboratory report.
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Chapter 1

Analysis of
Hebbian/Anti-Hebbian
Learning

In this chapter it is shown how the very basic Hebbian/anti-Hebbian princi-
ples are only needed to implement principal subspace analysis without extra
structural assumptions or nonlinearities. Stability of the neural structures is
achieved by applying linear negative feedback. The resulting PCA scheme is
compared against other neural principal component algorithms. The results
are utilized towards a practical regression scheme, and it is shown how the
same ideas can be utilized to implement a distributed sensor network.

1.1 Introduction

The research on artificial neural networks has departed from the original
objectives — today, ANN’s are seen only as computing devices, forgetting
about the origins in artificial intelligence, when the operation of the brain
was being studied and explained. Simultaneously, the models have become
increasingly complex, so that efficient analysis methods do no more exist.
For example, starting from the linear, intuitively appealing Hebbian neuron
model, highly complex structures have been developed (for example, see [21],
[14], [11]).

Have the limits of simple linear models been reached? Or could one still gain
some physiological intuition from analysis of such simplistic models?

The intuition here is that if one wants the models to be scalable to real life
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4 Chapter 1. Analysis of Hebbian/Anti-Hebbian Learning

problems, the models have to be extremely simple. In what follows, the goal
is to explicitly stick to basic neurophysiological observations (Hebbian/anti-
Hebbian principles).

Nonlinearities or extra structural assumptions are avoided. And, truly, it
turns out that the analyzability that is reached when linear structures are
employed facilitates compact formulations, new tools, and new intuitions.

In concrete terms, there are the following main parts in this report:

1. It is shown that direct implementation of Hebbian/anti-Hebbian learn-
ing with no nonlinearities, etc., implements principal subspace analy-
sis. Further, if some additional structural constraints are implemented,
principal component analysis and regression can be realized.

2. The compact mathematical framework is utilized by showing that there
exist optimality criteria that correspond to the Hebbian/anti-Hebbian
algorithm. This optimization framework is utilized to introduce exten-
sions to the algorithm; for example, sparse coding and self-organization
is implemented.

3. After the framework is defined, it is shown how the age-old dilemma
of quantitative vs. qualitative can be effectively attacked. Truly, it
seems that there might exist a fundamental duality between structural
and data-based representations. Finally, a new generic framework is
proposed for representing neural functions and cognitive functionalities
alike.

1.2 Modeling of neurons

The behavior of a real neuron is extremely complicated, and when such
neurons interact, the resulting behaviors are assumedly mindboggling. Per-
haps some order still emerges from the chaos? Powerful conceptual tools are
needed to master this complexity.

1.2.1 About system theory

System theory is the conceptual framework for capturing complex system
behaviors. There are some ambitious, more or less obscure objectives that
are used as guiding principles. Some of these principles are characteristic to
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good engineering work in general, and also in the field of neural networks
research, they have already been exploited for a long time:

• Modeling view. Irrelevant application domain details are abstracted
away: This means that rather than speaking of pulse trains, for exam-
ple, one can concentrate on average activities in neurons. This starting
point gives us a way to escape from the level of physical neurons to the
level of information processing.

• Search for structures. The system boundaries are detected, inputs
and outputs are distinguished, and the system behavior is studied re-
ductionistically, conquering one phenomenon at a time.

As an illustration of the controversial nature of systemic thinking, quite op-
posite views have also been presented. Phenomenon-at-a-time approaches
give no tools for attacking the system as a whole:

• Holism. The problems are seen in a wider perspective: Rather than
studying single signals, for example, the whole system of signals is
studied as a whole. What is more, rather than looking at some com-
putations, one tries to see the underlying patterns.

• Faith in interactions. It may turn out that from the interactions
between signals some unanticipated behaviour pops up. Networks of
feedback structures result in dynamic fluctuations in the system, and
understanding of such phenomena is crucial.

These are the basic ideas of cybernetics as originally presented in [51]. It is
these facets of systems thinking that are explicitly concentrated on later.

When trying to be too ambitious, indeed, when pursuing General System
Theory (see [5],[33]), the applicability of the above ideas necessarily becomes
vague. To avoid sheer handwaving, an additional assumption is made here:

The neuronal structures that are studied are essentially linear.

The only justification for this assumption is based on intuition: We are not
yet facing the End of Science; the neuronal system, after all, just has to be
analyzable. Only for linear structures the scalability of the models can be
reached, the discussions can be extended beyond toy domains, and properties
of the whole system can be attacked using reductionistic approaches — the
only ones we have. In Chapter 2 this linearity constraint is relaxed to make
the studies better match reality.
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In linear systems, the behaviors are straightforward, but they are still not
necessarily trivial. There exist special ways to reach complex functionalities:
Dynamic structures can be implemented, and, specially, it is feedback that
can do wonders. Indeed, the behaviors can be too runaway, and for some more
complex phenomena to emerge, yet another system theoretic basic intuition
needs to be employed:

The neuronal structures that are studied are essentially stable.

The loss of expressional power due to the linearity assumption, and the loss
of intuitive appeal due to the stability assumption, are compensated in a sys-
tem theoretic way: Rather than studying individual neurons, the whole grid
of neurons is simultaneously taken into account. When applying system the-
oretical approaches, one is also facing a high-dimensional dynamic systems
with plenty of interactions. To master such high-dimensional signal spaces,
efficient tools for mastering parallel dynamic phenomena are employed: Lin-
ear algebra and matrix calculus, and the theory of (linear) dynamic systems.
When the neurons are appropriately connected together, self-stabilization
and self-organization takes place in the neuronal system.

1.2.2 Dynamics in a neuron grid

Neuron dynamics has been studied a lot, but when there are nonlinearities in
the system structure, the analyses become extremely involved (for example,
see [21], Chapter 14). Now, on the other hand, let us study what can be
achieved when linear structures are assumed, and system theoretical tools
are applied.

To achieve anything practical, the abstract ideas have to be grounded on
concrete data. Assume that the m inputs to a neuronal (sub)system are
collected in a vector u, and assume that the vector of neuronal activities in
a grid of n neurons are denoted as x. The variables in u are assumed to
have zero mean (towards the end of this report, this assumption is relaxed).
During each time instant k there is a new input sample u(k), and one would
like to determine the corresponding “internal state” as determined by the
neuronal activities.

One should not assume that, when given u(k), the determination of x(k)
would be instantaneous. In what follows, it is studied what can be reached
when the dynamic nature of the neuronal structure is explicitly taken into
account. For this purpose, another (continuous) time variable t is needed.
When the new input u(k) is introduced, t starts from zero, and it is assumed



1.2. Modeling of neurons 7

that the adaptation of the continuous-time state vector xcont(t, k) continues
until the steady state is reached.

As compared to traditional system theoretical approaches, now the problem
is more challenging: Only the input data u(k) is known, and one should
somehow determine both the appropriate internal system structure and the
internal state. Some assumptions are needed.

Assume that the momentary change in the neuronal activity is linearly pro-
portional to the input activity and the current neuronal state. The whole
grid of neurons can be simultaneously captured when matrix formulation is
employed:

d xcont

d t
(t, k) = Axcont(t, k) + Bu(k). (1.1)

The synaptic weights determining the connection strengths are collected in
matrices A and B. In what follows, the dynamics is presented applying the
discrete-time formulation to make the discussions directly compatible with
algorithmic implementations. Approximating the derivative as

d xcont

d t
(t, k) ≈ xcont(t + h, k)− xcont(t, k)

h
, (1.2)

and defining a discrete-time activity variable vector as x(κ, k) = xcont(κh, k),
one has

x(κ + 1, k) = x(κ, k) + hAx(κ, k) + hBu(k). (1.3)

In what follows, to avoid clumsy notations, either of the indices can be
dropped if there is no risk of ambiquity. Assuming that the system is asymp-
totically stable, the state will converge to

x̄(k) = lim
κ→∞{x(κ, k)}. (1.4)

1.2.3 Hebbian principles

To go deeper into the dynamics of the neuronal system, something more
concrete needs to be assumed about the connections between the signals.
For this purpose, it is the Hebbian principle that turns out to be fruitful:

If two neurons are activated at the same time, the connection
between them is strengthened.
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This neuronal behavior was observed by the physician Donald O. Hebb some
half a century ago [22]. This principle is among the only means that one has
when trying to see the behavior of the neurons in a wider perspective. It
gives intuition in what the neurons try to do: How do the neurons react to
their environment, what kind of changes take place in neurons, or what is
the neuronal learning principle. It gives a hint of how the low-level neuronal
functions are connected to higher-level functionalities. It is interesting to see
whether or not something emerges from such a simple principle.

To implement the Hebbian principle, it needs to be made more explicit. From
now on, the following definition is utilized:

Hebbian law: Synaptic connection between the neuron and an
incoming signal becomes stronger if the signal and the current
neuron activity correlate with each other.

According to this principle, the new value of the synapse weight between
neuron i and input j, or rij , can be calculated as

rij(k + 1) = rij(k) + ρx̄i(k)uj(k), (1.5)

where ρ is the parameter determining the synaptic dynamics, and x̄(k) rep-
resents the steady-state neuron activity for the given input. As is known,
simple Hebbian learning is unstable: Following the basic idea, the synap-
tic weights become higher and higher without limit. Typically in Hebbian
algorithms, this instability is eliminated by introducing an additional non-
linearity (Oja’s rule, see [42]). However, from the system theoretic point of
view, stabilization of processes can be implemented also in linear terms by
applying negative feedback. Only minor modification to the original formu-
lation is needed:

rij(k + 1) = rij(k) + ρx̄i(k)uj(k)− 1

τ
rij(k). (1.6)

Parameter τ is the time constant determining the rate of decay. Correspond-
ingly, all connections from inputs to neurons can be expressed in matrix form
as

R(k + 1) = R(k) + ρx̄(k)uT (k)− 1

τ
R(k). (1.7)

It needs to be recognized that this matrix notation only captures the n×m
independent scalar expressions (1.6) in a compact form. If it is assumed
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that the system is (weakly) stationary, that is, the (second order) statistical
properties of the data do not change over time, and if τ is large, one can solve
for the steady-state value, so that the matrix of synaptic weights becomes
(using the expectation operator in a somewhat sloppy way)

R = ρτ E{x̄uT}. (1.8)

That is, the matrix of R is the (scaled) cross-correlation matrix. Correlation
matrices can be defined for signals in vectors x and u just in the same way,
and in what follows, the correlation matrices are decomposed as

Rx̄x̄ = E{x̄x̄T} =

⎛
⎜⎜⎝

E{x̄1x̄1} · · · E{x̄1x̄n}
...

. . .
...

E{x̄nx̄1} · · · E{x̄nx̄n}

⎞
⎟⎟⎠ , (1.9)

and

Rx̄u = E{x̄uT} =

⎛
⎜⎜⎝

E{x̄1u1} · · · E{x̄1um}
...

. . .
...

E{x̄nu1} · · · E{x̄num}

⎞
⎟⎟⎠ . (1.10)

The expectation values have been calculated over the time index k. Even
though the synaptic weights in the network have been expressed in a com-
pact matrix form that makes it easy to present parallel operation, it should
be noted that the structure of the matrices is such that the operation and
adaptation of the neurons and their synaptic connections is purely local:
Weights between neurons are determined by the corresponding output and
input neurons alone.

It is now evident that, assuming that the synapses follow the streamlined
Hebbian principle, the matrices in (1.3) can be selected as

A = −µE{x̄x̄T}, (1.11)

and

B = µE{x̄uT}. (1.12)

Here, µ is a step size factor; its role is just to adjust the time scale in the
adaptation algorithm. In any case, the same asymptotic behavior is reached
however its value is selected assuming that the system remains stable. The
overall system structure is shown in Fig. 1.1.
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E{ }x x1 1

E{ }x x1 2

E{ }x x2 1

E{ }x x2 2

E{ }x u1 1

E{ }x u1 2

E{ }x u1 3

E{ }x u2 1

E{ }x u2 2

E{ }x u2 3

x2

A

x1

B u1

u3

u2

Figure 1.1: Local interactions as collected into matrices (n = 2 and
m = 3)

The correlations-based structures in (1.11) and (1.12) are the same, but signs
are different. The minus sign in (1.11) can be motivated exactly as in the
case of a single synapse: Stability in the grid can be maintained applying
linear dynamic structures if negative feedback is applied. One can define

Anti-Hebbian law: Synaptic connection between two neurons
becomes weaker if the neuronal activities correlate with each
other.

The Hebbian laws can be interpreted so that the effects from the prior level
are excitatory, but lateral connections between the same level neurons are
inhibitory; or, actually, negative excitation (inhibition) becomes stronger.

Whereas the Hebbian learning has a long history, the term “anti-Hebbian
learning” is newer, perhaps the most notable early studies being carried out
in [17]. Hebbian and anti-Hebbian ideas have been applied more or less
explicitly in all neural algorithms that carry out principal component analysis
(see later): Hebbian learning searches for the maximum variation directions
in the data, but without inhibitory effects from other competing neurons,
there is no information to carry out organization among the neurons. In a
grid of neurons, organization is carried out by implementing some kind of
competitive learning.
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1.2.4 Mathematics of Hebbian/anti-Hebbian learning

After the above assumptions are made, further analyses become possible.
From (1.3) one has

x(κ + 1, k)x(κ, k)− µhE{x̄x̄T} x(κ, k) + µhE{x̄uT} u(k). (1.13)

For a discrete-time system to remain stable, all of the system matrix eigen-
values have to be located within the unit circle (or, in the case of real eigen-
values, between -1 and 1; see [2]). This condition is fulfilled if 0 < µh <

2/λmax

{
E{x̄x̄T}

}
, where λmax denotes the largest eigenvalue of the matrix;

if µh = 2/
(
λmax

{
E{x̄x̄T}

}
+ λmin

{
E{x̄x̄T}

})
, fastest possible convergence is

reached (eigenvalues being nearest to the origin). When the steady state has
been reached, there must hold

x̄(k) = x̄(k)− µhE{x̄x̄T} x̄(k) + µhE{x̄uT} u(k), (1.14)

so that, when solved for x̄,

x̄(k) = E{x̄x̄T}−1E{x̄uT} u(k), (1.15)

regardless of µ and h (assuming stability of the iteration). Inverse exists if
the variables in x are not linearly dependent. There also exists a static linear
mapping between u(k) and x̄(k):

x̄(k) = φTu(k), (1.16)

where the m× n matrix φ is defined as

φ = ET{x̄uT}E{x̄x̄T}−1. (1.17)

Because the final neural activity, or x̄(k) corresponding to u(k), is not known
beforehand, determination of the covariance matrices becomes an iterative
process.

Next, study the covariance of the neuronal state, as calculated from (1.15),
taking the expectation of the sidewise outer products:

E{x̄x̄T} = E{x̄x̄T}−1E{x̄uT}E{uuT}ET{x̄uT}E{x̄x̄T}−1. (1.18)

Here it needs to be recognized that the above equation is justified only if the
input is stationary and the covariance matrices have converged. Assuming
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that these assumptions hold, one can multiply the expression from left and
from right by the covariance matrix E{x̄x̄T}, so that

E3{x̄x̄T} = E{x̄uT}E{uuT}ET{x̄uT}. (1.19)

Applying (1.16), this becomes

(
φT E{uuT}φ

)3
= φT

(
E{uuT}

)3
φ. (1.20)

Note that φ is non-trivial only when some compression takes place, that is,
when n < m (otherwise the identity matrix φ = In will do). What are the
properties of the mapping matrix φ?

1.2.5 Principal subspace analysis

To understand the properties of the mapping represented by the matrix φ,
one needs to study the properties of the eigenvalues and eigenvectors of the
covariance matrix E{uuT} (or principal components; see Appendices). It
turns out that there holds

Theorem 1.

Assume that D is any invertible n × n matrix, and θ is any subset of n
eigenvectors of E{uuT}. Then (1.20) is fulfilled by φ = θD.

Proof.

Assume that the matrix φ in (1.20) is selected as

φ = θD. (1.21)

Here D is any orthogonal n × n matrix, so that DTD = DDT = In, and θ
is a subset of distinct eigenvectors of E{uuT}. The left-hand side of (1.20)
becomes

(
φTE{uuT}φ

)3
=

(
DT θT ΘΛΘTθD

)3

=
(
DT ΛθD

) (
DTΛθD

) (
DTΛθD

)
= DT Λ3

θD.

(1.22)
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The diagonal n× n matrix Λθ contains on the diagonal those eigenvalues λi

that correspond to those eigenvectors that are selected in θ. Correspondingly,
the right-hand side of (1.20) becomes

φT
(
E{uuT}

)3
φ = DTθT

(
ΘΛΘT

) (
ΘΛΘT

) (
ΘΛΘT

)
θD

= DTΛ3
θD.

(1.23)

This means that (1.21) gives a set of solutions fulfilling the constraint (1.69).
The columns in φ are also linear combination of some of the principal com-
ponents in the input data u. �

Theorem 1 gives the fixed points of the iteration (1.13). But some fixed
points of the iteration can be unstable: When the iteration is carried out,
and when the covariance matrices are updated accordingly, where will the
process actually converge? This question is solved by

Theorem 2.

When the process (1.13) is continued until convergence, the basis θ span-
ning the subspace of the mapping matrix φ consists of the most significant
principal component directions (that is, the n eigenvectors of E{uuT} corre-
sponding to the largest eigenvalues).

Proof.

It turns out that it is beneficial to express the data in the coordinate system
spanned by the eigenvectors of E{uuT}, that is, by the columns of Θ. This
means that one can write

u(k) = η1(k)Θ1 + · · ·+ ηm(k)Θm = Θη(k). (1.24)

Because of the uncorrelatedness of the principal components, the covariance
of the data vectors η in the new basis must be diagonal, E{ηηT} = Λ. Cor-
respondingly, the n×m matrix B can be represented as

BT = Θ1b1 + · · ·+ Θmbm = Θb, (1.25)

where bi are 1×n vectors revealing the relevances of the eigenvectors i when
representing the n rows of B. Using these notations, one can write

x̄(k) = −A−1Bu(k) = −A−1bT ΘT Θη(k) = −A−1bT η(k). (1.26)
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When continuing with the adaptation analysis, the stationarity assumption
has to be abandoned, that is, rather than speaking of actual covariances, one
can only speak of sample covariances over a finite time interval. Assuming
that the not-yet-converged matrix B has been presented by the matrix bold,
study what it will become after new data has been observed and the cor-
responding “virtual” data covariance structures are being updated. Using
(1.24) and (1.26), one can write for the updated matrix

Bnew = E{x̄uT}
= E{−A−1bT

old
η(k)ηT (k)ΘT}

= −A−1bT
oldE{ηηT}ΘT

= −A−1bT
old

ΛΘT .

(1.27)

Now, calculate the (unnormalized) correlation matrices between Θ and the
old and new B matrices:

• Before the adaptation step:

BoldΘ = bT
old =

⎛
⎜⎜⎜⎜⎝
(
BT

old

)T

1
Θ1 · · ·

(
BT

old

)T

1
Θm

...
. . .

...(
BT

old

)T

n
Θ1 · · ·

(
BT

old

)T

n
Θm

⎞
⎟⎟⎟⎟⎠ . (1.28)

• After the adaptation step:

BnewΘ = −A−1bT
old

Λ

= −A−1

⎛
⎜⎜⎜⎜⎝

λ1

(
BT

old

)T

1
Θ1 · · · λm

(
BT

old

)T

1
Θm

...
. . .

...

λ1

(
BT

old

)T

n
Θ1 · · · λm

(
BT

old

)T

n
Θm

⎞
⎟⎟⎟⎟⎠ .

(1.29)

Here,
(
BT

old

)T

i
denotes the i’th row in matrix Bold. In (1.29), he diagonal

matrix Λ scales the columns in bold by the eigenvalues; assuming that the
process remains stable the emphasis among the elements in bold can only be
redistributed. This means that the relative weighting of the most significant
eigenvectors grows in the first elements of bnew (assuming that there is order-
ing between the eigenvalues, λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λm ≥ 0). The
first part in the expression, or −A−1, can only construct linear combinations
of the rows in b, without affecting the “lateral” distribution of the weights.
Thus, it turns out that the matrix B becomes better aligned with the n most
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significant eigenvectors of the input covariance matrix. When this process
is iterated sufficiently many times, and when the data structures have con-
verged, the matrix B assumedly spans the subspace determined by the most
significant eigenvectors. This all means that Hebbian/anti-Hebbian learning
spans the principal subspace of the input data. �

It has been known for a long time that the operation of Hebbian units have
very much to do with principal components [42]. It turns out, however, that
the cumbersome sequential extraction of covariance matrix eigenvectors (see
[30], [47]) is not necessary in the Hebbian framework, but a parallel, linear,
and neurally more streamlined process suffices. The complexity is now buried
in the dynamic iterative structure where the covariances are determined by
the neural states, and the neural states are determined by the covariances,
respectively.

1.3 Neural regression

When studying Hebbian learning, it is customary to construct models with
input only, that is, for data analysis purposes. To reach wider applicability of
the models, it is beneficial to also include synthesis, or construction of output
signals. It turns out that such neural regression can readily be implemented
in the proposed framework.

1.3.1 Output neurons

Assume that one has done principal component analysis, and extracted the
latent variables χ(k), or the “scores” of the input data when projected onto
the basis determined by the n most significant principal components, col-
lected in the matrix θ:

χ(k) = θT u(k). (1.30)

Assuming that n < m, some information is lost in the projection — but it can
be assumed that the most relevant dependencies among data are captured
by the most significant principal components, and (hopefully) information is
retained whereas noise is filtered. From this “internal image” χ(k) one can
map the data to some external output y(k). This kind of regression from
input to output is called principal component regression (PCR). The final



16 Chapter 1. Analysis of Hebbian/Anti-Hebbian Learning

mapping from the latent variables onto the output space is carried out by
the normal linear regression formula

ŷ(k) = E{yχT}E{χχT}−1χ(k). (1.31)

In PCR, the latent variables are the scores for the most significant covariance
matrix eigenvectors, that is, data is explicitly projected onto the principal
components. However, it can be shown that the principal component basis
does not need to be explicitly solved. Assume that one has φ = θD, so that

x̄(k) = φT u(k) = DT θT u(k) = DT χ(k). (1.32)

Using this data as latent variables, instead of using χ variables, one can
express the estimate for output as

ŷ′(k) = E{yx̄T}E{x̄x̄T}−1 x̄(k)
= E{yχT}D DT E{χχT}−1D DTχ(k)
= E{yχT}E{χχT}−1 χ(k).

(1.33)

The result is the same as in (1.31), meaning that there is no need to explicitly
solve for the principal components to implement PCR; the principal subspace
suffices.

The complete mapping from the input to the output can be explicitly written
and decomposed as follows:

ŷ(k) = E{yx̄T}E{x̄x̄T}−1 E{x̄x̄T}−1E{x̄uT}u(k)︸ ︷︷ ︸
x̄(k)︸ ︷︷ ︸

v̄(k)

, (1.34)

where the dummy vector v̄ is defined as

v̄(k) = E{x̄x̄T}−1x̄(k). (1.35)

To implement neural regression in the proposed neural framework, one extra
step is also needed: The covariance matrix E{x̄x̄} has to be inverted one
more time to implement the least-squares mapping from the latent space
into the output. Comparing (1.35) to (1.15), it is evident that this inversion
can be accomplished by repeating the anti-Hebbian structure; that is, a new
neuronal layer is introduced with A′ = −µE{x̄x̄T}, B′ = In, the input for
this layer being x̄(k). This corresponds to an additional dynamic structure

v(κ + 1, k) = v(κ, k)− µhE{x̄x̄T}v(κ, k) + µhx̄(k). (1.36)
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After this, the output is calculated as

ŷ(k) = E{yx̄T} v̄(k) = Cv̄(k). (1.37)

Looking at the formulas (1.36) and (1.37), one can see that perhaps the
easiest way to explain regression is to define a special output neuron. As
compared to the input neurons that have been studied this far, the opera-
tional principles have been inverted in the grid of output neurons:

• Whereas in the input neuron the variable value that is used for adapt-
ing the covariance matrices is the final value after convergence, in the
output neuron it is the initial input that is used for adaptation.

• Whereas in the input neuron the matrix B operates on the incoming
data, in the output neuron the matrix C operates on the outgoing data
after the dynamic structure.

The structure of the output neurons, as compared to the input neurons, is
depicted in Fig. 1.2. Smoothing of data, or filtering of noise is achieved if
one selects y = u. The principal component approach gives the minimum
for the average reconstruction error E{‖u− û‖2} among all models with the
same number of latent variables.

The duality between input and output neurons is based on the strange anal-
ogy between the formula (1.15) and the structure of the general multilinear
regression model:

û(k) = ET{x̄uT}E{x̄x̄T}−1 x̄(k). (1.38)

It is evident that in this least-squares case there holds

û(k) = φx̄(k). (1.39)

This means that if the system has converged, the estimate for u can directly
be obtained by multiplying x̄ by φ. The regression formula is derived by
explicitly minimizing the expected error variances when mapping from x̄
to u; in the current case the origin of the mapping matrix φ is completely
different, being a consequence of of Hebbian/anti-Hebbian learning principle.

In multilinear regression, the covariance structure within the input data is
first compensated by multiplying the data by the inverse covariance ma-
trix, and only after that, the data is projected onto the output space. In
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Figure 1.2: Input neurons vs. output neurons

Hebbian/anti-Hebbian learning, on the other hand, the data is normalized
after the projection. This “postprocessing” makes the elements of x̄ less
correlated. In both cases the inverted matrix E{x̄x̄T}−1 operates in the
(low-dimensional) space of x̄ rather than in the (high-dimensional) space of
u, so that this matrix probably is better invertible.

1.3.2 Algorithmic implementations

The principal component analysis and regression can also be implemented
using only Hebbian and anti-Hebbian imput and output neurons. However,
for practical purposes, if such regression is to be applied for some technical
purposes, the dynamic iteration process can be streamlined. One can directly
employ the outcomes of the dynamic processes, implementing explicit matrix
inversions, so that one has the following algorithm:

1. First update the covariance estimates (0� λ < 1 being the forgetting
factor)

⎧⎪⎨
⎪⎩

Rx̄x̄(k) = λRx̄x̄(k − 1) + (1− λ)x̄(k − 1)x̄T (k − 1)
Rx̄u(k) = λRx̄u(k − 1) + (1− λ)x̄(k − 1)uT (k − 1)
Ryx̄(k) = λRyx̄(k − 1) + (1− λ)y(k − 1)x̄T (k − 1).

(1.40)
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2. The signal estimates can be found as

⎧⎪⎨
⎪⎩

x̄(k) = R−1
x̄x̄ (k)Rx̄u(k)u(k)

v̄(k) = R−1
x̄x̄ (k)x̄(k)

ŷ(k) = Ryx̄(k)v̄(k).
(1.41)

The covariances can be initialized, for example, as Rx̄x̄(0) = εIn, where ε is
a small constant, and similarly for the other matrices. Note that the above
calculations are cross-referential, and the algorithm becomes highly iterative.

The inversion of the covariance matrix can be avoided when the update
algorithm is written directly for Px̄x̄ = R−1

x̄x̄ and the matrix inversion lemma
(for example, see [39]) is applied:

Px̄x̄(k) = R−1
x̄x̄ (k)

=
1

λ

(
Px̄x̄(k − 1)−

Px̄x̄(k − 1)x̄(k − 1)x̄T (k − 1)Px̄x̄(k − 1)

x̄T (k − 1)Px̄x̄(k − 1)x̄(k − 1) + λ
1−λ

)
.

(1.42)

Using this, the formulas are modified:

{
x̄(k) = Px̄x̄(k)Rx̄u(k) u(k)
v̄(k) = Px̄x̄(k) x̄(k),

(1.43)

or, when written together,

ŷ(k) = Ryx̄(k)P 2
x̄x̄(k)Rx̄u(k) u(k). (1.44)

The above straightforward approach only gives the principal subspace, the
coordinate axes being linear combinations of the appropriate eigenvectors.
For that reason, the additional layer with the vector v was needed. This
could be circumvented if the actual principal components were employed
rather than the principal subspace; this alternative is now elaborated on.

If one wants to explicitly solve for the eigenvectors, so that there would hold
φ = θ, it suffices to make the state covariance matrix diagonal; in this case
the latent variables are uncorrelated, and there must hold E{x̄x̄T} = Λ. To
reach this, one can first note that if n = 1, there must hold D = 1, so that
after convergence φ = Θ1 necessarily represents the most significant eigen-
vector. This kind of individual adaptation can be carried out in the parallel
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environment if the incoming connections from other neurons are explicitly
cut off, that is, if the corresponding row in the covariance matrix is zeroed
(except the diagonal element). If the corresponding column is left intact,
however, the correlations between this neuron and the other ones still have
their effect, eliminating correlations; this means that the remaining neurons
have to share the remaining orthogonal subspace. Continuing in the same
manner, forgetting about the first neuron and its eigenvector, the second
eigenvector can be extracted, etc. This means that if the covariance matrix
is explicitly made triangular, the eigenvectors can be extracted one in each
neuron. After convergence the x̄(k) vector represents the actual eigenvector
scores χ(k), and, because of the uncorrelatedness, the covariance matrix is
not only triangular but also diagonal.

Further, the regression structure can be simplified when the state variables
are normalized to unit variance before output mapping: Assuming that the
covariance matrix Rx̄x̄ (and also Px̄x̄) is diagonal, the “whitened” data can
be computed as

w(k) = Ediag{x̄x̄}−1/2 x̄(k) =

⎛
⎜⎜⎝
√

p11 0
. . .

0
√

pnn

⎞
⎟⎟⎠ x̄(k), (1.45)

where pii denote the diagonal entries in Px̄x̄. This inverse of the square root
looks like a complicated construct; however, this normalization only scales
the average signal levels back to unit variance.

For whitened data w(k) where the covariance structure has been completely
ripped off, covariance matrix being E{wwT} = In, the output mapping is
simple:

ŷ(k) = E{ywT}E{wwT}−1 w(k) = E{ywT}w(k). (1.46)

One only needs to match the whitened data against the output. The regres-
sion structure can be implemented as follows:

⎧⎪⎨
⎪⎩

x̄(k) = triang{Px̄x̄}(k)Rx̄u(k)u(k)
w(k) = diag{Px̄x̄}1/2(k)x̄(k)
ŷ(k) = Ryw(k)w(k).

(1.47)

The operator “triang” zeroes the matrix elements above (or below) the diag-
onal; “diag” zeroes all but the diagonal elements. When the algorithm has
converged, the rows of Px̄x̄Rx̄u stand for the covariance matrix eigenvectors
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Figure 1.3: Streamlined implementation of PCR

Θi, and the elements on the diagonal of Rx̄x̄ = P−1
x̄x̄ represent the correspond-

ing eigenvalues. The new regression structure is shown in Fig. 1.3. The in-
ternal connections between Hebbian units are nonsymmetric (denoted by the
“triangle E” in the figure). Elimination of means is explicitly presented.

It is evident that in the beginning of the adaptation process the covariances
are far from their final values. One could let the covariance adaptation pro-
cess be time-variant to make the covariances better adaptible in the beginning
of the learning; that is, the forgetting factor could be defined as

λ(k) = λλ λ(k) + (1− λλ) λfinal, (1.48)

starting from some initial value λ(0) � 1 and tending towards λfinal ≈ 1,
the “forgetting factor forgetting factor” λλ being adjusted appropriately to
match the data properties.

1.3.3 Independent component analysis

Note that in vector z the data are whitened, that is, its covariance properties
have been eliminated, the covariance matrix E{zzT} being a unit matrix.
This intuition makes it possible to extend the discussion towards Indepen-
dent Component Analysis (ICA) (for example, see [28]). It turns out that if
such whitened data are deformed, or “stretched” appropriately, the higher-
order statistical properties of the original data can become reflected in its
covariance structure — and this covariance structure can again be analyzed
using the principal components of the modified data. This deformation of
the data can be expressed as
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Figure 1.4: Extension towards Independent Component Analysis

µ(k) = f (‖z(k)‖) z(k), (1.49)

where f(·) is some function emphasizing the intended data properties. For
example, defining µ(k) = ‖z(k)‖ z(k) makes it possible to capture the fourth-
order properties of the data distribution or kurtosis (Fourth-Order Blind
Identification method, or FOBI). This means that simple neuronal ICA can
be implemented using a two-layer Hebbian/anti-Hebbian structure, having
some additional nonlinearity between the layers (see Fig. 1.4).

However, it is well known that FOBI based approaches to ICA are not ro-
bust, and in practical applications iterative independent component extrac-
tion schemes are used instead. What is more, calculating f(‖z‖) cannot
be carried out in a distributed manner; all neuron outputs are needed to
determine the value of this function, so that the intended locality of opera-
tions is lost, and the biological plausibility is further compromized. Rather
than closer studying independent components here, sparse components will
be studied in Chapter 2.

1.4 Experiments

It is well known that theoretical correctness and practical applicability can be
very different things. Also in the case of Hebbian/anti-Hebbian algorithms,
unanticipated behaviors emerge in simulations.

1.4.1 Comparisons

In this section typical behaviors of different kinds of neural PCA algorithms
are presented1. The tested prototypical algorithms (as summarized in [14])
were Generalized Hebbian Algorithm (GHA), Adaptive Principal component

1The simulations in this section were carried out by Mr. Olli Haavisto
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EXtraction (APEX) and its variable step length version (APEX2), and the
proposed Hebbian/anti-Hebbian algorithm (HAH). There exist also novel
and efficient algorithms in literature (for example, see [12] and [50]), but the
above ones were selected as prototypical basic examples. Because the other
methods are oriented exclusively to carry out PCA, the regression issues were
not tested here. In the following, the notations are selected so as to match
the above discussions.

• GHA. This algorithm explicitly extracts principal components one at
a time, in the first neuron applying the Oja’s rule (see [42]). In the
latter neurons, the contributions of the earlier ones are first eliminated,
and after that, the same principle is applied again. The assumed basic
structure is

x̄(k) = Bu(k), (1.50)

where the matrix B is adapted elementwise as

Bij(k + 1)

= Bij(k) + β

⎛
⎝x̄i(k)uj(k)− x̄i(k)

∑
ι≤i

x̄ι(k)Bιj(k)

⎞
⎠ .

(1.51)

• APEX. Again, Oja’s rule is utilized; now, however, the system struc-
ture is more complex, x̄ being determined through a familiar-looking
iterative expression

x̄(k) = Bu(k)− Ax̄(k), (1.52)

where the matrices are adapted as

Bij(k + 1) = Bij(k) + β
(
x̄i(k)uj(k)− x̄2

i (k)Bij(k)
)

(1.53)

and

Aij(k + 1) = Aij(k) + β
(
x̄i(k)x̄j(k)− x̄2

i (k)Aij(k)
)
. (1.54)

• APEX2. Otherwise being identical with APEX, in this derivation
the convergence rate is enhanced by having a time-variant adaptation
factor in each neuron i (γ being some adjustable constant):

βi(k) =
βi(k − 1)

γ + x̄2
i (k)βi(k − 1)

. (1.55)
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• HAH. The presented Hebbian/anti-Hebbian algorithm is summarized
here:

x̄(k) = triang{Px̄x̄}(k)Rx̄u(k)u(k)
B(k) = Px̄x̄Rx̄u(k),

(1.56)

where

Rx̄u(k) = λRx̄u(k − 1) + (1− λ)x̄(k − 1)uT (k − 1)

Px̄x̄(k) =
1

λ

(
Px̄x̄(k − 1)−

Px̄x̄(k − 1)x̄(k − 1)x̄T (k − 1)Px̄x̄(k − 1)

x̄T (k − 1)Px̄x̄(k − 1)x̄(k − 1) + λ
1−λ

)
.

When the algorithms have converged, the rows in B stand for the most
significant principal components, so that θ̂ = BT .

Simulations (see Figs. 1.5 to 1.12) were carried out using data sets having
different dimensions and different degrees of freedom (that is, some of the
eigenvalues in the data covariance matrix were zeros), and the noise level
was also varied. In each case there were K = 500 data samples that were
processed by the algorithms various times, the ordering being each time ran-
domized.

The convergence of the algorithms was tested using two different cost criteria.
The first criterion reveals how well the estimated principal components span
the principal subspace:

J1(k) =
1

K

K∑
κ=1

‖u(κ)− θ̂(k)θ̂†(k)u(κ)‖2. (1.57)

Using the pseudoinverse θ̂† gives minimum value for the criterion as soon
as the appropriate subspace is spanned by the vectors in θ̂. However, the
algorithms should converge so that θ̂ is an orthonormal matrix. That is why,
the other criterion was defined as

J2(k) =
1

K

K∑
κ=1

‖u(κ)− θ̂(k)θ̂T (k)u(κ)‖2. (1.58)

Both criteria have the same theoretical minimum, and it can be explicitly
calculated by summing the variances in the excluded subspace directions:

Jmin =
m∑

i=n+1

λi. (1.59)
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Figure 1.5: Experiment 1, cri-
terion (1.57)

Figure 1.6: Experiment 1, cri-
terion (1.58)

Figure 1.7: Experiment 2, cri-
terion (1.57)

Figure 1.8: Experiment 2, cri-
terion (1.58)

The algorithms were tested in four different cases:

Data Degrees of Number of Noise Learning
dimension freedom neurons variance rate

Exp. 1 m = 8 d = 8 n = 4 σ2 = 0.001 β = 0.005
Exp. 2 m = 8 d = 8 n = 4 σ2 = 0.001 β = 0.003
Exp. 3 m = 5 d = 5 n = 4 σ2 = 0.001 β = 0.001
Exp. 4 m = 20 d = 10 n = 5 σ2 = 0.01 β = 0.005

Because the HAH algorithm employs forgetting factor rather than learning
rate, it was selected as λ = 1−β. In APEX2, the step length varies according
to a special adaptive strategy; in that case it is only the initial value β(0)
that is determined in the table.
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Figure 1.9: Experiment 3, cri-
terion (1.57)

Figure 1.10: Experiment 3, cri-
terion (1.58)

Figure 1.11: Experiment 4, cri-
terion (1.57)

Figure 1.12: Experiment 4, cri-
terion (1.58)

The simulations show that the proposed algorithm gives results that are well
comparable with the established algorithms. Specially, when looking at the
final error and the variation level in steady state, HAH algorithm seems to
perform better than the other algorithms, at least in some cases. As there
are fewer structural constraints in the new algorithm as compared to the
older ones, the observed robustness is, indeed, a surprise. It seems that the
HAH algorithm has problems if the theoretical minimum error is low, and
if the least significant latent variables have low variation. In simulation 3
this method did not converge even though the step length was short; the
subspace was spanned appropriately, but there were problems with finding
the orthonormal basis. This problem is caused by the covariance matrix
getting uninvertible; more intuition is gained in later in Chapter 2.
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1.4.2 Application example: Distributed sensor network

The presented Hebbian/anti-Hebbian algorithm is not just another way to
carry out linear principal component analysis. The key point here is that
the algorithm is based on completely distributed operations with no central
control. As it turns out, self-stabilization and self-organization of structures
still pop up in the network even if the assumptions are slightly relaxed.

In today’s systems, one would like to distribute the control of process com-
ponents to reach better fault tolerance and independence of centralized hi-
erarchies. The mainstream framework for distributed systems is the agent
perspective [38]. Unfortunately, there is no solid theory available for such
agent systems. Another approach to distributed networks has been studied,
for example, in [3]; however, also these studies seem to remain on a rather
descriptive level.

There exist many industrial processes where the systems have to be described
in terms of partial differential equation models with distributed parame-
ters. In principle, in such systems complete information about the process
state cannot be measured, the state being infinite-dimensional. However, the
new sensor technology still promises enhanced information about the process
state: It is possible to place high numbers of sensors in the process, form-
ing a distributed sensor network. The network of sensors could behave in
an intelligent way, if only the principles of such distributed orchestration, or
“ubiquitous computation”, were known. It seems that research on distributed
networks today very much concentrates on explicitly finding the global struc-
ture for the sensor system. If the structure is known, it is, of course, simple
to implement applications in a traditional, globally controlled, centralized
way. For example, having a global model available, one can implement a
Kalman filter for measurement enhancement (see [2]). The problem here is
that finding the global model is by no means a simple task.

Now, the sensors are thought to be like neurons, independent computing
elements that can exchange information with each other. The above stud-
ied Hebbian/anti-Hebbian principles can directly be applied to implement a
clever localized information exchange strategy.

As an application example, a heat diffusion process is studied; such a system
is a typical example of partial differential equation models. Assume that a
rod is being heated from the other end; the temperature is measured in three
locations along the rod (considerable amount of uncorrelated measurement
noise being disturbing the measurements). There are three sensors being
located in a chain along the rod, sensor number 1 being nearest and sensor
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3 being farthest from the heat source. The measurement vector consists of
the current and three previous time step measurements, that is,

νi(k) =

⎛
⎜⎝ Ti(k)

Ti(k − 1)
Ti(k − 2)

⎞
⎟⎠ , (1.60)

so that the actual input vector of measurements, when collected into a single
vector, is

u(k) =

⎛
⎜⎜⎝

ν1(k)
...

νn(k)

⎞
⎟⎟⎠ . (1.61)

The measurement enhancement scheme here is based on principal compo-
nent filtering, that is, the measurement data u is first projected onto the
principal subspace, hoping that noise gets filtered, and after that the filtered
measurement estimate û is reconstructed applying the regression scheme. Of
course, only the newest temperature readings T̂i(k) are of interest. Because
there are three nodes, maximum of three latent variables can be constructed
out from the nine input variables. Note that because the input is time se-
ries data, rather than implementing PCA, subspace identification is actually
being carried out [44].

In Fig. 1.13, the original (discrete-time) measurements in node 1 are shown,
together with the filtered estimates. Separate validation data was used that
had the same statistical properties as the training data. First, it is clear that
the local model that only has information about the local measurements in
node 1, all connections between sensors being cut, becomes a finite-impulse
response filter utilizing the local measurements only: The filtered result is a
weighted average of the past three measurements. This means that the result
resembles traditional “dummy” filtering, so that the smoothened responses
are reached with the cost of delayed estimates. The global model, where
all nodes are assumed to be connected to each other, and the chain model,
where only the neighboring ones in the chain are connected, seem to be faster;
indeed, it seems that no filtering takes place whatsoever. This is due to the
structure of the measurements: Node 1 is the first one in the row, and no
additional information can be received from the other nodes. Note that this
structural fact has not been given a priori; it is the correlations among the
signals only that dictate the emerging filter structures.

In Figs. 1.14 and 1.15, corresponding to the last and the middle sensors,
respectively, the corresponding signals are shown. First, it can be noted
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Figure 1.13: Original and filtered measurements in the first node
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Figure 1.14: Original and filtered measurements in the last node
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Figure 1.15: Original and filtered measurements in the middle node

that because of the low-pass nature of the process, the noise is automatically
dampened, but it seems that the filtering schemes that are based on inter-
actions among nodes can further attenuate the disturbances. Whereas the
local filter always remains somewhat slow, the more “intelligent” schemes can
anticipate the future behaviors. Even though node 3 is the last node in the
row, receiving the most smoothened temperature values, it seems that the
filtering results in node 2 are even better — indeed, it receives information
from both directions.

And, looking at the middle sensor behavior in Fig. 1.15, what is most inter-
esting is that it seems that the filtering scheme with incomplete information
is better than that where all information is available (the “chain model” curve
being slightly smoother than the “global model”). Indeed, the results can
be more accurate when there is no excessive information available, but only
the locally relevant information. This is an interesting result that cannot be
foreseen when looking the network at the global level; it seems that the lo-
calized algorithms are not just implementations of global strategies, but the
new approaches to distributed structures can deliver some real and practical
added value to networked systems.
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1.5 Conclusion

In this chapter it was shown that linear feedback structures are only needed
to stabilize the neuronal dynamics; when the synaptic weights are adapted
applying Hebbian and anti-Hebbian learning principles, the system caries out
principal subspace analysis of the input data.

However, to implement more complicated models and interesting functional-
ities, it is clear that linear structures are not powerful enough. In Chapter
2, such issues are concentrated on, extending the linear structure.



32 Chapter 1. Analysis of Hebbian/Anti-Hebbian Learning

Appendix 1A: About spaces and bases

A very brief summary of the basics of linear algebra is given here:

The set of all possible real-valued vectors u of dimension m con-
stitutes the linear space Rm. If S ∈ Rm is a set of vectors, a
subspace spanned by S, or L(S), is the set of all linear combina-
tions of the vectors in S. An (ordered) set of linearly independent
vectors θi spanning a subspace is called a basis for that subspace.

The number of linearly independent vectors in the subspace basis determines
the dimension of the subspace. The basis vectors θ1 to θn of an n dimensional
subspace can conveniently be represented in a matrix form:

θ =
(

θ1 · · · θn

)
. (1.62)

Given a basis of a subspace, all points uθ in that subspace have a unique
representation. The basis vectors θi can be interpreted as coordinate axes in
the subspace, and the weights of the basis vectors, denoted now zi, determine
the corresponding coordinate values (or scores) of the point:

uθ =
n∑

i=1

zi θi, (1.63)

or in matrix form

uθ = θ z. (1.64)

If m > n, an arbitrary data point u cannot necessarily be represented in the
new basis. Using the least squares technique an approximation can be found
that minimizes the projection error:

ẑ =
(
θT θ

)−1
θT u. (1.65)

If the basis vectors are orthonormal so that there holds θT θ = In, it is evident
that (1.65) gives a simple solution:

ẑ = θT u. (1.66)
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Appendix 1B: Principal components

Principal component analysis (PCA) is a mathematical procedure for de-
termining a subspace that optimally captures the variation in the higher-
dimensional data. The easiest way to determine the principal components
is by analysis of the data covariance matrix. For understanding principal
components, knowledge of eigenvalues and eigenvectors is necessary (for ex-
ample, see [4]). The eigenvector Θi and the corresponding eigenvalue λi of
the data covariance matrix fulfill

E{uuT}Θi = λiΘi. (1.67)

There are m distinct eigenvectors and corresponding eigenvalues. If one
collects the eigenvectors of E{uuT} in the m×m dimensional matrix Θ, and
the corresponding eigenvalues on the diagonal of the m×m dimensional Λ,
so that

Θ =
(

Θ1 · · · Θm

)
and Λ =

⎛
⎜⎜⎝

λ1 0
. . .

0 λm

⎞
⎟⎟⎠ , (1.68)

the covariance matrix can be decomposed as

E{uuT} = ΘΛΘ−1 = ΘΛΘT . (1.69)

This comes from the fact that the eigenvectors of the symmetric matrix
are orthogonal. Because of the construction of the covariance matrix, the
eigenvalues are real and non-negative; one can order the eigenvectors in the
order of decreasing significance, so that λ1 ≥ · · · ≥ λm ≥ 0. The eigenvalues
λi reveal how much of the data variation takes place in the direction of the
eigenvector Θi. This gives a practical way to compress data — select only
the n most significant eigenvectors to constitute an orthogonal basis θ:

θ =
(

Θ1 · · · Θn

)
(1.70)

When the data in u is projected onto this subspace, so that z = θT u, one
receives the latent variables or principal components that are mutually un-
correlated and capture the variation in u in an optimal way.
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Chapter 2

Implementing Sparse Coding

In this chapter it is shown how the Hebbian/anti-Hebbian learning principles
can be extended to nonlinear neuron systems. The proposed algorithms can
be interpreted as optimizing explicit optimality criteria: This interpretation
offers new tools for analysis of the algorithm behavior. The optimality cri-
terion is modified to implement sparse component analysis, and extensions
towards self-organization are presented. As application examples, analysis
of handwritten digits is carried out, and modeling of textual documents is
illustrated.

2.1 Introduction

Hebbian/anti-Hebbian learning principle is a powerful concept. The dis-
cussions in Chapter 1 started from system theoretic considerations, and it
was claimed that linearity and stability are the key issues when trying to
make new structures emerge, and when trying to understand these struc-
tures. When these objectives are combined, it is negative feedback that can
be applied to stabilize the system.

First, these principles were applied to individual synapses, and it turned out
that the connections between inputs and Hebbian neurons can be expressed
in a matrix form as

B = µE{x̄uT}. (2.1)

Here E{x̄uT} is the correlation matrix; vector x̄(k) represents the steady
state neural activation corresponding to the input vector u(k), and µ is some

35
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parameter. Second, if the linearity and stability principles are applied to the
whole neuron grid, it turned out that the anti-Hebbian connections can be
characterized as

A = −µE{x̄x̄T}. (2.2)

The overall model for the neural activity becomes

x(κ + 1) = x(κ) + hAx(κ) + hBu, (2.3)

where h is some step size factor. The steady state corresponding to an input
u(k) can be expressed as

x̄(k) = A−1B u(k) = φT u(k). (2.4)

Because x̄ is dependent of the matrices A and B, and these matrices are
dependent of x̄, the overall system is deeply interconnected. When the system
reaches stationary state, it turns out that the matrix φ that is defined through

φT = E{x̄x̄T}−1E{x̄uT} (2.5)

spans the principal subspace of the variations in the input data u. As it
turned out, local neuronal adaptation results in global behaviors in the grid
level.

However, one cannot go beyond the principal subspace just following the
original linear Hebbian/anti-Hebbian intuitions, and the point of view has to
be changed. But when the very stringent linearity constraint is relaxed, some
new guiding principles are needed. In this context, further system theoretic
intuitions are applied: The goal is to find a higher-level view of the neuronal
processes. In concrete terms, this means that cost criteria are searched for.

As it turns out, the expressional power can be considerably enhanced when
the system structure is relaxed, so that new technical tools for practical ap-
plications are found. It seems that the linear intuitions are still applicable,
and what is most important, self-stabilization and self-organization proper-
ties remain also after the modifications.

2.2 Nonlinear Hebbian/anti-Hebbian learning

In Chapter 1, linearity made it possible to achieve analytically tractable
results. However, linear networks truly are too restricted to carry out really
interesting tasks. Now, this linearity is abandoned — but the goal is to
change the system structure as little as possible.
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2.2.1 “Transparent nonlinearities”

Rather than obeying (2.3), assume that the neuronal system can be described
as

z(κ + 1) = z(κ) + hX(z(κ)) Af x(κ) + hX(z(κ)) Bf u, (2.6)

with

x(κ) = f(z(κ)). (2.7)

Comparing this to the original model formulation, it turns out that there
are some extensions: First, there is the nonlinearity f that is assumed to be
monotonous and invertible; second, there is the invertible matrix X(z) whose
role will be studied later. Assuming stability, in steady state there holds

z̄ = z̄ + hX(z̄) Af f(z̄) + hX(z̄) Bf u, (2.8)

and one can solve

f(z̄) = − (Af )
−1 Bf u. (2.9)

If x is interpreted as the output of the neuron grid, there holds

x = f(z̄) = φT
f u. (2.10)

Expression (2.10) shows that the output of the neuron grid is a linear function
of u, despite the nonlinearity. This strange-looking result can be explained
in terms of control theory: It is a well-known fact that negative feedback
“smoothens” nonlinearities. When looking at the steady state only, the non-
linearity becomes completely transparent. Now, if one selects

Af = −µE{x̄x̄T} = −µE{f(z̄)fT (z̄)} (2.11)

and

Bf = µE{x̄uT} = µE{f(z̄)uT}, (2.12)

it turns out that exactly the same derivations as in Chapter 1 can be carried
out, meaning that

φT
f = E{x̄x̄T}−1E{x̄uT} = E{f(z̄)fT (z̄)}−1E{f(z̄)uT} (2.13)
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again spans the subspace of the most significant principal components found
in data u. This means that the nonlinear Hebbian/anti-Hebbian structure
still implements principal subspace analysis — or, at least it tries to do that:
In a nonlinear system, the process towards steady state makes the difference
(see Fig. 2.1).

f

“Activation” Dynamics

E{ }xx
T

E{ }xu
T

X
x u

Figure 2.1: Outlook of a nonlinear Hebbian/anti-Hebbian neuron grid

2.2.2 Towards sparse coding

It is well known that linear PCA is well-motivated from the mathematical
point of view, but not so well from the physical point of view. Natural data
is often non-Gaussian, being composed of independent or sparse components
(see [18], [43]). The cognitive machinery also seems to decompose sensory
data into sparse components, that is, some neural units being active and some
being inactive. This idea has been implemented for sensor signal processing,
for example, in [32].

In this context, sparsity is interpreted so that some of the latent variables
should be non-zero whereas other ones are strictly zero.

To implement sparse coding, some kind of nonlinearity seems to be nec-
essary: The sparsity objective cannot be expressed in the linear/quadratic
framework. There are infinitely many possibilities when selecting the non-
linear function form. System theory reveals that one should be extremely
cautious, because, from the point of view of analysis and well-founded the-
ory, nonlinearities open the Pandora’s box. Extreme simplicity should be
favored, but physical plausibility should also be taken into account. It turns
out that a nice compromise between simplicity and expressional power is the
cut function fcut : Rn →Rn

+ that can be defined elementwise as (see Fig. 2.2)

fcut,i(z) =

{
zi, if zi ≥ 0, and
0, otherwise.

(2.14)



2.2. Nonlinear Hebbian/anti-Hebbian learning 39

For technical reasons, the monotonous function formulation can be used:

fcut,i(z) =

{
zi, if zi ≥ 0, and
εzi, otherwise.

(2.15)

In principle, vector elements below zero are cut to zero; the role of the small
positive constant ε is to keep the function monotonous and (formally) invert-
ible. This function form has the following advantages:

• Physical plausibility. No matter if the neuronal activity is based fun-
damentally on pulse frequencies, or chemical concentrations in synapses,
the only structural constraint is that such signals cannot be negative.

• Theoretical applicability. The model is piecewise linear; sparsity is
facilitated when negative variables automatically are inactivated, and
do not affect the locally linear dynamics.

• Pragmatic benefits. There are no adjustable parameters; in larger
systems, this considerably simplifies the tuning of the algorithm behav-
ior.

As compared to the sigmoids and other function forms typically applied as
activation functions in artificial neural networks, the proposed cut function is
simpler, as there are no limitations from above. One can assume that neuron
activities remain so low that linear part of their operation regime suffices.
There are also problems with the selected function form: It is unsummetric,
all variables being non-negative; this means that the variables cannot be
zero-mean, and the correlations among variables are also non-negative (other
covariance anomalies are studied in the following section). Even though
systems with cut nonlinearity seem simple, it turns out that the dynamics of
such systems can be very complex [26].

When the cut nonlinearity is applied, there is a qualitative difference between
the internal and external activity of a neuron, or zi and xi, respectively. The
internal activity value can become negative, and (negative) activity can cu-
mulate, whereas the external or visible activity fcut(zi) that is used also for
adaptation of the data structures always remains non-negative. The pos-
itivity of the variables means that the covariance matrix E{fcut(z̄)fT

cut(z̄)}
never can become diagonal; that is why, explicit (iterative) matrix inversion
is needed when regression is implemented.

The external activity can still be continuous, not only binary (compare to
[17]), so that this way of implementing sparse coding is closer to the original
PCA, making it possible to implement continuous mappings.
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fcut,i( )z

zi

Figure 2.2: “Cut function”

In principle, the above scheme should work fine to achieve sparse coding.
However, the emergence of sparse representations cannot explicitly be con-
trolled: fcut(z̄) seems to remain rather dense. If one wants to affect the
process of sparsity emergence, some more analysis is needed.

2.2.3 Closer look at covariances

The introduced nonlinearity has its effects on the covariance matrices. For
example, when only a subset of variables is used for regression, as is the case
when implementing sparse regression, the covariance matrices,

Af = −µE{fcut(z̄)fT
cut(z̄)} (2.16)

and

Bf = µE{fcut(z̄)uT}, (2.17)

when calculated in the standard way, do not reflect the covariance structure
among the active variables correctly: Always when a variable is employed,
the corresponding diagonal entry in the covariance matrix is appropriately
updated, whereas a non-diagonal entry is updated only when a pair of vari-
ables is simultaneously active. This means that for sparse data the diagonal
is unjustly emphasized (of course, there is no problem if the variables are
uncorrelated; but, when applying cut nonlinearity, they cannot be). In prin-
ciple, one should record the individual covariance matrices for all sets of
simultaneously active neurons; this is, however, unrealistic. It seems that
there do not exist any compact, theoretically accurate solutions, and some
practical shortcut is needed.

Rather than being defined as shown in (2.16), one can define the feedback
matrix as

A′ = −µ
(
δV + E{fcut(x̄)fT

cut
(x̄)}

)
, (2.18)
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meaning that in addition to the standard covariance matrix, there is also
another factor in the anti-Hebbian structure. Parameter δ is a scalar; to
implement the above intuition about how the covariance matrix should be
fixed, V can be defined, for example, as

V = E{fcut(x̄)fT
cut

(x̄)} − diag
{
E{fcut(x̄)fT

cut
(x̄)}

}
, (2.19)

that is, V is the covariance matrix with the diagonal zeroed. Adding this
matrix to the covariance, multiplied by an appropriate δ, approximately com-
pensates for the incompatibility of the neuron covariances.

As compared to sparse coding schemes based on independent components, for
example, where sophisticated data distribution characteristics are utilizeed
(see [28],[16]), now sparsity will be searched for applying straightforward
correlation minimization techniques.

The proposed structure of the matrix V means that always when two vari-
ables are simultaneously active, there is some additional cost, whereas a single
non-zero variable introduces no additional cost alone. This should lead to
some variables dominating and others having low values. This objective is
closely related to varimax rotations in factor analysis, and it should advance
sparsity. However, some deeper theoretical analysis is needed; more intuition
can be gained through an optimality formulation.

2.3 Optimality of Hebbian learning

Even though the above discussions gave rather unambiguous results, some
issues were still left open. For example, how to select X(z(κ)) in (2.6) appro-
priately? As it turns out, higher-level views help to understand the neuronal
processes.

2.3.1 Linear criterion

For a moment, forget about the above neuronal framework. Study an essen-
tially quadratic, general optimality criterion to be minimized:

J(x) =
1

2
(u− ϕx)T W (u− ϕx) . (2.20)

Matrix W is symmetric positive definite, compatible with the vector u, and
ϕ is some m × n dimensional mapping matrix. This criterion has a unique
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minimum. To search for this minimum, the gradient can first be expressed
as

dJ

dx
(x) = ϕT Wϕx− ϕTWu. (2.21)

This can be solved for x in closed form:

x̄ =
(
ϕT Wϕ

)−1
ϕT Wu. (2.22)

Alternatively, the steepest descent method for iteratively searching for the
minimum can be formulated as

x(κ + 1) = x(κ)− γ
dJ

dx
(x(κ))

= x(κ)− γϕT Wϕ x(κ) + γϕT W u.
(2.23)

Comparing this to (2.3), there seems to exist some similarity. Indeed, to
make the expressions truly identical, there should hold

{
γϕT Wϕ = −hA = µhE{x̄x̄T} = µhφT E{uuT}φ
γϕT W = hB = µhE{x̄uT} = µhφT E{uuT}. (2.24)

These expressions are fulfilled if

⎧⎪⎨
⎪⎩

γ = µh
ϕ = φ

W = E{uuT}.
(2.25)

It also turns out that the Hebbian/anti-Hebbian learning can be formulated
in the standard quadratic optimization framework, so that the algorithm
(2.3) can be interpreted as the gradient descent algorithm. The algorithm
tries to minimize the difference between u and ϕx; interpreting ϕ as contain-
ing some kind of (non-orthogonal) features, the algorithm tries to find the
best combination of them, the matching errors being weighted by the matrix
W .

This gives us yet higher-level view of what happens in the neuronal process:
Rather than having to follow the iteration, one can directly concentrate on
the pattern that would finally emerge out from the iteration. In (general)
systems theory two views of looking at a system are distinguished: The
process view and the pattern view (see [48]). In this perspective, the original
approach of seeing the behavior of a system as an iteration, is an example
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of the process view. The opposite perspective, or trying to see beneath the
complicated iterations, trying to perceive the emergent patterns, may open
up new horizons.

For example, looking at the construction of the weighting matrix W in (2.25)
it is easy to understand that directions having low variation are poorly re-
produced: The errors in different directions are essentially weighted by the
signal variances in those directions. The effects of this weighting were seen
in the experiments in Chapter 1. On the other hand, the most significant
directions in the data are excessively emphasized — this should make the al-
gorithm efficient and robust if searching only for the most relevant principal
components, and also the noise should be suppressed.

Note that the standard projection of data u onto the subspace basis ϕ can
generally be defined by (2.20) with W = Im. On the other hand, when
matching data against a Gaussian distribution in the maximum likelihood
sense, using the log-likelihood criterion, the covariance weighting is in an
inverse way, so that W = E{uuT}−1, making such mapping extremely sen-
sitive to noise when the dimension of u is high. For yet other intuitions, see
Appendices.

2.3.2 Nonlinear formulation

If the cost criterion is defined as

J ′(z) =
1

2
(u− ϕf(z))T W (u− ϕf(z)) , (2.26)

its gradient will be

dJ ′

dz
(z) =

(
d

dz
(f (z))

)T

ϕT Wϕf (z)−
(

d

dz
(f (z))

)T

ϕT Wu, (2.27)

and the gradient algorithm for finding the minimum would read

z(κ + 1) = z(κ)− γ

(
d

dz
(f (z(κ)))

)T

ϕT Wϕf (z(κ))

+ γ

(
d

dz
(f (z(κ)))

)T

ϕT Wu.

(2.28)
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For example, when the cut nonlinearity is selected, one has

z(κ + 1) = z(κ)− γ

(
d

dz
(fcut (z(κ)))

)T

ϕT Wϕfcut (z(κ))

+ γ

(
d

dz
(fcut (z(κ)))

)T

ϕT Wu.

(2.29)

Above, the Jacobian corresponding to the cut function is diagonal:

d

dz
(fcut (z)) =

⎛
⎜⎜⎝

fpos (z1) 0
. . .

0 fpos (zn)

⎞
⎟⎟⎠ , (2.30)

where the elementwise derivatives are defined in terms of the unit step func-
tion (ignoring the discontinuity of the derivative in zi = 0)

fpos (zi) =

{
1, if zi > 0, and
ε, if zi < 0.

(2.31)

If the iteration in (2.29) converges, in steady state there will hold

z̄ = z̄ − γ
(

d
dz

(fcut (z̄))
)T

ϕT Wϕfcut (z̄)

+ γ
(

d
dz

(fcut (z̄))
)T

ϕT Wu,
(2.32)

and, further, because of the monotonicity of the nonlinearity, the inverse of
the Jacobian exists, and one can solve

fcut (z̄) =
(
ϕT Wϕ

)−1
ϕT Wu. (2.33)

Note that because the structure is nonlinear, iteration cannot be avoided
when searching for the steady state.

Proceeding as in the previous section, it is easy to show that expressions
(2.29) and (2.6) are equal if one selects⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ = µh
ϕ = φ

W = E{uuT}
X(z) =

(
d
dz

(fcut (z))
)T

.

(2.34)

This way, it turns out that the other perspective gives insight in the neuronal
process: If some of the neurons is inactive, fcut(zi(κ)) = 0, the internal
(negative) activity does not cumulate. If this were not taken into account,
variables could get stuck in zero level (however, see Sec. 2.3.4).
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2.3.3 Refining the criterion

One can again reformulate the cost criterion (2.26). Extend the criterion as
follows:

J ′′(x) =
1

2
δ fT

cut
(z)V fcut(z) +

1

2
(u− ϕfcut(z))T W (u− ϕfcut(z)) . (2.35)

The criterion is formulated in this way to emphasize the role of its compo-
nents: The first term tries to affect the elements in fcut(z) directly, whereas
the second term tries to keep the difference between u and ϕfcut(z) low, in
the same way as before. The gradient can be expressed as

d J ′′
d z

(z) =
(

d
dz

(fcut (z))
)T (

δV + ϕT Wϕ
)
fcut(z)

−
(

d
dz

(fcut (z))
)T

ϕT Wu,
(2.36)

and the steepest descent algorithm becomes

z(κ + 1) = z(κ)− γ
dJ ′′(z)

dz

= z(κ)− γ

(
d

dz
(fcut (z(κ)))

)T (
δV + ϕT Wϕ

)
fcut(z(κ))

+ γ

(
d

dz
(fcut (z(κ)))

)T

ϕT Wu.

Following the above guidelines, this can be written as

z(κ + 1) = z(κ)

− γ

(
d

dz
(fcut (z(κ)))

)T (
δV + E{fcut(z̄)fT

cut
(z̄)}

)
fcut(z(κ))

+ γ

(
d

dz
(fcut (z(κ)))

)T

E{fcut(z̄)uT}u,

(2.37)

so that

fcut (z̄(k)) =
(
δV + E{fcut(z̄)fT

cut(z̄)}
)−1

E{fcut(z̄)uT}u. (2.38)

It turns out that, starting from the modified optimality criterion (2.35),
the gradient algorithm corresponds to the Hebbian/anti-Hebbian structure
with the modified covariance matrix A′ in (2.18). It seems that also this



46 Chapter 2. Implementing Sparse Coding

heuristic modification of the original algorithm can be interpreted in terms
of optimality.

Looking at the criterion (2.35), some conclusions can be drawn. If V were
selected in a typical way, letting it be positive definite, regularization of the
algorithm would result, that is, the latent variable values would be kept small.
However, when selected as shown in (2.19), the matrix V is not positive defi-
nite. If δ were large enough, the (linear) criterion would not be bounded, and
the algorithm tending towards the minimum would finally become unstable.
However, the selected nonlinearity nicely stabilizes the system; note that the
only route to instability is by letting some of the variables be negative —
only in that case the cost could go down, the other variables growing without
limit. When no negative variables can exist, growing variables always mean
increasing cost. Higher weights to the additional criterion, or letting δ be
high, means that competition among the neurons becomes more and more
heated; some of the variables tend towards −∞, ending in 0. This means
that such weighting finally leads to sparse coding of data.

How to balance this competition among neurons? For improper values of
δ, the coding easily becomes either too dense (δ being too small) or too
local (δ being too large). A straightforward approach is to let the value of δ
adapt according to the observed behavior of the neuron grid: If the average
coding is too dense, the value is gradually increased during the adaptation
process, and if the average coding is too sparse, it is decreased, until the
intended degree of average sparsity is reached. It seems that robust behavior
is reached if the sparsity level is selected so that (on average) about half of
the variables are above zero.

The original simple algorithm in Chapter 1 that was based on linear Hebbian/anti-
Hebbian principles has been essentially changed. The motivation for the ex-
tensions is given by the added functionality. It still seems that self-stabilization
and self-organization properties are inherited in the new algorithm, thus of-
fering a good framework for practical applications.
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2.3.4 Additional extensions

Looking at formulas (2.37) and (2.38), it is evident that the fixed state of the
iteration still has the same properties if one extends the algorithm as follows:

z(κ + 1) = z(κ)

− γN

(
d

dz
(fcut (z(κ)))

)T

M
(
δV + E{fcut(z̄)fT

cut
(z̄)}

)
fcut(z(κ))

+ γN

(
d

dz
(fcut (z(κ)))

)T

ME{fcut(z̄)uT}u.

If the matrices M and N are invertible, their effects will be cancelled, and
it is still (2.38) that holds. However, because of the nonlinearities in the
system, there can exist various minima, and the route towards the minimum
can make a difference.

Let us define the conditioning matrices as follows: Let M = In, whereas N
is defined elementwise as

Nij = e
−1

2

(
d(i,j)

σ

)2

, (2.39)

where d(i, j) is determined by the physical distance between neurons i and j
in the grid of neurons, and σ is the nominal width of the neighborhood. This
additional structure can be used to model spread of activation among the
neurons [1]. In the spirit of Kohonen’s Self-Organizing Maps (SOM’s), the
neurons are thought to constitute a net where activation is diffused among
the closely located neighbors (see [34]). It sounds plausible that there could
exists some “crosstalk” among neighboring cells, so that some of one neuron’s
activity is transferred also to its immediate neighbors. The neighborhood can
shrink during iterations, the value of σ decaying towards zero, so that the
effects become more localized as adaptation proceeds.

The grid of neurons can have arbitrary topology. As an example of what the
matrix N typically looks like, the following definition qualitatively describes
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Figure 2.3: Grid of 9 neurons

the neighborhoods in the simple two-dimensional 9-neuron grid of Fig. 2.3:

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• ◦ ◦ ·
◦ • ◦ · ◦ ·
◦ • · ◦

◦ · • ◦ ◦ ·
· ◦ · ◦ • ◦ · ◦ ·
· ◦ ◦ • · ◦

◦ · • ◦
· ◦ · ◦ • ◦
· ◦ ◦ •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.40)

Here the weights of the elements have been denoted by dots, heavier weights
being larger and darker.

When the neighborhood effect is included in the adaptation algorithm, some
kind of self-organization assumedly emerges. When self-organization is im-
plemented as in Kohonen’s original SOM, the operation is necessarily global,
because the “winner” has to be selected among candidates. Now, on the other
hand, the operation is completely local and decentralized. In this case there
typically exist many winners at any time, so that one has sparse rather than
SOM-style local coding, making it possible to have many (weighted) represen-
tatives for each input sample. This makes it possible to implement effective
codings for input data. In addition to this, now the output is continuous-
valued as compared to discrete-valued categorization in SOM, and regressions
can be implemented with no added complexity.

Matrix N offers an efficient way to implement diffusion among neurons.
Looking at (2.29), it is evident that if zi < 0, adaptation of that variable
freezes altogether. Diffusion from other neurons helps to avoid deadlocks.
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The nonlinearity in the system means added structural complexity. How-
ever, there are also benefits: The emerging sparsity seems to automatically
implement decomposition of variables. There is no need for explicit “tri-
angularization” of the A matrix any more as in the linear case; the sparse
structure emerges by itself. In the sparse coding case, it is also possible that
n > m, that is, some kind of inflation of data space can take place; what is
relevant is that only a few of all available neurons are active, and compression
in this sense still takes place.

2.4 Applications

PCA can be interpreted also in the probabilistic framework [49]. For Gaus-
sian data, the principal components represent the main axes of the distri-
bution. A sparse model represents a mixture model, where only a subset of
all available constructs are used at a time. This approach of modeling data
using sparse principal components is also known as multinomial PCA [7].

Indeed, when applying the sparse coded Hebbian/anti-Hebbian algorithm, it
is implicitly assumed that rather than constituting a single Gaussian data
distribution, there can coexist various Gaussians. A traditional approach to
implementing algorithms for extracting such locally computed PCA’s is ex-
pectation maximization, where the data is first clustered, and only after that,
the inner structures of the local distributions are modeled. This typically re-
sults in having mutually exclusive sets of features in the mutually exclusive
clusters; now, on the other hand, the clusters can share common components
(features) spanning their inner structures. The sets of active features at a
time need not be orthogonal. Some examples are presented below.

2.4.1 Example: Features in handwritten digits

The presented algorithm was tested with handwritten digits [36]. The goal
was to find features that are common to the digit patterns, and utilize this
redundancy for PCA based compression, similarly as, for example, in [13]; in
addition, the power of “sparse coded principal components” is illustrated.

The input data consisted of 8000 binary images with size of 32×32 pixels, so
that m = 1024. No explicit a priori feature extraction was carried out (like
analysis of stroke patterns); the pixelwise information was directly applied
in the algorithm. The covariance matrices were initialized so that Rx̄x̄(0) =
0.01In, and Rx̄u(0) had random entries with values between 0 and 0.0001. For
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each new input, the neuronal activities were initialized to zi(0) = 0.5. In the
simulations the parameters were selected so that λ = 0.999 and γ = 0.1. The
iterations were started with δ = 0, and this value was gradually increased
until the desired level of average sparsity in fcut(z̄) was reached in steady
state.

The grid of neurons was first 5 × 5, meaning that n = 25. The results in
the neuronal grid are illustrated in Figs. 2.4 and 2.5 by plotting the contents
of the columns in φ in the original two-dimensional form (note that because
of the cut function, only positive features are modeled; if the inverse images
1 − u were simultaneously analyzed, so that m = 2048, also the absence
of features could be utilized). In the former figure, the sparsity parameter
was kept inactive, δ = 0, and it turned out that the adaptation resulted
in practically dense coding. Because there were no structural constraints,
the actual principal components never emerged even though the principal
subspace assumedly was found. In the latter figure, average of 5 neurons
were simultaneously active in steady state. Data was not mean-centered;
indeed, neuron 19 seems to stand for the mean value.
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Figure 2.4: “Dense coding” of handwritten digits
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Figure 2.5: “Sparse coding” of handwritten digits

In the second experiment the grid was 7× 7, meaning that n = 49, and the
sparsity goal was 15. The results are shown in Figs. 2.6 and 2.7. In the larger
neuron grid redundant and trivial features with no classification capability
are manifested. The difference between the two figures is how the neuron

contents is visualized: In Fig. 2.6, rows of
(
E{fcut(z̄)fT

cut(z̄)}
)−1

E{fcut(z̄)uT}
are shown, that is, the columns of ϕ. This visualization corresponds to a
“dense” interpretation where the simultaneous contribution of all neurons is
taken into account, that is, the sparsity and nonlinearity being forgotten. In
Fig. 2.7, the rows of E{fcut(z̄)uT} alone are shown: This visualization corre-
sponds to a “local” situation where only one neuron is studied at a time. It
needs to be recognized that the actual sparse coding scheme cannot be com-
pactly visualized in this way; actual reconstructions are somewhere between
these two extremes. It is evident that because the contents in Figs. 2.6 and
2.7 are not essentially identical, there must hold E{fcut(z̄)fT

cut
(z̄)} 
= In. This

means that the neuronal activities are not uncorrelated. Comparing Figs. 2.6
and 2.7, it seems that characteristic features that make the neurons unique
are better manifested when the neuronal interactions are taken into account.
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Figure 2.6: Visualization of 7× 7 grid contents

In all the experiments the width of the neighborhood was σ = 1. In the
smaller grids there is no visible self-organization among the neurons; there is
too much variation in the data as compared to the grid capacity. It needs to
be mentioned that Kohonen’s SOM cannot efficiently be emulated by setting
the sparsity level explicitly to 1: Whereas the Hebbian/anti-Hebbian struc-
ture nicely seems to balance the neuronal activities, the added nonlinearities
and overemphasized sparsity objective with too much competition among the
neurons may result in just few of the neurons remaining active at all.

Note that because E{fcut(z̄)uT}u(k) remains constant during the iteration
for z̄, the high-dimensional matrix multiplications (this matrix having size
n × 1024) need not be repeated each time; the product can be calculated
outside the iteration loop, once for each k.

2.4.2 Example: Structure in document collections

As the amount of available information has exploded, tools for Data Mining,
and specially for Knowledge Mining, are becoming more and more impor-
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Figure 2.7: Another visualization, local effects only

tant (for example, see [40]). An automatic tool for finding a structure among
a collection of textual documents, finding contextual relationships between
texts could be invaluable for preliminary analyses of large bodies of knowl-
edge. For example, assume that you are asked to get acquainted to some
special field — first you go to a database and extract all documents with
your keywords, but after that you let the algorithm look at the material
and construct an overview. Instead of having hundreds of fragmentary doc-
uments, you would have some kind of table of contents giving “handles” into
the documents. Other related applications could involve automatic modeling
of news archives, and collaborative filtering. This kind of a service could be
accessible through WWW, so that this tool could be seen as another route
towards “Semantic Web”.

There exist various applications of novel data distribution schemes for model-
ing of textual documents (for example, see [20], [41]). Data mining in textual
knowledge bases can roughly be divided in two mainstream approaches: Ei-
ther one tries to do “quantitative” analysis (for example, Latent Semantic
Indexing LSI [19]), or one does “qualitative” analysis (different kinds of clus-
ter analysis approaches). However, when studying the many-sided nature of
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complex data, it is evident that both of these two extremes alone are insuffi-
cient if trying to capture the essence of the data in an efficient way. What is
needed is a framework for constructing integrated models with the capabil-
ity of simultaneously representing the coarse and the fine structure buried in
the information. Whereas the cluster centers are discrete and qualitative, the
features modifying the cluster prototypes are continuous and quantitative.
Again, it turns out that one should have a tool for finding sparse coded linear
latent structures in the data.

To test the above modeling approach in a realistic environment, raw tex-
tual material from the Inspec database was used. First, all abstracts with
the keyword “knowledge mining” were downloaded. The abstracts varied in
length from 37 to 280 words, the overall number of words was about 2000,
and the number of documents was D = 162 (this material was used to make
the results comparable with [25]). The documents were presented using so
called “fingerprint vectors” u: The fingerprints were vectors containing the
word counts. The data dimension becomes high because each word has an
entry of its own in the fingerprint vector, no matter whether that word is
used in that specific document or not. What comes to the semantic contents,
this kind of representation of the documents is, of course, extremely crude,
but assuming that the terms in the document are more or less characteristic
to the domain area, the interdependencies among the terms determine some
kind of contextual semantics in the set of fingerprints. Linguistic analysis
is now cut to minimum (for example, plural s’s were eliminated). TFIDF
weighting (“Term Frequency — Inverse Document Frequency”) was applied
to weigh the different words:

ui ← ui · log
D

Di
.

Here, D is the overall number of available documents, and Di is the number
of such documents where the term number i is found. This weighting means
that if a term is found in all documents, its weight will be zero; this can
be motivated so that such unselective “stop-words” (like the words “the”,
“and”, etc.) have no value when distinguishing documents from each other.
Words that are found only once in the corpus material are also neglected.
In the algorithm, all fingerprint vectors are normalized to unit length. This
means that all training documents are assumed to have the same weight when
used in model construction.

When the nonlinear Hebbian/anti-Hebbian algorithm version was run hav-
ing n = 9 and s = 4, the process converged to a state where the sparse
principal components were as shown in Fig. 2.8. In the figure, the 9 row
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Figure 2.8: Document modeling with “generalized keywords”

vectors of
(
E{fcut(z̄)fT

cut(z̄)}
)−1

E{fcut(z̄)uT} are shown as projected onto the
word index axis; the elements in these vectors reveal how relevant the in-
dividual words are when explaining these “generalized keywords”. Where
appropriate, the generalized keywords have been labeled by human inspec-
tion. The documents can now be represented by a (sparse) weighted sum of
such keywords. Note that some neurons seemingly have been allocated for
representing sets of “outlier” documents for different reasons (for example,
the document on “inductive logic programming” was stored various times in
the database).

The results reveal that the nonlinear Hebbian/anti-Hebbian algorithm is a
rather robust way to achieve sparse coding. It seems that the inherent self-
stabilization and self-organization properties of the learning principles make
it applicable in a wide variety of practical pattern recognition tasks. How-
ever, when the sparsity level is high, the covariance structure becomes too
distorted; in such cases, it is better to explicitly extract the sparse compo-
nents (see [25]).
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2.5 Conclusions

In this chapter the linear Hebbian/anti-Hebbian neuron structure was ex-
tended to nonlinear neural systems. The motivation was to increase the ex-
pressional power of the model. It was recognized that there exist optimality
criteria that can be used to interpret the algorithm behaviors.

How could the model be further extended? It seems that data-based ap-
proaches have their limits: Not all domains can be coded in data. The next
challenge is to integrate declarative, etc., knowledge representations in the
same structure. Can brain-like phenomena be implemented in a top-down
rather than bottom-up manner, so that applying iteration some kind of rel-
evant functionalities emerge? These issues are studied in Chapter 3.
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Appendix 2A: Another optimality criterion

The optimality criteria are not unique; different criteria give different per-
spectives to the algorithm behavior. For example, study an optimality crite-
rion of the form

J(x̄(k)) =
1

2

k−1∑
l=0

(
uT (l)u(k)− x̄T (l)x̄(k)

)2
. (2.41)

Given some u(k) one tries to find x̄(k) so that the (unscaled) correlations
with the prior vectors would match each other. The gradient becomes

dJ

dx̄
(x̄(k)) = −

k−1∑
l=0

x̄(l)
(
uT (l)u(k)− x̄T (l)x̄(k)

)
. (2.42)

When one sets this to zero, one has

k−1∑
l=0

x̄(l)x̄T (l)x̄(k) =
k−1∑
l=0

x̄(l)uT (l)u(k), (2.43)

or

1

k

k−1∑
l=0

x̄(l)x̄T (l) x̄(k) =
1

k

k−1∑
l=0

x̄(l)uT (l) u(k). (2.44)

It turns out that if one defines the sample correlation matrices Rx̄x̄(k) =
1
k

∑k−1
l=0 x̄(l)x̄T (l) and Rx̄u(k) = 1

k

∑k−1
l=0 x̄(l)uT (l), one can write

x̄(k) = (Rx̄x̄(k))−1 Rx̄u(k) u(k). (2.45)

Comparing this to (2.4), it is evident that there exists yet another optimality
criterion such that the operation of the neuron grid can be interpreted so
that this criterion is minimized. Looking at (2.41), one can see that the
past values x̄(l) essentially determine the new estimate. In this sense, the
learning is “constructivistic”: Optimum is not determined by the data alone
but also by the history. Such an optimality criterion gives intuition of what
the Hebbian/anti-Hebbian learning actually tries to accomplish. Specially, if
the model is nonlinear and there exist local minima, dependency of the prior
states in adaptation can considerably affect the results.
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Appendix 2B: Another optimization approach

The optimality criteria can also be optimized in a variety of ways, not only
applying the gradient algorithm. This is demonstrated below.

The second derivative of (2.41), or the Hessian, becomes

dJ2

dx̄dx̄T
(x̄(k)) =

k−1∑
l=0

x̄(l)x̄T (l). (2.46)

Now one can write the Newton algorithm for finding the zero point of the
gradient:

x̄(κ + 1)

= x̄(κ)−
(

dJ2

dx̄dx̄T
(x̄(κ))

)−1
dJ

dx̄
(x̄(κ))

= x̄(κ)−
(

k−1∑
l=0

x̄(l)x̄T (l)

)−1 (
−

k−1∑
l=0

x̄(l)
(
uT (l) u− x̄T (l)x̄(κ)

))

=

(
k−1∑
l=0

x̄(l)x̄T (l)

)−1 k−1∑
l=0

x̄(l)uT (l) u

=

(
1

k

k−1∑
l=0

x̄(l)x̄T (l)

)−1 (
1

k

k−1∑
l=0

x̄(l)uT (l)

)
u

= (Rx̄x̄(k))−1 Rx̄u(k) u,

meaning that the Newton iteration becomes a one-step process, regardless of
the initial guess x̄(0) (this is expected because the model structure is linear).
Again, the same formulation as in (2.4) is found; this means that rather
than being a first-order algorithm, search for the best x̄ is a very efficient
process, being a one-step second-order process. However, the problem is that
in the neuronal framework inversion of the matrix Rx̄x̄ has to be carried out
iteratively.



Chapter 3

Synthesis of a Cognitive Model

It was shown in previous chapters that Hebbian/anti-Hebbian neuron struc-
ture offers a practical platform for sparse coding of complex data. In this
chapter, it is shown how the proposed methodology makes it possible to in-
tegrate structural knowledge into the data-oriented framework as well, thus
offering new intuitions into declarative and procedural as compared to asso-
ciative information representations. A general cognitive model structure is
suggested based on these experiences.

3.1 Introduction

It turned out that linear Hebbian/anti-Hebbian learning implements prin-
cipal subspace analysis, and nonlinear Hebbian/anti-Hebbian learning can
implement sparse coding. These results were achieved applying system the-
oretic intuitions and conceptual tools (see Chapters 1 and 2, respectively).
The resulting algorihm was

z(κ + 1)

= z(κ)− γ

(
d

dz
(fcut (z(κ)))

)T (
δV + ϕT Wϕ

)
fcut(z(κ))

+ γ

(
d

dz
(fcut (z(κ)))

)T

ϕT Wu.

(3.1)

Here, u is the input vector, z is the neuronal (internal) state, and x = fcut(z) is
the system output, or external activity. Matrices V and W are for weighting,
and parameters γ and δ for affecting the adaptation process. The matrix ϕ

59
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contains the essence of what the neuron grid does to data, as presented in
Chapter 2. The cut nonlinearity is defined elementwise as follows:

fcut,i(z) =

{
zi, if zi ≥ 0, and
0, otherwise.

(3.2)

The presented basic neural structure can be applied to many practically
relevant pattern recognition tasks. However, there are problems when trying
to extend the studies beyond the simple tasks:

• It has been recognized that many patterns cannot be detected from
data alone. For example, syntactic categories cannot be justified in
terms of observed statistical relationships only.

• It has been recognized that complex things cannot be coded as static
patterns in the first place. Many representations are truly procedural or
algorithmic, and many application domains contain causal structures
by nature.

When trying to get forward from the data level, can system theoretic think-
ing help here; are there additional systemic intuitions available, or are they
already exhausted?

It is claimed here that there are conceptual tools available. Indeed, these
tools are not new ones; once again, the role of feedback is emphasized. It is
an age-old paradox how all so different mental functionalities can be based
on the same neural medium. The claim here is that the presented neural
structure is a good platform for implementing recursive feedback structures;
when simple things cumulate, when they are repeated over and over again,
something qualitatively new can emerge that cannot be foreseen when looking
at those single things alone.

As a starting point, in Chapter 1 the objective was modeling of real neuronal
systems. In this sense, the test for validity of assumptions is how well the
emergent “life-like” functionalities in a cognitive system can be explained in
the assumed framework. As it turns out, many relevant functionalities can be
implemented in a structure based on the proposed (nonlinear) Hebbian/anti-
Hebbian neuron grids as connected in a (yet another) feedback structure.

3.2 Power of features

From the system theoretical point of view, perhaps the most annoying feature
about the connectionistic approaches is their conceptual unscalability: Look-
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ing at the neuron level, one simply cannot understand how the higher-level
cognitive functionalities could be explained. Still, these functionalities have
to be based on the same kind of underlying building blocks. The question
now is whether the framework that was proposed in Chapters 1 and 2 could
perhaps be applied to understand the link between low-level and high-level
phenomena.

3.2.1 Data vs. structural knowledge

If there exist some structural knowledge available, one would like to be able
to directly implement this knowledge in the neuronal structures. Assume
that knowledge is presented in the form of features ϕi, where 1 ≤ i ≤ n.
The goal is to find a representation for data vector u of dimension m so that
it would be a weighted sum of the features, so that u = ϕT x̄ = ϕT fcut(z̄),
where ϕ contains the features as columns, and x̄ = fcut(z̄) contains their
(positive) weights. Because typically n < m, this problem cannot be exactly
solved; a cost criterion can be written so that the match is defined in the
error least squares sense: Best representation for u is given by x̄ = fcut(z̄)
that minimizes the criterion

Jstruct(z) =
1

2
δfT

cut
(z)V fcut(z) +

1

2
(u− ϕfcut(z))T (u− ϕfcut(z)) . (3.3)

The features in ϕ need not be orthogonal. This is a pattern matching prob-
lem, and studying the derivations in Chapters 1 and 2, it is evident that the
weight vector x̄ can be directly solved by using the algorithm (3.1). If one
wants to stick to the Hebbian/anti-Hebbian intuitions, one can define the
system matrices explicitly as follows:

A = −µ
(
δV + ϕT ϕ

)
, (3.4)

and

B = µ ϕT . (3.5)

Applying the iteration (3.1), having W = Im, the input neurons match the
data against (non-orthogonal) features, and the output neurons implement
regression from the obtained latent basis to the output — even if these fea-
tures were not optimal for representing the data, and even if the regression
were not either optimal.
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So how can the neuronal structure be “programmed” to carry out the match-
ing process? Assume there exists a “free” neuron i (activity level being de-
noted zi) available to be allocated for storing the feature number i. First, it
must be so that the matrix B from input to that neuron is ϕT

i . If there is a
positive weight in some location in ϕi, there will be an excitatory connection
from that input to the neuron, and if there is negative weight, the connection
is inhibitory. The rule can thus be readily hardcoded in the neuronal struc-
tures. On the other hand, the feedback matrix is essentially of the form ϕT ϕ:
This is constructed by computing the correlations between each pair of rules
and storing them in the matrix. Also, adding a new feature vector in the
system is simple: If the set of features is not orthogonal, the new feature just
has to be conditioned against the prior features by calculating its “overlap”
with them.

Note that there is a dualism between data and structure: When structure is
known rather than data, the training of the network is still carried out essen-
tially in the same way, that is, by calculating correlations. Rather than cal-
culating data covariances, one determines the “knowledge covariance” ϕT ϕ.

It is clear that associative models based purely on correlations cannot be used
to model more complicated domains of knowledge — for example, exclusive or
structures are the traditional counterexample. However, the assumed spar-
sity in the representations efficiently circumvents this problem: The neurons
compete, and just a subset of them can be active at a time, each of such
subsets possibly representing a separate case among candidates. This all
means that whenever knowledge can be expressed in the assumed form (as
a sparsely coded weighted sum of features), matching of data against such
knowledge can be directly implemented.

From now on, the formulation (3.3) is also assumed to convey the essence of
structural knowledge. However, this assumption sounds very restrictive. How
could any cognitively relevant mental tasks, like reasoning, be represented
in such an optimization based framework? As shown in [27], it turns out
that many non-trivial cognitive functionalities can be expressed in this form.
Truly, the framework is rather versatile, and to illustrate its potential, some
examples are presented below.

3.2.2 Backward reasoning

As an example of high-level cognitive functionalities, study logical reason-
ing, or backward inference. This means that, given some state of affairs and
the deduction rules, one tries to infer the simplest set of necessary precon-
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ditions explaining the current state. The claim here is that (a subset of)
logic programming problems can be expressed and solved in the proposed
feature-based framework. First, study proposition logic in general.

The modern logic programming formalisms like Prolog are based on the Aris-
totelian syllogism, meaning that a set of inference steps can be simplified:

A→ B

∧ B→ C

⇒ A→ C.

Using the properties of the logic connectives, it can be shown that the logical
content remains unchanged if the above reasoning is written in the following
form:

¬A ∨ B

∧ ¬B ∨ C

⇒ ¬A ∨ C.

The operator “∨” denotes logical OR operation; “∧” is logical AND, and “¬”
means negation. Typically, the rules in a rule base are of a more complex
form, so that, for example, A1∧· · ·∧An → B; however, using de Morgan rules,
they can also be brought to the same disjunctive form: One has ¬(A1 ∧ · · · ∧
An) ∨ B, and, further, ¬A1 ∨ · · · ∨ ¬An ∨ B.

To implement this kind of reasoning in a mathematical form, one can first
notice that the logical values of syllogisms can easily be operated on — the
table below is consistent with the original deduction, showing only the logical
truth values:

A: B: C:

−1 1
+ −1 1
= −1 1

Here 1 stands for “true” and -1 for “false”; value 0 meaning “not used” or
“irrelevant”. This kind of coding seems to miss the structure and uniqueness
of logical expressions. For example, study the following distribution of truth
values:

A: B: C: D:

−1 −1 1 1.
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In logical terms this can be interpreted as

A ∧ B→ C ∨ D,

but just as well, for example, as

A ∧ ¬C→ ¬B ∨ D.

There always exist various alternative interpretations. However, studying
such expressions closer, it turns out that they all are logically equivalent:
Such a distribution of logical values among A, B, C, and D that makes one of
the expressions hold, also fulfills the other ones. The only difference is caused
by the intuitive feel of causality built in the expressions — but, indeed, the
formulas can work in both directions, depending on which of the variables
are known and which are to be determined.

It turns out that logic expressions and manipulations with them can be coded
in linear algebra. However, there are some complications: In the numeric
formulation, when rule vectors refer to variables, the truths are being “ex-
hausted” as they are utilized — this is not the case when operating with true
logical values. To circumvent this, assume that truth values can be numeric
values other than the nominal −1, 0, or 1. The non-binary values simply have
to be interpreted so that any positive value stands for “true”, and negative
values stand for “false”.

Using the resolution principle, reasoning in the Prolog systems goes as follows
(for example, see [8]). Assume that one wants to know whether some logi-
cal clause (expression) can be deduced, given a consistent knowledge base.
One first inserts the negated goal clause among the other clauses, and starts
applying elimination steps of the type shown above. If it turns out that the
negated expression contradicts the other rules, that is, an “empty clause” can
be deduced, the goal is reached: It must be so that the non-negated clause
is deducible from the axioms in the assumed closed universe.

To implement this intuition in mathematical terms, some assumptions are
needed. Let the vector ϕi now stand for the rule number i as represented in
the above numeric form: References to the logical entities are represented by
−1’s or 1’s, depending on whether they are negated or not. Further, let the
vector u represent the observed state of the “world”. It contains truth values
for the state variables as expressed in the above mathematical framework;
that is, u contains −1’s, 0’s, and 1’s. The “internal image” corresponding
to the observed world, or x̄, contains the “activities” or “relevances” of the
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rules applying in that situation. This means that the effect of the combined
rules, or the sum of the rule vectors, can be expressed as ϕx.

Following the resolution principle, the sum of the negated goal vector and
the applied rule vectors should be a zero vector. After reasoning there should
also hold −ugoal + ϕx = 0, or, when written in another way, ϕx = ugoal. This
starts looking familiar. And, indeed, there are some additional points that
help to match the current application with (3.3):

• Continuity of the objective. Rather than setting hard limits, it
is beneficial to define a cost criterion that tries to keep the difference
between u and ϕx small.

• Logical structure of the clauses. If a rule vector ϕi is multiplied by
a negative number, the logical contents of the rule changes altogether,
and its validity is lost. That is why, the rule activations in x̄ must
always remain non-negative.

• Sparsity of the solutions. If there are various alternative inference
results, only one of them is to be selected, not some kind of linear
combination of them.

Luckily, all these constraints can easily be fulfilled when implementing rea-
soning in the proposed cost criterion based framework. This means that
searching for the minimum of (3.3) solves the reasoning problem (assuming
that the solution exists).

When implementing predicate calculus, so that expressions can contain vari-
ables, the situation is much more complicated, and complete congruence
between the formalisms cannot be reached: The universe of literals and their
Skolem functions need to be enumerated and listed (see [27]). However, for
unary predicates the situation is simple — predicates are operated on very
much like the propositions are.

Next, a simple example is presented to clarify the above discussion. Assume
that the knowledge base consists of the following expressions:

P(a)

P(b)

¬P(c)
P(x)→ Q(x)
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The rules need to be rewritten:

a Literal a
b Literal b
c Literal c
a→ P Expression 1
b→ P Expression 2
c→ −P Expression 3
P→ Q Expression 4

Every literal and every expression needs the “activity variable” of its own.
Collected together, one has the variable vector

x =
(

xa xb xc xa→P xb→P xa→ −P xP→Q

)T
.

The rule base can be written in a table form as

a b c P Q

Literal a 1
Literal b 1
Literal c 1
a→P −1 1
b→P −1 1
c→ −P −1 −1
P→Q −1 1

To write the matrices in (3.4) and (3.5) appropriately, one can recognize that
the matrix ϕ can be constructed from the above table by simply transposing
it:

ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 −1 0
0 0 0 1 1 −1 −1
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠ . (3.6)
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Figure 3.1: “When Q?”

The weighting matrix in the optimality criterion (3.3) can be selected as

V =

(
13 − I3 0

0 0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.7)

Almost all entries in the matrix V are zeros, because no matter how many
times the rules are applied, there is no cost for them. The upper left corner,
on the other hand, means that if various literals are simultaneously active, it
decreases the validity of the solution; if there is only one active literal, there
is no cost. Loosely speaking, V implements “exclusive or” within the model
structure. If the goal is achievable, zero cost can be reached.

Two simulations are shown in Figs. 3.1 and 3.2, having step size γ = 0.1
and sparsity factor δ = 1. In Fig. 3.1, it is assumed that one wants to know
“When would Q be true?”, given the above rule base, and in Fig. 3.2, the
query is “When would Q be false?”. The inputs in these two cases, or the
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transposed goals are

upos =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠ and uneg =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎠ . (3.8)

In the beginning of the iteration, variables xi start from 0.5, exception being
x1(0) = 0.6. This means that a is preferred to b, even though both have
equal logical properties. It seems that variable #1 remains above zero in the
steady state, meaning that “a makes Q true (through P)”. Note that logically
just as valid solution would be “b” — however, because of the initial bias
(0.1) in a, this solution is preferred to the alternative. In technical terms, it
turns out that if both variables were equally weighted, a saddle point in the
cost landscape would be found, and, because of the zero derivative, long time
could be wasted before either of the solutions would be (randomly) selected.

In the other case, on the other hand, one would like to know how to assure
that Q will be false; using the given rules alone, such a conclusion can never
be drawn, and all variables tend to zero. In the former case, the error u−ϕx̄
has zero length, meaning that the solution has been reached, whereas in the
latter case, the error is non-zero.

If there exist various non-zero entries in ugoal, or if there should be negative
entries (assuming that the input entries are also truncated; see later), it may
be that the determined numerical combination of numeric values cannot be
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exactly spanned by the features even though the distribution of logical values
would indeed be reachable. In such a case it is better to augment the rule
matrix and define a new predicate that stands specially for the query:

ϕ′ =

⎛
⎜⎜⎜⎝ ϕ1 · · · ϕn −ugoal

0 · · · 0 1

⎞
⎟⎟⎟⎠ , and unew =

⎛
⎜⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎟⎠ . (3.9)

Now it is easy to search for the solution when one selects the new goal vector
unew as shown above, so that this new rule alone is emphasized.

3.3 Modeling sequential processes

Above, it turned out that in some cases the intuitively causal processes of
reasoning can be implemented as static pattern recognition tasks. However,
in less structured cases, the step-at-a-time reasoning cannot be avoided.

3.3.1 Declarative knowledge

The backward reasoning above was formulated as a pattern matching. How
about a truly sequential task, how could such reasoning be implemented in
the presented framework? As an example, a production system, or forward
chaining is studied. All reasoning rules are assumed to be either of the
conjunctive form IF P1 AND ...AND Pi THEN Pnew, or of the disjunctive form
IF P1 OR ...OR Pi THEN Pnew. It is now assumed that for each Pnew there
exists (at most) one such rule. If there is need for more complex rules, where
disjunctive and conjunctive structures are combined, intermediate dummy
variables need to be introduced.

To implement such rules in a numerical form, let us now assume that value 1
means “true” and 0 means “false”. Then the disjunction of two expressions,
P1 OR P2, can be implemented as

uP1∨P2 = fcut(uP1
+ uP2

), (3.10)

where uP denotes the logical value of the proposition P. Correspondingly, the
conjunction of expressions, P1 AND P2, can be implemented as

uP1∧P2 = fcut(uP1
+ uP2

− 1). (3.11)
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A negation of an expression P, or ¬P, can be implemented as

u¬P = 1− uP = fcut(1− uP). (3.12)

This means that a single reasoning rule can be implemented as

uPnew = fcut(
∑
j

±uPj
+ c), (3.13)

where c is some constant. The rule number i determining the value of uPi

can be expressed in a vector form as

uPi
= fcut

(
ϕT

i u + ci

)
= fcut

(
ϕT

i,auguaug,
)

(3.14)

where ϕ contains the variable references in the condition part of the rule,
that is, there is “1” in the vector if the corresponding expression in u is
referred to in the rule, and “−1”, if the expression is negated. The value
of ci is determined as follows: If the rule is disjunctive, ci =#neg, equalling
the number of negative expressions in the rule; if the rule is conjunctive,
ci = 1−#pos, where #pos is the number of non-negated expressions.

Augmentation of the vectors is needed for “grounding” the truth level. The
augmented vectors are

ϕi,aug =

⎛
⎜⎜⎜⎝

ci

ϕi

⎞
⎟⎟⎟⎠ , and uaug =

⎛
⎜⎜⎜⎝

1

u

⎞
⎟⎟⎟⎠ . (3.15)

If there are various rules, the matrix ϕaug contains them as its columns. One
reasoning step for the whole set of rules can be expressed as

u(k + 1) = fcut

(
ϕT

auguaug(k)
)
. (3.16)

For example, if there is just one rule IF P1 AND P2 THEN P3, the correspond-
ing “reasoning system” becomes

⎛
⎜⎜⎜⎝

1
uP1(k + 1)
uP2(k + 1)
uP3(k + 1)

⎞
⎟⎟⎟⎠ = fcut

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
−1 1 1 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1
uP1(k)
uP2(k)
uP3(k)

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ . (3.17)
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Starting from some initial state, the values in vector u change appropriately.
If the rule base is more complex, the calculation is iterated until the vector
u converges. Note that some kind of integrators are additionally needed, so
that the acquired values are not lost; this is studied below.

However, there is a complication: In practice, the variables ui can have
values higher than 1, and if this is the case, the results of calculations do not
correspond to appropriate logical values. To circumvent this problem, the
variables need to be truncated to unit level before applying the rules. Using
the cut function, this can be accomplished for a scalar variable as

utrunc = 1− fcut (1− u) . (3.18)

Introducing an “inversion matrix”

B =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
1 −1 0
...

. . .

1 0 −1

⎞
⎟⎟⎟⎟⎠ , (3.19)

this repeated inversion can be extended to (augmented) vectors:

utrunc;aug = Bfcut (Buaug) . (3.20)

To implement the reasoning process in the same framework, one first needs
two inversions for conditioning of the variable levels, and after that, the
appropriate rule matrix can be applied. One of the inversion matrices can
be combined with the rule matrix:

C = ϕT
aug

B =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0
c1 +

∑
j ϕ1,j −ϕT

1
...

...
cm−1 +

∑
j ϕm−1,j −ϕT

m−1

⎞
⎟⎟⎟⎟⎠ . (3.21)

The final iteration looks like

u(k + 1) = fcut (u(k) + Cfcut (Bu(k))) (3.22)

where the input vector uin is put in u at time k = 0. Above, integration is
included in the iteration structure to maintain the current truth values of
the variables; the unlimited growth of the variable values in the iteration is
prevented when the vectors are additionally normalized (see later).
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The forward chaining can also be implemented using matrix multiplications
and applying cut functions; the structure seems complicated, though. What
is more, it is not the original iteration structure (3.1) that is employed here.
However, this complexity is just an illusion; and it turns out that the original
neuron structure can be extended in a rather reasonable way. These issues
are studied later (see Sec. 3.4.1).

As compared to the backward chaining example, now, rather than being rule
activities, the variables xi are quite redundant, needed only to implement
truth value normalization, and one operates on the truth values of the ex-
pressions directly. Again, values above zero mean “non-false”; in a sense,
fuzzy logic is being implemented.

In a rule system with no cyclic structures, matrix C can be written in a
triangular form with zero diagonal. After a finite number of steps, no more
changes take place in the vector u (assuming vector normalization; see later).
It needs to be noted that the “straight-forward chaining” can be extended in
this framework: Allowing non-binary weights, and fuzzy logical truth values,
the resolution results can also be recirculated in the system. This means that
C no more needs to be triangular; finding a stable result becomes an infinite
process that hopefully converges.

This kind of production systems based on sequential processing are very
versatile, as will be shown next.

3.3.2 Algorithmic representations

Nonlinear dynamic systems with feedback structure can have very compli-
cated dynamics [6]. As shown in [26], all computable functions (functions
that can be characterized by some algorithm) can be written in the form of
a discrete-time dynamic system

x(k + 1) = fcut (Ax(k)) . (3.23)

To make notations of [26] match the discussions ahead, the above expression
will be written in the form

u(k + 1) = fcut (u(k) + Cu(k)) , (3.24)

so that now C = A− In.

Without going into details, it can be said that there exists a simple but uni-
versal programming language so that all algorithms coded in that language
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can be translated into matrix C. The vector u(k) contains the program snap-
shot, that is, the program counter and the variable values are stored in that
vector. Just a simple example is presented below.

Assume that the parity function is to be realized, so that Y (X) = 0 if X ∈ N
is even, and Y (X) = 1 if X is odd. Using the tailored description language
this can be coded as

1 VAR X = X % Input variable

2 VAR Y = 0 % Output variable

3 IF X > 0 % Entry point

THEN X SUB 1 Y ADD 1 GOTO 6

ELSE GOTO END

6 IF X > 0
THEN X SUB 1 Y SUB 1 GOTO 3

ELSE GOTO END.

The syntax of the program code is simple and more or less self-explanatory
(see [26]). For example, in the first conditional structure on line 3, if there
still holds X > 0, one sets X ← X − 1 and Y ← Y + 1, and puts “6” in the
program counter, meaning that the next instruction to be executed is in line
6; otherwise, the program terminates. The mnemonic END has been used to
denote jump “outside” the program, that is, the program counter vanishes
altogether, and the evaluation halts.

In a matrix form this algorithm can be implemented as shown below. The
basic idea in the compilation of the language is that each program row spans
a new dimension in the “snapshot space”. One matrix row is allocated for all
variables, and similarly for all program rows; conditional branches exhaust
altogether three rows. The initial program snapshot, or the state u(0) before
iteration, is also shown below: Originally, u1 contains the X value to be
analyzed, and u3(0) = 1 is the program counter.

Cparity =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 1 0 −1 1
0 0 0 1 −1 0 −1 1
0 0 −1 0 0 0 1 −1
0 0 1 −1 0 0 0 0
−1 0 1 0 −1 0 0 0

0 0 0 1 −1 −1 0 0
0 0 0 0 0 1 −1 0
−1 0 0 0 0 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with

u(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
0
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After the iteration (3.24) has converged to a fixed point u(∞), the final
result Y is obtained as the second element u2 of the state vector (because
Y is declared on the second program line). It turns out that regardless of
the value X ∈ N , this system remains always stable; the time it takes to
converge to a fixed state is linearly dependent of the value of X. For example,
if X = 3, the following snapshot sequence results. The process seems to freeze
in a state where u2 = Y = 1, so that “3 is odd”.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
1
0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
1
0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ · · ·

The behavior of the above “parity process” is visualized in Fig. 3.3. The
output Y (entry u2(∞)) has been plotted after convergence as the initial
values u1(0) and u3(0), or the “input” X and the “program counter” are
continuousaly varied. In the figure, black stands for zero level, lighter colors
denoting higher values. Note that only in discrete points (dotted points in
the figure) the parity value is defined in the traditional sense, the values “1”
and “0”, or “true” and “false”, alternating along that line. The continuity
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Figure 3.3: “Generalized parity function” (see text)

and (piecewise) differentiability of the algorithm implementation sounds fas-
cinating: In principle, it is possible to adapt the algorithm structures along
the gradient direction to better implement the mappings between X and Y .
However, this seems not to be realistic: In complex algorithm implementa-
tions there are many local minima; what is more, there seem to exist very
abrupt behaviors in the mapping functions.

The presented approach to implementing algorithms does not perhaps have
very much practical relevance; it is just a proof that anything, indeed, that
can be somehow implemented, can also be implemented in principle using
simple discrete-time dynamics boosted with the cut nonlinearity, if the struc-
tures are sufficiently piled on top of each other. In what follows, these studies
are summarized.

3.4 Higher-level views

The goal now is to study whether the presented functionalities could be imple-
mented in the proposed Hebbian/anti-Hebbian neuron structure. Inevitably,
the original framework (single grid of neurons) needs to be extended; when
wondering of the infinite possibilities how the framework could be modified,
it is again system theory that seems to offer intuition. Remember that one
of the central tools is the idea of feedback: Connect the inputs and outputs
of the original open-ended system.
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3.4.1 Mental model

The remaining loose ends are now also connected by applying feedback, re-
circulating the analysis results back to the input (see Fig. 3.4).

In the structure of Fig. 3.4, two neuronal structures are combined. The
input neuron structure implements sparse analysis, and the output neuron
structure implements sparse regression (see Chapter 1). The input data u
is stored in the input buffer, and the latent variables x̄ are stored in the
internal buffer. The processes are synchronized so that new samples in the
buffers are taken whenever the appropriate signals have converged. Fresh
input uin is stored in the input buffer, or, if this is missing, the residuals are
recirculated. The input is normalized to unit variance before each iteration,
so that the contents of the buffer is (ε being a small scalar, added here to
avoid pathological cases)

u← u

‖u‖+ ε
. (3.25)

Note that the data cannot have zero mean because of the positivity assump-
tion. Still, there is no mean centering; it is also implicitly assumed that there
always holds x̄ = 0 when u = 0.

The dynamics in Fig. 3.4 is implemented in a continuous-time form, applying
integrators; formulations are simpler in this way, and stability issues can
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concerning the internal dynamics can be avoided. Note that rather than
using ideal integrators, it is reasonable to apply limited integrators, so that
negative internal activity does not cumulate.

A fundamental question that arises is whether the feedback in the overall
system should be positive or negative. Intuitively speaking, negative feed-
back tries to somehow equalize the system properties, whereas positive feed-
back makes the structures differentiate themselves, so that some kind of
self-organization can emerge. Positive feedback often results in instability;
however, now there is the normalization of the data included in the loop, so
that such problems do not become acute. Both alternatives are available,
which one to choose?

It turns out that both of the feedback alternatives are equally useful. There
is a control signal α for switching between the two modes (α = 1 for positive,
and α = −1 for negative feedback):

1. During the learning phase, the feedback is negative, so that u′(k+1) =
u(k) − û(k) (before truncation and normalization). That is, differ-
ences between the pattern and the already captured features, or the
unmodeled phenomena in the input, are emphasized whereas the al-
ready captured ones are ignored during the successive iterations. In
this sense, automatic attention control takes place.

2. During the recall phase, the feedback is positive, so that u′(k + 1) =
u(k)+û(k) (before truncation and normalization). That is, some kind of
an average between the prior image and its reconstruction is calculated.
An incomplete image in the buffer is associatively completed: This
means that unknown data can be reconstructed, or noisy data can be
filtered.

In both cases, iteration is continued until some stopping criterion is reached
(for example, convergence of the input buffer contents). When learning
from data, the iteration could be controlled, for example, by the pattern
recognition capability: Only if the classification is incorrect, the residual
u(k+1) = u(k)− û(k) is recirculated, so that the fine structure between pat-
terns can be learned. Because of the underlying linearity, different patterns
(and different resolutions of patterns) can coexist in the same structures. But
these patterns can also interact: Specially, when there is sparse coding, pat-
terns on all levels compete with each other, only the most relevant becoming
manifested.

Some outside critic is needed to decide when a new pattern is to be con-
centrated on. The sampling in the buffers, on the other hand, can be au-
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tonomous: Always when the incoming signals have converged, a new sample
can be taken.

However, it is also possible to apply the presented scheme if the signals do
not converge: Assume that there is a train of fresh input vectors uin coming
with short constant time intervals. Assuming that there are no (crucial)
zero-crossings taking place during those intervals, the whole system can be
described as dynamic linear variable structure system:

⎧⎪⎨
⎪⎩

x(k + 1) = Ax(k)x(k) + Bu(k)
v(k + 1) = Av(k)v(k) + x(k)
û(k + 1) = Cv(k + 1).

(3.26)

Because the input is constant during time interval k, and because the set of
active neurons behaves linearly (inactive ones being ignored altogether), the
matrices Ax(k) and Av(k) are constant during that interval, representing the
discretized versions of the continuous-time matrix A being integrated over the
interval (zero-order hold formulas apply; see [2]). This means that dynamic
succession of input patterns can be captured, and some kind of continuum,
or causality among patterns, can (perhaps) be modeled.

Comparing the presented overall structure to the functionalities that were
discussed above, one can see that all of them can be implemented in this
framework:

• Declarative rules. Select α = 1, A = In, and let B and C be the
inversion matrix and combined inversion/rule matrix, respectively, as
defined in Sec. 3.3.1.

• Algorithmic procedures. Select α = 1, A = B = In, and let C be
the matrix describing the algorithm, as defined in Sec. 3.3.2.

• Programmed features. Select α = 1, A = δV + ϕT ϕ, and let B =
CT = ϕT . Matrix V is determined obeying the domain area semantics.

• Data-based models. Select α = 1/− 1, A = δV + E{fcut(x̄)fT
cut(x̄)},

and let B = CT = E{fcut(x̄)uT}, as presented in Chapters 1 and 2.

Let us study closer one of the additional structures that were introduced
in addition to the original Hebbian/anti-Hebbian neuron structure, namely,
the normalization block. This normalization means that the overall activity
level is kept constant. This seemingly very innocent operation facilitates
many fundamental functionalities. For example, if uin � 1, the new input
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always outweighs the earlier data in the buffer, because the buffer contents are
scaled down proportionally; separate initialization structures or procedures
are thus not needed.

Normalization keeps the data bounded also when positive feedback is applied:
Indeed, when the reconstruction is sufficiently many times added to the input
buffer, and when the data is normalized, the original input gradually changes
into a virtual input. And when negative feedback is applied, on the other
hand, analysis beyond the nominal PCA can be carried out. To facilitate
analyses, for a moment, assume linearity in the structures: Remember that
the Hebbian/anti-Hebbian learning emphasizes the directions with highest
data variation, that is, it extracts the most significant principal components.
Assuming that the most relevant principal components have already been
extracted, these most dominant principal components are deflated from the
data u − û; when the data is scaled up, in this new data the less visible
principal components are equally visible during the next iteration, and they
can also be learned.

What comes to declarative rules, normalization causes no essential complica-
tions. The nominal “truth level” is grounded to the augmented variable, and
when the data is scaled, this level just fluctuates without affecting the rea-
soning results. In the algorithm case, analogously, the unit level is grounded
to the program counter, and normalization does not affect the system dy-
namics as long as the program counter is scaled by the same amount as the
variables are (note that the actual variable values are obtained by dividing
the scaled values by the program counter).

3.4.2 Relations to cognitive science

There is yet another characteristic facet of system theory that makes it pow-
erful. In system theoretic studies, intuition is valued, and one tries to see
analogues and connections between disciplines. Simultaneously, this kind of
scent of heuristics also makes such discussions vulnerable to attacks from
traditional theories. Above, it was not only neuron level phenomena that
were studied, but also the cognitive ones. Indeed, such issues are elabo-
rated on here, and some more or less justified comparisons are made to the
state-of-the-art cognitive science (for example, see [31]).

There exist many fundamental concepts in cognitive science, among the most
prominent perhaps being long-term memory and short-term memory (or
working memory). The volatile short-term memory contains references to
long-term memory representations, often called chunks, or basic units deter-
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mining the input pattern decompositions. In the absence of alternative con-
ceptual frameworks these chunks have traditionally been thought of as being
strictly symbolic constructs [9]. The cognitivist theories recognize (among
other things) the essence of constraints when studying cognitive capabilities:
For example, it has been recognized that the short-term memory capacity is
limited, it can only store some 4 to 9 independent entities at a time.

Looking at the proposed mental model structure, it is the internal buffer
that corresponds to short-term memory; long-term memory is distributed
in the matrices A, B, and C. The sparsity of the coding corresponds to
the limited short-term memory capacity: Only a subset of indices referring
to long-term memory are simultaneously active. The input buffer is the
sensory buffer, where the original data is stored; manipulation of that data
corresponds to the process of filtering the observation through the existing
memory structures in the constructivistic sense to reach the “mental image”.
Whereas the input buffer corresponds to the observed state of the world, the
internal buffer corresponds to perceived state of the world.

The idea of mental images is a useful concept: Originally, mental imagery
was studied exclusively in the context of concrete visual scenes (see [35]).
However, the nature of the mental imagery is not agreed upon [45], and
parallel “mental views” seem like a good approach to discuss expertise in
general — the expert has internalized a sophisticated set of mental images
governing the problem area. The constructs describing the domain field,
or chunks, can be subsymbolic as well as symbolic. As shown above, the
specialized imagery consisting of the domain-specific constructs constitutes a
“filter” that preprocesses the observation data, creating a compact subjective
internal representation of the situation at hand.

It is now assumed that the structure in Fig. 3.4 constitutes the cognitive
basic building block for implementing the different mental faculties. Such
blocks can be combined, so that the internal images from some prior pro-
cessing phases can be used as input data for subsequent processing. One
block can thus combine various modalities or input channels, introducing
some kind of hierarchy among the blocks. The structures among processing
levels are not strictly hierarchic, because the dependencies can be cyclic, and
the hierarchies can be tangled. Cognitive functionalities assumedly emerge
from massive iteration in the feedback loops also on the higher levels of ab-
straction. One needs to master controlling and timing among subprocesses
— How could this be explained in the proposed framework? The principle
is visualized in Figs. 3.5 and 3.6. The control structures are algorithmic,
and they can be implemented as shown in Sec. 3.3.2; when denoted control
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variables are toggled between 0 and 1, separate sub-blocks can be activated.
Look at Fig. 3.5: If the signal Cond equals 0, the block B1 is deactivated;
if it equals 1, block B2 is deactivated (M being a large constant). On the
other hand, one needs mechanisms to collect binary information from the
sub-blocks to launch control functions; this kind of quantization is shown in
Fig. 3.6, where a comparator is implemented (“Is x larger than threshold
T ?”). This means that a hard-wired system with control structures can be
implemented using the proposed building blocks; however, the question re-
mains how such control structures could autonomously be organized without
external intervention.

One of the most interesting paradoxes in cognitive science is the shift from
novice to expert (see [10], [15]). Somehow the mental representations change
from declarative to associative; the procedural data processing changes grad-
ually towards parallel pattern matching. The associations can be modeled
using correlations — and, indeed, the proposed framework can offer here new
intuitions. If the preprogrammed matrices are used for manipulation of input
data, the relationships between the buffer contents in x̄ and u can be used
for simultaneous adaptation of the matrices. The sequential, multiple-step
analysis processes can thus be gradually transformed into an associative, one-
step process, the solution starting to emerge immediately when the input is
applied.

However, it needs to be noted that everything cannot be implemented in
the associative framework, even though the sparsity of the representations
extends the possibilities beyond the strictly linear models. An easy way to
see this is to note that because there can only exist positive entries in x̄,
its covariance matrix cannot contain negative entries — even though the
optimal ϕT ϕ should sometimes contain also negative ones (see Sec. 3.2.2).
This means that a data-based system can never converge to such a structure
in the proposed framework.

The presented approach to explaining mental phenomena is very simplistic,
and its plausibility can be criticized. However, it seems that when sim-
ple structures cumulate, the emerging complexity may start looking “intelli-
gent”. The potential of the “numeric chunks” was studied in [24], where the
extracted correlation structures were used for modeling chess configurations;
the behaviors of such models were very expert-like. For example, the errors
in piece recall were rather plausible, and there was graceful degradation in
the observed model performance.
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3.5 Discussion

In this chapter, the behavior of a neuron grid was studied from the holistic
point of view. It turned out that cybernetic self-stabilization was reached
when the neurons were connected to each other and feedback was applied.
Further, it was recognized that if structural constraints are introduced, or if
there is nonlinearity in the system, some kind of order emerges in the system.
Finally, when the last feedback loop was closed, a complete cognitive model
was reached.

There exist various frameworks that have been proposed for modeling of men-
tal phenomena, most notably perhaps ACT-R [1] and SOAR [37], starting
from some specific architectural or functional premises. The basic problem
is that such models often need to be extended to include additional function-
alities, and the general-purpose models finally become increasingly complex,
thus making them intuitively less appealing. Looking at the today’s models of
cognition, one can see that they contain functionally very specialized blocks,
various separate control units coordinating their operation, transfer of data
between storages being carried out in a very computer-like way. Still, there
is only the same, fundamentally non-digital neural structure available — in
a such framework it is very difficult to explain how different mental facul-
ties could have adapted rather than being hard-wired. Connectionist models
that have been proposed typically fail to answer the systemic questions (for
example, see [29]).

It should be remembered that one is just constructing models, not claiming
that there should exist some fundamental correspondence between the model
and the reality. However, as compared to traditional engineering disciplines,
system theory is just a step nearer to philosophy and metaphysics: It not
only tries to explain behaviors, answering the how questions, but it also tries
to answer the why questions, trying to find general principles governing the
system behavior. There is a huge leap between the how’s and the why’s;
the successful derivations above partly rely on the favorable starting point,
the intuitively appealing Hebian principles. One started with an intentional
assumption concerning the neuronal behavior: It was assumed that neurons
try to maximize correlation or match between some quantities. It turned out
to be a fruitful starting point; however, now the problem setting has been
transformed and one has the possibility of making still more ambitious and
general assumptions about the goals of the neuronal system:

• Optimality. It was noticed that there exist optimality criteria embrac-
ing the Hebbian/anti-Hebbian learning principle, so that the criteria are
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optimized when the iterations converge. Looking at the process from
this perspective, seeing the infinite process as a finite pattern, helps
in gaining intuition, making it possible to easily modify the system
behavior.

• Balance. The role of (negative) feedbacks can be emphasized by saying
that the neural system tries to react so that the changes affecting the
system become compensated. If there is some excitation in the sensory
buffer, the neuronal feedbacks do their best to eliminate this distur-
bance. In a sense, this idea follows the Le Chatelier Principle familiar
from Chemistry: As a reaction to changes in the environment, the
steady state of the system changes so that the environmental changes
become compensated (at least to some extent).

• Symmetry. It seems that in the converged Hebbian/anti-Hebbian
structure, there exists symmetry in many levels: First, the matrix A is
symmetric, as well as C = BT ; in the input/output structure, the two
branches are also symmetrical. And, as explained in Sec. 3.2.1, data
and structural knowledge are also symmetric in some sense. Perhaps
the degree of symmetry in the system could be used as a measure of how
far the system is from the final fully associative state? Note that, as
compared to particle physics, for example, symmetricity is interpreted
here in a somewhat intuitive way (indeed, actual symmetry groups are
far from visible symmetries).

• Simplicity. Last but not least, the age-old measure for model validity
is its simplicity. It can be claimed that in the proposed framework
maximum amount of functionality is reached with minimum amount of
complexity; in the spirit of Ockham’s razor, there must also be some
truth in the proposed model? As compared to conventional cognitive
models, the number of adjustable parameters, or degrees of freedom,
is now minimum — indeed, there are none of them (except for the
number of neurons). This number of parameters is another aspect of
scalability: If dozens of such blocks are combined to implement some
more complicated functionality, the number of adjustable parameters
must not explode.

Whether or not such high-level ideas can be taken as starting points in further
modeling of neuronal and cognitive systems is an open question. However,
it is evident that the boundaries of understanding of mental phenomena are
not yet at hand. Perhaps the main obstacle here is lazy thinking, or the
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reluctance of humans to adopt fresh ideas. Take two examples from opposite
ends of the continuum:

1. “Mental phenomena cannot ever be captured using reductionistic ap-
proaches.” Another way to put this is “Human brain cannot study its
own operation.” Divine explanations have been forgotten in physics,
why could they not be forgotten also in physiology? At least when
studying limited mental faculties, like different manifestations of intel-
ligence in narrow fields, why should one assume that there must exist
some mind, or soul, or consciousness, that is running the machinery?
As was seen above, global, non-trivial results emerge when the individ-
ual actors just try to follow some simple adaptation principles with no
centralized control.

2. “When computing machinery develops sufficiently it automatically be-
comes intelligent.” It has been claimed that in some twenty years
(why is it always twenty years in AI?) the computing capacity in a
computer is comparable to that of a human brain. However, faster and
faster processing only means faster and faster cumulation of numerical
errors. The key point is that correct things have to be done by the
algorithms: It does not matter how long it takes, sparks of relevant
behavior can easily be detected if they are to emerge from the chaos
eventually. Indeed, the claim here is that today’s computer already is
powerful enough to implement truly interesting functionalities.

3.6 Conclusions

In this chapter it was shown how the simple neural structures that were
intended for data modeling tasks can be extended to carry out declarative
reasoning tasks and algorithmic computation. It turned out that also in this
task the system theoretic intuitions (feedback, etc.) could be utilized.

System theory is the framework for attacking systems in a holistic way, and it
offers conceptual tools for analyzing emergent phenomena. In Chapters 1 and
2, the discussions started in a bottom-up way, studying individual neurons;
the emergent properties (optimality of the neuron grid behaviors) inspired
the extension to the more abstract levels, towards cognitive functionalities.
Is there still something that would be offered by system theoretic thinking?
Indeed, when the road bottom-up has been studied, one can start analyses
in top-down direction: The general intuitions gained can be applied in other
more or less similar domain fields.
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Such analogues can truly turn out to be fruitful. The neural system is an ex-
ample of cybernetic systems (see [51]) — and there are dozens of interesting
cybernetic domains falling short of efficient analysis practices. The experi-
ences with neural systems have been applied in a variety of fields, and, indeed,
the results are interesting (see http://www.control.hut.fi/cybernetics).
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[2] Åström, K.J. and Wittenmark, B. (1997). Computer controlled sys-
tems. Upper Saddle River, NJ: Prentice–Hall.

[3] Barabasi, A.-L. (2002). Linked: The New Science of Networks.
Cambridge, MA: Perseus Books.

[4] Basilevsky, A. (1994). Statistical Factor Analysis and Related
Methods. New York, NY: John Wiley & Sons.

[5] von Bertalanffy, L. (1969). General System Theory — Founda-
tions, Development, Applications (revised edition). New York, NY:
George Braziller.

[6] Blondel, V.D. and Tsitsiklis, J.N. (2000). A survey of computational
complexity results in systems and control. Automatica, 36, Issue 9, pp.
1249–1274.

[7] Buntine, W. (2002). Variational Extensions to EM and Multinomial
PCA. In Machine Learning: Proceedings of ECML 2002, 13th Euro-
pean Conference on Machine Learning (eds. Elomaa, T., Mannila, H.,
and Toivonen, H.), Lecture Notes in Computer Science 2430. Berlin:
Springer.

[8] Chang, C.-L. and Lee, R. (1973). Symbolic Logic and Mechanical
Theorem Proving. New York, NY: Academic Press.

[9] Chase, W.G. and Simon, H.A. (1973). The mind’s eye in chess. In Vi-
sual Information Processing (ed. Chase, W.). New York, NY: Academic
Press.

87



88 BIBLIOGRAPHY

[10] Chase, W.G. and Ericsson, K.A. (1982). Skill and working memory. In
The Psychology of Learning and Motivation (ed. Bower, G.H.). New
York, NY: Academic Press.

[11] Cichocki, A. and Amari, S. (2002). Adaptive Blind Signal and Im-
age Processing: Learning Algorithms and Applications. New
York, NY: Wiley.

[12] Cichocki, A., Kasprzak, W., and Skarbek, W. (1996). Adaptive Learning
Algorithm for Principal Component Analysis with Partial Data. Proc.
Cybernetics and Systems, 2, pp. 1014–1019.

[13] Costa, S. and Fiori, S. (2001). Image compression using principal com-
ponent neural networks. Image and Vision Computing, 19, pp. 649–668.

[14] Diamantaras, K.I. and Kung, S.Y. (1996). Principal Component
Neural Networks: Theory and Applications. New York, NY: Wi-
ley.

[15] Elio, R. and Scharf, P.B. (1990). Modeling novice-to-expert shifts in
problem-solving strategy and knowledge organization. Cognitive Sci-
ence, 14, pp. 579–639.

[16] Fiori, S. (2003). Neural Independent Component Analysis by
“Maximum-Mismatch” Learning Principle. Neural Networks, 16, No.
8, pp. 1201–1221.
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