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12.1 Introduction

The design and analysis of large and complex system requires frequently that
the system is divided into smaller units, called sub-systems. The structure of
overall system resulting from the interconnections of sub-systems can be very
complex. One of the most common structures, is the hierarchical structure,
i.e. the lay-out of the structure is vertical. Consequently in this report only
hierarchical systems are considered, and a special emphasis is put on two-
level hierarchical systems. A diagram of a standard two-level hierarchical
system is shown in Fig. 12.1, where, as expected, two levels can be found,
namely the lower level and the upper level. The lower level consists of the
process level, where the process level has been divided into N sub-systems.
The sub-systems are connected to each other because there is either material
or information flows between these sub-systems. Each sub-system has its own
decision unit, which tries to control the behaviour of the sub-system so that
the objectives of this particular sub-system would be met. The decision unit
can also use feedback information from the sub-system to improve its ’control
policy’. However, quite often the objectives of the sub-systems are conflicting,
resulting in a poor overall performance. Hence an upper-level decision unit

139



140 Session 12. Hierarchical Systems Theory

or a coordinator has to be introduced, and the objective of this decision unit
is to coordinate the decision making of the sub-systems so that the overall
performance of the system would be improved. The coordinator receives
information from the sub-systems so that it can monitor the performance of
the overall system. Note that this approach is not as restrictive as it sounds,
because if a new higher level is added into a two-level system, in most of cases
the new level can be chosen to be the higher level of the modified system, and
the original two-level system becomes the lower-level of the modified system.
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Figure 12.1: A diagram of a standard two-level hierarchical system

The strength of the two-level hierachical system theory is that there exists a
large number of important systems around us that can be seen as being a two-
level hierarchical system. Examples considered in [3] and [2] are organisation
structures in large companies, distribution networks, oil refineries and power
plants, to name a few. Consequently it is an interesting question why two-
level hierarchical systems are so frequent. The following observations might
be at least a partial answer to this question:

1) It is easier to analyse and (re)design large-scale systems if they are
broken into smaller units.

2) The sub-system approach allows specialisation, where a sub-system is
only responsible for its own task and does not require information of
the objectives of the overall system.

3) Hierarchical systems allow a certain degree of fault tolerance. This is
due to the fact that if a sub-system breaks down, the overall system
does not necessarily stop working. Furthermore, due to ’module struc-
ture’ the failure is ’localised’ and hence easy to detect and and repair
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(i.e. only the faulty module has to replaced and its connections re-
established). The coordinator, however, is the weak point, because if
it stops working, the overall system cannot function anymore.

3) Even evolution seems to favour two-level hierachical systems. For ex-
ample in a human body the brain can be considered as being the coor-
dinator, whereas the rest of the body forms the sub-system level.

4) In the evolution of organisations two-level hierachical systems play a
major role. Even pre-historic tribes had a tribe leader, whom was
responsible for coordinating the actions of individual tribe members in
order to improve the overall well-being of the tribe.

In the following material it is shown how two-level hierarchical systems can
be analysed mathematically. Furthermore, it is shown how optimisation tech-
niques can be used to coordinate the running of a two-level hierarchical sys-
tems. The material is a rather mathematical, but in order to understand it,
only a fairly modest background is needed in constrained optimisation the-
ory. This report is based on [1], which is a nice introduction into the theory
of hierarchical systems.

12.2 Process level

12.2.1 Sub-system models

The process level consists of N inter connected sub-systems. For each sub-
system i there exists a set of admissible inputs Ii, the set of admissible
outputs Oi and a sub-system model fi : Ii → Oi. Because the sub-systems
are interconnected to each other, the set of inputs Ii is divided into the set
of free inputs Mi and the set of interconnected inputs Xi and consequently

Ii ⊂Mi ×Xi (12.1)

In a similar fashion the the outputs are divided into the set of free ouput
variables Yi and set of constrained output variables Zi, i.e. the outputs
zi ∈ Zi are fed as inputs into other sub-systems, see Fig. 12.2. With this
division the set of admissible outputs Oi can be written as

Oi ⊂ Yi × Zi (12.2)
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In order to achieve mathematical tractability, from now on it is assumed that
Mi, Xi, , Yi, Zi are suitable vector spaces. Typically the vector spaces would
be chosen to be suitable vector spaces of time functions (this is of course
highly application dependent), L2[0, T ]-spaces, l2[0, T ] and C∞[0, T ] being
frequently used spaces. In order to describe the interconnections present in
the system an interconnection mapping H : Z → X is defined where

Z := Z1 × Z2 × . . .× ZN

X := X1 ×X2 × . . .×XN
(12.3)

and N is again the number of sub-systems.
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Figure 12.2: Division of variables into free and interconnected vari-
ables

Without loss of generality it can be shown that for each xi, the corresponding
interconnections can be written as

xi =
N∑

i=1

Cijzj , i = 1, 2, . . . , N (12.4)

where xi ∈ Rni, zj ∈ Rmj and Cij is a real-valued ni × nj-matrix. Further-
more, the element ckl

ij of Cij is either zero or one depending on whether or
not the lth component of zj is connected to the kth element of input vector
xi. Define now

X := X1 ×X2 × . . .×XN M := M1 ×M2 × . . .×MN

Y := Y1 × Y2 × . . .× YN Z := Z1 × Z2 × . . .× ZN
(12.5)
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and

x = (x1, x2, . . . , xN ) m = (m1, m2, . . . , mN)
y = (y1, y2, . . . , yN) z = (z1, z2, . . . , zN )

(12.6)

Define further the mapping f : M ×X ⊃ D(f)→ Y ×Z and C : Z → X so
that

f : (m, x)→ (y, z) = (y1, . . . , yN , z1, . . . , zN) (12.7)

where

(yi, zi) = fi(mi, xi), i = 1, 2, . . . , N (12.8)

and the interconnection mapping C where

C(z) = x = (x1, x2, . . . , xN) (12.9)

and

xi =
N∑

i=1

Cijzj (12.10)

From now on it is assumed that exists a model F : M ⊃ D(F )→ Y ×X×Z
so that for an arbitrary m ∈ D(F ) the equations

{
(y, z) = f(m, x)
x = C(z)

(12.11)

define uniquely x ∈ X, z ∈ Z and y ∈ Y so that

F : m→ F (m) = (y, x, z) (12.12)

Consequently F represents an overall process model shown in Fig. 12.3.

For future purposes the overall mapping F is divided into components P :
D(F )→ Y , K : D(F )→ X, S : D(F )→ Z so that

F (m) = (P (m), K(m), S(m)) (12.13)



144 Session 12. Hierarchical Systems Theory

f

C
zx

y y

z

x

m F

Figure 12.3: The overall mapping F

Remark 1 Note that even the overall process model F exists, it is not neces-
sarily explicitly available for calculations. This is due to the fact that in order
to construct F the constrained input vector x has to be solved as a function
of the free input vector m from the set of equations in (12.11). If the number
of sub-systems is large and their mathematical models fi are complex, it can
be either impossible or impractical to solve F from (12.11).

Remark 2 In the context of dynamical systems the existence of F requires
that the initial conditions of the system have to specified. Furthermore, the
interconnection has to made so that the overall system model F is also causal.

Note that P , K and S can written in the following component form

P = (P1, P2, . . . , PN)
K = (K1, K2, . . . , KN)
S = (S1, S2, . . . SN , )

(12.14)

where Pi : D(F )→ Yi, Ki : D(F )→ Xi, Si : D(F )→ Zi, i = 1, 2, . . . , N .

12.2.2 Lower-level decision units

As was explained earlier, for each sub-system i there exists a decision unit,
and the objective of the decision unit is to control the sub-system according
to its objectives by manipulating the free input variables mi. The objectives
of the lower-level decision units can vary a lot, but in this report each sub-
system i is associated with a cost function gi, which is a function of the
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sub-systems input and output variables mi, xi, yi and zi. In other words for
each sub-system i there exists a mapping (cost function)

gi : Mi ×Xi × Yi × Zi → R (12.15)

Furthermore, the sub-system model fi can be used to eliminate the output
variables from the cost function, and the cost function becomes only a func-
tion of mi and xi in the following way:

Gi : Mi ×Xi ⊃ D(Gi)→ R, D(Gi) = D(fi) (12.16)

where

Gi(mi, xi) = gi

(
mi, xi, f

1
i (mi, xi), f

2
i (mi, xi)

)
(12.17)

with the notation fi(mi, xi) = (f 1
i (mi, xi), f

2
i (mi, xi)). In a similar fashion

an overall cost function g is defined where

g : M ×X × Y × Z → R (12.18)

The overall process model can then used to eliminate the output variables
resulting in equivalent representation of (12.18)

G : M ⊃ D(G)→ R, D(G) = D(F )
G(m) = g (m,K(m), P (m), S(m))

(12.19)

From now on it is assumed that the individual cost functions Gi and the
overall cost funtion G are related to each other with the equation

G(m) =
N∑

i=1

Gi (mi, Ki(m)) (12.20)

To judge whether or not this is always plausible is left to the reader.

12.3 Upper level

12.3.1 Upper-level decision making

The objective of the coordinator is affect the lower-level decision making so
that that the cost function G : D(F )→ R is minimised, i.e. that the overall
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optimisation problem is being solved. The overall optimisation problem can
be written equivalently as a constrained optimisation problem

min
m∈D(F )

N∑
i=1

Gi(mi, xi) (12.21)

with the constraint

x = K(m) (12.22)

This formulation, unfortunately, requires that the overall process model F is
explicitly available, and as was earlier explained, this is not the case if the
system contains a large number of complex sub-systems.

Consequently the overall optimisation problem has to modified so that it can
be divided into independent optimisation problems for each sub-system. In
order to achieve this, define a modified sub-system model f̃i and cost function
g̃i, i = 1, 2, . . . , N that now become a function of an external parameter
γ ∈ Γ, where γ is the coordination parameter:

f̃i : Mi ×Xi × Γ ⊃ D(f̃i)→ Yi × Zi, D(f̃i = D(fi)× Γ
g̃i : Mi ×Xi × Yi × Zi × Γ→ R

(12.23)

Furthermore, the modified sub-system model can be used to eliminate the
output variables from the modified cost function, resulting in

G̃i(mi, xi, γ) = g̃i

(
mi, xi, f̃

1
i (mi, xi, γ), f̃

2
i (mi, xi, γ), γ

)
(12.24)

This results in the following sub-system decision making problem

12.3.2 Sub-system decision making problem

The sub-system decision unit i has optimise with a given γ ∈ Γ the cost
function G̃i(mi, xi, γ), i.e. the decision unit has to find (mi, xi) ∈Mi×Xi so
that resulting pair (mi, xi) minimises the cost function G̃i(mi, xi, γ).

Remark 3 The important point here is that now the optimisation problem
is now an unconstrained optimisation problem, and the fact that xi is deter-
mined by the behaviour of other sub-systems is not taken into account.
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The optimal solution of the problem (if it exists in the first place) is called
as the γ-optimal solution (m(γ), x(γ)), where

m(γ) = (m1(γ), m2(γ), . . . , mN(γ)) (12.25)

and

minmi,xi
G̃i(mi, xi, γ) = G̃i(mi(γ), xi(γ), γ)

i = 1, 2, . . . , N
(12.26)

The objective of the coordinator is select the coordination variable γ ∈ Γ so
that the overall optimisation is being minimised, i.e.

min
m∈D(F )

G(m) = G (m(γ)) (12.27)

The question whether or not there exits a γ so that (12.27) holds depends
strongly on how the modified ’system variables’ f̃i, G̃i and the set of coordi-
nation variables Γ are chosen. Consider now the case where the modification
is done so that for an arbitrary γ ∈ Γ, m ∈ D(F ) it holds that

f̃i(mi, Ki(m), γ) = fi (mi, Ki(m))

G̃i(mi, Ki(m), γ) = Gi (mi, Ki(m))
(12.28)

i.e. the modified sub-system model is equivalent to the original sub-system
model and the modified cost function is equivalent to the original cost func-
tion when the constraint equation x = K(m) is met.

Proposition 1 Suppose that sub-system model fi and the sub-system cost
function Gi are modified according to (12.28) and htat there exists m◦ ∈ D(F )
and γ◦ ∈ Γ so that

minm∈D(F )G(m) = G(m◦)
x(γ◦) = K (m(γ◦))

(12.29)

This implies that G(m◦) = G (m(γ◦)).

Proof.

G (m(γ◦)) =
∑N

i=1Gi(mi, Ki (m(γ◦))
=

∑N
i=1 G̃i(mi(γ

◦), Ki(mi(γ
◦), γ◦)

=
∑N

i=1 minmi,xi∈D(fi) G̃i(mi, xi, γ
◦)

≤ ∑N
i=1 minm∈D(F ) G̃i(mi, Ki(m), γ◦)

≤ minm∈D(F )
∑N

i=1 G̃i(mi, Ki(m), γ◦)
≤ ∑N

i=1 G̃i(m
◦
i , Ki(m

◦), γ◦)
=

∑N
i Gi(m

◦
i , Ki(m

◦) = G(m◦)

(12.30)
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and hence G (m(γ◦)) ≤ G(m◦). However, by optimality, G (m(γ◦)) ≥ G(m◦),
and consequently G (m(γ◦)) = G(m◦), which concludes the proof.

Note that even if the modification is done as in (12.28), is does not guarantee
that condition (12.27) is met because in the proof it is assumed that there
exists at least one γ◦ ∈ Γ so that resulting pair (m(γ◦), x(γ◦))) satisfies the
’interconnection equation’ x(γ◦) = K (m(γ◦)). Whether or not this is true
leads to the definition of coordinability, which is the topic of the next section.

12.4 Coordination

As was explained in the previous section the sub-system decision problems
were defined to be optimisation problems where the optimisation problems
can be modified with an external parameter γ ∈ Γ. The purpose of this mod-
ification is to make the sub-system decision problems independent from each
other and to remove the ’conflicts’ caused by the interconnections between
the sub-systems. Furthermore, the objective of the upper-level coordinator
is to find a γ◦ ∈ Γ so that with this particular γ◦ the solutions of the sub-
system optimisation problems also satisfy the interconnection equations and
solve the overall optimisation problem. This results in the following definition
of coordinability:

Definition 1 (Coordinability) 1) The overall optimisation problem has
a solution, i.e. ∃m◦ ∈ D(F ) so that

min
m∈D(F )

G(m) = G(m◦) (12.31)

ii) There exists γ◦ ∈ Γ so that there exists a γ◦-optimal pair (m(γ◦), x(γ◦)),
i.e.

min(mi,xi)∈D(fi) G̃i(mi, xi, γ
◦) = G̃i(mi(γ

◦), xi(γ
◦), γ◦)

i = 1, 2, . . . , N
(12.32)

iii) The objectives of the sub-system decision units and upper-level decision
unit are in ’harmony’, i.e. m(γ◦) ∈ D(F ) and

G(m◦) = G (m(γ◦)) (12.33)
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As a consequence the coordinability of the overall system guarantees that
there exists at least one γ ∈ Γ so that the γ-optimal of the sub-system
optimisation problem is equal to solution of the overall optimisation problem.
The coordinability of two-level hierachical system, however, does not lead into
an efficient solution method, because the coordinator has to know a’priori the
optimal γ◦ that results in the solution of the overall optimisation problem.

If the coordinator cannot choose directly the optimal value γ◦, which is the
case in most problems, the coordination becomes an iterative process where
the coordination variable is changed iteration by iteration to the ’correct’
direction. In order to implement the ’correction process’ the coordinator
needs a coordination strategy. In the coordination strategy the new value for
the coordination variable depends on the current value of the coordination
variable and the corresponding γ-optimal solution (m(γ), x(γ)), resulting in
the coordination strategy η,

η : γ ×M ×X → Γ (12.34)

The coordination algorithm related to the coordination strategy can be de-
scribed in the following way:

1) Select a suitable initial guess for γ ∈ Γ

2) The lower-level decision units solve their own optimisation problems
resulting in the γ-optimal pair (m(γ), x(γ))

3) If γ is not optimal (whether or not this can be tested in practise de-
pends highly on the modification technique, see next section for further
details), the coordinator selects a new coordination variable γ ∈ Γ using
the coordination strategy

γ ← η (γ,m(γ), x(γ)) (12.35)

and the algorithm jumps back to 2).

Note this algorithm is purely abstract and due to its abstractness it is im-
possible to analyse whether not the coordination algorithm converges. In
this next section one possible way to implement the coordination strategy is
being discussed.
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12.5 The balancing principle

The balancing principle is coordination method where the interconnections
between sub-systems are ’cut off’ resulting in N independent optimisation
problem. Each sub-system decision unit i optimises its running not only as
a function of mi but also a function of the interconnected input variable xi.
Because now the sub-systems optimise their running independently from each
other, the constraint equation xi =

∑N
i=1Cijzj , i = 1, 2, . . . , N is not typically

met, and the overall optimisation problem remains unsolved. Consequently
in the balancing principle the sub-system decision units are forced to select
optimal solutions (mi, xi) so that constraint equation is met.

The modification of the ’system variables’ in the balancing technique is done
in the following way:

f̃i(mi, xi, γ) := fi(mi, xi)
g̃i(mi, xi, yi, zi, γ) := gi(mi, xi, yi, zi) + ψi(xi, zi, γ)

G̃i(mi, xi, γ) := g̃i(mi, xi, f
1
1 (mi, xi), f

2
i (mi, xi), γ)

(12.36)

where the mappings ψi : Xi × Zi × Γ→ R for i = 1, 2, . . . , N are defined so
that

ψ(x, z, γ) :=
N∑
i

ψi(xi, zi, γ) = 0 (12.37)

if the balance equation

xi =
N∑

i=1

Cijzj , i = 1, 2, . . . , N (12.38)

is met. Hence in the balance principle only the cost functions are modified
whereas the sub-system model is equal to the original sub-system model.
Note that modification that satisfies (12.37) and (12.38) is called a zero-sum
modification. The defining property of a zero-sum modification is that the
effect of the modification disappears from the overall cost function

∑N
i=1Gi

when the system is in ’balance’, i.e. the interconnection equations hold. In
this case the overall cost can be calculated as the sum of the individual values
of the cost functions in the following way:

G(m) =
N∑

i=1

G̃i(mi, xi, γ) =
N∑

i=1

Gi(mi, xi) (12.39)
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How to select the coordination variable γ ∈ Γ is not discussed here. However,
in the next section it is shown how Langrange multiplier theory can be used
to implement the balancing principle. In the balancing principle the decision
problem for each sub-system decision unit is given by

min
(mi,xi)

G̃i(mi, xi, γ) = G̃i(mi(γ), xi(γ), γ) (12.40)

Define now a mapping φi : Γ ⊃ D(φi)→ R,

φi(γ) = min
(mi,xi)∈D(fi)

G̃i(mi, xi, γ) (12.41)

where

D(φi) = {γ ∈ Γ|φi(γ) exists} (12.42)

Consider now the modified cost function that can be written as
∑N

i=1 G̃i(mi, xi, γ)
=

∑N
i=1 gi(mi, xi, f

1
i (mi, xi), f

2
i (mi, xi) +

∑N
i=1 ψi(xi, f

2
i (mi, xi), γ)

(12.43)

If the original overall optimisation problem has a solution m◦ and there exists
a γ◦ ∈ ∩D(φi) so that the lower-level γ◦-optimal solution (m(γ◦), x(γ◦))
satisfies

x(γ◦) =
N∑

i=1

Cijf
2
j (mj(γ

◦), xj(γ
◦)) , i = 1, 2, . . . , N (12.44)

or in a more explicit form

x(γ◦) = K(m (γ◦)) (12.45)

then it holds that

φ(γ◦) =
∑N

i=1 φi(γ
◦) =

∑N
i=1 G̃i (mi(γ

◦), xi(γ
◦), γ◦)

=
∑

i=1Gi (mi(γ
◦), xi(γ

◦)) = G (m(γ◦))
(12.46)

because of the zero-sum modification. On the other hand ∀γ ∈ D(φ)

φ(γ) = min(m,x)∈D(f)
∑N

i=1 G̃i(mi, xi, γ)

≤ min(m,x)∈D(f),x=K(m)
∑N

i=1 G̃i(mi, xi, γ)
= min(m,x)∈D(f),x=K(m)

∑N
i=1Gi(mi, xi) = G(m◦)

≤ G (m(γ◦))

(12.47)
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and was shown previously in Section 12.3, G(m◦) = G (m(γ◦)). Conse-
quently in tha balancing principle the coordinator variable γ is taken to be
the solution of the maximisation problem

max
γ∈D(φ)

φ(γ) (12.48)

In practise it can be difficult (impractical) to solve analytically this maximi-
sation problem, and numerical methods have to be used instead. Typically
the gradient ∇φ is available (see next section), and for example a steepest-
descent algorithm can be used to solve iteratively the maximisation problem.

12.6 The Langrange technique

In the Langrange technique the overall optimisation problem is modified by
adjoining the interconnection equation into the cost function, resulting in the
following Langrange function

L(m, x, y) =
N∑

i=1

Gi(mi, xi) +
N∑

j=1

〈
γi, xi −

N∑
i=1

Cijf
2
j (mj , xj)

〉
(12.49)

where < ·, · > is the inner product in Xi (for simplicity it is assumed here
that Xi for i = 1, 2, . . . , N is always the same space and that it is reflexive,
i.e. the dual space of Xi is Xi. Reflexive spaces are for example the Euclidian
space RN (discrete-time case with finite time-axis) and L2[0, T ] (continuous-
time case with finite time-axis), which are one of the most commonly used
spaces in control theory. By changing the summation order it can be shown
that the Langrange function can be written equivalently as

L(m, x, γ) =
∑N

i=1 Li(m, x, γ)
Li(m, x, γ) = Gi(m, xi) + 〈γi, xi〉 −∑N

j=1 〈γj, Cijf
2
i (mi, xi)〉 (12.50)

In summary L(m, x, γ) has been divided into a sum where each term Li(mi, xi, γ)
depends only on the variables related to sub-system i and the Langrange mul-
tiplier γ. This modification is clearly a zero-sum modification. As was shown
in the previous section, in the balancing technique the sub-system decision
problem is to solve with a given γ (which is now the Langrange-multpier)
the optimisation problem

φi(γ) := min
mi,xi∈D(fi)

Li(mi, xi, γ) = Li(mi(γ), xi(γ), γ) (12.51)
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and upper-level decision problem is

max
γ∈D(φ)

φ(γ) (12.52)

where (as previously)

φ =
N∑

i=1

φi (12.53)

As was mentioned previously, the upper level decision problem does not nec-
essarily have a nice closed-form solution. Consequently in order to use nu-
merical optimisation methods, the gradient ∇φi is needed. However, in the
Langrange technique this is just (can you show this?)

∇γφ(γo) = [ε1, ε1, . . . , εN ]T := ε (12.54)

where

εi = xi(γo)− Cijf
2
j (m(γo), xj(γo)) (12.55)

and consequently the coordination strategy can be chosen to be

η(γ,m, x) = γ + k · ε (12.56)

where k is a step-length parameter the algorithm designer has to select. This
results in the following algorithm:

1) Set k = 0 and select an initial guess γk = γ0.

2) Solve the sub-system optimisation problems with γ = γk.

3) If the system is in balance, stop, the overall optimisation problem has
been solved. Otherwise set k → k + 1 and update

γk+1 = γk + k · ∇γφ(γk) (12.57)

and go to step 2.

Remark 4 If sub-system decision problems are linear programmes (i.e. they
are of the form cTx then it can be shown that the Langrange multipier can be
understood to be the price that a sub-system has to pay to the other sub-system
for the transfer of material (information). In other words coordination is
equivalent to ’an optimal pricing policy between departments’, see [3]!
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The toy example in the following section will illustrate the Langrange ap-
proach. Note that even this example considers only static sub-system mod-
els, this technique can be applied on dynamical systems models without any
major complications, see [2] and [1] for further details.

12.7 A toy example

Consider the linear static system
{
y1 = 2m1 + u1 = P1(m1, u1)
y2 = 2m2 + u2 = P2(m2, u2)

(12.58)

with the interconnections u1 = m2, u2 = m1, and the overall cost function is
defined to be

G(m, y) = m2
1 +m2

2 + (y1 − 1)2 + (y2 − 2)2 (12.59)

It is a straightforward exercise to show that the optimal solution for the
optimisation problem is m̂ = [1/5 7/10]T . The corresponding Langrange
function is given by

L(m, y, γ) = m2
1+m

2
2+(y1−1)2+(y2−2)2+γ1(u1−m2)+γ2(u2−m1)(12.60)

resulting in following two sub-system cost functions

G1(m1, y1, γ) = m2
1 + (y1 − 1)2 + γ1u1 − γ2m1

G1(m2, y2, γ) = m2
2 + (y2 − 2)2 + γ2u2 − γ1m2

(12.61)

For a fixed γ the optimal control policies for P1 and P2 become
[

10 4
4 2

] [
m1

u1

]
=

[
4 + γ2

2− γ1

]
,

[
10 4
4 2

] [
m2

u2

]
=

[
8 + γ1

4− γ2

]
(12.62)

The gradient of φ(γ) becomes

∇γφ(γ) =

[
u1 −m2

u2 −m1

]
(12.63)

and the update law for the coordination variable (Langrange multplier) be-
comes[

γ1(k + 1)
γ2(k + 1)

]
=

[
γ1(k)
γ2(k)

]
+ k

[
u1 −m2

u2 −m1

]
(12.64)
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where k = 0.1 (a sophisticated guess). The initial guess for γ is γ(0) =
[10 10]T . Fig. 12.4 shows how the ’input functions’ converge, i.e. in this
figure the Euclidian norm of [m1 − 1/5 m2 − 7/10]T is plotted as function
of the iteration rounds, showing a reasonable convergence speed. Fig. 12.5
on the other hand shows the value of the modified cost function. From this
figure it can be seen that the coordinator is maximising the modified cost
function, which is the expected result.
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Figure 12.4: Convergence of the inputs

12.8 Conclusions

In this chapter a general theory for the optimisation of two-level hierarchical
systems has been introduced. This theory can be applied on a wide range
of applications, examples being economics, organisation theory and large-
scale industrial plants. In this theory the system is divided into sub-systems,
where each sub-system tries to achieve its own objectives without considering
whether or not they contradict with other sub-systems. In order to rectify
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Figure 12.5: The value of the modified cost function

the ’selfishness’ of the sub-system decision making, an upper-level decision
making system has to be introduced. The objective of the upper-level deci-
sion making unit is to coordinate the decision making of each sub-system, so
that an overall harmony is achieved. A special emphasis was put on the so
called balancing technique, because it can be implemented numerically with
the well-known Langrange technique. Note that in this report no rigorous
convergence theory was presented for the iterative balancing technique. Con-
vergence, however, can be proved in some special cases, see [2] for further
details.

The required theoretical background for understanding the theory of two-
level hierarchical systems in the most abstract setting is, unfortunately, rea-
sonably sophisticated. Consequently the theory can be quite hard for an
engineer to digest, and therefore it has not found its way to the mainstream
material taught at graduate level in control engineering courses. On the
other hand it offers an interesting option for more mathematically oriented
engineers to do high-quality control for complex systems without resorting
to ad-hoc methods (i.e. fuzzy control, agents etc.).
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