Preface

Concrete examples help to understand complex systems. In this report, the key point is to illustrate the basic mechanisms and properties of neocybernetic system models. Good visualizations are certainly needed.

It is biological systems, or living systems, that are perhaps the most characteristic examples of cybernetic systems. This intuition is extended here to natural systems in general — indeed, it is all other than man-made ones that seem to be cybernetic. The word “biological” in the title should be interpreted as “bio-logical” — referring to general studies of any living systems, independent of the phenosphere.

Starting from the concrete examples, connections to more abstract systems are found, and the discussions become more and more all-embracing in this text. However, the neocybernetic model framework still makes it possible to conceptually master the complexity.

There is more information about neocybernetics available in Internet — also this report is available there in electronic form:

http://www.control.hut.fi/cybernetics

National Technology Agency of Finland (TEKES) has provided funding during the research under several project frames, and this support is gratefully acknowledged.

This report is my “scientific legacy”, and it is dedicated to my dear sons Elias and Matias, with whom our Adventures no longer can be more than mental ones.

On May 12, 2006 — anniversary of the Finnish Culture

Heikki Hyötyniemi
About the cover

Might is based on Wisdom. And the wisest man of all is Väinämöinen. But the Magic Boat is too large a system to master even for Väinämöinen. He needs to ask help of Antero Vipunen.

Antero Vipunen is the Earth Giant. Things grow on him and in his sleep he absorbs Natures secrets. — What happened then? For details, see Kalevala, the Finnish national epic.

According to Kalevala, knowledge is power. Completely mastering a system is being capable of presiding over its birth.

In today’s terminology, this all is about understanding the processes of emergence. The contribution of modern cybernetics is that it may be the same formula to master all systems, big and small, living and man-made. Knowledge is not only about understanding how systems work — it is about making them exist in the first place. — What does this mean? Please, read ahead.
Tunnenpa
 systeemin synyn.

Oleva tiedosta tehty
mielestä on ja mallista

Ajatus aineesta tehty
mitattavasta datasta
Contents

0 Chaotic Complexity vs. *Homeostasis* 7

0.1 Facing the new challenges 7

0.1.1 Lure of cybernetics 8

0.1.2 Theories of complexity 8

0.1.3 Return to basic mathematics 9

0.2 Principles of neocybernetics 11

0.2.1 Capturing “emergence” 11

0.2.2 Key ideas 13

0.2.3 Contrary intuitions 16

0.2.4 Neocybernetics in a nut shell 19

I Basic Models and Interpretations 23

1 Genomics, Metabolomics, and Distributed Networks 25

1.1 Experiences with “artificial cells” 25

1.2 Modeling cellular processes 26

1.2.1 From formulas to behaviors 26

1.2.2 Approaches to networks 28

1.3 Case 1: Metabolic systems 30

1.3.1 Applying the neocybernetic guidelines 32

1.3.2 Characterizing the metabolic state 34

1.4 Case 2: Gene expression 35

1.4.1 Process of overwhelming complexity 35

1.4.2 “Cybernetizing” a genetic network 36

1.5 Probability interpretations 38

1.5.1 Fractality revisited 38

1.6 About more complicated distributions 39

2 Emergent Models of Cellular Functions 43

2.1 About “system semantics” 43
CONTENTS

2 Constraints vs. degrees of freedom .. 44
 2.2.1 System models and identification 45
 2.2.2 Emergent models .. 46
 2.2.3 Towards inverse thinking ... 48
2.3 Technical exploitation .. 50
 2.3.1 Subspaces and mappings ... 51
 2.3.2 Multivariate tools .. 54
 2.3.3 New levels in emergence hierarchies 55
2.4 Towards system biology .. 56
 2.4.1 Facing real systems .. 57
 2.4.2 Case example .. 58
 2.4.3 “Artificial cells”? .. 60

3 Elasticity of Systems and Goals of Evolution 63
 3.1 Balancing between static and dynamic models 64
 3.1.1 Restructuring data ... 64
 3.1.2 Elastic systems .. 67
 3.1.3 Evolutionary fitness .. 69
 3.2 Towards self-organization .. 71
 3.2.1 Feedback through environment 71
 3.2.2 Back to principal subspace 74
 3.2.3 Closer look at the cost criteria 75
 3.2.4 Making it local .. 77
 3.3 Analysis of elasticity ... 79
 3.3.1 Balance between system and environment 80
 3.3.2 Power of analogies ... 82
 3.3.3 Applications in engineering systems 85
 3.4 Towards complex complex systems 88

4 Systems of Populations as Symbiosis of Agents 91
 4.1 Extending from a domain to another 91
 4.1.1 Environment seen as neighbors 92
 4.1.2 From individuals to a population 94
 4.1.3 Properties of a cybernetic population 95
 4.1.4 “Complete-information ecosystems” 96
 4.2 Agent systems .. 98
 4.2.1 Humans as agents .. 98
 4.2.2 Intelligent organizations 100
 4.2.3 Constructivistic systems 102
 4.2.4 Boosted evolution ... 106
CONTENTS

4.2.5 Hegelian megatrends .. 108
4.3 Quantification of phenomena 109
 4.3.1 Mirrors of environments 109
 4.3.2 Cases of supply vs. demand 110
 4.3.3 Towards different views of data 113

5 Role of Information in Model-Based Control 117
 5.1 Another view at emergy 117
 5.1.1 Information vs. noise 117
 5.1.2 State estimation and control 119
 5.1.3 Flows of information and matter 121
 5.1.4 Different views at the environment 122
 5.1.5 Cascades of trophic layers 123
 5.2 Control intuitions ... 126
 5.2.1 Rise and fall of adaptive control 126
 5.2.2 Paradox of intelligence 128
 5.2.3 Contribution in inverse direction? 130
 5.3 Towards wider views 132
 5.3.1 “System cybernetization” 132
 5.3.2 Faith of systems 134
 5.3.3 Coordination of catastrophes 136
 5.3.4 Beyond the balances 138

II Further Studies and Intuitions 141

6 Structures of Information beyond Differentiation 143
 6.1 Towards more and more information 143
 6.1.1 About optimality and linearity 143
 6.1.2 New sensors and innovations 144
 6.1.3 Example: Transformations implemented by nature 145
 6.2 Blockages of information 146
 6.2.1 Hierarchic models 146
 6.2.2 “Clever agent algorithm” 147
 6.2.3 On-line selection of information 148
 6.2.4 Switches and flip-flops 150
 6.3 Real world of nonlinearity 152
 6.3.1 What is relevant, what is reasonable 152
 6.3.2 Models over local minima 153
 6.3.3 How nature does it 156
CONTENTS

6.4 More about sparse coding .. 159
 6.4.1 “Black noise” .. 159
 6.4.2 Towards cognitive functionalities 163

7 Cybernetic Universality and Lives in Phenospheres 167
 7.1 Modeling of cognition .. 167
 7.1.1 Population of neurons 168
 7.1.2 Role of semantics ... 169
 7.1.3 Epistemology of constructs 172
 7.1.4 On expertise and consciousness 174
 7.1.5 Theories of mind ... 177
 7.2 Manipulating the environment 178
 7.2.1 About artificial intelligence 179
 7.2.2 Reflexes and beyond 180
 7.2.3 Extending the mind’s eye 183
 7.2.4 Implementing more sophisticated controls 185
 7.3 Planning and beyond .. 187
 7.3.1 From reactivity to proactivity 187
 7.3.2 Ontogeny of systems 189
 7.3.3 Representations of evolution 192

8 From Building Blocks to Theories of Everything 197
 8.1 Computationalism cybernetized 198
 8.1.1 Formal and less formal languages 198
 8.1.2 Simulators of evolution 200
 8.2 Emergence in a physical system 202
 8.2.1 Cybernetic view of electrons 202
 8.2.2 Molecular orbitals 205
 8.2.3 Characterizing molecules 207
 8.2.4 Folding of proteins and splicing of RNA 210
 8.3 Towards “cosmic cybernetics”? 212
 8.3.1 Formation of stellar structures 212
 8.3.2 Everything, and more 214

9 Arrow of Entropy and Origin of Life 217
 9.1 Thermodynamic view of cybernetics 217
 9.1.1 Entropy and order .. 218
 9.1.2 Control changes it all 221
 9.1.3 Another view at model hierarchies 222
 9.1.4 Principle of maximum entropy production 225
CONTENTS

9.2 Ladders towards life .. 226
 9.2.1 Paradoxes of living systems 227
 9.2.2 Balanced autocatalysis ... 228
 9.2.3 Chemical evolution .. 230

9.3 Codes and beyond .. 232
 9.3.1 Towards programmed structures 232
 9.3.2 Case: Development of an eye 234
 9.3.3 Optimality in mechanical structures 238

9.4 Are we alone? .. 240

10 Models of Reality can be *Reality Itself* 243
 10.1 Models are what there is .. 243
 10.1.1 Escape from the cave 243
 10.1.2 Intersubjectivity and interobjectivity 245
 10.1.3 Unity of models ... 246
 10.1.4 About “truly general relativity” 248
 10.2 About “new kind of science” 249
 10.2.1 Mathematics in a change 249
 10.2.2 Questions of “why?” 251
 10.2.3 Mental traps .. 253
 10.3 Rehabilitation of engineering 255

11 From Science back to *Natural Philosophy* 257
 11.1 Standard science — business as usual 257
 11.2 “Project 42” .. 258
 11.3 Neocybernetics — an experiment design 259