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Abstract

This report summarizes ten levels of abstraction that together span the con-
tinuum from the most elementary to the most general levels when modeling
biological systems. It is shown how the neocybernetic principles can be seen as
the key to reaching a holistic view of complex processes in general.



Preface

Concrete examples help to understand complex systems. In this report, the
key point is to illustrate the basic mechanisms and properties of neocybernetic
system models. Good visualizations are certainly needed.

It is biological systems, or living systems, that are perhaps the most character-
istic examples of cybernetic systems. This intuition is extended here to natural
systems in general — indeed, it is all other than man-made ones that seem
to be cybernetic. The word “biological” in the title should be interpreted as
“bio-logical” — referring to general studies of any living systems, independent
of the phenosphere.

Starting from the concrete examples, connections to more abstract systems are
found, and the discussions become more and more all-embracing in this text.
However, the neocybernetic model framework still makes it possible to concep-
tually master the complexity.

There is more information about neocybernetics available in Internet — also
this report is available there in electronic form:

http://www.control.hut.fi/cybernetics

National Technology Agency of Finland (TEKES) has provided funding dur-
ing the research under several project frames, and this support is gratefully
acknowledged.

This report is my “scientific legacy”, and it is dedicated to my dear sons Elias
and Matias, with whom our Adventures no longer can be more than mental
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On May 12, 2006 — anniversary of the Finnish Culture

Heikki Hyötyniemi
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Might is based on Wisdom. And the wisest man of all is Väinämöinen. But the
Magic Boat is too large a system to master even for Väinämöinen. He needs to
ask help of Antero Vipunen.

Antero Vipunen is the Earth Giant. Things grow on him and in his sleep he
absorbs Natures secrets. — What happened then? For details, see Kalevala,
the Finnish national epic.
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According to Kalevala, knowledge is power. Completely mastering a system is
being capable of presiding over its birth.

In today’s terminology, this all is about understanding the processes of emer-
gence. The contribution of modern cybernetics is that it may be the same
formula to master all systems, big and small, living and man-made. Knowledge
is not only about understanding how systems work — it is about making them
exist in the first place. — What does this mean? Please, read ahead.
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Level 0

Chaotic Complexity vs.
Homeostasis

The deepest intuitions concerning real-life complex systems date back already
to Heraclitus (about 540 B.C.):

• Everything changes, everything remains the same. Cells are replaced in an
organ, staff changes in a company – still the functions and essence therein
remain the same.

• Everything is based on hidden tensions. Species compete in ecology, com-
panies in economy – the opposing tensions resulting in balance and diver-
sity.

• Everything is steered by all other things. There is no centralized control
in economy, or in the body – but the interactions result in self-regulation
and self-organization.

However, after Heraclitus the mainstream philosophies developed in other direc-
tions: For example, Plato emphasized the eternal ideas, regarding the change
as ugly and noninteresting. And still today, the modern approaches cannot sat-
isfactorily answer (or even formulate) the Heraclitus’ observations. What is the
nature of the “stable attractors” characterizing complex systems? There have
been no breakthroughs, and there will be no breakthroughs if the fundamen-
tal nature of complex systems is ignored. There now exists a wealth of novel
conceptual tools available — perhaps it is the time to take another look.

0.1 Facing the new challenges

The ideas are intuitively appealing but they are vague, and there are many
approaches to looking at them. Truly, it is a constructivistic challenge to try to
explain a novel approach: Everybody already knows something about complex
systems, and everybody has heard of cybernetics, but few people share the same
views, and misunderstandings are unavoidable. That is why, there is need to
briefly survey the history — or, as Gregory Bateson (1966) has put it:

7



8 Level 0. Chaotic Complexity vs. Homeostasis

I think that cybernetics is the biggest bite out of the fruit of the Tree
of Knowledge that mankind has taken in the last 2000 years. But
most such bites out of the apple have proven to be rather indigestible
– usually for cybernetic reasons.

0.1.1 Lure of cybernetics

The term cybernetics was coined by Norbert Wiener in 1948, when he published
his book Cybernetics, or Control and Communication in the Animal and the
Machine [86]. The underlying idea in cybernetics is the assumption that it is the
dynamics caused by the interactions and feedback structures among actors that
result in observed complex behaviors. According to one definition, cybernetics
is the study of systems and control in an abstracted sense. Indeed, intuitively,
cybernetics directly addresses the Heraclitus’ challenge.

Because of its intuitiveness, cybernetics was thought to be a panacea — indeed,
it was one of the first “isms” to become hype. Since its introduction, there has
been a long history of false interpretations, not only in Western countries, but
also in the East, where cybernetics was seen as (another!) “scientific” motiva-
tion for communism: How to steer the society in an optimal way? There still
exists a wide spectrum of more or less appropriate connotations; perhaps the
term is today mostly associated with “cyberspaces”, and “cyborgs”, or cyber-
netic organisms combining biological and non-biological organs. In biological
and ecological sciences cybernetics gained a bad reputation as the hypotheses
were too wild: Evolutionary processes simply do not take place on the level of
systems.

Perhaps cybernetics is today free of incorrect associations. Anyhow, it turns out
to be an excellent framework for combining control theory, information theory,
and communication theory with application domains (biology, ecology, economy,
etc.).

Cybernetics has already had its impact on today’s scientific world. For example,
being a framework for studies on clever interactions among agents cybernetics
was one of the starting points beyond Artificial Intelligence. Similarly, as a
framework of complicated feedback structures, cybernetics boosted the devel-
opments in the field of modern control theory.

However, the total potential of cybernetic ideas has not yet been fully exploited
in control theory. At Wiener’s time, control theory was still very classical, and
even the most straightforward ideas sufficed, but during the years control field
has considerably matured. It seems that the field of traditional, centralized
control theory has by now been exhausted – it is time to implement the deepest
cybernetic insights and get distributed.

0.1.2 Theories of complexity

In fact, cybernetics is just one view to understanding complex systems in gen-
eral. There are also other approaches to attacking the challenges, all of them
being basically based on the conviction: Clearly, there exist similarities among
complex systems. Different kinds of intuitions are exploited, for example, in



0.1. Facing the new challenges 9

[14], [38], [43], and [91].

Whereas today’s control theory concentrates on the individual feedback loops,
being too reductionistic, general system theory explicitly emphasizes holism.
The original contribution in this field was given by Ludwig von Bertalanffy [9].
However, trying to attack all systems at the same time, the approaches easily
become too holistic without concrete grounding. There is need to find ways to
combine the wider perspectives with the concrete substance.

An opposite approach is to start from the bottom, from simple formulas or
data, and hope for some order to emerge when some kind of manipulations
are applied. This kind of “computationalism” is the mainstream approach in
complexity theory today — indeed, the trust on the power of the increasing ca-
pacity of computers seems overwhelming: “In 20 years, computer will be more
intelligent than a human”! Introduction to computational biology is given, for
example, in [84]. But what if the iterations are chaotic, the results are sensi-
tive to the initial conditions, and the simulations have no more correspondence
with reality? Mindless thrashing of data only gives trash out. And the more
challenging goal — how can computation make non-trivial phenomena emerge?
How to sieve the essence out from the data?

The field of complex systems research is far from mature. No paradigmatic
guidelines yet exist: There are no generally approved approaches, common con-
cepts, methodologies and tools, typical application domains or problem settings.
It has also been claimed that this “chaoplexity” is a form of ironic science where
there are unsubstantiated promises, buzzwords, etc., more than there are hard
results [40].

There are also more striking views. It has been claimed that the vagueness in
the field is not due to the inadequacy of the theories, but we are facing the end
of traditional science. For example, Stephen Wolfram who proposes the use of
cellular automata for representing natural systems, proves that such a model
family is too strong, and cannot be analyzed by traditional means [91]. From
this he deduces that a New Science is needed — but he gives no hints of what
that science would look like.

But there are also other ways to escape the deadlock: Perhaps the cellular
automata was not the correct model family for representing complex systems
after all. The unanalyzability is a property of the model, not of the system itself.
If a more appropriate model structure is selected, perhaps old mathematics still
works?

0.1.3 Return to basic mathematics

As observed by Eugene Wigner [87], in the past mathematics has been astonish-
ingly efficient when explaining nature. Why should we be unlucky, why should
it all end now?

It is clear that today’s conceptual tools are insufficient when explaining the com-
plex diversity. New concepts and structures need to be defined, and one needs
an appropriate language for presenting and defining these concepts: As Ludwig
Wittgenstein observed in his Tractatus: “What you cannot express, that you
cannot think of”. Wittgenstein spoke of natural languages — but it is mathe-
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Syntax Semantics

Scalar t Free variable Time, axis of evolution
Scalar i Index Agent identifier
Scalar J(x, u) Positive-valued function Cost criterion
Vector φi Latent basis vector “Forage profile”
Scalars qi, γ Adjustable parameters (Inverse) “system impedance”;

time axis contraction factor
Vectors x, u States, latent variables; Agent (population) activities;

input signals set of resources
Matrices A, B System matrices Feedback interaction factors;

interactions with environment

dx
dt

= −γAx + γBu Linear dynamic model Matching with environment

x̄(u) = A−1Bu = φT u Asymptotic behavior Dynamic equilibrium

E
{
uuT

}
≈ 1

t

∫ t

t0
uuT dτ Covariance matrix Mutual information structure

E
{
uuT

}
θi = λiθi Eigenvectors θi; Directions of information;

eigenvalues λi corresponding relevances

Figure 1: Key symbols and definitions to be studied later. Simple mathematics,
yes, but appropriate interpretations make a difference

matics that is the natural language of nature! Development of mathematics has
always been directed by applications, so that the logical structures and concepts
have evolved to appropriately and compactly describe real-life phenomena; and,
when looking at complex systems, there are some special benefits:

• In mathematics, syntax and semantics are separated; it is possible to
generalize and find analogues among systems.

• In mathematics, real numbers naturally capture fuzziness, non-crispness
and continuity.

• In mathematics, parallelity of phenomena is transformed into high di-
mensionality, and there are efficient tools available for operating on high-
dimensional data structures.

• In mathematics, time-bound phenomena, dynamics and inertia can effi-
ciently be mastered and manipulated, and asymptotic behaviors can be
captured.

And, of course, the clarity and unambiguity of mathematical expressions is
invaluable — as compared to natural languages, this helps to avoid hand-waving.

It turns out that no new mathematics is needed to model complex systems,
it is just new interpretations that are needed (see Fig. 1). Mastering some
basic mathematical grammar is necessary: Specially, linear algebra and matrix
calculus, and understanding of dynamic systems is essential. No New Science is
needed, the Old Science still suffices — but as new interpretations are applied,
there will be a New World, new ways of seeing the environment!
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Figure 2: Neocybernetics offers a fresh view to studying real-life systems

0.2 Principles of neocybernetics

Cybernetics is a special view to look at complex systems, emphasizing dynamics
induced by internal interactions and feedbacks. Further, neocybernetics is a
special view to look at cybernetic systems (see Fig. 2). There always exist many
ways where to proceed; it seems that neocybernetics combines mathematical
compactness and expressional power in a consistent framework.

0.2.1 Capturing “emergence”

The key concept in complexity theory is emergence — some qualitatively new,
unanticipated functionality pops up from accumulation of simple operations.
There is a challenge here: If analysis of some higher-level phenomena cannot be
reduced to analysis of their components, the traditional reductionistic modeling
approaches collapse: The “whole” is more than the sum of the parts. This
means that emergence is a somewhat notorious concept, emergent phenomena
(like “life”, “intelligence”, or “consciousness”) remaining outside the range of
engineering-like “good” sciences. One could say that emergent phenomenon is
something that by definition defies definitions — and what can you do then?

However, as emergence is indeed the essence of complex systems, it is necessary
to attack this challenge. To reach good compact models, at each level one
should employ the most appropriate concepts valid at that level — this means
that emergence has to be “domesticated” somehow. The first objective here
also is to make emergence a well-defined, scientifically reasonable concept.

When trying to formalize the idea of emergence, one can apply the very tradi-
tional modeling ideas: First, study explicit examples and construct an intuitive
understanding of what the phenomenon is all about, and after that, find the com-
mon features and represent them in an explicit mathematical framework. And,
indeed, there are many examples available where emergence is demonstrated in
a very clear form. See Fig. 3, where the appropriate levels of abstraction are
shown when modeling (gaseous) systems in different scales. Between each level,
“emergence” takes place: Appropriate concepts, variables, and model structures
change altogether.

At the lowest level, it is the elementary particles that determine the
properties of matter, the models on orbitals, etc., being stochastic.
At the atom level, however, the Newtonian approximate ideal gas
model with atoms as “billiard balls” becomes quite accurate, the
appropriate concepts like velocities and moments being determinis-
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Figure 3: Different levels of abstraction are needed for modeling interac-
tions of particles in different cases

tic. When there are millions of atoms, individual collisions cannot
be tracked, and statistical mechanics becomes the modeling frame-
work of choice. In still larger volumes, it is the deterministic macro-
scopic quantities like temperatures, pressures, and entropies that
best characterize the system state. However, in still larger volumes,
the temperature distributions cause convection and turbulence that
can best be characterized in statistical terms. Assuming complete
turbulence, the deterministic level of lumped parameters is again
reached, where it is concentrations that only need to be studied.

Today, the level of deterministic first-principles models is already fully exploited.
But to understand large systems consisting of such ideal mixers (like cells) one
should reach for the still higher level of abstraction. Are there any lessons to be
learned from the above hierarchy?

• First, it seems that one has stochastic and deterministic levels alternat-
ing in the hierarchy. Actually, this is no coincidence: For example, two
successive deterministic levels could be “collapsed” into one.

• Second, it seems that on the higher levels the volumes (or number of
constituents) is larger, and time scales become longer and longer.

How about exploiting the intuition on time scales: A higher level is reached,
when the lower-level time scale is (locally) collapsed into a singularity, or when
the time axis is abstracted away altogether. Note that at the higher (global)
level, there can still exist time-related phenomena, so that still higher levels can
further be defined.

Time axis is to be eliminated and individual signal realizations are to be ignored.
Only the statistical properties are left there to characterize the overall signal
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properties; this must be done in an appropriate way, so that the properties
relevant on the higher level are not compromised. It turns out that statistical
cumulants like (co)variances, or expectation values of signal squares are benefi-
cial in this respect.

Many problems fade away when the actual dynamic processes are abstracted
using statistical (and static) system cumulants. But is this kind of ignoring of
the time axis justified — when can such abstractions be carried out?

To have statistical measures emerge, the signals have to be station-
ary. To have stationary signals, the underlying system essentially
has to be stable.

However, out of all possible system models, the stable ones are rather rare:
There must not exist a single unstable mode among the assumedly high number
of dynamic modes. How could one assume stability in natural processes? —
The motivation is simple: If the system were unstable, it would have ended in
explosion (resulting in exhaustion of resources) or extinction already for a long
time ago1. In this sense, one is not trying to model all mathematically possible
systems — only the physically meaningful ones!

We are now ready to present the basic ideas beyond neocybernetic modeling.

0.2.2 Key ideas

The following principles can be used more or less as guidelines for deriving neo-
cybernetic models, as will be demonstrated in subsequent chapters: Complex-
looking phenomena are interpreted through the “neocybernetic eye-glasses”. It
needs to be emphasized that these principles are by no means self-evident (as
becomes clear in Section 0.2.3): The proposed approach that has turned out to
be advantageous is a result of iterative refinement processes, and, as it is always
the case, the “highway through the jungle” without extra steps aside can be
seen clearly only in retrospect.

Dynamic balance

In neocybernetic models, as presented above, the emphasis is on the final bal-
ance rather than on processes that finally lead there. In steady state one can
directly attack the emergent pattern and forget about the details of complex
nonlinear processes. It needs to be kept in mind that the balance here is dy-
namic equilibrium, or a balance between tensions, where external disturbances
are compensated by some internal mechanisms. In practice, the compensat-
ing tensions are caused by negative feedback loops — but the implementation
of these feedbacks is not of special interest, as long as they can maintain the
stability.

1Stability here means marginal stability, that is, oscillatory systems, etc., are allowed —
indeed, such marginally stable behaviors are typical to fully developed cybernetic systems.
Truly, the key point is stationarity: The signals need to have statistically well-defined prop-
erties
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Cellular systems have long been characterized in terms of balance or homeosta-
sis. However, it needs to be noted that the concept of balance here is to be
interpreted in a wider sense: The balance is defined with respect to only the
selected variables. For example, it can be derivatives of some other quantities
that are in balance, so that there is a balanced level of dissipation taking place in
the system. Further, the system is assumed to be stable not necessarily locally
but in a wider scale; for example, there can be oscillations as long as the system
can maintain its integrity and the behaviors can be characterized in statistical
terms. Dynamic transients are seen as secondary phenomena, being caused by
natural strivings back towards balance after a disturbance.

Environment-orientedness

Neocybernetic systems are assumed to be explicitly oriented towards their en-
vironment, constituting “embedded systems” with their environments. The
underlying intuition is that there cannot exist a cybernetic system in isolation.
In this sense, the traditional system theoretic thinking collapses: a subsystem
cannot be studied alone, without its connections to other systems.

This emphasis on the environment means, for example, that adaptation in the
system is by no means a random process. A system reflects its environment, so
that somehow it has to capture the properties of this environment. The avail-
able measurement information needs to be observed and stored in a reasonable
way. All this means that it is not only the more or less random competition,
“selection of the fittest”, that is taking place in evolution — there are other,
more consistent processes taking place, too, making such information gathering
and storage more efficient.

Environment-orientedness gives another motivation for emphasis on balance:
There is always scarcity of information, and the already existing structure has
to be maintained while further information is gradually being acquired. Neocy-
bernetic balance is a “kiln of emergent order”. Only in stable conditions, when
fast turbulent phenomena have ceased, something fragile can emerge.

High dimensionality

In practice, environment-orientedness changes to data-orientedness. No struc-
ture of the environment can be assumed to be known, only “measurements” of
the environmental responses are available.

To make relevant information available to the modeling machinery, appropri-
ate coding of information, or definition of features is needed. In neocybernetic
models, structural complexity is substituted with dimensional complexity, that
is, all possibly relevant features are simultaneously captured in the information
structures (data vectors), hoping that the modeling machinery can construct
appropriate connections among these pieces of data. Typically, the data are
highly redundant, and new kinds of problems emerge. This means that effi-
cient multivariate methods and corresponding mathematical tools are needed
to analyze the neocybernetic models.

The features should capture the essence of the system; to reach this, the domain-
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area semantics should somehow be coded in the variables — and, specially, as it
was assumed above that the neocybernetic models are extremely environment-
oriented, one is speaking of appropriate coding of contextual semantics. To
reach this kind of coding, careful analysis needs to be carried out to capture the
essence of the domain field in data structures. In [92], this bottom-up analysis
was carried out for Hebbian neurons, whereas here it will be carried out for
metabolic systems.

To reach the intended universality over the spectrum of all cybernetic systems
despite the very different underlying realms, however, additional assumptions
have to be made. If it is assumed that the mathematical model family is very
constrained, so that indeed there are more systems to be modeled than there
are available model structures, the behaviors of the different systems — within
that model framework — must be analogous. How to determine such a model
family that would be simple enough, still capturing the essence of systems?

Simplicity pursuit

The search for simplest possible representations is the traditional goal of prac-
tical modeling, being intuitively motivated by Ockham’s razor: Simplest expla-
nation is the “most correct”. In a mathematical context, simplicity can often
be interpreted as linearity.

The traditional approach to reach simpler analysis and manipulation of complex
systems is to apply linear models. As a first approximation, linearity seems to
offer rather good match with reality, at least if the nonlinearities are smooth
and locally linearizable. The main benefit here is that for linear models one has
extremely strong mathematical analysis tools available, no matter what is the
system dimension; what is more, for linear model families one knows that the
dynamic analogues work well, letting behavioral intuitions be transferred from
a domain field to another.

In neocybernetic models, linearity is also taken as the starting point. The
linearity assumption can be motivated in different ways:

1. In control engineering, it is well known that feedbacks “smoothen” nonlin-
earities. Specially in neocybernetic models where balance is emphasized,
the deviations around the the equilibrium can be assumed to be small,
and the transients can be assumed to have decayed, justifying the linear
approximation.

2. High dimensionality typically makes it possible to find more linear models,
at least if features are selected appropriately. For example, if the features
include powers of signals, linear model can represent the terms in the
Taylor expansion, approximating the nonlinearities.

But it is not only the pragmatic reasons — there also exist more fundamental
motivations for taking linearity as the starting point. The belief here is that
there really exists a theory of cybernetic systems to look for — and assuming
that there will ever exist a general theory of cybernetic systems, it must be based
on essentially linear constructs. There are no other alternatives — why? The
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system of cybernetic actors can be studied from outside in the top-down way,
and in the bottom-up way :

1. Top-down view. Assume that a truly useful theory once is found. It is
the linear models that are the only ones for which scalability applies, so
that simple “toy world” examples can be extended to real-life scales — for
large-scale nonlinear structures there cannot exist a general theory.

2. Bottom-up view. Assume that the complex system is to be based on
identical underlying “agents” that do not share high-level strategies. It is
only essentially linear combinations of underlying functionalities that can
be implemented by such an unorchestrated bunch of competing actors —
each of the actors only thinks for itself.

As it turns out later, the neocybernetic models are optimal in some very specific
sense. If the “bootstrapping” in the underlying structures is carried out so
that they are linear, the optimally adjusted layers later in the hierarchy of
subsystems will also be linear. Linearity assumption is like a parallel axiom: It
can be ignored, or it can be employed. In either case, a consistent non-trivial
theoretical structure can be found.

The above reasoning only applies to “simple complex systems”, and linearity
is more like a guiding principle. The modeling strategy to be followed here is:
Avoid introducing nonlinearities if it is not absolutely necessary, remembering
that there always exist many alternative modeling approaches. Later, if exten-
sions are necessary, the assumptions can be relaxed (such extensions are studied
in the latter part of the report). Similarly, the originally static balance models
can be extended towards dynamic models — but this should be done only after
the basic nature of cybernetic systems is being captured.

0.2.3 Contrary intuitions

When comparing to traditional views of studying and modeling complex sys-
tems, the above neocybernetic starting points — views of emergence, role of
time axis, balance, environment-orientedness, high dimensionality, and linearity
— are very different, indeed contradictory.

What comes to environment-orientedness and high dimensionality, it seems that
traditionally in chaos and complexity research, holism is studied in a very re-
ductionistic ways. Typically, it is synthetic, isolated formulas that are iterated
without connection to the environment, and it is hard to see how these “labora-
tory experiments” could be integrated in natural systems. The chaos theoretical
models are extremely simple, often consisting of a single variable and a single
formula. And also when explaining real-life complexity, the mysteries are often
wiped under the carpet, into the twilight of the unknown: The issue of emer-
gence has been “solved” by regressing it back to elementary levels. For example,
Roger Penrose [63] claims that “cognition can be explained in terms of quantum-
level phenomena”. Indeed – there are always the underlying atoms and cells,
etc., that implement the observed functionalities, but, as was explained above,
these concepts are not the most economical way to express the higher-level phe-
nomena. Similarly, it is individual chemicals that carry out the functionalities
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of cells and organs; but, in the subsequent chapters, emergence is reached for
by going up, not down.

The emphasis on linearity is perhaps the most radical assumption in neocyber-
netic studies, because nonlinearity is always taken as the starting point in studies
of chaos and complexity theory — it is often thought that nonlinearity is the
essence of a complex system. This nonlinearity view is well motivated, because
theory says that linear systems are inferior to nonlinear ones: Without nonlin-
earity qualitatively new phenomena cannot emerge, and without nonlinearity
there cannot exist chaos. But in linear systems there still can exist complexity,
and, specially, there can be emergence of order. As it turns out, linear struc-
tures have not been fully exploited — or, rather, not all interpretations of linear
models have yet been studied.

The intuitions concerning balance is a longer story. The idea of homeostasis has
long history, indeed dating back to ancient times, but today it is regarded as
a too poor starting point. Such views are formulated, for example, by Erwin
Schrödinger [69] and Ilya Prigogine [64]: The essence of life is in dissipative,
non-equilibrium processes. Static balance, steady state, is thought to mean
death — interesting systems are seen to be extremely unstable, always being
at the “edge of chaos”. Whereas ordered state is uninteresting and complete
disorder is uninteresting, it is the boundary line between order and chaos that is
regarded as being of relevance. However, such boundary lines have zero length
(in mathematical terms), their probability is practically zero, especially as such
boundary phenomena are assumed to be unstable with their exploding Liapunov
exponents. In neocybernetic models, however, things have to be studied from a
different point of view: First, it has to be remembered that static and dynamic
balances are very different things, the virtual placidity of dynamic equilibria
hiding the underlying turmoil. Second, as it turns out, the balances are stable
— this means that cybernetic systems are not at all as rare or fragile as the
chaos theoretical instability-oriented thinking would suggest.

Abstracting the time axis away contradicts traditional intuitions about dynamic
and turbulent nature of complex systems. It is the causally structured, or
even algorithmic view to phenomena that rules today: Complex systems are
seen as being composed of sequential processes. Individual one-at-a-time (in-
ter)actions and explicit time structures are emphasized — no doubt because
such action/reaction structures are easy to grasp. Another reason for the dom-
ination of such process view is, of course, the role of computer programs as the
main tool in the simulation analyses. For example, it is agents that are seen as
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Figure 5: Do surface pat-
terns reveal underlying
similarities? (Adopted
from [43]

the basic constructs in many complex environments, like in intelligent systems,
and these agents are software constructs. On the other hand, if following the
chaos theory paradigm, iteration is regarded as the paradigmatic route to com-
plexity. The “butterfly effect” has been seen as being characteristic to complex
systems, meaning that their behaviors cannot be predicted — indeed, models
for them are more or less useless. In the neocybernetic setting, on the other
hand, new hope is perhaps given to those who are struggling with modeling of
complex systems. Because it is stable attractors that characterize the structures
in cybernetic systems, there can exist consistent convergence even from differing
initial conditions. Modeling is possible after all (see Fig. 4).

But one always has to be aware of the dynamic nature of the real systems,
and the static models are dynamic ones in equilibrium. What is more, as it
turns out, neocybernetic modeling itself is about balancing between dynamic
and static worlds: Every now and then the static structure needs to be relaxed
to escape the constraints of traditional thinking.

As explained by Herbert Simon [72], phenomena can be represented in terms
of such processes or in terms of patterns. In neocybernetics, it is this pattern
view that is pursued; these patterns are determined using statistical measures.
And, further — it is not surface patterns but it is deep structures, or underly-
ing latent patterns where the system is aiming at, when following its natural
aspirations. The difference between surface patterns and deep structures needs
to be emphasized: Also the traditional complexity theory is driven by patterns
— Mandelbrot’s fractals, Wolfram’s sea shells, Kohonen’s maps — but these
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visible formations, even though being intuitively appealing, do not capture the
essence of systems (see Fig. 5). As Alan Turing has put it: “The zebra stripes
are simple — I am more concerned of the horse behind”.

Summarizing, it can almost be said that the neocybernetic model is a model
of inverse thinking. As it turns out, the relationships are “pancausal” rather
than unidirectional; it is freedoms rather than constraints that are modeled, etc.
Some additional insights are given below.

0.2.4 Neocybernetics in a nut shell

The starting points of neocybernetic modeling — linearity and balance, etc.
— do not sound very intriguing. However, it is the strong mathematical tools,
when letting their effects cumulate, that provide for nontrivial model properties.
It needs to be noted that the presented approaches make it possible to define
various consistent model families — the presented one, however, is claimed to
the simplest one still giving nontrivial results. The following characterizations
are studied in more detail when reaching higher levels.

The complexity theory being full of unsubstantiated promises, it turns out that
neocybernetics is the theory that puts the pieces (at least some of them) together.

The neocybernetic model is a framework for studying variations, changes and
tensions instead of immediately visible static structures. Counterintuitively, this
analysis of variations is reached through the analysis of balances.

The role of dynamic balances is crucial when constructing neocybernetic models
— indeed, the emergent patterns that are modeled are “structures of stability”.
The neocybernetic model is a model of balances, or, if put in a more accurate
way, it is a balanced model of balances (or higher-order balance) taking into ac-
count the properties of the environment, as determined by the statistical signal
properties. The neocybernetic model is a map of the relevant behaviors corre-
sponding to the observed environment, determining the behavioral spectrum of
the system, where “behavior” means reactions to environmental excitations.

In a nonlinear system, uniqueness of the balance cannot be assumed; indeed, the
neocybernetic model covers the spectrum of alternatives or potential balances,
as determined by the environment. The neocybernetic model is a model over
the local minima rather than a model of the global optimum, assuming that an
appropriate cost criterion is defined. Traditionally, the single global optimum
is searched for in analysis and in design: This results in theoretical deadlocks
(compare to NP problems [73] — finding a large number of suboptimal solutions
is typically much simpler than finding the absolute optimum). Also nature
has no centralized master mind; it is facing the same optimization problems,
seldom finding the strictly optimal solution: In this sense, the model over the
local minima better captures the possible alternatives and essence (remember
Heraclitus: “You cannot step in the same river twice”).

Because the system is optimized in a certain sense, the representations are (more
or less) unique. The neocybernetic model is a “mirror image” of its environ-
ment, being itself a model of the environment, capturing relevant behavioral
patterns as manifested in data. There exists certain kinds of symmetries be-
tween the original image and its model. This property makes it possible to draw
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conclusions, for example, about such high-spirited concepts as intersubjectivity
and interobjectivity.

Because of the simple structure of the models, intuitions can efficiently be ex-
ploited: For example, the idea of analogues can be extended to partial differ-
ential equation models. The neocybernetic model can be seen as an elastic
system, where the internal tensions compensate the external forces. The defor-
mations are proportional to the forces (behaving like a steel plate) whatever is
their physical manifestation. The electrical analogue makes it possible to con-
ceptually manage neighboring cybernetic systems: There is maximum power
transfer among the systems when they are matched so that their input and
output impedances are equal.

There are close connections to today’s research activities: Neocybernetics gives
a framework for distributed agents and networks where there is no centralized
control. It may also offer a framework for data-based modeling approaches and
computationalism.

The negative feedbacks constructed in the neocybernetic model are control
structures. The different dynamic equilibria result from changing inputs, or
“reference signals” – thus the neocybernetic model is a model-based adaptive
controller trying to compensate the disturbances coming from the environment.
Further, this can be extended: The neocybernetic model is a means of reaching
maximum entropy (or “heat death”) of the environment. This means that the
modeling framework offers a means of attacking the problems of cumulating
improbability, and even for inverting the arrow of entropy. For example, it can
be said that life is a higher-order dynamic balance in some phenosphere.

Indeed, neocybernetics offers tools for understanding the whirls in the flow of
dissipation. These stable attractors are information-determined structures crys-
tallizing the dependency structures observed in the environment. These intu-
itions can be applied to many very different domains from biological systems to
cognitive ones, even to the Theory of Mind.

As it turns out, many of the neocybernetic issues have a more or less philosoph-
ical dimension. Without concrete grounding, such discussions are hollow and
void, and they lack credibility. It is necessary first to define the concepts — or
“whirls in the infosphere” — and this will be done next, the application domain
being that of living cells.

— How to read the subsequent texts? Different chapters characterize specific
aspects of cybernetic systems from different points of view, and they are best
suited for people with different backgrounds. Together they are intended to form
“ladders” towards understanding the steps in evolution — for changing such
discussions into real science, or, indeed, into natural philosophy (see Fig. 6). The
chapters marked in blue are mathematically involved or contain detailed physics
or chemistry. The red chapters are more philosophically oriented. On the left-
hand side, there are the analyses, being based on observations, whereas on the
right-hand side, there are the syntheses, starting from first principles. The main
line of thought in the middle tries to draw balanced conclusions between the
tensions. The material is not self-contained, though: In the beginning, one
should (in principle) get acquainted with complex systems theory, multivariate
statistics, artificial intelligence, biochemistry, ...
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Level 1

Genomics, Metabolomics,
and Distributed Networks

There are very different kinds of subsystems in a living organism. To reach
the level of systemic biology, one needs to be able to combine different model
structures. The great promises have encouraged the researchers already for a
long time to try and construct combined models (for example, see [85]).

When constructing models, it is first necessary to capture the essence of a do-
main field in mathematical structures. This is a delicate challenge, and domain-
area expertise is needed. However, it seems that when one follows the neocy-
bernetic guidelines, homogeneous representations can be defined for different
kinds of systems. In this chapter, appropriate representations for information
are first defined, starting from concrete low-level models, and abstracting them
towards general model structures. Further analyses in subsequent chapters are
based exclusively on these data representations.

1.1 Experiences with “artificial cells”

Information of the biological processes has increased immensely: Capability of
reading the genetic code, and new ways of gaining information of the genetic
activities (like Chromatin Immunoprecipitation or ChIP technique, see [74]) has
delivered us large amounts of data. It has been assumed that being capable of
deciphering the genetic code is enough to reach the higher level of understanding
of what life is. Perhaps some day all dependencies between phenomena and
control structures within a cell have been found. Is this not the ultimate goal?

Unfortunately, this is just one step towards capturing the essence of life pro-
cesses, and the goal will never be reached this way.

What is the contribution an engineer having no background in biology can have,
giving advice to domain area experts? — Counterintuitively, the engineer’s
contribution can offer wider views here. Systems thinking is universal, and,
experiences from other fields can be exploited. Perhaps the same deadlocks can
be avoided?

25
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Understanding of complex systems is the challenge also in industrial automation
systems. Despite the detailed system models, computers and simulators, the
behaviors and qualitative properties of the overall system are becoming more
and more difficult to understand. The systems are becoming like artificial cells
themselves:

Industrial plants also have metabolism, raw materials being exhausted
and others being produced. Originally, the production can be far
from optimum, but as soon as dependencies among variables are
recognized, they can be used for constructing new feedback struc-
tures to implement more efficient and robust production. However,
as the complexity of control structures cumulates, the system-level
properties cannot any more be easily seen — even though all indi-
vidual control structures are explicitly known, indeed, even though
they have been explicitly designed and optimized.

In both cases, natural and man-made cells alike, it turns out that the goal
of “evolution” is overall efficiency of production, no matter whether it is hu-
mans that are acting as agents for development or not. This can be reached
by implementing mechanisms for reaching best possible production conditions;
and this system integrity needs to be maintained without collapses. To main-
tain such balance, the system has to respond appropriately to the spectrum of
disturbances coming from the environment.

Mastering huge amounts of data and finding “holistic understanding” out from
it — this is the common goal in both cases, in artificial and natural cells alike.
And, indeed, here it is the engineering tools and intuitions that can be exploited
to find new kinds of approaches for attacking the complexity.

So, how to see the forest for the trees — how to see the cell metabolism for
the chemical reactions, or, further, how to see the organ functions for the cel-
lular phenomena? First, the details of the systems need to be understood and
captured in data.

1.2 Modeling cellular processes

When aiming towards truly adapting systems, the model structures should not
be fixed beforehand. It has to be assumed that there is minimum number of
preprogramming, and the final structures have to be extracted directly from the
observation data. One needs strong consistent frameworks where the observa-
tions can be interpreted. The hints of structure have to be coded in the data,
and the mathematical machinery has to be capable of exploiting these hints.
Indeed, this is a very ambitious goal.

1.2.1 From formulas to behaviors

Traditionally, modeling of complex systems is like search for the philosopher’s
stone: One tries to find the magical formula that explains all behaviors. Indeed
— all systems, large and small, are assumed to be governed by underlying



1.2. Modeling cellular processes 27

Structural complexity

Dimensional complexity

Physical
model

Run-time
model

Data
model

Pattern
model

Figure 1.1: Reaching
structural and dimen-
sional simplicity at the
same time

formulas, the complexity typically being manifested in nonlinearity; this kind of
thinking is reflected also in today’s approaches in complexity theory. However,
in the case of truly large systems this objective becomes obsolete and absurd:
As the systems are distributed, their behaviors cannot be compressed into some
compact kernel.

Traditionally one tries to find the simplest possible formula that describes the
system as isolated from its environment and other systems. The system alone
is thought to represent itself in the most accurate way. But natural systems
are never alone. In line with the neocybernetic assumption of environment-
orientedness, it is assumed that it is the environment of the system that de-
termines how the system is run and which of the potential behaviors become
actual, selecting the subset of possible behaviors that is to be excited. In a
sense, the environment carries out experimenting with the system, changing
the conditions, and the system responds, finding a new balance reflecting the
properties of the coupling between the system and its environment.

To unambiguously characterize the system behaviors, also the properties of its
environment need to be quantified. In a complex environment, the simplicity
goal cannot any more be reached as there exist a multitude of variables de-
termining the environment. One is facing a problem of complexity exploding
in two ends: Instead of simplicity, there is structural complexity in the form
of the system model, and there is the dimensional complexity in the form of
environmental variables.

However, as shown in Fig. 1.1, the structural complexity of the model can be
ripped off by letting the complex behaviors be “interpreted” by the environment.
When the environment is seen as a “simulator”, and when one records the
resulting behaviors, one has only homogeneous, bare numbers left. There is
a high number of this kind of structureless data; assuming that the data is
collected in an appropriate way, the relevant behaviors are present in that data,
yet in a highly redundant form. The remaining task is that of detecting the
patterns, finding the compressed representation of the information buried in
the data — if this can be accomplished, one has a representation of the system
that is simple in terms of structure and dimension at the same time.

How is such simplification possible, and how could it ever be done without
human control and specific domain-area knowledge? First, the structural com-
plexity in the form of nonlinearities can be changed into dimensional complexity
when different kinds of nonlinearity prototypes are included in the data. Among
the multitude of simple nonlinear features, the original nonlinearity can be ap-
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proximated as a weighted combination of simpler ones. The question what
these domain-specific nonlinearity prototypes are and how they can be isolated
by applying appropriate data preprocessing so that model structure itself can
be kept simple and general is discussed in this chapter, concentrating on the
domains that are characteristic to a biological cell. After this, when the “be-
havioral essence” is present in the data, the second phase becomes possible:
That of compressing the internal structure in the data and crystallizing the
behavioral features. Only by making some assumptions about the nature of in-
formation (see chapter 2), the compression of the high number of environmental
and system-specific data is possible.

The complexity becomes parameterized; the more there are features, the more
accurately the behaviors can be captured. One can question whether the original
function form can be represented by a set of other functions — but from the
modeling point of view, if there is no difference in behaviors, the implementation
has no relevance. According to the identity of indiscernibles originally due to
Leibniz one can even claim that, “if all attributes of items A and B are identical,
A and B are the same”. Here data represents structure, the observations being
assumed to capture the identity of the object, relevance of phenomena is defined
in terms of visibility in data: As interactions make a difference, everything that
is of relevance must be observable. This has only pragmatic motivation — but,
later, closer look in these issues is taken: After all, the natural systems also only
see the data available in their environments, and they try to tackle with it.

High dimensionality is easier to tackle with than different kinds of complicated
structures — it turns out that the same tools are applicable to all systems.
When the complexity has been transformed into high dimensionality, one can
characterize the modeling task as being a search problem: When determining
the model, or the patterns characterizing the data, one is facing a technical
problem of finding the location in the parameter/variable space that corresponds
to the observed behaviors. As the dimension grows, the search space grows
exponentially. However, in the appropriate mathematical framework this search
can be implemented efficiently in a parallel form. In (linear) vector spaces, it
is multivariate statistical methods based on linear algebra that turn out to be
efficient tools (see chapter 2).

The delicate relationship between the system and its environment is studied later
closer; here it is enough to observe that all relevant nuances are represented in
the data. Data selection essentially affects the modeling results, and selecting
reasonable data and preprocessing it appropriately is a key question. One needs
to find a coding where the system state can be captured in data; optimality of
the representation needs not yet be worried about. To reach this, something
needs to be known about the system structure — here it is assumed that what
one is looking for is representations of networks.

1.2.2 Approaches to networks

It seems that an appropriate framework for studying the spectrum of the dis-
tributed cellular processes is that of networks, consisting of more or less inde-
pendent interacting actors. The genetic system constitutes a network, where
genes regulate each other, and also the metabolic system can be seen as a net-
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work among chemicals. And other complex systems, too — like ecosystems —
are networks between individuals. How to model such networks? There exist
dozens of alternative approaches — let us study some examples from opposite
ends of the continuum.

Graph theory

The traditional approach to modeling networks, dating back to Leonhard Euler,
was graph theoretic: The connections between nodes are assumed to be “crisp”
— either there is an arc or there is not. Causal structures can be modeled
using directed graphs with unidirectional arcs. This is also the traditional ap-
proach, for example, when representing control relations among genes, or when
representing metabolic cycles.

However, such graphs are descriptive as models — easy to grasp but difficult to
apply. There is the same problem as there is with all qualitative models: Just
knowing that there is some connection is not enough. Altering the threshold
level, the network easily changes from sparsely connected to more or less fully
connected. And as is known in control engineering, the numeric values in the
feedback structures essentially determine the properties of the whole system.

Indeed, in real networks, there is a continuum of interaction effects: The con-
nections are not of “all-or-nothing” type. The graph models can be extended
by adding weights to the arcs, etc., but at some point it is better to rethink the
structure all over.

Probabilistic networks

Probability theory offers consistent ways for defining weighted arcs. In Bayesian
networks, the theory of conditional probabilities is exploited, and chains of
“evidence” and resulting probabilities are expressed as tree structures. Whereas
graphs suffer from weak mathematical theory, Bayesian networks benefit from
strong underlying mathematics – assuming that the assumptions hold: The
evidence have to be independent of each other, etc. However, the nodes in
real life are often not independent of each other. There exist feedback loops
and alternative paths in complex networks, making the conditional structure
intractable, or at least very complex (see [62]).

Another popular model family for capturing dynamic phenomena is based on
Markov models, where the state transitions are probabilistic. However, now
the problems are caused by the dynamic structure: It is difficult to find the
typically large number of free parameters in such models. In real life, only a
too narrow view of the potential dynamics is seen to identify the parameters;
experiments typically are not very persistently exciting. And, again, there is the
basic problem: The causality structure should be explicitly resolved to reach
useful models.
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Neocybernetic approach

After all, practically every node in a complex network is connected to all others,
either directly or through intermediate steps. The neocybernetic approach is
explicitly opposite to the traditional interaction-at-a-time analyses: Now, pan-
causality is taken as the starting point. It is assumed that, after all, all nodes
are simultaneously causes and all are effects, with the exception of the explicit
system inputs. The network becomes more or less fully connected.

In balance, after the transients have decayed after some disturbance, the causal
effects find their balance of tensions, assuming — in the neocybernetic spirit —
that the underlying interactions and feedbacks are capable of maintaining the
balance. It does not matter what the details of this stabilization are as long as
the balance always is finally found.

The neocybernetic model tries to avoid the above problems of traditional net-
work models. It is a numeric model, consisting of non-crisp connections, but the
numeric values of these connections are not determined applying some proba-
bilistic hypotheses, but by observing the relations between the materialized node
activities. There is no centralized control or explicit network structure assumed
or solved, so that there is no need to determine for the individual interaction
strengths. Indeed, as is well known, the substructures in a closed loop system
cannot be distinguished — this truth is implicitly accepted in the neocybernetic
framework.

If the actual causality structures and dynamics are ignored, one could wonder,
what is there left of the system? The neocybernetic model is a static balance
model, or actually a model over the spectrum of balances as the environmental
inputs change. If the system happens to be linear, the system state is unique,
being a linear function of the input. These issues will be studied in more detail
later, and they will be exploited accordingly. Next it will shown that, truly, the
dependencies among variables in biological networks can be assumed (locally)
linear.

1.3 Case 1: Metabolic systems

As presented in [92], the original starting point in neocybernetic studies was
analysis of Hebbian neurons — however, when modeling biological systems,
such analyses do not deliver useful information. It is proteins, for example,
that are the means for implementing the cellular and organ-specific behaviors:
A more relevant framework in this case is that of organic chemistry. It is
the metabolic processes that eventually determine the cell behaviors, being the
visible manifestations of the cell character.

Study a hypothetical example reaction, where there are α reactants on the left
hand side, being denoted as Ai, 1 ≤ i ≤ α, and the β products on the right
hand side are Bj , 1 ≤ j ≤ β:

a1A1 + · · · + aαAα
kB⇔
kA

b1B1 + · · · + bβBβ , ∆H. (1.1)

The metabolic processes are typically reversible, so that the reaction can take
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Figure 1.2: An example of metabolic pathways (courtesy of MediCel)

place in both directions (kB being the reaction speed in forward and kA in
backward direction). Symbol ∆H denotes the change in enthalpy, or inner
energy, when the reaction takes place. It needs to be recognized that it is not
only chemical reactions that can be expressed using such formulas; also phase
transitions, etc., can be expressed in this form.

However, chemical processes in metabolic systems can be very complex. For
example, the active reaction chains in yeast when mannose production is taking
place is shown in Fig. 1.2. And, what is more, such chains are just a part of the
story: There exist overlapping sub-networks, and depending of the “projection”,
the outlook of the graph changes. If some connection is explicitly cut, for
example, applying some gene kick-off technique, the results are typically not
what one would expect. The cytoplasm is typically strongly buffered — there
seem to exist reserve mechanisms for compensating for the disturbances.

One needs a mathematically more compact representation for chemical reac-
tions. How to “cybernetize” chemical reaction models applying the neocyber-
netic principles?
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1.3.1 Applying the neocybernetic guidelines

In short, the goal here is to capture the domain area semantics, or expert knowl-
edge in distinct pieces of information, and then pack this information into a com-
pact form that makes it possible to apply the mathematical machinery. What
is this domain-area semantics to be coded, then? From the point of view, the
key point is to somehow capture the balances in the system.

Information representation

The first problem is how to represent such a chemical reaction formula in a
useful numeric form. It seems that a practical way to code the reactions in a
mathematically applicable form is to employ vector formulation: Define a vector
C containing all chemical concentrations so that all Ai and Bj are represented
there among the elements. The “chemical state” can assumedly be captured in
this vector.

Let us look how this vector presentation can be exploited. If the coefficients
−ai and bj from (1.1) corresponding to the chemicals are collected in the vector
Gamma, one can express the total concentration changes in the system as

∆C = Γx. (1.2)

Here, x is a scalar that reveals “how much” (and in which direction) that reaction
has proceeded. When there are many simultaneous reactions taking place, there
are various vectors Γi; the weighted sum of reaction vectors Γi reveals the total
changes in chemical contents (assuming that the vectors are compatible).

Using the above framework, metabolic systems can in principle be modeled: If
one knows the rates of reactions, or the scalars xi, the changes in the chemical
contents can be determined. This idea of invariances within a chemical system
have been widely applied for metabolic modeling; the key term here is flux
balance analysis (FBA) (for example, see [27]). However, the rates x are not
known beforehand, and, what is more, the reactions are typically not exactly
known.

In many ways, the model structure (1.2) is not yet what one is looking for. The
main problem there is that the flux balances only capture the stoichiometric,
more or less formal balance among chemicals. It does not capture the dynamic
balance, whether or not the reactions actually take place or not. Luckily, there
exist also other ways to represent the chemical realm.

Thermodynamic balance

There is a big difference between what is possible and what is probable, that is,
even though something may happen in principle, it will not actually happen. To
understand the dynamic balance, the reaction mechanisms need to be studied
closer.

Assume that it takes a1 molecules of A1, a2 molecules of A2, etc., according to
(1.1), for one unit reaction to take place. This means that all these molecules
have to be located sufficiently near to each other at some time instant for the
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forward reaction to take place. The probability for one molecule to be within the
required range is proportional to the number of such molecules in a volume unit;
this molecular density is revealed by concentration (when the unit is mole/liter;
by definition one mole always contains 6.022 · 1023 particles). Assuming that
the locations of the molecules are independent of each other, the probability
for several of them being found within the range is proportional to the product
of their concentrations. On the other hand, the reverse reaction probability is
proportional to the concentrations of the right-hand-side molecules. Collected
together, the rate of change for the concentration of the chemical A1, for exam-
ple, can be expressed as a difference between the backward reaction and forward
reaction rates:

dCA1

d t
= −kBC

a1
A1

· · · Caα
Aα

+ kAC
b1
B1

· · · Cbβ
Bβ
. (1.3)

In equilibrium state there holds d CA1
d t = 0, etc., and one can define the constant

characterizing the thermodynamic equilibrium:

K =
kB

kA

=
Cb1

B1
· · · Cbβ

Bβ

Ca1
A1 · · · Caα

Aα

. (1.4)

Linearity objective

One of the neocybernetic objectives is that of linearity. Clearly, the expression
(1.4) is far from being linear — indeed, it is purely multiplicative. It turns out
that applying a purely syntactic trick, linearity of the structures can be reached:
Taking logarithms on both sides there holds

logK ′ = b1 logCB1 + · · · + bβ logCBβ
− a1 logCA1 + · · · − aα logCAα

.(1.5)

To get rid of constants and logarithms, it is also possible to differentiate the
expression:

0 = b1
∆CB1

C̄B1

+ · · · + bβ
∆CBβ

C̄Bβ

− a1
∆CA1

C̄A1

+ · · · − aα
∆CAα

C̄Aα

, (1.6)

where the variables δCi = ∆Ci/C̄i are deviations from the nominal values,
divided by those nominal values, meaning that it is relative changes that are of
interest. The differentiated model is only locally applicable, valid in the vicinity
of the nominal value.

Multivariate representation

A single reaction formula can also be expressed in a linear form when the vari-
ables are appropriately selected. However, to model complex systems consisting
of various reactions, the data representation needs to be extended: The differing
data vectors containing different sets of variables (the reactions employing dif-
ferent chemicals) have to be embedded in the same vector space to make them
compatible.
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Assume that the vector z is a vector containing all relevant variables captur-
ing the state of the environment and the system itself, including, for example,
relative changes in all chemical concentrations. This means that the vector Γi

representing a single reaction can contain various zeros, assuming that the cor-
responding chemicals are not contributing in the reaction i. If the vectors Γi are
collected as columns in the matrix Γ, one can write the individual expressions
in (1.6) in the matrix form where one row is allocated to each of the reactions:

0 = ΓT δz, (1.7)

or, when written out,
⎧⎪⎨
⎪⎩

0 = Γ1,1δz1 + · · · + Γm,1δzm

...
0 = Γ1,nδz1 + · · · + Γm,nδzm,

(1.8)

where n is the total number of reactions, and m is the total number of chemi-
cals. This expression needs to be compared to flux balance analysis: Now one
only needs to study levels of concentrations, not changes in them. This is in-
deed essential in complex chemical systems, where the energy and matter flows
cannot be exactly managed. The key point to observe here is that analysis
of complicated reaction networks can be avoided: No matter what has caused
the observed chemical levels, only the prevailing tensions in the system are of
essence. The underlying assumption is that the system is robust and redun-
dant: Individual pathways are of no special importance as there exist various
alternative routes in the network.

It turns out that reactions can in principle be characterized applying linear
algebra in the space of chemical concentrations. However, in practice it is not
enough to only represent the concentrations if the properties of the whole system
need to be captured. What else can the vector u contain?

1.3.2 Characterizing the metabolic state

The measurement vector z needs to be further studied to make it possible to
capture all internal tensions in metabolic systems. As it turns out, the following
extensions can, for example, be implemented without ruining the linear structure
among the variables:

• Temperature. According to the Arrhenius formula, the reaction coeffi-
cients are functions of the temperature, reactions becoming faster as the
temperature rises, so that k ∝ exp(c/T ). This means that when this is
substituted in the formulas, and when logarithms and differentiations are
carried out, the model remains linear if the new variable is defined as
zT = ∆T/T̄ 2.

• Acidity. The pH value of a solution is defined in terms of a nonlinear
formula: pH = − lgCH+ . Because it is essentially logarithm taken of
a concentration variable, one can directly include the changes in the pH
value among the variables, zpH = ∆pH.
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• Dissipation. It has been assumed that the systems being studied are in
thermodynamic balance. This homeostasis can be extended, however: The
steady state can be determined not only in terms of the variables, but also
in terms of their derivatives. This means that one can study dissipative
systems, where the rate of change remains constant, a constant flow of
chemical flowing into or out from the system. Looking at the formula
(1.3), it is clear that model linearity is not lost if one has variables like
zĊ = ∆Ċ/ ¯̇C.

• Physical phenomena. It is evident that structures that are originally
linear, like phenomena that represent diffusion between compartments,
etc., can directly be integrated in the model, assuming that appropriate
variables (deviations from the nominal state) are included among the vari-
ables.

In strong liquids one cannot always apply concentrations, but one has to employ
activities instead, or actual activation probabilities. If it is assumed that these
activities are some power functions of the concentration so that A = a1C

a2 ,
after taking logarithms the model still remains linear in terms of the original
concentrations. This means that — even though linearity is not compromised
— the variables may become multiplied by some unknown factors, so that there
is some scaling effect.

The vector z selected here is the measurement vector, containing all possible
quantities that can affect the system behavior — internal system variables and
external environmental variables alike. To have the actual data vector to be
employed in modeling, the vectors first have to be preprocessed and appropri-
ately scaled — these issues are studied in chapter 2. In practice, specially if
the relationships between units are not clear, it can be motivated to carry out
explicit data normalization to make data items better compatible (this issue is
studied closer in chapter 3).

1.4 Case 2: Gene expression

However, the above studies are not the whole story — genes are an integral part
of the metabolic system. Nature’s way of implementing the genetic descriptions
are mindbogglingly sophisticated — but when trying to capture the essence in
those processes, perhaps one does not need to exactly stick to the nonidealities
in the implementations? Here the goal of the system is seen as more important:
The complicated mechanisms are only needed to reach the consistent balance
among the system components.

1.4.1 Process of overwhelming complexity

Above, the domain of chemical reactions was studied and a coherent modeling
framework was proposed for capturing the relevant variables that characterize
the process state. However, the cell differs from other reaction vessels of organic
chemistry: The genetic system is essentially a part of the metabolic system,
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controlling it. What can be said about it, how can this level be integrated in
the system model?

The information required for building the proteins and controlling the cell
metabolism is stored in deoxyribonucleic acid (DNA); the operational units
in DNA are called genes. The proteins are synthesized in the process called
gene expression: First the gene sequence is coded into messenger RNA in the
transcription process, and, after being further modified and transferred from
the nucleus into the cytoplasm, this code is compiled by ribosomes into proteins
in the translation process. These proteins are either used as building blocks in
the cell, or they act as enzymes, catalyzing other processes.

What makes this gene expression process specially complicated, is the fact that
there exist feedback structures all the way along the process: First, the RNA
molecules and proteins are “postprocessed” by various mechanisms controlled by
some other genes and chemicals; second, some of the enzymes act as transcrip-
tion factors, explicitly affecting the activity levels of other genes. In each case,
there exist various complicated mechanisms (chromatin packing and dismount-
ing, gene activation and inhibition, protein phosphorylation, myristylation, and
glycosylation, etc.) how the interactions among the actors are implemented.
It seems to be a hopeless task to accurately model the individual processes
that are related in these processes (however, there exist various attempts to do
that, for example [54]), and it seems that the system of interactions needs to be
abstracted.

The gene interactions have been modeled applying abstract causality structures
— an example of genetic networks is given, for instance, in [78]. Many dif-
ferent model structures have been proposed, for example neural networks [82].
However, there exist no unique gene regulation pathways, processes having very
different time scales and relevances — simple projections onto a graph form
can be misleading. Here, in the neocybernetic spirit, the pancausality idea is
applied: In steady state, the transients have decayed, and all reaction chains
have found their balance; the temporal sequences have changed to simultaneous
patterns of effect flow, practically all genes participating in this equilibrium.
How to characterize the internal tensions among genes?

1.4.2 “Cybernetizing” a genetic network

The genetic control system is much too complex to be modeled explicitly. The
only possibility is to look at the genetic system directly from outside, studying
the overall net effects. Again, when concentrating on the final thermodynamic
balance among tensions, the time-domain complexities can be circumvented.
There exist some clues.

Stationarity and statistics

Abstract away individual actions and realizations of interactions in the network,
and assume that the stationary state has been reached. Is there anything one
can say about such a system in general terms?

It has been observed that there exist peculiar similarities among very different
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kinds of complex systems. For example, it has been claimed (see [12]) and
[5]) that distributions in self-organized complex networks statistically follow the
power law, that is, there generally holds

zj = czD
i (1.9)

for some behaviors-related variables zi and zj, and constants c and D. Here,
zi stands for the free variable, and zj is some emergent phenomenon related to
the probability distribution of zi. This power law dependency seems to govern
all structures with fractal and self-organized structure For example, if zi is the
“ranking of an Internet page”, and zj represents “number of visits per time
instant”, the dependency between these variables follows the power law: There
are some very popular pages, whereas there are huge numbers of seldom visited
pages. As compared to Gaussian distribution, the power law distribution has
“long tails”; the distribution does not decay so fast.

It is interesting to note that the power law distribution is closely related to
another modern concept, namely fractal dimension. Assuming that the vari-
able zi represents some kind of “yardstick”, determining the scale factor, and
zj represents the level of self-similarity, so that when one zooms the original
pattern by the factor of 1/xi, there exist zj copies of the original pattern (and
this zooming process can be repeated infinitely), the fractal dimension of that
pattern can be defined as

D =
log zj

log zi
. (1.10)

When the pattern is simple, this definition coincides with the traditional ideas
concerning dimension, but for complex patterns, non-integer dimensions can
exist. Now, it is easy to see that, after taking logarithms, the parameter D in
(1.9) closely corresponds to the fractal dimension for the networked system.

Multivariate nature and linearity pursuit

In the multivariate spirit, one can extend the single-variable formula (1.9) by
including more variables — assume there exist µ of them:

1 = c′zD1
1 · · · · · zDµ

µ . (1.11)

If there is only one variable zi changing at a time, and one solves for zj , this
formula corresponds to (1.9). Furthermore, there can exist various such depen-
dency structures — assume there are ν of them:

⎧⎪⎨
⎪⎩

1 = c1z
D11
1 · · · · · zD1µ

µ

...
1 = cνz

Dν1
1 · · · · · zDνµ

µ .

(1.12)

Now, if one takes logarithm on both sides of the formula, one has⎧⎪⎨
⎪⎩

0 = log c1 +D11 log z1 + · · · +D1µ log zµ

...
0 = log cν +Dν1 log z1 + · · · +Dνµ log zµ.

(1.13)
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It turns out that the multiplicative dependency has become globally linear —
by only preprocessing the variables appropriately. To find a still simpler (locally
applicable) model structure, one can further differentiate these equations around
the nominal values z̄i, so that there holds

⎧⎪⎪⎨
⎪⎪⎩

0 = D11
∆z1
z̄1

+ · · · +D1µ
∆zµ

z̄µ

...
0 = Dν1

∆z1
z̄1

+ · · · +Dνµ
∆zµ

z̄µ
.

(1.14)

Again, the variables δzi = ∆zi/z̄i are the relative deviations from the nominal
state. It turns out that there again holds the linear dependency, for variables
having been preprocessed in an identical manner as in (1.7),

0 = ΓT δz. (1.15)

The scaling of the variables is not determined in a unique manner. As it turns
out (in chapter 3) traditional normalization of the variable variances is mo-
tivated. Determining the “nominal state” is equally vague; if nothing else is
known, it has to be assumed that extensive information of the system variables
has been acquired, and the mean values characterize the nominal state. In what
follows, the “∆” symbols are dropped for brevity; however, it is still assumed
that variations around the nominal state are small.

Combining the results of this section and the previous one, it can be claimed
that all phenomena that are relevant for characterizing the cellular state can be
captured in a homogeneous linear framework as shown in (1.15). It is interesting
to study the properties of data properties that are dictated by the assumed
structure.

1.5 Probability interpretations

When the above simple formulations were derived, individual phenomena were
abstracted away. There are no more individual samples or time points visible,
only their statistical long-term properties. Thus, it is interesting to briefly
elaborate on probability distributions.

1.5.1 Fractality revisited

Study the outlook of the multivariate fractal distribution. Assume that one of
the variables has been expressed in terms of the other variables

log zj = −
∑
i�=j

Di

Dj
log zi. (1.16)

Variable log zj is a weighted sum of assumedly large number of assumedly in-
dependent stochastic variables log xi. Because nothing more accurately about
these variables is known, it can be assumed, according to the Central Limit
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Theorem, that log y has normal distribution (or, indeed, lognormal distribution
— see [55]):

p(log zj) =
1√
2πσ

exp
(
− (log zj − µ)2 /2σ2

)
. (1.17)

Here, parameters c, µ, and σ are free parameters characterizing the outlook of
the distribution. Taking logarithms, there holds

log(p(log zj)) = c− (log zj − µ)2 /2σ2. (1.18)

This means that the multivariate fractal distribution is parabolic rather than
linear on the log/log axis, the three parameters being c, µ, and σ2 (see Fig. 1.3).

Assume that the system variables can truly be characterized as having the di-
mension of probability, that is, genetic activity of a single gene can be seen as a
probabilistic phenomenon. In such a case the above result gives new intuition.
Indeed, the result is in conflict with “traditional” assumptions concerning frac-
tal networks! This assumption seems to be supported also by evidence: For
example, in Fig. 1.4, a manifestation of properties of a complex network are
illustrated. It is clear that a parabolic curve better fits the observation points
— the new model suits structures that are not strictly scale-free.

1.6 About more complicated distributions

In practice, model linearity cannot always be reached by as simple preprocessing
of the variables as was presented above. For example, some genes can only be
active in the vicinity of some location in the chemical data space — getting
farther from that location in any direction makes the activity decay. The model
structure can still be kept linear by appropriate selection and preprocessing of
the variables; the key issue is to analyze how the system sees its environment.

If it is assumed that behaviors are results of high numbers of components inter-
acting, the model is multiplicative with respect to the concentrations or proba-
bilities. If logarithmic quantities are studied, one has additive models — one can
assume that this assumption of log-linear behaviors can be extended beyond the
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Figure 1.4: Properties of forest fires (from [52]): (A) 4284 fires on U.S.
Fish and Wildlife Service lands (1986-1995), (B) 120 fires in the Western
United States (1950-1960), (C) 164 fires in Alaskan boreal forests (1990-
1991), and (D) 298 fires in Australia (1926-1991). The number of fires is
given as a function of the burnt area

power law distributed variables. If the underlying distributions are Gaussian,
one only needs to take into account the observations in the previous section:
The behaviors can be assumed to be linearly related to quadratic functions of
the input variables. This means that the set of input variables can (as the first
approximation at least) be extended by including the squares of the most rele-
vant variables, and products of them, among the input variables. Including the
products of all variables among the features increases the size of the data space
considerably.

This approach to representing general nonlinearities can be motivated in math-
ematical and in pragmatic terms. Mathematically speaking, smooth nonlin-
earities can be represented applying Taylor expansion, and such series can be
approximated up to the second order when the quadratic terms are available.
From the pragmatic point of view, the Gaussianity assumption is well in line
with the Gaussian mixture model scheme (see chapter 6).

In this chapter, the homogeneity goal was reached: No matter what is the under-
lying realm like, the statistical properties of a complex network can be captured
in a data vector, and it can be assumed that linear models are applicable if ap-
propriate data preprocessing is applied. To truly capture all relevant variables,
it is reasonable to include all variables that are potentially relevant — it is the
task of the modeling machinery to select the most important of the variable
candidates and to determine the dependency structures among them. Also, if
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there exist nonidealities giving raise to further nonlinearities in the system, the
data vector can be augmented by the appropriate feature variables hopefully
capturing the structure of nonlinearities. This means that the data vector can
become very high dimensional, and the models to be studied explicitly need
to be robust against high dimensionality. This is a real challenge — specially
as tackling among the multitude of variables should be done not manually but
automatically.

The first step towards a model of complexity, and towards deeper understanding
of biological systems was taken in this chapter. However, the model structure
(1.7) is barren, being very descriptive, and it is not suitable for real applications.
Next, in the Level 2, the same model is first extended to capture the cell-scale
phenomena, and after that, a more suitable formulation, or the structure of the
“emergent models” is presented.
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Level 2

Emergent Models of
Cellular Functions

In the previous chapter, the data format was determined so that cell-specific
information (or any network-originated information) could compactly be cap-
tured. The next task is to find the higher-level presentations, or the actual
model structures, so that the underlying data can efficiently be exploited, and
the essence of the cellular behaviors truly becomes manifested.

The key issue in this chapter are the models, or how to construct them in an
appropriate way. It has to be recognized that models are always false, only
showing a narrow projection of the complexity in real life systems. But good
models can give intuitions.

Very simple mathematics only is employed here, and the model structures will
be linear. There is nothing new in the mathematics — it is the interpretations
that play the central role. Appropriate interpretations make it possible to es-
cape from the reductionistic level to explicitly holistic models. These “emergent
models” become practical when the components-oriented modeling view is ex-
hausted. The new model structures can be seen as revealing the functions that
take place in the complex system.

2.1 About “system semantics”

When searching for good models, philosophical questions cannot be avoided.
It is such modeling issues that have been studied for millennia: What is the
nature of systems, and how they should be represented. Indeed, what there is,
what one can know about them — these problem fields are called ontology and
epistemology, respectively (these issues are studied again in chapters 7 and 10).
Here all these mutually related issues are collected under the common concept
of semantics: What is the essence of a system, and how this essence should be
interpreted?

Semantics conveys meaning. Traditionally, it is thought that semantics cannot
exist outside human brain. However, to reach “smart models” that can adapt

43
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in new environments, one needs to make this meaning machine-readable and
machine-understandable. Otherwise, no abstraction of relevant vs. irrelevant
phenomena can be automatically carried out. Indeed, one is facing a huge
challenge here, but something can be done.

For the purposes of concrete modeling, the notion of semantics has to be for-
malized in some way: This very abstract concept is given here very concrete
contents, compromising between intuitions (what would be nice) and reality
(what can be implemented in reality). It can even be said that a good model
formalizes the semantics of the domain field, making it visible and compressing
it. Now there are two levels of semantics to be captured:

1. Low-level semantics. The formless complexity of the underlying sys-
tem has to be captured in concrete homogeneous data. The “atoms” of
semantics constitute the connection between the numeric representations
and the physical realm, so that the properties of the system are appropri-
ately coded and made visible to the higher-level machineries. In concrete
terms, one has to define “probes” and put them in the system appropri-
ately.

2. Higher-level semantics. The high number of structureless low-level
features have to be connected into structures of semantic atoms. Assum-
ing that the semantic atoms are available, this higher-level task is sim-
pler, being more generic, whereas finding representations for the low-level
domain-area features is domain-area specific.

The former task — coding the domain-area information in concrete data struc-
tures — was studied in the previous chapter, whereas the latter task — con-
necting the atoms of information into relevant structures — is studied in this
chapter.

The higher-level semantics determines how the information atoms are connected.
In our numbers-based environments, a practical and robust approach towards
capturing such contextual semantics is offered by correlations-based measures.
If the data is defined appropriately so that it captures the dynamical balances
in the system, the simple contextual dependency structures can also be seen
to capture cybernetic semantics of the domain (see chapter 7). Assuming that
information is conveyed in visible co-variations among data, structuring of lower-
level data can be implemented by the mathematical machinery without need of
outside expert guidance. Despite the trivial-sounding starting point, non-trivial
results can be found when the mathematical structures cumulate. This makes
it possible to reach “smart” models that adapt in unknown environments.

2.2 Constraints vs. degrees of freedom

The mathematical machinery has been traditionally used for solving engineering-
like, reductionistic problems. However, the focus is changing: One should be
capable of abstracting away the details and seeing the “big picture”. In such
cases one simply cannot go in the traditional bottom up direction — one has to
go top-down, explicitly starting from the system level. And one cannot assume
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there is some existing a priori model structure — the models have to be based
on observations. There are many challenges when new ways of thinking are
exploited.

2.2.1 System models and identification

It is assumed that in a system the data are somehow bound together, and it is
this bond that captures the essence of the system. The model structure derived
in the previous chapter was of the following form, explicitly characterizing the
bond between variables

0 = ΓT z, (2.1)

this matrix expression consisting of n separate scalar equations determining
connections among variables in z. Indeed, this formulation is the very traditional
approach to presenting structures within systems. For example, assuming that
the matrix Γ consisting of a single column, and the data vectors z(k), for k
indexing the discrete time axis, are defined as

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
a1

...
ad

b0
b1
...
bd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and z(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(k)
y(k − 1)

...
y(k − d)
u(k)

u(k − 1)
...

u(k − d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.2)

the connection among variables can be rewritten also in the form

y(k) =
d∑

i=1

aiy(k − i) +
d∑

j=0

bju(k − j). (2.3)

As it turns out, this is the traditional way of representing dynamics of a d’th
order SISO (single input, single output) system. A huge body of theory has
been developed, for example, for identifying the system parameters ai and bj
based on a set of observations of the variables y(κ) and u(κ) for k0 ≤ κ ≤ k (for
example, see [2]).

The models of the form (2.1) assume that the linear combination of the vari-
ables should be exactly zero — however, as the measurement values always are
inaccurate, this does not exactly hold, and one has to extend the original model:

e = ΓT z. (2.4)

Here, e is the model error vector — the goal of identification of parameters
in Γ is transformed into an optimization problem, where one tries to minimize
the overall error variance. Very much effort has been put on enhancing the
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numerical properties of the identification algorithms, typically starting directly
from the formulation (2.3), and for making them more reliable and robust —
after all, the determination of the parameters is typically based on least-squares
matching, and there are various reasons for problems [42].

First, a special challenge in traditional identification is caused by the nonideal
noise properties. Different variables can be corrupted by the noise in different
ways. And, in the case of colored noise, the uncorrelatedness assumption of
the noise samples becomes compromised, and the parameter estimates become
biased.

Second, if trying to capture all available information — by employing all avail-
able variables — in the models, as was proposed in the previous chapter, de-
termination of the parameters sooner or later becomes an ill-defined task. As
the large number of variables are more or less redundant, they are no more
strictly linearly independent of each other, and the numerical properties of the
algorithms can become very poor. For example, the variables y(k − i) in (2.3)
are in principle separate variables, but because of the smoothness in the signal
behaviors, the variables are certainly not independent. The data covariance
matrix (matrix that needs to be inverted in least-squares fitting) becomes badly
conditioned.

In today’s applications, these problems with high dimensionality severely plague
the traditional modeling approaches. It is not only the high number of input
data that causes problems, but the whole model structure is challenged. Ap-
plying the traditional model structure it is easy the implement SISO models,
but one should also be capable of tackling with more complex systems con-
sisting of various submodels — as in the metabolic system there exist various
simultaneous balance reactions taking place at the same time. In principle, the
data representation in (2.1) is naturally a MIMO structure, being a framework
for presenting various simultaneous equations just as well. This structure only
needs to be efficiently utilized. Are there alternatives to traditional ways of
describing (locally linear) models?

2.2.2 Emergent models

The structure of the model (2.1) needs to be elaborated on: This can be accom-
plished as the model is interpreted in terms of linear algebra. Mathematically
speaking, if there are µ separate variables, there are µ degrees of freedom in
the data space, but each (linear) constraint decreases the number of degrees of
freedom by one — specially, if there are ν linearly independent constraints, the
number of remaining degrees of freedom is only µ − ν. The linear constraints
constitute a null space within the data space: This means that in these direc-
tions there is no variability. The remaining µ − ν directions in the data space
constitute a linear subspace where all variation among variables is concentrated.

What do these degrees of freedom mean in practice? Originally, if there were
completely separate unconnected variables (subsystems), there would be the
maximum number of freedoms. When subsystems become connected, when
interactions between them are established, the variables become coupled, thus
reducing the number of free variables. Further, when feedbacks are introduced,
the remaining inputs and outputs of the subsystems can still be connected. It
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freedom

Null spaceTraditional
view
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Figure 2.1: Schematic illustration of the covariance structure among data
when there are few constraints (on the left), and when there are many
constraints (on the right). The simplest presentation for the system
properties changes as the number of constraints increases, or when the
remaining degrees of freedom accordingly decrease

is specially typical in cybernetic systems where this scenario holds: Ability to
recover after disturbances is a manifestation of tightly interconnected system. In
such systems it is only a few degrees of freedom that remain more or less loosely
controlled. In the metabolic system there are dozens of individual underlying
reactions controlling the cellular metabolics, the chemical levels being balanced
accordingly.

The key point here is that essentially the same dependencies among variables
can be captured in terms of degrees of freedom as with constraints. At some
point, when the number of constraints increases, the most economical repre-
sentation changes: The simplest model with the least parameters is not the
constraints-oriented model but the freedoms-oriented model (whatever it will
be). According to the Ockham’s razor, one needs to switch to emergent models
when the system is cybernetic enough. In Fig. 2.1, the covariance structure
of the data space is depicted: When the null space of constraints is dead and
dull, all interesting behaviors are concentrated in the directions of remaining
freedoms. It can be assumed that relevant phenomena in the cell are revealed
by the “metabolic degrees of freedom”; it turns out that when applying very
compact and behaviors-oriented models, the system starts looking more or less
“clever” — indeed, speaking in such terms has to be postponed to next section.

Whereas the visible constraints are emergent patterns resulting from underlying
dynamic attractors, the degrees of freedom make it possible to model this process
of emergence and the structure of such patterns.

How is this dichotomy between constraints and freedoms manifested in concrete
terms? For example, study an infinite-dimensional distributed parameter sys-
tem that is governed by partial differential equations — a very natural way to
characterize natural complex systems. As these PDE’s are spatially discretized,
there is a large number of ordinary differential equations connecting the lo-
cal variables. Remember that only together with the boundary conditions the
PDE’s can uniquely determine system behaviors, thus giving rise to a very com-
plicated system of hybrid equations that can seldom be solved explicitly. The
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constraints are now there in the form of dynamic and algebraic equations —
the PDE’s and the boundary conditions, respectively. The emergent behavior is
typically manifested in terms of a low number of possible modes. For example,
in the case of a vibrating plate, typically there only exist a few vibration modes;
these “modes of freedom” can easier be modeled than the original constraints.
Such freedoms-oriented approach is also quite natural, as then one directly con-
centrates on the time domain solutions of the equations that are immediately
measurable in system behaviors.

Laws of nature are traditionally written in terms of constraints: The visible de-
pendencies among observed phenomena are recorded. But, again, these surface
patterns just emerge from underlying, more fundamental interactions. Perhaps
one should rather start thinking in terms of “freedoms of nature”.

It is difficult to escape the traditional ways of thinking: Traditional methods for
analysis (modeling) and design (synthesis) are based on models that are based
on constraints. And, indeed, constraints are the very basis of Wittgensteinian
thinking: Languages are the means of structuring the world in terms of connec-
tions between concepts. This also holds what comes to formal languages like
programming formalisms that the contemporary software tools are based on,
and also traditional mathematics is based on finding ingenious proofs, or paths
from a fact to another. Traditional mathematics exercises make nice pastime
activity as the solutions typically are unique and hard to discover; however, the
heavy mathematical machinery that is based on relevance is more general.

It is just as it is with detective stories: they make nice reading, but they are not
plausible. Sherlock Holmes once said that “When you eliminate the impossible,
whatever remains, however improbable, must be the truth”. But in real life
there are no clear-cut truths — modern detectives construct the “big picture”
out from the mosaic of more or less contradictory evidence: The plausible ex-
planation maximally fits the observations. This is today’s world — as there is
no unambiguous truth, it is relevance that is preferred; closer studies are needed
here.

2.2.3 Towards inverse thinking

One needs to find appropriate mathematical formulations for the above intu-
itions. The leap is mainly conceptual — one has to go to the other end of the
continuum, from structure orientation to data orientation. It is data originat-
ing from freedom structures that is more relevant than parameters originating
from constraint structures. As it turns out, this approach makes it possible
to avoid the age-old problem concerning symbolic and numeric representations:
The structures are not fixed beforehand — or, actually, they are ignored alto-
gether.

First, study the structure-oriented end of the continuum. For simplicity, assume
that one wants to capture the nominal state when observations are available.
Variations around the nominal state are interpreted — in the traditional spirit
— as noise that should be eliminated from the model.

Assuming that there are many sources of noise, one can abstract away the
properties of individual noise sources. According to the Central Limit Theorem,
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one can assume that the net effect of all noise sources is such that the error
distribution is Gaussian, that is the observations are distributed along a high-
dimensional bell-shaped curve around the mean value; it is this mean value
vector ζ that is being searched for. For the data distribution one can write the
density function

p(e) =
1√

(2π)dim{z} |E{zzT}| e
− 1

2 (z−ζ)T E{zzT }−1(z−ζ). (2.5)

In the spirit of maximum likelihood identification, one selects the best estimate
for ζ by maximizing the overall probability of the measurements

ζ̂ = arg max
ζ

{E {p(e)}} (2.6)

by adjusting the center of the distribution appropriately. Because logarithm is
a monotonous function, maximization of (2.6) equals minimization of

− ln p(e) = c+
1
2
· (z − ζ)T E{zzT}−1 (z − ζ) . (2.7)

When looking at this goodness criterion, it is evident that the “natural” scaling
of variables is reached if the measurements are preprocessed as

z′ = E{zzT}−1/2 z. (2.8)

In the space of these new variables z′, it is simply the Euclidean distances (or
their squares) that reflect the differences between vectors. This scaling explicitly
emphasizes the null space directions where there exists no variation in the data
space, thus boosting the constraints-oriented thinking. For the original data, the
weighting matrix when evaluating distances is W = E{zzT}−1; it is revealing to
note that for Gaussian data this expression is called Fisher information matrix.
Information is assumed to be in the inverses of covariances.

This is the today’s realm. The problem with the scaling (2.8) here is that if the
dimension of z is excessive, the scaling matrix becomes badly conditioned: If
there are linearly dependent variables, the inverse matrix cannot be found. In
cybernetic systems the variables typically are highly redundant due to the high
number of underlying constraints.

To proceed, one needs to look at (2.1): Even though the roles of Γ and z are
intuitively clear, this can be incorrect intuition. Mathematically, if Γ is a vector,
the roles of these two vectors are identical. There is duality among structure and
variables: The visible manifestations of structure are numbers in vectors, just as
the data is. It can be assumed that the information delivered by observations
is distributed among the structure part and the data part. Normally, it is
assumed that observations represent data — however, in this case when the
constraints dominate, it can be assumed that observations represent structure.
The situation needs to be turned upside-down: The information that is normally
used for modeling is now regarded as noise, and only the “leftovers” not exploited
by the traditional modeling approaches are concentrated on.

This kind of problems of traditional thinking can be concretized: For example,
inverse covariance weighting results in excessive emphasis on linearly dependent
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variables, the identification procedures trying to distinguish between identical
variables — what comes to representing the real properties of the data, such
emphasis is counterproductive. Another example: When identification is carried
out in the parameter space rather than in the data space, iterative adaptation
steps trying to pull the parameters towards better locations, pathological effects
can take place, specially, if the parameterization represents a dynamic model.
The reason for this is that dynamic behaviors are related to the poles and zeros
of the parameter polynomials rather than to the parameters themselves; convex
combinations of parameter vectors do not necessarily reflect the properties of
those vectors at all.

Now the model is constructed to capture the properties of the data directly, not
the properties of some man-made parameterization.

What this intuition means in practice, what are the consequences? Tradition-
ally, when searching for the structure, it is thought that variation outside the
assumed structure is noise — now it is assumed that this remaining variation
is interesting, reflecting those behaviors that have not been paralyzed by the
constraints. Somewhat intuitively, one could employ the idea of symmetry pur-
suit, defining the data-oriented portion of the measurements as the inverse of
the weighting in (2.8):

z′′ = E{zzT}1/2 z. (2.9)

This can be expressed also in another way: The symmetric weighting matrix
among measurements becomes (see next section)

W = E{zzT}, (2.10)

rather than being E{zzT}−1, as in the (2.8) case. This means that directions
of variation in the data are explicitly emphasized. What is nice is that no
matrix inversions are needed, and such operations remain well-behaving even
for high-dimensional data.

The motivation for the data weighting was here rather intuitive — however, in
the next chapter this issue will be concentrated on from another perspective. It
can be claimed that such weighting mathematically corresponds to the view of
data that locally controlled systems actually see in their environments.

2.3 Technical exploitation

For the rest of this chapter, assume that the presented view of data were ap-
propriate, and study the conceptual tools that are in place when this view is
being functionalized. The approach to modeling here is synthetic rather than
analytic: The approach is “technical”, not trying to capture the actual under-
lying processes but only trying to imitate the results. The key point here is to
present the best possible tools — multivariate statistical mathematics — and in
the next chapter it is shown that there truly can exist some connection to real
life.
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2.3.1 Subspaces and mappings

It is beneficial to see the more general setting, or what the presented framework
looks like when see from the point of view of mathematics and mathematical
tools. When functionalizing the freedoms-based model structure, one faces a
pattern matching problem where linear algebra is needed.

Data preprocessing

Forget about all connotations that the variables in z may have, and apply condi-
tioning to this data so that the technical assumptions become optimally fulfilled.

The first assumption is that of model linearity. Typically, problems are caused
by the fact that data from linearized models are affine, that is, additive constants
are needed in formulas. To get rid of the affine terms, the data can be trans-
formed to follow a strictly linear model, for example, applying mean-centering
— this is the standard approach when doing strictly data-based modeling where
the nominal values of the variables are not known.

However, these problems are only faced when doing constraints-oriented mod-
eling: When concentrating on the freedoms, no mean-centering is necessary.

The second assumption is quadratic nature of cost criteria. The reason for this
is that easily manipulated and explicit formulas can be reached. The quadratic
criteria mean that variations in the data are emphasized, and to reach reasonable
models, appropriate scaling of data needs to be carried out. Assuming that all
variables are equally informative, different variables can be equally “visible”
by normalizing them to have unit variance, because units are arbitrary. This
means that one uses either correlation matrices (if data is mean-centered) or
cosine matrices (if data is not centered) as association matrices (see [92]).

Whatever are the data preprocessing steps, the original data z will hereafter be
denoted ζ.

The data scaling is very crucial, affecting the results very much – the normal-
ization should be motivated better. Indeed, as shown in Sec. 3.3, if the data is
coming from a truly cybernetic system, it turns out that normalization is the
natural way of seeing inter-system signals.

Pattern matching

In concrete terms, the freedoms-based model characterizes the location of an
observation in the data space in terms of the degrees of freedom. The degrees
of freedom are manifested as n linear feature vectors ϕi being collected in the
matrix ϕ. Because of linearity, features can be freely scaled and added together.
The observed patterns, combinations of the variables, are assumed to be weighed
sums of such features, so that one can write

ζ̂ =
n∑

i=1

ξiϕi = ϕξ, (2.11)
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where ξ is the vector of weighting factors. If vectors ϕi are seen as coordi-
nate axes, ξi are the coordinate values. Use of the feature model becomes an
associative pattern matching process against data.

Assuming that n < m, arbitrary variable combinations ζ cannot be exactly
represented by the features, and when searching for the best possible match,
or estimate ζ̂, one is facing an optimization problem. When the representation
error ζ −ϕξ, weighted appropriately, is minimized, one can write the quadratic
criterion

J(ξ, ζ) =
1
2

(ζ − ϕξ)T
W (ζ − ϕξ) . (2.12)

The unique minimum is found when the gradient vector is set to zero:

d J(ξ, ζ)
dξ

= ϕTWϕξ − ϕTWζ = 0, (2.13)

giving the unique solution

ξ =
(
ϕTWϕ

)−1
ϕTW ζ. (2.14)

In practice, this implements a mapping from an m dimensional space of ζ onto
the n dimensional subspace of ξ spanned by the feature axes. Variables in ξ
are called latent or hidden variables. Because of the data compression, exact
match is not found, and one can only hope that the ignored variation is noise,
not actual information.

How to distinguish between noise and information, then? Formally, there is no
difference in the manifestation of variations in the data, and one has to apply
ontological assumptions concerning the nature of relevant properties in the data.
First, following the above discussions, one should select the weighting matrix as

W = E{ζζT }. (2.15)

Selection of the feature vectors so that they would represent the most important
degrees of freedom can also be explicitly solved, and the solution is given by
PCA presented in Sec. 2.3.2. This means that one should choose ϕ so that
the subspace of the n most significant principal components of data is spanned
by columns ϕ. Indeed, it is not necessary that the features are exactly the
covariance matrix eigenvalues, ϕi = θi, but it suffices that there holds

ϕ = θD (2.16)

for some orthogonal transformation matrix D, so that DT = D−1. Correspond-
ingly, the latent variables are modified as ξ′ = D−1ξ. The optimal selection
of features is also non-unique — regardless of how the (non-singular) basis is
constructed out from the matrix θ, the same variation can be captured. This
means that after PCA, different kinds of factor analysis techniques, rotations,
etc., can be applied to find a physically better motivated basis. For example, if
the variables ζ have some constant bias, so that they are not zero-mean, it is
possible to determine variables ξ that also have non-zero-mean — they can even
always remain positive. When the variables represent some physical quantities,
such non-negative coding is more plausible.
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Regression based on latent variables

When the latent variables ξ are available, they can be exploited, for example,
for regression, mapping data from the latent basis ξ onto some output space of
y, so that y = fT ξ. If the mapping is implemented through the low-dimensional
latent basis rather than directly from the variables ζ, noise gets filtered out, and
more robust estimates for the output can be found.

Similarly as above, the criterion for a good mapping model is minimization of
quadratic criterion. When written for a single output variable yj at a time,
the mapping error becomes εj = yj − fT

j ξ, and a reasonable criterion is found
when the variance of this error, or E{ε2j}, is minimized. However, in some badly
conditioned cases a generalization is in place: Robust regression models are
found when the regularized criterion is applied where the parameter sizes are
also emphasized:

Jj(fj) = E{(yj − fT
j ξ

) (
yj − fT

j ξ
)T } +

1
q
fT

j fj . (2.17)

When the gradient is set to zero,

d Jj(fj)
dfj

= 2
(

E{ξξT } +
1
q
In

)
fj − 2E{yjξ

T }T = 0, (2.18)

one can find the unique solution:

fj =
(

E{ξξT } +
1
q
In

)−1

E{yjξ
T }T . (2.19)

When this procedure is carried out for all outputs yj separately, one can see
that essentially the same formula is found in each case, and one can write a
combined expression for all individual mappings as

f =
(

E{ξξT } +
1
q
In

)−1

E{yξT}T . (2.20)

If there is no need for regularization, that is, if the covariance E{ξξT } is invert-
ible, one can use the standard formulation

f = E{ξξT }−1E{yξT }T . (2.21)

A special regression case is where the output is chosen to be the original data,
y = ζ, so that reconstruction of the data is being carried out, noise hopefully
being filtered out during the compression process:

ζ̂ = E{ζξT }E{ξξT }−1 ξ. (2.22)

Now there are technical tools for implementing mappings from data onto the
feature subspace and back. The remaining problem is the determination of that
feature subspace.
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Figure 2.2: Principal
component analysis re-
veals the variation struc-
ture in data

2.3.2 Multivariate tools

The distinction between constraints and freedoms can be elaborated yet in an-
other way. Remember that traditionally one wants to minimize the sum of
squared errors over the set of measurement data:

Γ = arg min
Γ

{
E{eT e}} , when |Γi| = 1 for all i. (2.23)

In this vector formulation, to have a well-conditioned optimization task, one has
to fix the model vector size to avoid trivial solutions Γi = 0 (this is reached by
introducing the additional restriction |Γi| = 1). This constrained optimization
problem results in search for constraints in the traditional sense — indeed, the
solution here is the method called Total Least Squares. When searching for the
freedoms instead, the objective is exactly opposite:

ϕ = arg max
ϕ

{
E{ξT ξ}} , when |ϕi| = 1 for all i. (2.24)

Note that even though it is freedoms that are searched, the mathematical ma-
chinery again is based on constrained optimization — constraints simply are the
kernel of today’s models! Here, vectors ϕ and ξ have been used to emphasize
their different roles as compared to Γ and e: Defining ξ = ϕT ζ, it is now the
“error” ξ that is to be maximized, and ϕ is the axis along which this maximum
variation in data is reached. If the vectors Γi and ϕi are interpreted as directions
in the data space, mathematically speaking they reveal maximum orthogonality
and maximum parallelity among these vectors and data, respectively. Applying
the objective (2.24), it is assumed that variation in data is interpreted as in-
formation, whereas traditionally variation is seen as noise. And, specially, it is
covariation among variables that carries information: Covariations can reveal
the underlying “common causes” that are reflected in the measurements.

The solution to the problem (2.24) is given by principal component analysis or
PCA (for example, see [6]). Without going into details (for example, see [42]),
the basic results can be summarized as follows.

The degrees of freedom can be analyzed using the data covariance
matrix E{ζζT }. The variability is distributed in the data space along
the eigenvector directions of this matrix, variance in the eigenvector
direction θi being given by the eigenvalue λi:

E{ζζT }θi = λiθi. (2.25)
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Figure 2.3: The remaining levels in the hierarchy of models in Fig. 3

Principal component analysis gives a structured view of freedoms in the data:
The axes θi corresponding to most significant eigenvalues span a subspace where
most of the variation in data is found (see Fig. 2.2). If n < m, meaning that the
high-dimensional data is projected onto a lower-dimensional principal subspace,
data compression takes place where the data variation is maximally preserved:
If an n dimensional PCA basis is exploited, the model captures

∑n
i=1 λi of the

total variation in data — assuming data normalization, this total variation is∑m
j=1 λj = m.

It turns out (because of symmetricity of the matrix E{ζζT }) that the eigen-
vectors are orthogonal (indeed, orthonormal), so that the principal component
directions can be used as a well-conditioned subspace basis vectors in a mathe-
matically efficient way.

Principal components offer a very powerful mathematical framework — but
is it physically meaningful? Complexity intuition says that self-organization
of structures necessitates some kind of nonlinearity and instability: To reach
emergence of differences, one needs positive Lyapunov exponents in functions,
and to stabilize such divergent processes, nonlinearity is needed. However, as
analysis of PCA reveals, there exist structures in data that can be motivated also
in linear terms and using stable dynamic characterizations. Indeed, as will turn
out later in chapter 3, the PCA intuitions will be of crucial importance when
studying the properties of cybernetic systems. This means that the emergent
patterns are very different as compared to the traditional chaotic images; the
PCA patterns are based on global rather than local properties of functions.

2.3.3 New levels in emergence hierarchies

In Fig. 3, it was shown how deterministic and stochastic approaches can be seen
to alternate in the hierarchy of emergent levels. Now the multivariate statistical
models determine yet another stochastic level above the highest deterministic
one: Information from the lower levels is extracted in the form of variations,
and among that data, statistical dependency structures are determined in terms
of covariations (see Fig. 2.3). Because such covariation structures can be found
applying convergent algorithms, one is escaping the (mental) deadlock: Struc-
tures can emerge even in balance systems, one does not always need chaos and
positive feedback to shake the underlying structures apart.

But a further transition from this stochastic level to a yet higher deterministic
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level is more or less straightforward. If there are statistical structures that can
be employed to compress the statistical data, such abstracted phenomena can
be named, thus introducing new distinct concepts. As the statistical structures
represent dynamical balances, the essence of such concepts is that they are
attractors in the data space dictated by the properties of the environment. The
domain-oriented “concepts” are manifested as emergent functionalities. These
functionalities are non-programmed, they are not explicitly designed; they do
not reflect the intentions of humans but the properties of the interplay between
the system and the environment.

Using such higher-level concepts, the functioning of a complex system can be
appropriately structured: there are names for behaviors that are assumedly rel-
evant, being manifested in observations. A “natural language” based on such
concepts would be beneficial when trying to characterize and understand the
functioning of a complex system. Based on the low-level semantics, interpreta-
tions of the emergent concepts are self-explanatory.

However, complex systems differ from each other, and the “axes of relevance”
cannot always be defined in such a straightforward way. For example, in indus-
trial plants it is the quality measures that are the most important quantities
when characterizing the plant operation. The industrial plants do not simply
reflect their environment; they are constructed for some special purpose, and the
qualities cannot be dictated only by the environment, but the intentions of the
system designers have to be taken into account. Generally in technical systems
the operation (and “evolution”; see chapter 3) is goal-directed — rather than
reflecting the environment directly, the emergent structures should reflect the
coupling between the input space (environment) and the output space (qual-
ities). Rather than employing PCA, the model structures should implement
the cross-correlations among the two spaces. For engineering-like development
of the processes, or “artificial evolution”, there are other regression techniques
available, for example PLS and CCR (see [92]).

Natural systems are simpler than technical — assumedly they just want to
survive, trying to match with their environments (see next chapter), so that one
can employ the PCA-based models directly. One can assume that it can only
be the visible variables that determine the observable behaviors; if the variables
are selected and scaled appropriately, there is no reason why a mathematical
machinery could not capture the same phenomena that are followed by the
biological machinery. A more detailed example of emergent-level modeling is
given below. The emergent functionalities reflect match with environment; as
seen from above, such behavior seems clever in its environment.

2.4 Towards system biology

Finally, study how the presented approaches can be exploited for modeling
cellular systems in practice — and how they perhaps could be exploited.
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2.4.1 Facing real systems

Traditionally, modeling of biological (cellular) systems has been carried out in
the rather traditional spirit: The goal has been to determine the constraints,
individual dependency structures, exploiting more or less straightforward, SISO-
type model structures. Data collection of cellular metabolics is typically carried
out applying one-variable-at-a-time experiments. Similarly at the genetic level:
Single “knock-out genes” can be explicitly deactivated to study their functions,
resulting in non-natural behaviors. One reason for these simplified approaches
are the practical problems, as the cellular state is difficult to measure, but
new solutions are being introduced (for example, the microarray techniques for
measuring the whole array of genetic activities simultaneously). Indeed, today
there exists plenty of data, but this data is not necessarily well-conditioned or
of good quality: The level of measurement noise is high.

Reaching reliable measurements is challenging, because the responses vary in
different circumstances when the environment changes. What is more, because
of buffering effects in the cells, huge dosages of reagents are needed (single input)
to have noticeable responses (single output). On the other hand, these effects
cannot be focused, being reflected to the whole set of variables. The experiments
do not really characterize typical behaviors — the cell may become crippled
altogether. Another traditional problem in metabolic systems is that they seem
to be highly redundant (this also applies to gene expression). It seems that
there typically is not just a single reaction mechanism explaining the processes,
making it difficult to uniquely identify causal structures and model parameters.
What makes this still more difficult is that not all chemicals can be recorded,
and not all reactions are even known.

All of this suggests that multivariate statistical methods are needed. When ap-
plying the multivariate methods, buffering is just a manifestation of the internal
feedbacks, and observations of the new balance deliver valuable information con-
cerning the underlying metabolic processes and functions. No one-input/one-
output studies are needed. Also the problems with unclear causal dependencies
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are avoided because of the pancausality assumption: First, the actual reactions
are not searched for, but the “residual” variations; second, PCA is just the right
tool to model redundant and noisy phenomena, because it transforms from the
visible variables to new latent variables, where noise and redundancies among
variables has been ripped off. Putting it freely: “If they are there, but if they
cannot be seen, just ignore them”. All relevant variables and dependencies
cannot be detected, but they can be ignored as long as they do their job in
maintaining the system balance.

As studied in chapter 3, the PCA-based model structures are motivated not
only from the data analysis point of view. It can be claimed that in evolution it
is the principal subspace that is naturally being pursued by surviving systems
that are capable of most efficiently exploiting the environmental resources.

The objective here is to study living cell rather than pathological cases. Bal-
ances are more characteristic than transients, and it is steady states that are
modeled. Because metabolic processes are well buffered, remaining near the
nominal state, linear models are locally applicable. Rather than carrying out
tests in a SISO manner, the whole grid of chemicals are studied simultaneously.
This applies also to the transcription factors on the genetic level: As studied
in chapter 2, genetic networks can be modeled applying the same model struc-
tures as the chemical processes — the metabolic processes are fast, whereas the
genetic ones are slow (see Fig 2.4). In the figure, the linear pattern recognition
processes are expressed in terms of dynamic state-space models, implementing
two overlapping processes levels of “generalized diffusion”.

Both of the levels can be combined in one model structure, and all information
can be included in the data vector. The modeling procedure goes as follows:
The sets of metabolites, transcription factors, and relevant environmental con-
ditions (temperature, pH, ...) are defined, and experiments are carried out in
different conditions, collecting data during the transients and in steady state.
The degrees of freedom are found, determining the metabolic and genetic func-
tions. Data orientation is necessary, multivariate tools are needed as the signal
details are abstracted away, whereas emergent long-term phenomena become
visible. Stationarity and validity of statistical measures is assumed — however,
this assumption does not strictly hold. When the system becomes more and
more complex, and as the number of constraints increases, the situation be-
comes blurred: some of the constraints are more acute than the others, and the
thermodynamic balances are not necessarily all reached instantly.

2.4.2 Case example:
Modeling genetic networks and metabolic systems1

In the project SyMbolic (Systemic Models for Metabolic Dynamics and Gene
Expression), funded by National Technology Agency of Finland (TEKES) dur-
ing 2004 – 2006, new kinds of models were derived for representing the cellular
dynamics, and one of the approaches was the exploitation of the idea of emergent
models.

As an application example, modeling of data from yeast cell cultivations were

1The simulations were carried out by Mr. Olli Haavisto, M.Sc.
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Figure 2.5: Two open-loop experiments with the model, showing 256
“stress genes” (red color meaning activity increase, green meaning activ-
ity decrease). Horizontal axis is time, and the rows represent individual
genes. In the leftmost figures, hydrogen peroxide step is being simulated
for two hours, and in the rightmost ones, nitrogen step is simulated. In
both cases, the actual behaviors in the genetic state are shown on the
left, and the estimates given by the four-state model are shown on the
right. Despite the transients, there is a good correspondence between the
observations and the very low-dimensional model (see [35])

used (see [35]). There were a few dozen experiments available (from [15] and
[32]), where different kinds of step changes in the environment had been exe-
cuted, and the resulting gene activity transients had been recorded. The step
experiments were interpreted to present “stress responses” of the yeast cells.
Modeling this data was quite a challenge, as there was not enough data, and
not all data was quite reliable. Indeed, there do not exist many reports of dy-
namic modeling of the cellular behaviors (one attempt that is also based on
latent variables can be found, for example, in [39]).

Because the available data was in the form of step experiments, the model was
restructured so that the experimental setting was captured: The causal struc-
ture from manipulated variables to observations was simulated in the model.
The environmental variables (substrate properties, temperature, etc.) were col-
lected in the input vector u, and the gene expression levels were collected in
the output vector y. Rather than constructing a traditional static PCA model
between these data sets, a dynamic model was constructed applying so called
stochastic-deterministic subspace identification (see [60]). This means that also
the time sequence among data is taken into account and exploited when the
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latent variables x are constructed, the subspace identification algorithm auto-
matically constructing a discrete-time state-space model (see [4]) for “general-
ized diffusion”. Such a model can be efficiently exploited for implementing, for
example, Kalman filters for optimally estimating the system state (see [24]). It
can also be claimed that there is a connection to Hidden Markov Models here:
The state sequences are reconstructed optimally, even though the probability
interpretations are violated (this interpretation becomes more appropriate when
the state variables are kept strictly non-negative; see chapter 6).

The dimensions of the vectors were selected so that m was about ten, and there
were about 4000 output variables; the number of latent variables n was chosen
to be 4.

When there are explicit transients in the data, the underlying assumptions about
system stationarity are violated. This gives raise to model errors: There are
slower and faster reactions taking place, some reaching their balance faster than
the others. Indeed, a “Pandora’s box” is opened when the balance assumption
is abandoned — “extra” behaviors become visible in stress (transient) situa-
tions. What is more, complex transient reactions can take place in parts, where
subprocesses follow each other; each of such intermediate products spans a new
dimension in the variable space, and each chemical reaction introduces a new
constraint, compensating for the increased dimensionality only after the balance
is reached. The net effect is that the invisible dimensions in the variable space
become visible during changes.

The assumption beyond the adopted modeling approach is, however, that bal-
ances are more characteristic to cellular systems than the transients are. And,
indeed, it seems that at least the steady states are nicely modeled, whereas
the transient behaviors are not reproduced as well by the model (see Fig. 2.5).
Still, it seems that the extreme compression of the variable space does not ruin
the steady-state correspondence. Truly, there seem to exist only few degrees of
freedom left in the behavioral data.

2.4.3 “Artificial cells”?

When the presented model structure is seen in a perspective, it seems to open
up new horizons. Using some imagination, it is easy to draw interesting inter-
pretations.

It can be claimed that the degrees of freedom in a cellular system characterize
metabolic behaviors or functions. When the environment changes, the new bal-
ance is found along these axes in the chemical space when “chemical pattern
matching” is carried out. For example, assuming that available glucose goes
up, it is also mannose production that goes up, or some other processes that
exploit glucose. In fact, there is only balance pursuit taking place: But af-
ter “anthropocentric”, finalistically-loaded interpretations are employed, when
some chemicals are interpreted as nutrients, some others as metabolic products,
and the rest as waste, one reaches “emergent interpretations”. When complexity
cumulates, the balance reactions start looking goal-oriented, pre-planned, and
“clever”. Scarcity of some chemicals changes the balance appropriately, trying
to compensate for the shortage, and abundance results in the opposite outcome,
as being visible in the “activity vector” ξ (or x).
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State
= Data

Figure 2.6: From data modeling (on the left) towards system modeling (on
the right). The variables being measured are system variables (because
of pancausality, changing them also changes the system state), and model
structures being exploited are those of the system itself (both being based
on the principal components of the measurement data; see next chapter)

A system model can be applied also for design and control. When the variables
are selected appropriately, so that system semantics is captured, and if the pan-
causality assumption holds, the constructed modes are not only data models —
they are system models. They can capture the fundamental essence of systems
and system-specific variables. They can be used not only for monitoring, but
also for design and control construction: Changing variables appropriately also
changes the resulting balance (see Fig. 2.6). The remaining degrees of freedom
in the system reveal the possibilities of further controls to make the system still
more balanced; in this sense, process data mining or real knowledge mining be-
comes possible, where information can be gathered directly from the behaviors,
not from model-based assumptions. New kinds of models make it possible to im-
plement new kinds of controls — higher-level controls. However, new challenges
are faced: When new feedbacks are introduced, the set of freedoms changes.
Control design becomes an iterative task, and new kinds of design tools are
needed.

The ideas of biological cybernetic systems can be extended to technical (bio)pro-
cesses: The still unbounded degrees of freedom can be regulated, new feedbacks
can be constructed, so that still better balanced higher-level “superorganisms”
are constructed. On the other hand, the “broken” control loops can be fixed
in the same way: For example, if the glucose level varies in the body more
than it should, this can be compensated by insulin injections — along these
lines, diabetes is treated manually today; but a simple automatic control loop
could be implemented also as a step towards better lives of the “cybernetized
patients”.

Today, there are problems when trying to implement such integrated systems.
For example, the glucose sensors need regeneration after a short time; after
this problem is solved, new ones are sure to emerge. The key challenge is not
how a single functionality — like sensitivity to a certain chemical — could be
implemented, but how to keep the new system in a sustainable balance with
its environment. This goal sounds very cybernetic. Indeed, it is the whole
engineering-like thinking that has to be abandoned: Whereas one today con-
centrates only on a single functionality, it is the whole entity that has to survive
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in the complex environment. The same challenges are faced in all applications
of tomorrows medicine: If the new integrated systems are not in balance, the
body rejects the transplants. Finding such balanced solutions is a holistic prob-
lem that cannot be solved reductionistically. One needs to change the whole
way of thinking from invasive to humble: One has to admit that nature’s own
structures offer the most useful adapted solutions to the key problem, that of
finding a sustainable equilibrium in the metabolic system. Indeed, there exist
ready-to-exploit cell structures to be used as platforms for new functionalities;
one only has to take the next step and tame and cultivate the bacteria, domes-
ticating them. Rather than constructing completely new artificial cells, one has
to obey those ways of thinking that nature has followed: New structures are
constructed on existing ones, just redirecting and boosting the evolution.

This all does not only apply to medical engineering: The key challenge in future
industrial systems is their life-long maintenance. It would be reasonable to
implement some level of cybernetic self-repair or adaptability in those systems,
too, rather than only fixing the broken parts. Tomorrow’s industrial systems
also need to be in balance with their surroundings, not fight against it.

The presented emergent models were just models, and models should not be
mixed with reality. For example, how could one motivate the “chemical pattern
matching” as a fundamental cellular principle? How could a system with no
central control accomplish it, even if it would like to do it? And, to reach real
system biology, it is not only the internal behaviors within the cell that need to
be captured — the next level is the coordination among the cells, and, generally,
among populations. The challenge is to find out how such orchestration can be
explained in terms of local actions only.

When studying natural systems, it is difficult to get farther only studying avail-
able data and existing systems — one needs stronger modeling principles. One
should not only try to explain phenomena: One should proactively try to find
the underlying principles. This kind of ideas crystallize in the question: What
are the goals of systems?
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As it was observed in the previous chapter, the biological data can efficiently
be modeled applying multivariate statistical tools. However, it seems that such
data-oriented approaches do not suffice after the elementary levels. It is the
same with “chemical pattern recognition” as it is also in other areas of data-
based modeling: The statistical correlations are not enough to unambiguously
determine the higher-level structures.

To get further, one has to apply more ambitious ways of limiting the avail-
able complexity. Traditionally, the approach is to introduce more stringent and
complex model structures to direct the parameter matching. However, again
following the neocybernetic ideas, no extra complexity is voluntarily integrated
in the models — alternatives to increased complexity are searched for instead.

The alternative employed here is rather radical.

In the postmodern era, there should exist no taboos. However, one thing that
has never been proposed in circles of modern serious science, is that of finalism.
One should only answer the how questions, never the why questions. Yet,
applying teleological assumptions, most compact problem settings are reached,
and one can also study systems that not yet exist. The claim here is that
appropriate finalistic arguments can also be given concrete contents, so that
they become verifiable — or falsifiable. It is only the starting point that sounds
radical: The discussions collapse back into well-established frameworks.

It has been said that nothing in biology can be explained without taking evo-
lution into account. And here this observation is exploited by studying the
question: What is it that evolution tries to accomplish? Such issues are studied
in the neocybernetic perspective — balance pursuit is the only finalistic goal
after all, together with extreme environment-orientedness.

63
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3.1 Balancing between static and dynamic mod-
els

From now on, one needs to (for a moment) forget about the technically oriented
derivations in the previous chapter. The emphasis is changed: It is not what
the model designer intends that is relevant — the interesting things are those
what the system naturally does. Again, there is the same starting point (1.7)
that is assumed to hold for a thermodynamically consistent chemical balance
system. Indeed, such a simple formulation can be written for any linear system,
no matter what is the domain field, if the variables are selected appropriately.
This set of equations can be interpreted so that it defines a static balance with
no structure, and one first needs to extend the framework.

3.1.1 Restructuring data

Assume that the variables in z in (1.7) are divided in two parts: Vector u,
dimension m, describes the environmental conditions, whereas vector x̄, dimen-
sion n, contains the system-specific internal variables, somehow characterizing
the equilibrium state of the system. The internal state is not assumed to be
necessarily observable by an external observer. The “environment” here is not
something external — it only consists of variables that are determined from
outside, but essentially all variables (concentrations) still coexist in the same
volume. Rewriting the constraints characterizing the system, one can distin-
guish between the variables:

Ax̄ = Bu. (3.1)

The construction of the matrices A and B is not uniquely determined by this
expression — this issue, determination of the system matrices in a plausible
way, is studied later. To keep the internal state of the system well-defined, it is
assumed that there are as many constraints here as there are latent variables,
so that A is square. Because of environment-orientedness, the internal variables
are assumed to be directly determined by the environment, so that there as-
sumedly is a (linear) dependency between x̄ and u. Formula (3.1) is an implicit
expression; assuming that A is invertible, one can explicitly solve the unique
linear function from the environmental variables into the system state:

x̄ = A−1B u, (3.2)

so that one can define an explicit mapping matrix from u to x̄

φT = A−1B. (3.3)

However, the main motivation for the formulation in (3.1) is that one can for-
mally extend the static model into a dynamic one. The formula (3.1) only
characterizes the final visible balance in the system, but one has to remember
that it is local operations only that exist — how can such uncoordinated lo-
cal actions implement the global-level behaviors? Indeed, one needs to extend
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studies beyond the final balance, and take into account the dynamic behaviors
caused by the imbalances.

Formula (3.1) can be interpreted as a balance of tensions determined by forces
Ax̄ and Bu, caused by the system itself and by the environment, respectively. If
the forces are not in balance, there is a drift. Assuming that the data structures
are selected appropriately, so that −A is stable (eigenvalues having negative real
parts), one can define a dynamic model to characterize the tensions as

d x

γ dτ
= −Ax+Bu. (3.4)

The parameter γ can be used for adjusting the time axis. The steady state
equals that of (3.2), so that limτ→∞ x = x̄ for constant u. Because of linearity,
this steady state is unique, no matter what was the initial state. Using the
above construction, the static pattern has been transformed into a dynamic
pattern — the observed equivalences are just emergent phenomena reflecting
the underlying dynamic equilibrium.

How can such a genuine extension from a static model into a dynamic one be
justified? It needs to be observed that there must exist such an inner structure
beyond the surface. The seemingly static dependencies of the form (1.7) have
to be basically dynamic equilibria systems so that the equality can be restored
after disturbances: The actors, or the molecules in this case, do not know the
“big picture”, and it is the interactions among the molecules that provide for
the tensions resulting in the tendency towards balance. It is assumed here that
the mathematical model represents what a system really does. The model is not
only mathematically appropriate, but it explains the actual mechanisms taking
place in the chemical system that is getting towards balance after a transient.

What causes the dynamics, then? Thinking of the mindless actors in the system,
the only reasonable explanation for the distributed behaviors is diffusion. It is
the concentration gradients that only are visible at the local scale in a chemical
system. So, interpreting (3.4) as a (negative) gradient, there has to exist an
integral — a criterion that is being minimized. By integration with respect to
the variable x, it is found that

J (x, u) =
1
2
xTAx− xTBu (3.5)

gives a mathematical “pattern” that characterizes the system in a yet another
way. Note that by employing the dynamic systems understanding, it was possi-
ble to escape the limits of the “dead” formulation and turn an originally static
problem into another, more interesting static form. Such an optimization-
oriented view of systems as proposed above combines the two ways of seeing
systems: The criterion itself represents the pattern view, whereas the optimiza-
tion process represents the process view. Similarly, there is also connection to
the philosophies: Whereas Heraclitus emphasized the processes, Plato tried to
capture the “ideals”, or the patterns beyond the changes.

Now one can conclude that the chemical balance system formally implements
pattern matching of the form (2.12) as studied in the previous chapter, with
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variables being interpreted within the new structure:

J(x, u) =
1
2

(u− ϕx)T
W (u− ϕx)

=
1
2
xTϕTWϕx− xTϕTWu+

1
2
uTWu,

(3.6)

so that

J(x, u) = J (x, u) +
1
2
uTWu. (3.7)

The two cost criteria (3.5) and (2.12) are equivalent what comes to the “ten-
sions” imposed by them; constant factors (with respect to x) do not change the
location of the minimum, nor the gradients, for given u. The correspondence
between the cost criteria is reached when one defines the matrices as{

A = ϕTWϕ
B = ϕTW.

(3.8)

This connection between data structures is studied closer in Sec. 3.2.3. If (3.8)
holds, one can see that all eigenvalues of A are non-negative, meaning that with
such a selection the process (3.4) always remains stable.

Criterion (3.6) gives another view too see the same gradient-based minimization
(3.4). When (3.6) is minimized using the steepest descent gradient approach,
the continuous-time process implementing this minimization is

d x

γ dτ
= ϕTW (u− ϕx) . (3.9)

It is the latter part u − ϕx that makes it possible to reach more sophisticated
results in matching: For example, the adaptation can do the pattern matching
even if the feature vectors in ϕ were non-orthogonal or unnormalized. This
feedback structure will be studied later; now the key point is the basic struc-
ture of this formula (3.9). Whereas the matrix φT implements a mapping
from the environmental variables u into the system variables x̄, the feature
matrix ϕ can be interpreted as an inverse mapping from the space of x into
the space of u. Formally, simply for mathematical reasons, there must hold
φT =

(
ϕTWϕ

)−1
ϕTW , but more useful results can be found.

The effects ϕx and φTu, or diffusion processes into and out from the system,
eventually find their balance — it is not possible to determine the “original
causes”. One can even speak of a holistic view here. Because of pancausality,
there exists a two-way connection: Changes in any variable causes changes in
other variables, no matter whether the variable belongs to x or u. Just as
the environmental variables can affect the system variables, the environment
can be affected by the system. This two-way assumption blurs the traditional
view of distinguishing between a system and its environment, there is no clear
distinction between them. The “original” environment u is changed by x —
but there does not exist any intact environment to start with. The vector u is
the net effect of all accompanying subsystems, all of them together modifying
their common substrate. A subsystem is an integral part of the whole, the
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environment being a composition of subsystems. The whole system — indeed,
the environment — consisting of a large number of subsystems can be dictated
by none of the subsystems alone. The environment should not be seen as a
distinct concept, or as something fundamentally intractable in the hierarchy of
models. The deep connection between the mappings φ and ϕ is a key issue when
trying to capture the behaviors of cybernetic systems.

However, such observations above have little value if the data structures φ, ϕ,
and W (or A and B) cannot be determined. To attack this problem, a wider
perspective is needed.

3.1.2 Elastic systems

Study the cost criterion (3.5) closer. It turns out that this cost criterion has a
very familiar outlook, and employing new terminology, valuable intuitions are
available. To see this, some facts need to be refreshed.

Study a spring having the spring constant k (the spring can also
be torsional, etc.). When the spring is stretched by an amount s
because of an external force F (see Fig. 3.1), there are external and
internal stored energies in the spring:

• Due to the potential field: Wext = −
s∫
0

F ds = −Fs.

• Due to the internal tensions: Wint =
s∫
0

ks ds = 1
2ks

2.

This can be generalized, assuming that there are many forces, and
many points being connected by springs, so that the internal tension
between the points s1 and s2, for example, becomes

Wint(s1, s2) =
1
2
k1,2 (s1 − s2)

2 =
1
2
k1,2s

2
1 − k1,2s1s2 +

1
2
k1,2s

2
2.

A matrix formulation is also possible for vectors s and F , when the
interaction factors are collected in matrices A and B. It turns out
that the expressions for potential energy components have familiar
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outlooks:

Wint(s) =
1
2

⎛
⎜⎝

s1
...
sn

⎞
⎟⎠

T

A

⎛
⎜⎝

s1
...
sn

⎞
⎟⎠ , (3.10)

and

Wext(s, F ) = −

⎛
⎜⎝

s1
...
sn

⎞
⎟⎠

T

B

⎛
⎜⎝

F1

...
Fm

⎞
⎟⎠ . (3.11)

For a moment, assume that vector u denotes forces acting in a (discretized)
mechanical system, and x denotes the resulting deformations. Further, assume
that A is interpreted as the elasticity matrix and B is projection matrix mapping
the forces onto the deformation axes. Matrix A must be symmetric, and must
be positive definite to represent stable structures sustaining external stresses
— these conditions are fulfilled if (3.8) hold. Then, it turns out that (3.5) is
the difference between the potential energies stored in the mechanical system.
Principle of minimum potential (deformation) energy [19] states that a structure
under pressure ends in minimum of this criterion, trying to exhaust the external
force with minimum of internal deformations.

However, the same criterion can be seen to characterize all cybernetic balance
systems. This means that in non-mechanical cybernetic systems, the same intu-
ition concerning understanding of mechanical systems can be exploited. It does
not matter what is the domain, and what is the physical interpretation of the
“forces” u and of the “deformations” x̄, the structure of the system behavior
remains intact: As the system is “pressed”, it yields in a more or less humble
manner, but when the pressure is released, the original state is restored. Indeed,
in chemical environments, this behavior is known as the Le Chatelier principle:
If there is some disturbance acting on the system, the balance moves in such
a direction where the effects are “eaten up”. In this sense, one can generally
speak of elastic systems.

In short: Neocybernetic systems are identical with elastic systems — systems
that are characterized by dynamic equilibria rather than static equivalences.
When rigid constraints are substituted by “soft” tensions, there is smoothness,
and — by definition — local linearizability can be assumed also what comes to
originally nonlinear models.

The effect of the environmental pressures on the system can be easily quanti-
fied: Just as in the case of a potential field, it is the product of the force and
displacement that determines the change in potential energy. Similarly, regard-
less of the physical units of the variables, one can interpret the product x̄iuj in
terms of energy transferred from the environment into the system through the
pair of variables uj and xi. Correspondingly, if there are variables that can be
interpreted as dissipative flows or rates, the energies are also effectively divided
by time, so that it is some kind of power that is transferred. This concept
deserves a name, or, actually, an old concept is renamed: In what follows, this
“emergent level energy” is studied along the following definition:
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Emergy (a scalar dimensionless quantity) is the product of the (ab-
stract) force and the corresponding (abstract) deformation.

As it turns out, this emergy is “information energy” that is the prerequisite for
emergence of information structures. Emergy will here be a much more abstract
thing and will have a broader scope than that used in [58].

Such energy flows have been studied before in more concrete terms in various
contexts: Bond Graphs are used to model systems in terms of energies being
transferred among system components [16]. It has been shown that this mod-
eling strategy can be applied to a wide variety of tasks, so that this approach
seems to be a rather general one. However, Bond Graphs are traditionally used
for modeling different kinds of dissipative flows — and now the emphasis is on
balances. Resulting models are very different.

However, it must be remembered that there is not only the effect from the
external environment into the internal system — there is a symmetric two-way
interaction that takes place. It is the matrices φT and ϕ that characterize the
emergy transfer between the system and its environment. It is not only so that
u should be seen as the “force” and x̄ as the effect: x̄ can be seen as the action
and u as the reaction just as well. This duality makes it possible to tie the loose
ends together.

3.1.3 Evolutionary fitness

It was mentioned above that the key challenge in this chapter is to determine the
goals of evolution. Traditionally, one is facing paradoxes here: Remember that
the layman intuition does not work. If the fitness criterion were the “maximum
number of offspring”, for example, there would only exist bacteria on earth. On
the other hand, the “blind watchmaker” metaphor with random optimization
[21] simply cannot be the mechanism beyond evolution.

Neocybernetic environment-orientedness suggests a criterion emphasizing some
kind of match with environment. Indeed, applying the above discussion con-
cerning energy/power transfer from the environment into the system and back,
an intuitively appealing fitness criterion would be

Maximize the average amount of emergy that is being transferred
between the system and the environment.

No matter what is the physical manifestation of the environmental variables, a
surviving system interprets them as resources, and exploits them as efficiently
as possible. Note that it is not predetermined what should be done with the
extracted energy: The metabolic products can change the environment to be
further exploited. This makes it possible that evolutionary processes can pro-
ceed in many different ways — the relevance of the behaviors is later evaluated
by the evolutionary selection. To begin with, the criterion is always the same
— match with environment — no matter how some “master mind” would like
the system to develop.

When there are resources available in the environment, it is also clever to utilize
this abundance somehow. Typically, if the environmental “force” comes into
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a yeast cell in the form of glucose steps, for example, it is different kinds of
metabolic products that can be produced: In some cases it can be the mannose-
production path that outperforms others, producing new cells; in some other
cases, heat production is to promote — meaning that reproduction and survival
are competing goals. In each case, the assumption here is that the cell most
efficiently exploiting the available energy prospers in the long run.

Following the above lines of thought, the momentary emergy traversing from
the environmental variable j to the state variable i can be written as x̄iuj, or,
when written in a matrix form simultaneously for all variables, x̄uT . Similarly,
the momentary emergy traversing from the state variable i to the environmental
variable j can be written as ujx̄i, or, when written simultaneously for all vari-
ables, ux̄T . If evolution proceeds in a consistent manner, the differences among
such variable pairs should determine the growth rates of the corresponding links
between the variables; when the mapping matrices φT and ϕ are defined as
shown above, one can assume that a stochastic adaptation process takes place,
the observations of prevailing variable levels determining the stochastic gradient
direction:⎧⎪⎨

⎪⎩
dφT

dt
∝ x̄(t)uT (t)

dϕ

dt
∝ u(t)x̄T (t).

(3.12)

However, note that the matrix elements cannot be explicitly localized in the
system. When (structural) changes take place in the underlying system, it is
constraints that are being added or modified, and these changes are reflected
in the elements of φT and ϕ in more or less random ways. All changes in
the underlying structure typically affect the mappings — but all of the changes
affect them only little, at least if the number of components in the system is high.
The high number of discrete parameters are projected onto the low-dimensional
set of more or less smooth “emergent parameters”. When the discrete space
of structures changes into a more continuous behavior of emergent parameters,
more or less consistent evolutionary optimization becomes possible. What is
more, the local optimizations are independent of each other — this makes it
possible that various optimization processes can take place simultaneously, thus
making the optimization a parallel process, relatively fast and robust. The time
scales in (3.12) are much longer than in (3.4).

When looking at the formulas (3.3) and (3.12) together, for example, it is clear
that such adaptation processes are unstable — high correlations between x̄i and
uj eventually result in still higher correlations between them, thus making x̄i

(or uj) grow without limit. Indeed, this adaptation principle is an extension of
the Hebbian learning rule, where it is the correlation between the environmental
signal in uj and neuronal activity in x̄i that has been shown to determine the
synaptic adaptation in real neural cells [37].

There is a positive feedback in the adaptation law, and just as it is with the
Hebbian neurons, the stability problem emerges if the trivial learning rule is
applied (see [92]). Stabilization of the Hebbian learning model has been studied
a lot — but, again, applying the neocybernetic simplicity ideal, one should not
introduce new structures separately for stabilization purposes. For a moment,
simply assume that x̄ and u for some reason remain bounded; then it is rea-
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sonable to assume that the processes (3.12) find a fixed state, and the solution
for this fixed state can be assumed to be such that the matrix elements φji are
relative to the correlations between x̄i and uj , or

φT = q E
{
x̄uT

}
, (3.13)

and in the backward direction,

ϕ = bE
{
ux̄T

}
. (3.14)

If the dynamics of x is rather fast, so that the system can be assumed to always
be in dynamic balance, one can substitute x̄ with x in the above formulas
(and also in the formulas that follow). Here, the parameters q and b are some
constants; the role of these coupling coefficients is studied later. Similarly, the
relevance of the observation (3.15), or the role of the system as a mirror image
of the environment, will be discussed later. This means that the matrices φ and
ϕ should become proportional to each other:

ϕ =
b

q
φ. (3.15)

As it turns out, these factors scale the signal levels in the system and in the
environment. When interpreting (3.15), it is quite natural to think that ex-
ploitation means exhaustion — it is those elements uj that contribute most in
the determination of the values of x̄ that become exhausted the most.

It needs to be recognized that the adaptation in the system according to (3.13)
is completely local for any element in the matrices φ and ϕ even though the
assumed goal of the evolutionary process is presented in a collective matrix
format. It is interesting to note here that the expressions for φ and ϕ are
essentially symmetric. Remember that it was Heraclitus who said “the way up
and the way down are the same” — whatever he meant.

3.2 Towards self-organization

The key question in complex systems is that of self-organization: How can any-
thing qualitatively new emerge from non-centralized operations. For a system
to self-organize, it must first self-regulate. In this section, the issue of self-
regulation is first studied, and the issue of self-organization after that.

The basic solution to regulation is negative feedback. However, now there are
no explicit control structures available, and no organized communication or
signal transfer infrastructure within the system: How to implement the feedback
structures? Again, some background analysis is first in place.

3.2.1 Feedback through environment

The traditional approach to avoid explosions is to include non-idealities in the
originally idealized models. For example, an originally linear system can become
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Figure 3.2: Illustration of two time scales. It is assumed that the dy-
namics of u (on the t scale) is much slower than that of x (τ scale)

stable if nonlinearities are added so that signals saturate. Here, non-idealities
are again included in the model — however, these non-idealities are now located
in an unorthodox place.

There are no unidirectional effects in real systems: Information flows cannot
exist without physical flows that implement them. When emergy is being con-
sumed by the system, this emergy is taken from the environment, or environ-
mental “resources” are exhausted. To understand these mechanisms, study the
pattern matching process (3.9). There are essentially two parts in this expres-
sion: First, in the front there is ϕTW implementing parallel matching of data
against the model, determining the directions of local diffusion processes; sec-
ond, there is u − ϕx defining some kind of virtual environment that is being
matched. The negative feedback structure −ϕx represents real material flow
in from the system into the environment, the resources being exhausted. The
changed environment becomes

ũ = u︸︷︷︸
actual

environment

− ϕx︸︷︷︸
feedback

. (3.16)

The system never sees the original u but only the distorted ũ, where the momen-
tary emergy consumption in the system, or ϕx, is taken into account. Clearly,
as the environment affects the system and the system affects the environment,
there exists a feedback structure; again, one is interested in the final balance
after transients:

ū = u− ϕx̄. (3.17)

Later on, real-life realism will be applied: Only ū is visible, never u itself.
The matrix φT is redefined here: It stands for the mapping from the effective
environment to the state, however this environment is manifested — in this
feedback case meaning that x̄ = φT ū.
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Figure 3.3: The algebraic loop
between the environment and the
system

Because the environment is disturbed by the system, the setting is nonideal, but
this nonideality makes new functionalities possible — like self-organization, as
shown in the next section. But the key issue here is that this negative feedback
keeps the system in balance and signals bounded, as was assumed in the previous
section. The feedback structure is implicit, through the environment, and the
effects of this feedback will be studied below. To start with, no assumptions
like (3.14) are made — ϕ is an arbitrary m× n mapping matrix.

When studying the steady state, there is efficiently an algebraic loop in the
system (see Fig. 3.3), and this means that this structure has peculiar properties.
Multiplying (3.17) from the right by x̄T , taking expectations, and reordering the
terms, one receives

E{(u− ū)x̄T }E{x̄x̄T }−1 = ϕ, (3.18)

so that, when one defines a quantity for measuring the discrepancy between the
undisturbed open-loop environment and the disturbed closed-loop environment,

∆u = u− ū, (3.19)

the expression (3.17) can be written in the form

∆u = E{x̄∆uT }T E{x̄x̄T }−1 x̄. (3.20)

Variables in x̄ and ∆u are mutually connected, they vary hand in hand, but
together representing the same mapping as ϕ, but in terms of observation data,
helping to see another view of the system properties. Indeed, this ∆u can be
seen as a “loop invariant” that helps to see properties of the feedback loop, and
it turns out to offer a way to reach simplified analysis of the signals. Because
∆u assumedly linearly dependent of u, one can interpret this variable as the
actual input driving the whole loop, so that there exists a mapping ΦT

x̄ = ΦT ∆u. (3.21)

Assuming that the feedback can implement stabilization, the system in Fig. 3.3
will search a balance so that

x̄ = ΦTϕ x̄. (3.22)

To have not only trivial solutions (meaning x̄ ≡ 0), there must hold

ΦTϕ = In, (3.23)
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so that the feedforward and feedback mappings have to be mutually orthogonal.
This is a very stringent constraint, and it essentially determines the properties
of the feedforward matrix Φ. Here, to determine Φ, assume symmetry with
(3.18), and make the following attempt and study where it leads to:

ΦT = E{x̄x̄T }−1E{x̄∆uT }. (3.24)

3.2.2 Back to principal subspace

Above, the balances of x were studied as the environment u was assumed fixed.
However, to reach interesting results, the neocybernetic principles need to be
exploited again: It is assumed that there exist various levels of seeing the sys-
tem, and at each of the levels, the balances are exploited. Specially, see Fig. 3.2:
Whereas u was assumed to remain constant this far, it only has much slower
dynamics than x, and on the wider scale, the environment changes. But assum-
ing stationarity of the environment, or balance on the higher scale, so that u
has fixed statistical properties, one can find a “balance model of balances”. A
truly cybernetic model is a second-order balance model, or a higher-order bal-
ance model over the variations in the system — at these levels beyond the trivial
first level balance, one can reach stronger views to see the systems, including
self-organization, as shown below.

So, assume that dynamics of u is essentially slower than that of x and study the
statistical properties over the range of x̄, and, specially, construct the covariance
matrix of it. From (3.24) one has

x̄x̄T = E
{
x̄x̄T

}−1
E

{
x̄∆uT

}
∆u∆uT E

{
x̄∆uT

}T
E

{
x̄x̄T

}−1
. (3.25)

When applying expectation operator on both sides,

E
{
x̄x̄T

}
= E

{
x̄x̄T

}−1
E

{
x̄∆uT

}
E

{
∆u∆uT

}
E

{
x̄∆uT

}T
E

{
x̄x̄T

}−1
.

Multiply these from left and from right by E
{
x̄x̄T

}
:

E
{
x̄x̄T

}3
= E

{
x̄∆uT

}
E

{
∆u∆uT

}
E

{
x̄∆uT

}T
, (3.26)

and, when observing the nature of Φ, this can be written
(
ΦT E

{
∆u∆uT

}
Φ

)3
= ΦT E

{
∆u∆uT

}3
Φ. (3.27)

If n = m, any orthogonal matrix ΦT = Φ−1 will do; however, if n < m, so that
x is lower-dimensional than u, the solution to the above expression is non-trivial
(see [92]: Report 144, “Hebbian Neuron Grids: System Theoretic Approach”,
pages 12–15). It turns our that any subset of the principal component axes of
the data ∆u can be selected to constitute Φ, that is, the columns Φi can be any
n of the m covariance matrix eigenvectors θj of this data. Further, these basis
vectors can be mixed, so that Φ = θD, where D is any orthogonal n×n matrix1,
so that DT = D−1. In any case, there holds

ΦT Φ = In. (3.28)
1Note that there is an error in that report in [92]: The matrix D is not whatever invertible

matrix, it must be orthogonal (as becomes evident when going through the proof therein)



3.2. Towards self-organization 75

Now, return to the assumption in (3.24) — indeed, the above selection for Φ
seems to fulfill the orthogonality claim (3.23):

ΦTϕ = E{x̄x̄T }−1E{x̄∆uT }E{x̄∆uT }T E{x̄x̄T }−1

= E{x̄x̄T }−1ΦT E{∆u∆uT }E{∆u∆uT }T ΦE{x̄x̄T }−1

= E{x̄x̄T }−1 ΦT E{∆u∆uT}2 ΦE{x̄x̄T }−1

= E{x̄x̄T }−1 E{x̄x̄T }2 E{x̄x̄T }−1

= In.

(3.29)

The above derivations show that any set of covariance matrix eigenvectors can
be selected in Φ. However, in practice it is not whatever combination of vectors
θj that can be selected: Some solutions are unstable when applying the iterative
adaptation strategies. Indeed, following the lines of thought shown in [92], the
only stable and thus relevant solution is such where it is the n most signifi-
cant eigenvectors (as revealed by the corresponding eigenvalues) that constitute
the matrix Φ in convergent systems. This means that the system implements
principal subspace analysis for input data. Because of the mixing matrix D,
the result is not unique in the sense of principal components, but the subspace
spanned by them is identical, and exactly the same amount of input data varia-
tion is captured. Specially, if there were some further exploitation of the latent
variables x̄, reconstructions of ŷ would be equally accurate no matter whether
the principal components or the principal subspace only were used.

The above derivations apply to all feedback matrices ϕ: The system signals
adapt to fulfill the equation (3.18). The results only apply to the subspace
spanned by ϕ— that is, in the subspace where there is variation in ∆u caused by
the feedback — and within that subspace, the structure of maximum variation
is found. If ϕ is adaptive and selected applying the evolutionary strategy, so
that ϕT = bE{x̄ūT }, it is the principal subspace of u that is spanned. These
issues will be studied later.

Now one can conclude that completely local operations result in non-trivial
structures that are meaningful on the global scale: Competitive learning without
any structural constraints results in self-regulation (balance) and self-organization
(in terms of principal subspace). Feedback through the environment, or compe-
tition for the resources, results in stabilization and organization of the system.

3.2.3 Closer look at the cost criteria

When comparing to (3.3) to (3.24), and when u in the formulas is substituted
with ∆u, one can see that an appropriate connection between the data structures
is reached when one selects the matrices so that{

A = E
{
x̄x̄T

}
B = E

{
x̄∆uT

}
.

(3.30)

As presented in [92], essentially the same formulas were found in the neuronal
system applying not only “Hebbian learning”, but together with the “anti-
Hebbian” structures, where the feedbacks were explicitly implemented. When
the feedback through the environment is taken into account, simpler structures
suffice, and the results are the same. However, there is a difference: Whereas
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the explicitly implemented feedback structures analyze the original undisturbed
environment, the feedbacks implemented through the environment analyze the
disturbances in the environment. These differences between open-loop environ-
ment and closed-loop environment are measurable only after adaptation, ∆u
substituting the original u in analyses. The model with explicit feedback is
not completely based on local information: There the matrix φ implements a
mapping from u onto x̄, essentially assuming that the feedback is implemented
without affecting the environment itself. Such a feedback scheme is possible in
systems where the actors are “intelligent agents” that are capable of seeing the
environment in a wider perspective, as studied in the next chapter.

Yet another conclusion is in place here: Comparing expressions (3.8) and (3.30),
it turns out that to avoid contradictions, one has to choose W = E{∆u∆uT}. If
the feedback is explicit, on the other hand, the weighting matrix isW = E{uuT}.
The implicit data weighting is also identical with that proposed in the context
of emergent models. The technical manipulations in the previous chapter are
essentially an appropriate way to characterize the behaviors also in the locally
controlled, real (but idealized) system:

Neocybernetic system implements the emergent model structure.
The locally controlled system carries out modeling of the environ-
ment u applying principal subspace based feature extraction (slow
process of determining φ) and pattern matching (fast process of de-
termining x̄).

Having compact formulations for the matrices, the cost criteria can also be
studied closer. Defining J (u) = J (x̄, u), from (3.5) one has, assuming that
there holds (3.24,

J (u) =
1
2
x̄T E{x̄x̄T }x̄− x̄T E{x̄∆uT }∆u

=
1
2
x̄T E{x̄x̄T }x̄− ∆uT E{x̄∆uT }T E{x̄x̄T }−1E{x̄∆uT }∆u

=
1
2
x̄T E{x̄x̄T }x̄

− ∆uT E{x̄∆uT }T E{x̄x̄T }−1︸ ︷︷ ︸
x̄T

E{x̄x̄T }E{x̄x̄T }−1E{x̄uT }∆u︸ ︷︷ ︸
x̄

= −1
2
x̄T E{x̄x̄T }x̄,

so that the average of the criterion can be written as

E{trace{J (u)}} = −1
2

E
{
trace

{
x̄T E{x̄x̄T }x̄}}

= −1
2

E
{
trace

{
x̄x̄T E{x̄x̄T }}}

= −1
2

trace
{
E

{
x̄x̄T E{x̄x̄T }}}

= −1
2

trace
{
E{x̄x̄T }2

}
= −1

2

n∑
i=1

λ2
i .

(3.31)
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The above simplification comes from the linearity of the operators, trace {E{·}} =
E {trace{·}}, and from the properties of matrix trace: Trace it is the sum of the
diagonal elements, and simultaneously it is the sum of the matrix eigenvalues;
for scalars there is naturally no effect. What is more, matrices within trace
can be rotated, that is, trace{M1M2} = trace{M2M1}, if the matrices M1 and
M2 are appropriately compatible. The above result means that the completely
adapted system maximizes the sum of the n most significant eigenvalue squares
as seen from within the system. Using the other criterion, the optimum reaches
E{J(u)} =

∑m
j=n+1 λ

2
j .

It has to be kept in mind that if the feedbacks are implemented through the envi-
ronment, the eigenvalues λi are eigenvalues of E{∆u∆uT }. They are eigenvalues
of E{uuT} only if the feedbacks are implemented actively by some intelligent
agent (as studied in later chapters).

3.2.4 Making it local

The above theoretical derivations were interesting, giving qualitative under-
standing of the properties of the feedback loop, but they were applicable only
for the global scale analyses: From the point of view of the system, ∆u is not
known, as the original undisturbed u cannot be seen without disturbing it. So,
from now on, assume that the system only sees the real, virtual environment as
disturbed by the feedbacks, and, according to (3.13), define2

x̄ = φT ū, (3.35)

where φT = qE{x̄ūT }. Now it is the really measurable environment, as man-
ifested in ū, that is only involved in local calculations. As it is the feedback
that supplies for the basic functionality of a cybernetic system, spanning the
principal subspace of the data, it is the role of the learning to make this data
represent the external environment u as manifested in ū. There are two main
functionalities in the studied system structure: Feedback implements principal
subspace analysis, and adaptation in the form (3.13) and (3.14) implements
match with environment, so that it is the signals ∆u, and simultaneously the
original u, that determine this principal subspace. Going towards maximum
variation spans the principal subspace in the data when the latent variables are
kept linearly independent.

2How is (3.35) related to (3.24), how can they represent the same system — specially,
where does the inverse covariance matrix E{x̄x̄T } emerge in the formula? To have intuition
on this, note that

φT = q E{x̄ūT }
= q E{x̄(u − b/q φx̄)T }
= q E{x̄uT } − b E{x̄x̄T }φT ,

(3.32)

and when solving this,

φT =

(
E{x̄x̄T } +

1

b
In

)−1 q

b
E{x̄uT }. (3.33)

When letting b grow, the required functional structure emerges:

φT = E{x̄x̄T }−1 q

b
E{x̄uT }. (3.34)
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The signals x̄ and ū, as defined as in (3.35), have peculiar properties. For
example, multiplying (3.35) from the right by x̄T and taking expectation, one
has an expression for the latent vector covariance:

E{x̄x̄T } = q E{x̄ūT }E{x̄ūT }T . (3.36)

This holds if the latent variables xi do not fade away altogether (or explode).
These issues are studied later — however, here it is assumed that the system
is strictly cybernetic, all latent variables are occupied, and, for example, the
matrix E{x̄x̄T } remains invertible. On the other hand, multiplying (3.35) from
the right by ūT and taking expectation, one has

E{x̄ūT } = q E{x̄ūT }E{ūūT }. (3.37)

Substituting this in (3.36),

E{x̄x̄T } = q2 E{x̄ūT }E{ūūT }E{x̄ūT }T , (3.38)

or

1
q
In =

√
q E{x̄x̄T }−1/2E{x̄ūT }E{ūūT }E{x̄ūT }T E{x̄x̄T }−1/2 √q

= θ̄′T E{ūūT} θ̄′,

where

θ̄′T =
√
q E{x̄x̄T }−1/2E{x̄ūT }. (3.39)

From (3.36), it is evident that there holds3

θ̄′T θ̄′ = In. (3.40)

This means that the columns in θ̄′ span the subspace determined by n of the
principal components of E{ūūT}, so that ¯theta′ = θ̄D, where ¯theta is a matrix
containing n of the covariance matrix eigenvectors, and D is some orthogonal
matrix; as in Section 3.2.2, it can be assumed that this is the principal sub-
space spanned by the n most significant of them (this claim is confirmed by
simulations). All eigenvalues λ̄j in the closed loop equal 1/q.

Assume that the coupling coefficients qi vary between latent variables, so that
one has φT = QE{x̄ūT} for some diagonal coupling matrix Q. Following the
above guidelines, it is easy to see that the matrix of eigenvalues for E{ūūT }
becomes Q−1. What is more interesting, is that one can derive for the sym-
metric matrix E{x̄x̄T } two expressions: Simultaneously there holds E{x̄x̄T } =
QE{x̄ūT }E{x̄ūT }T and E{x̄x̄T } = E{x̄ūT }E{x̄ūT }TQ. For non-trivial Q, and
if the eigenvalues are distinct, this can only hold if latent vector covariance is

3The property (3.36) has also practical consequences. Recognizing that the Hessian
d2J(x)/dxdxT of the criterion (3.5) becomes a scaled identity matrix, it is evident that the
originally first-order convergence properties of the gradient descent process (3.4) change into
second-order dynamics, the process becoming an implementation of Newton method towards
reaching the balance x̄ after a transient
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diagonal; what is more, the vectors in θ̄T =
√
QE{x̄x̄T }−1/2E{x̄ūT } now not

only span the principal subspace, but they are the PCA basis vectors themselves
(basis vectors not necessarily ordered in the order of significance). This means
that the modes become separated from each other if they are coupled to the
environment in different degrees.

The eigenvectors of u are the same as those of ū, but the eigenvalues are evidently
not. Now study how the realizable mapping φT affects on the virtual mapping
between u and x̄. From (3.35) one has

x̄ =
√
q E{x̄ūT } (u− bϕx̄) , (3.41)

and, when solving for x̄ and when recognizing (3.36),

x̄ =
(
In + bqE{x̄ūT }E{x̄ūT }T

)−1
qE{x̄ūT } u

=
(
In + bE{x̄x̄T })−1

qE{x̄ūT } u, (3.42)

so that(
In + bE{x̄x̄T }) E{x̄x̄T } (

In + bE{x̄x̄T }) = q2 E{x̄ūT}E{uuT}E{x̄ūT }T ,

or, utilizing (3.39),
(
In + bE{x̄x̄T })2

= q
√
qE{x̄x̄T }−1/2 E{x̄ūT}E{uuT}E{x̄ūT }T E{x̄x̄T }−1/2√q

= q θ̄T E{uuT} θ̄.
This comes from the fact that M f(M) = f(M)M for a square matrix M and
a function f that is defined in terms of a matrix power series. From the fact
that the eigenvectors θ̄j of E{ūūT } are also eigenvectors of E{uuT}, one has

E{x̄x̄T } =
√
q

b
θ̄T E{uuT}1/2θ̄ − 1

b
In. (3.43)

The eigenvalues of E{x̄x̄T } also can be expressed in terms of the n most signif-
icant eigenvalues λj of the undisturbed E{uuT}:

√
qλj − 1
b

. (3.44)

As compared to the discussion in Section 3.2.2, the refined model has qualita-
tively very different properties: Whereas in the nominal principal component
model the variation in input is maximally inherited by the latent structure, so
that

∑n
i=1 E{x̄2

ii} =
∑n

j=1 λj , now there is loss of variation within the system.

3.3 Analysis of elasticity

This section concludes the mathematical analysis of the generic neocybernetic
framework. Intuitively, it is elasticity that will pop up every now and then
in the subsequent analyses, and the conceptually farthest-ranging consequences
come from the rigidity of the feedback structure: The environment changes its
outlook because of the systems in it.
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3.3.1 Balance between system and environment

Because of the cybernetic scaling in the form E{x̄x̄T }−1, the latent variables
cannot go to zero, and a balance is found where the opposing drifting effects
are compensated. In the directions dictated by the mapping matrices φ and
ϕ (or E{x̄ūT}T ), there is loss of excitation in the environment, as studied in
Section 3.2.4, so that equalization of environmental variation takes place. This
kind of “trivialization” of the environment is implemented not only through
adaptation in the system, but also through changes in the environment. These
results concerning “constant elasticity” are of extreme importance and they will
be studied later.

It is also so that the environmental variation is suppressed, but simultaneously
it is inherited by the system manipulating the environment. To reach such
cybernetic situation where all n latent variables remain occupied, from (3.44)
it is evident that there must hold qλn > 1. This means that there has to
exist enough excitation to invoke the system, and make the adaptation process
without the feedback unstable.

It is also possible to have separate values for qi and bi in different feedback loops,
represented by different latent variables xi, so that mappings φT = QE{x̄ūT }
and ϕT = BE{x̄ūT } become “species-specific”:

Q =

⎛
⎜⎝

q1 0
. . .

0 qn

⎞
⎟⎠ , and B =

⎛
⎜⎝

b1 0
. . .

0 bn

⎞
⎟⎠ . (3.45)

Then it is not the principal subspace only that is constructed in the cybernetic
process — it turns out that different eigenvalues are localized, and E{x̄x̄T } be-
comes diagonal. The remaining covariance matrix corresponding to the cyber-
netic modes in the environment is, as projected onto the n-dimensional principal
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subspace,
⎛
⎜⎝

1
q1

0
. . .

0 1
qn

⎞
⎟⎠ , (3.46)

and the induced covariance matrix of the cybernetic modes in the system is
⎛
⎜⎜⎜⎝

√
q1λj(1)−1

b1
0

. . .

0
√

qnλj(n)−1

bn

⎞
⎟⎟⎟⎠ . (3.47)

Here, notation j(i) means that any permutation of the n most significant eigen-
values of E{uuT} is possible. It turns out that all cross-correlations among sys-
tem variables are eliminated, E{x̄x̄T } being diagonal; the covariance E{ūūT } is
not diagonal, though. It also turns out that when the feedback is implemented
through the environment, one can have n = m without losing the cybernetic
properties of the system. To be sure that all modes are cybernetic, there must
hold

qiλn > 1. (3.48)

In Figure 3.4, such situation where all modes fulfill the above constraint, is
called (marginally) cybernetic, whereas cases where the “coupling” is too weak
is called “sub-cybernetic”. At least for some of the latent variables, in the
closed-loop system one has 0 = qiE{x̄iū

T }ū — the simplest solution for this
is the trivial x̄i ≡ 0 and E{x̄iū

T } = 0, and the latent variable can fade away
altogether. In real, converged systems, it can also be assumed that existent,
non-vanishing latent structures cannot be sub-cybernetic. Further, looking at
Fig. 3.4: If the (visible) variation structure changes so that the ordering of the
eigenvalues becomes blurred, less significant variation directions outweighing the
originally more significant ones, the situation is called “hyper-cybernetic”. Note
that the system still sees the original variation in u rather than the compensated
in ū, so that there are no convergence problems however high the values of qi
are.

The parameters qi and bi remain free design parameters: Different kinds of
system / environment combinations are instantiated for different selections of
them, all of them equally valid, as long as (3.48) is fulfilled. Now it is possible
to interpret these coupling coefficients in intuitive terms:

• Stiffness ratio qi determines how tightly connected the system is into
its environment, and how aggressively the system affects the environment,
directly determining how “rigid” the corresponding direction in the data
space is.

• Dissipation rate bi determines how efficiently variation on the lower
level (environment) is transferred onto the higher level (system itself).
The non-transferred portion can be seen as loss of resources — see next
chapters for closer analyses.
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To assure cybernetic operation of the system, one can also make qi adaptive.
For example, local manipulations only are needed if one selects (ν > 1 being
some constant)

qi =
ν

E{x̄2
i }
. (3.49)

However, for a strictly cybernetic variable the above expression is automatically
fulfilled, as the variance of the variable is relative to the inverse of the coupling
factor, and other kinds of adaptation strategies for qi can be proposed (see
chapter 6).

3.3.2 Power of analogies

When applying linear models, the number of available structures is rather lim-
ited – indeed, there exist more systems than there are models. This idea has
been applied routinely: Complicated systems are visualized in terms of more
familiar systems with the same dynamics. In the presence of modern simulation
tools, this kind of lumped parameter simplifications seem somewhat outdated
— however, in the case of really complicated distributed parameter systems,
such analogies may have reincarnation.

Mechanical associations

The original intuition concerning mechanical deformable systems in Sec. 3.1.2
can be extended. Think of a steel plate: If there are external forces acting on the
plate, there is a continuum of smooth deformations on the surface. The plate
is a distributed parameter system, but the distinct actors are like “probes”,
discretizing the state space, channeling the infinite-dimensional system onto the
finite set of variables. Not all forces affecting the system can be detected, and
not all deformations can be compensated — but what comes to the visible phe-
nomena, projected through the observables onto the realm of concrete numbers,
they can be mastered in the neocybernetic framework, exploiting the above
observations: The variation structures become restructured.

The infinite complexity of the environment (the “forces”) are mapped onto
the measurements (“deformations”). A special case — but typical in practical
systems — is the distributed case where individual observations and feedbacks
are paired: Only the local environment can be observed, and it is this local
environment that is mainly affected by the corresponding feedback. Now the
structure of the environment is determined by this setup: No matter where the
sensor/actuator pairs are located, the deformations in those locations become
equalized and separated. The system variables are a priori fixed, and the whole
infinite-dimensional “world” becomes anchored by the sensor/actuators.

In a mechanical system, such sensor-actuators are naturally separated in space.
However, in more abstract systems, separation is not about spatial but about
more complicated (higher-dimensional) dependency structures. The mechanical
analogy makes the high-dimensional domain fields better graspable, projecting
the wealth of simultaneous variables into the wealth of locations along the hypo-
thetical plate, the interpretations of the semantics-loaded variables being made
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Figure 3.5: Maximum en-
ergy transfer is reached
when impedances match.
The physical units of
“impedance” can vary
(here it is the masses that
need to be matched)

commeasurable — everything is only about “forces” and “deformations”. It can
be said that dimensional complexity changes into spatial diversity. These issues
are studied closer in the subsequent chapters.

Electrical understanding

Another type of analogues are also routinely constructed: One can select elec-
trical current and voltage rather than force and deformation. The external
forces change to electrical loads disturbing the system: The deformation is the
voltage drop, and the compensating action is the increased current supply (or
vice versa). Traditionally, the non-idealities (output voltage drops when cur-
rent is used) make it difficult to study interconnected groups of systems — the
information flow is not unidirectional — but now the neocybernetic framework
makes it possible to exploit these underlying feedbacks, even though they are
implicit. Applying the distributed parameter framework instead the traditional
lumped parameter one, one can reach again new intuitions, getting rid of SISO
thinking.

The electric analogy makes it possible to extend the inner-system discussions
onto the environmental level, to inter-system studies. When there are many
connected systems interacting, one subsystem exhausting emergy supplied by
the other subsystems — or providing emergy for the others, or transferring
emergy between them — the criterion for system fitness can be based on the
power transmission capabilities among the systems. And it is the product of
current and voltage that has the unit of power, so that exactly the above discus-
sions apply. Only the intuitions change: Now one can utilize the inter-system
understanding supplied by electrical systems. Remember that the maximum
throughput without “ringing” between electrical systems is reached when there
is impedance matching: The output impedance in the former system and the in-
put impedance of the latter one should be equal, otherwise not all of the power
goes through but bounces back (however, in a non-mechanical/non-electrical
system, there is not necessarily inertia, and no oscillatory tendency). This same
bouncing metaphor can be applied efficiently also in non-electrical environments
— the variables can have different interpretations but the qualitative behaviors
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remain the same (for example, see Fig. 3.5). It is not only local agent-level
optimization that results in global system-level optimization, it is local system-
level optimization that finally results in global environment-level optimization.
These intuitions will be exploited in the following chapter.

Again, it is natural to study systems where the pairs of input and output vari-
ables are localized. Assume that m = n and the variables are coupled as pairs,
that is, the mapping matrix φ is diagonal, and ūi and x̄i go together. The elec-
trical analogy makes it possible to interpret the role of the coupling coefficients
qi in the formulas in a new way. As it is this parameter that connects the input
(voltage) and the output (current) for cybernetic systems, x̄i = qiE{x̄iūi} ūi, it
is Zi = 1/qiE{x̄iūi} that explicitly stands for impedance. It is also so that in
an evolutionary surviving environment the corresponding impedances have to
become equal. This means that there is yet another iterative optimization loop
— this time not within one system, but between all pairs of systems within an
environment.

The field of electrical engineering is a highly sophisticated branch of powerful
mathematics, and there developed conceptual tools can directly be exploited
also in the analysis of cybernetic systems. There are some extensions that are
needed:

• This far, only real-valued variables have been seen reasonable, and the
models have been constructed accordingly. However, if transpositions are
always changed to Hermitean matrices, so that in addition to transposing
the matrices the elements are also complex conjugated, all of the above
analyses can directly be extended to complex domain, so that all variables
and matrices can consist of real and imaginary parts.

• What is more, only scalar variables have this far been reasonable. How-
ever, the variables can be extended to function domain: The variables
can be parameterized, so that the constructed models and data structures
remain functions of these parameters. So, if the extra parameter is the
angular frequency ω, the analyses can be carried out in frequency domain
— and then one needs the complex variables.

The above extensions make it possible to study dynamic phenomena by applying
essentially the same formulas. Impedances Zi(s) can be interpreted in terms
of dynamic filters between Laplace-transformed signals Ūi(s) and X̄i(s), being
transfer functions of the complex variable s. The explicit spectra of Zi(s) can
be found for values s = iω, and the inverse transforms as x̄(t) = L−1X̄(s).
This means that it is not only the final balance that can be studied in the
neocybernetic framework but also the stationary non-balance phenomena —
and, indeed, dynamic models are most appropriate for real life systems, where
understanding of how they behave during transients is very relevant. To reach
best possible power transfer it is also these frequency-domain functions Zi(s)
that need to match in neighboring systems. If the system can efficiently affect
its environment, there is an iteration process where all systems constituting the
environment adapt to find the common balance, that is, the objective Zi(s) are
not given a priori.

Further, if the whole environment is evolutionarily optimal, it is the above
observations that characterize the behaviors: The matrix E{X̄(s)X̄H(s)} can
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be interpreted as a matrix of autospectra and cross-spectra for signals in X̄(s).
Again, there are surprises:

Comparing to (3.36), it is evident that the functions qi(s) must
be selected so that they can be interpreted as autospectra, so that
qi(s) = q′i(s)q

′
i(−s) for some valid transfer function q′i(s). The power

spectrum must be real (and non-negative) for all frequencies, mean-
ing that there exist no phase properties present in such spectra.
This means that in qi(iω) there are no phase properties, the transfer
function containing no actual dynamics — meaning that qi(iω) must
have the same value for all frequencies: Coupling coefficient qi must
be constant and real.

The only remaining degrees of freedom in this extremum is the values of the
interaction constants qi and bi. And, indeed, such questions are very relevant in
everyday systems — or, actually, they may be relevant actually to “everything”
... see chapter 9 for more discussion. The system-internal frequency-domain
considerations are elaborated on from another perspective again in chapter 5.

3.3.3 Applications in engineering systems

What happens if the evolutionary adaptation scheme is applied in technical
systems? The discussions above were idealized, assuming absolute evolutionary
optimality (as defined in terms of emergy transfer). However, to exploit the
intuitions in real-life systems where the assumptions about maximum coupling
with the environment do not hold, some more analysis is needed.

Assume that the system is man-made, meaning that the system state can freely
be manipulated; the problem is that the inverse effect back from x̄ to ū typically
is not optimized in the sense of emergy transfer. Still, it needs to be recognized
that the property (3.36), and other observations therein, are general properties
that always apply to the neocybernetic adaptation of φ in the form (3.13), so
that the (visible) environmental signals are equalized. Assume that for physical
reasons the feedback mapping is fixed F instead of adaptive ϕ.

If this inverse mapping F does not follow the “Hebbian learning” principle, so
that (3.14) does not hold, does the whole cybernetic structure collapse? The
answer to this question is no. Assuming that the feedback still can implement
stabilization, the system in Fig. 3.3 will search a balance so that

ΦTF = In, (3.50)

so that the feedforward and feedback mappings still have to be mutually or-
thogonal. Again, the feedback structure ∆u = F x̄ can be written as in (3.20);
to make (3.50) hold, Φ again has to be given by (3.24), and it has to span the
principal subspace of E{∆u∆uT}, because (3.29) still holds.

Even though the feedback structure in the system is fixed, the system prop-
erties remain essentially the same. The system cannot escape the subspace
determined by F — but within that subspace, the model is optimized to tackle
with observed variances. Even though the feedback matrix F perhaps cannot be
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affected, statistical properties of the signals can; after adaptation F spans the
principal subspace of the converged environment as seen in signals ∆u, making
the originally non-ideal system ideal after all, in its own narrow world. The
adaptation strategy does not allow trivial solutions, but excites the system by
force. When the properties of the environment change, it starts reflecting the
peculiarities of the system and its non-idealities — in this sense, it becomes
questionable whether it is the system itself or the environment that implements
the cybernetic adaptation.

It turns out that the latent variables can also be selected freely: Assume that
there exists some x′ = Dx for some invertible mapping matrix D. Then, the
original formulation x̄ = q E{x̄uT}ū, when multiplied by D from the left, is
identical with a new one, where only the variable x′ is employed:

x̄′ = q E{x̄′ūT } ū. (3.51)

Utilizing these observations, the cybernetic studies can be applied for analysis
of non-ideal real-life systems, where complete reciprocity of the data transfer
structures does not originally hold. For example, in some cases these x̄′i can be
selected as the actual control signals acting on the system, as studied below.

Distributed controls

The above results make it possible to implement, for example, new kinds of sen-
sor/actuator networks. In traditional agent systems, the issues of co-operation
and shared “ontologies” are difficult; in the current setting, such problems be-
come trivial: Each agent just tries to exploit the available resources in the
environment. There is no need for negotiation as the interactions and feedbacks
are implemented automatically through exhaustion of the resources. From the
engineering point of view, it is nice that the goal of the agents — exhaustion of
the variation in the environment — is parallel with the the goal of regulatory
control (see [92]).

If the agents share the measurement information, transmitting the local mea-
surements to the neighbors, the principal components oriented control of the
environment is implemented after adaptation. If this assumption of complete
information does not hold, the model becomes distorted: For example, if an
agent only knows its own measurement, if there is no communication whatso-
ever among the agents, the operation of the control network becomes highly
localized, even though there still is feedback through the environment.

As studied closer in the next chapter, the set of sensor/actors implements dis-
cretization of infinite-dimensional partial differential equations, the sensor/actuator
nodes acting as discretization centers. Simultaneously the active participation
of these nodes transforms the environment to fit the cybernetic structures. This
control scheme can be applied, in principle, in chemical systems (the actua-
tors adding chemicals if the measurements are low), or in thermal systems (the
actuators heating the environment). An especially good application example
is offered by mechanical systems, where the deformations and interactions are
manifested practically delaylessly when some external forces are applied. In [92],
examples of cybernetic “stiffening” of a steel plate are presented. This scheme
can be applied also for design of mechanical structures, as shown below.
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Design of mechanical structures

If the sensor/actor network is (virtually) extended over the whole mechanical
construction, the network of controllers becomes more or less continuous; such
settings can be studied, for example, in mechanical design systems that are
equipped with finite element method (FEM), or, perhaps more appropriately,
boundary element method solvers. Then one can apply the assumed forces onto
the construction, calculate the deformations (or, more appropriately, the strains
along the surface), and adapt the local controllers to oppose those deformations.
After adaptation, there should be constant stiffness over the whole structure (see
Fig. 3.6). The nice thing about this scheme is that the controls are manifested
as increased stiffness, and the final “controls” can be implemented in terms of
passive elements, simply adding extra layers of material in the locations of high
experienced stress.

Today’s design methods only take into account the maximum loads, and safety
factors in specifications are needed to cope with unanticipated phenomena. Still,
catastrophes take place every now and then — and typically the reason is fa-
tigue. When the metal structures are under fluctuating tensions, the structures
may break even though the specifications are never exceeded. Fractures are
related to “gnawing”. The cybernetic design approach — effectively damping
and equalizing the vibrations — could offer new perspectives here.

The same idea of cybernetic designs could also be applied in frequency domain:
At least in principle, (active) damping of vibrations can be implemented in this
way. Similarly as in the static case of mechanical constructs, the system needs
to be studied as a whole, as local damping actions can make damping efforts
in neighboring nodes redundant, and iterative adaptation hopefully results in
damping and equalization of vibrations. Here, the extension of the cybernetic
framework to modeling of (discretized) functions is needed: The sensor/actor
nodes host a family of input variables, these variables characterizing the mea-
sured energies at separate frequency bands in the power spectrum. Simpler
implementation of vibration damping is reached if one concentrates on the ve-
locities: Then the “information” being exhausted, or average of velocity squared,
is proportional to the kinetic energy.

Optimization of parameters

The idea of cybernetic adaptation and constant stiffness against environmental
disturbances can also be extended to large-scale industrial plants where there
also is elasticity: A reasonably designed system can sustain environmental dis-
turbations and other changes in a more or less robust way. Smoothly changing
of parameters in the system (control parameters) or in the environment (set
points, etc.) pushes the operating point of the plant in an elastic manner.
Today, the low-level controls are typically poorly tuned, and separate control
loops can have very different time constants, others being sluggish and other
ones being faster. Uneven stiffness is manifested exactly in such heterogene-
ity between subsystems, and one can assume that cybernetic adaptation of the
control parameters could make the subsystems better compatible.

In technical systems, however, there are domain-specific goals for evolution.
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One would not simply like to blindly adapt towards maximum emergy transfer,
as assumed above, but one would like to maximize the match with the envi-
ronment and the intended system functionalities. When the vector of system
functionalities in x is predetermined by an external designer to contain some
kind of quality measures, characterizing the “goodness” of operation, guided
evolution is possible. The latent structure between u and x can technically be
implemented in terms of not only correlations among variables in u (in the PCA
style), but also in terms of cross-correlations between u and the intended x (in
the PLS or CCR style, for example — see [42]). When the design parameters
in u are seen as variables on the slower time scale, evolution towards better pa-
rameter values implementing higher values of x̄ can locally be seen as pressing
the elastic system into a desired direction along the determined axes of “qual-
ity freedom” (see [92], Report 139: “Process Performance Optimization Using
Iterative Regression Tuning”).

3.4 Towards complex complex systems

How are the above abstract assumptions about evolution related to real-life
observations? Indeed, it seems that increase of stiffness, or hyperplasia, is the
key behavior in natural adaptation processes. For example, skin becomes thicker
if it is burdened, and a muscle becomes stronger if it is used (reactions of the
neural system to signal activation are discussed in detail in chapter 7). Similarly,
companies invest money and employ new staff if there is very much activity.
This kind of trivial-looking behaviors, when boosted with self-regulation and
self-adaptation, result in global-level system properties that can be described in
terms of principal components. Because of the properties of PCA, adaptation
in the assumed form maximally compensates the external disturbances.

This far, simple systems have been studied. The key observation is that, when
seen at the correct level of abstraction, “all” complex reasonable systems are
elastic. Elasticity offers tools to attack really complex, formless systems. From
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Figure 3.7: Extending the cybernetic framework: The studied cybernetic
system structure (a) is symmetric what comes to the interactions, and
the roles of the system and the environment can be shared (b) — and,
finally, the environmental variables can be physically distributed (c)

now on, no accurate mathematical analyses are available any more: One just
has to trust in the strong modeling principles, and intuition. These elasticity
ideas are closer studied in the subsequent chapter.

As a brief introduction to extensions of elasticity considerations, look at Fig. 3.7.
It turns out that there can exist a wealth of neighboring systems that are more
or less tightly connected together; from the point of view of a single subsystem,
the neighbors together constitute the environment. As it is various neighbors
that see the same system as their environment, the coupling factors q in differ-
ent subsystems must become identical as they see the same level of variation
in their environments. As seen from outside, it is only the coupling coefficients
that remain, determining the dynamic properties of the system. As the num-
ber of neighbors grows, dynamic transitions become diffusion processes among
differential elements. In any case, the local adaptation as presented before still
gives consistent results. In physical systems the interactions are concrete, but
they need not be — it is all about information transfer. Interchange of the roles
of the system and the environment is studied in more detail in the next chapter.

As a conclusion of this chapter, it can be observed that within the neocybernetic
framework, local learning has globally meaningful results. As seen from func-
tional point of view, new interpretations for cybernetic systems are available:

• First-order cybernetic system finds balance under external pressures,
pressures being compensated by internal tensions. Any existing (complex
enough) interacting system that can maintain its integrity in a changing
environment is cybernetic in this sense. First-order cybernetic system
momentarily implements minimum (observed) deformation emergy in the
system.

• Second-order cybernetic system adapts the internal structures to bet-
ter match the observed environmental pressures, towards maximum expe-
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rienced stiffness. Any existing (competing) interacting system that has
survived in evolution finally is cybernetic in this sense. Second-order cy-
bernetic system additionally implements minimum average observed de-
formation emergy in the system.

• Higher-order cybernetic system adapts the external structures of the
system to better match the observed environmental structures by adjust-
ing the impedances. Evolutionarily optimal environment, or system of sys-
tems, assumedly only contains higher-order cybernetic systems. Higher-
order cybernetic system implements maximum average transfer of emergy
through the environment.



Level 4

Systems of Populations as
Symbiosis of Agents

Studies of systemic biology must not be restricted onto the cellular level — after
all, another class of truly challenging biological phenomena concern populations.
One needs systemic means to understand the superposition of individual actions.
Today’s understanding of ecologies is surveyed, for example, in [48].

Again, abstracting away details gives statistical models capturing the population
properties in the large. There exists a wealth of first-principles models that are
tailored to explicitly explain certain ecology-level phenomena (for example, see
[57]). However, applying the straightforward modeling principles and letting
them cumulate, the originally simple (nonlinear) formulas soon become very
complicated, and the value of the models becomes compromised. One should
keep in mind that it is individuals only that exist, giving rise to the emergent
properties: It can be claimed that without taking the actors into account gives
incorrect intuitions. Not whatever simplifications are appropriate when mod-
eling populations — again, it is the neocybernetic principles that should be
applied. This time the model structures already exist, and the “off-the-shelf”
models can be directly exploited.

Neocybernetics offers tools to capture the population-level global properties
that emerge from local interactions. It has been said that ecology is systemic
biology; now one can reach towards systemic ecology. Ecosystems with the
same underlying principles also exist outside the boundaries of conventional
biological thinking, and examples are presented from other fields to perhaps
reach interesting cross-fertilization among disciplines.

4.1 Extending from a domain to another

In the previous chapters, concrete examples were studied in a bottom-up fashion,
finding holistic views characterizing the system-level phenomena. Now when
the concepts have intuitive substance and content, it is possible to continue the
studies in other domains, exploiting the same understanding, without any more
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Figure 4.1: It is the
neighboring systems
(agents) that are the
observed environment
(graphics by Maurits
Escher)

going into details. There now exists understanding about the crucial nature
of complex feedback structures within the system: One does not need to know
exactly how they are implemented — but to maintain the system integrity they
just have to exist there.

4.1.1 Environment seen as neighbors

How to define a system? It has been said that the most complete definition can
only be such that

‘system” is a system.

This “definition” employs our intuitive understanding — what can be seen as a
relevant entity, functionally consistent host of dynamic attractors, can be seen
as a system of its own. It can be claimed that all other definitions of system
are too narrow, and would not cover all aspects of the idea. However, such
heuristics is a challenge to the traditional systems thinking.

Traditionally when analyzing systems, it is the system boundary that is perhaps
the most important thing to characterize: The boundaries separate the “inside”
(the system) from the “outside” (non-system). According to the selection of
these boundaries, variables coming from outside are seen as input signals. When
doing neocybernetic modeling, however, even the basic conventions are changed:
The systems and their boundaries become relative, dependent of the point of
view. Now there is no separate environment — when the feedbacks are seen as
an integral part of cybernetic systems, environment becomes an essential part of
the whole, the system properties being determined together by the environment
and the actual system. As John Donne almost said, “no system is an island”.

The purpose here is to extend the studies from the realm of inner-system phe-
nomena onto the environment. In principle, one is stepping from the (as-
sumedly) known into the unknown; however, it turns out that it is the same
ideas that hold inside and outside. One could say that somebody’s environment
is somebody else — it is other (more or less) similar systems that are found
outside. The neocybernetic model formulas are reciprocal and they can be in-
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verted quite formally without changing their structure — the “inside” becoming
the “outside”, and vice versa. One only turns from studying a single system
towards studying a set of such individuals. The system’s “inputs” are (mainly)
neighboring systems’ state variables, and vice versa. Indeed, when the internal
structure of the combination of systems becomes more complicated containing
more variables, the actual independent inputs coming from the outer world are
less visible than the “internal inputs” (see Fig. 4.1).

The uniqueness of the system boundaries becomes challenged also in other ways.
Traditionally it is hierarchies of systems that are used to structure complex do-
mains, but now one cannot determine a hierarchy of subsystems in an unambigu-
ous way — the appropriate structure depends on the point of view, depending
on the level of accuracy, and the selection of variables. A single subsystem can
concentrate on a single functionality, or it can take care of more functionalities
— that is, n can be 1 or higher — no matter how the boundaries are selected,
self-organization reconstructs the functional structure according to the signal
properties, the same (linear) principles operate on all scales.

Assume that each cell stands for a single functionality only, the functionalities
being different for all cells. Further assume that diffusion distributes the signals
(chemical concentrations) evenly among the cells. The system of subsystems
finds its balance, the subsystems exhausting each other’s “waste products”.
This is the simple basic scenario for explaining symbiosis — relevant function-
alities are distributed among localized actors (in this case cells). It needs to
be recognized that there is no “negotiation” or higher level operation control
needed: All cells just optimize their behaviors in their very local environment
(and, indeed, the cells themselves do not even know they are carrying out some
optimization).

More sophisticated structures of symbiosis are readily imagined. Assuming that
each cell is alone responsible of only differential effects, it is the steady state
values x̄i that reveal the proportions of different functionalities, or cell types,
that are needed to fulfill the environmental needs. When there exist individual
cells sharing the same functionality, the capacity limitations are compensated
by the high number of identical subsystems. The balance ratios of the numbers
of representatives for different types are determined by the balance values x̄. It
is all about dynamic balance pursuit again.

The symbiotic “systems of systems” are characteristic also to more complex
domains: From the level of individual cells one can get to the level of tissues
and organs; from the level of individual organisms one can get to the level of
populations; and from the level of species one can get to the level of ecosystems
— what is more, the organisms and their systems can be physical or abstract.
This kind of characterization is possible in principle. As the systems become
more complicated, however, the signals and interactions become more abstract,
and no conclusive models or predictions can be made. When escaping the
immediate chemical domain, there is more freedom to construct the systems.
Cognitive systems (symbiosis of neurons) will be studied in chapter 7, and the
role of different views of the available information is studied in the chapters 5
and 6. Some ideas concerning symbiotic systems are presented below.
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Optimum state

Adaptation process

Figure 4.2: The adaptation strategies and dynamics can be very differ-
ent in different kinds of systems — but the final state, the hypothetical
optimum, is the same for all

4.1.2 From individuals to a population

When extending the analyses from symbiosis of cells to symbiosis of popula-
tions, in principle, it is easy to reinterpret the symbols: The vector x̄ represents
population sizes, ū is the vector of available resources (different types of food
and other living conditions), and matrices A and B contain the interaction fac-
tors (competition) among populations. The columns in φ can be called forage
profiles, exploitation conventions corresponding to the populations. But is this
more than renaming? Are the very different systems really analogous? And,
after all — is there universality among complex systems?

When abandoning the familiar domains, all points of support seem to be lost: If
studying distinct organisms, the chemical cues, for example, can be completely
secondary when the interactions become implemented. As the environment is
seen as consisting of individual subsystems, it is no more mere signals that
can be measured in the environment; the higher one gets in the hierarchy of
systems, the more the inputs become more and more abstract functions, as it
is the functionalities x̄i that are used as inputs ūj . It is assumed that such
functions offered by the environment (or need of functions as requested by the
environment) can somehow be quantified. In any case, it is the basic intuitions
that remain: There must again exists the same kinds of underlying principles to
make the emergence of organization from non-controlled local behaviors possible
— there must be common pursuit for survival shared by all agents. But there
can exist many alternative ways to survive in the environment — why should
one favor one specific model structure?

The key point is that following the neocybernetic model, there is evolutionary
advantage. It turns out that optimality in terms of resource usage is reached,
meaning that surviving, successfully competing natural populations assumedly
must have adopted this strategy. As soon as the coupling coefficient q in a
system reaches the threshold in (as discussed in chapter 3), there exists a clear
evolutionary gradient visible towards the optimum. This all is mathematically
very simple, and as long as the neocybernetic strategy is the only known route
to self-organized principal subspace analysis, it can be claimed that there exist
no competing theories. In the long run, it is the models that implement the
PCS model that can best be matched against variations in the resources ū (in
terms of quadratic variation criteria), resulting in most efficient exploitation of
the resources. And populations with optimal strategies outperform others in
terms of biomass and more probable survival.
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Figure 4.3: A typical simulation illustrating the behaviors of three (hy-
pothetical) competing species (in arbitrary units). The environmental
conditions, or resources in the vector u, are random but have a certain
statistical distribution, and the populations x̄ are assumed to instanta-
neously follow the changes. Population sizes below zero are simply zeroed
during adaptation — finally this results in emergence of populations re-
maining always positive-valued

In the framework of resources and their exhaustion, “power transfer” between
systems can be made concrete: It is assumed that the product of consumed
resource and produced activity has the dimension of power, as being reflected
in reproduction capability. — Of course, the whole theory collapses if there are
no variations in the signals, if studying static environments. In such a case no
strategy can be claimed to outperform the others; these issues are studied on
Level 5.

It is perhaps hard to believe that the very nonlinear genetic mutations and ac-
commodation processes, etc., would have anything in common with the cellular
adaptation details. How could the same model apply? The key observation here
is that it is, again, only the dynamic equilibria that are studied, not the all pos-
sible routes there. Whereas the adaptation processes can be very complicated
and varied, the final emergent optimum can be unique in terms of tensions (see
Fig. 4.2). When concentrating on the balance only, it is also the dimensional-
ity of the problem that goes down, making the optimization process feasible.
And, remembering the previous chapter, it is the “interfaces”, common variables
between interacting systems only that count.

4.1.3 Properties of a cybernetic population

Traditionally, ecological models concentrate only on a single species or interac-
tions between two species (for example, see [79]). Larger models try to charac-
terize the niches, implementing explicit forage profiles that describe the resource
specifications for each species [75]. However, such models for complete ecologies
need careful tuning; evolutionary strategies typically become unstable, mean-
ing that most of the species become extinct, only some of them prospering and
exhausting all resources.

When applying the neocybernetic model, ecosystem simulations remain stable
even though the dynamics looks “naturally chaotic”: There exists unforced
dynamics in different time scales (see Fig. 4.3). Adaptation in the system is
based on cybernetic evolution — there is vivid dynamics, but no explosions
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take place. Rapid stochastic variations in the population are followed by slow
long-term behaviors. No fine tuning is needed: If there is enough variation in
the resources, after system-wide adaptation a balance is found where there is a
“niche” for every species. The niches are characterized by the principal subspace
dimensions, the forage profiles φi mapping from the prevailing resource vector
ū to the balance population x̄i. The roles of the species cannot be predicted,
only the subspace that is spanned by all of them together is determined by
the environment. The key observations concerning the neocybernetic model
properties can be summarized:

• Robustness. In nature, no catastrophic effects typically take place; even
key species are substituted if they become extinct, after a somewhat tur-
bulent period. Using the neocybernetic model, this can also be explained
in terms of the principal subspace: If the profiles are almost orthogonal,
in the spirit of PCA, changes in some of the latent variables are indepen-
dent of each other, and disturbances do not cumulate. Also because of
the principal subspace, sensitivity towards random variations that are not
supported by the long-term signal properties are suppressed.

• Biodiversity. In nature, there are many competing species, none of them
becoming extinct; modeling this phenomenon seems to be extremely diffi-
cult (see [89]). Now, again, this results from the principal subspace nature
of the model: As long as there exist various degrees of freedom in input,
there is reason for different populations. Within species, this also explains
why in balance there exists variation within populations as the lesser prin-
cipal components also exist (compare to the Hardy-Weinberg law: “In a
large, random-mating population, the proportions of genes tend to remain
constant from generation to generation”).

4.1.4 “Complete-information ecosystems”

Regardless of the uniqueness assumption concerning the optimum state, prac-
tical manifestations of the underlying dynamic balances vary a lot: What kind
of populations will exist is not only dependent of the environment, but it also
depends on the physical constraints. In nonlinear systems it is not only the final
balance that is relevant — the route towards the optimum makes a difference,
as the process can end in local minima. As will be discussed on Levels 5 and 6,
it is the availability of information that makes a difference, and nonlinearities
can often be interpreted in terms of different kinds of information blockages.
For example, how the information theoretically motivated resource variation
coverage is carried out in an ecosystem, depends on what kind of species are
available — information cannot cross the species-wise genetic pools at the same
rate. All these blockages together give rise to non-logical outcomes even in the
equilibrium. During this chapter, however, complete availability of informa-
tion is assumed. In practice, this means free mobility and information transfer
among the signal carriers within a specific phenosphere.

It turns out that from the simplest chemical levels, it is easiest to skip all the
intermediate levels (tissues, organs) directly to the most challenging levels, to
the least structured ones, consisting of populations of more or less “intelligent
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agents”, where complete information exploitation can be assumed. The in-
termediate levels necessitate more explicit structures, or differentiation among
populations, and nonlinearities are necessary, as will be studied on Level 6.

The knowledge is also assumed to be shared equally by all actors in the system.
It is assumed that all members of the populations can recognize all resources,
and their weighting of different types of resources is similar. Whether this can
be assumed or not in natural populations is to remain an open question here —
but, again, when seeing ecosystems in a wider perspective, fruitful analyses can
be continued.

It turns out that ecosystems need not be ecological — they can also be econom-
ical. There are attempts to apply holistic thinking to economy (for example, see
[76]) — however, those models are constructed in the traditional way, bottom-
up, trying to capture the system’s properties in a collection of its parts, and a
wider view is needed.

The above cybernetic discussions can somewhat directly be applied to market
economy: Companies stand for species, and variables x̄i, or “population sizes”,
are company turnovers; input ūj is the available “benefit” in the product group,
and the vector φi characterizing the company contains its production profile
(other interpretations for the symbols are also possible). Individual humans are
only “signal carriers”, like ants in an ant colony. Strategies dictate the company-
wise (or less wise) adaptation styles, as being manifested in economic decisions
involving recruitment policy, investments, etc. Adaptation in a company is very
nonlinear and non-continuous – however, if the company is to survive in the
competition, the stochastic processes have to be more or less consistent in the
long run, resulting in the balance determined by the environment. For example,
the growing system stiffness becomes implemented in a natural way, new workers
being employed if there is need for them, if there is work overload. From the
point of view of the whole system it is statistically irrelevant how resources are
distributed among the companies – however, for a single company, the details
make a big difference: An individual company may prosper or suffer, or get
extinct. Yet, in the case of bankruptcy, the system soon fills the niche with
others companies.

What makes such an extension to a still more complex domain motivated, is
the fact that quantification of resources and efforts becomes easy in abstract
enough systems. In an economy, the universal measurement stick for “benefit”
is money. All variables can be made structureless and dimensionless, all things
become commeasurable when they are put on the money axis. When the role
of money is generally accepted, and when the prices have been agreed upon,
the cybernetic system can become more efficient, streamlined, and transparent.
“Everything has its price” is the truth in an efficient economy; it is irrelevant
whether or not this is ethically sustainable. One has to forget about morals:
There is no “good” or “bad” in nature.

So, in principle, market economy operates like an ecosystem, and numerical
analyses and simulations can be carried out. However, there also exist features
in there that motivate a still wider scope. In different kinds of memetic systems
one does not necessarily speak of money, but it is the same types of evaluations
and assessments of alternatives that are being carried out, balancing between
different kinds of visions of the reality. Such memetic systems include, for exam-
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Environment EnvironmentEnvironment

Figure 4.4: Communication and coordination among agents. The new
view of differs not only from the centralized approach (on the left), but
also from the traditional distribution, where the coordination is based on
explicit communication (in the middle): Now the emphasis is exclusively
on the environment (on the right)

ple, scientific, social, and political arenas. When politicians speak of “values”,
this should actually be taken in quite concrete terms: Everything can be traded,
only the prices vary. Tensions in the systems are caused by contradicting as-
pirations. To understand such constructivistic systems, the role of the humans
needs to be elaborated on.

4.2 Agent systems

There is a huge conceptual leap from a concrete domain — chemical signals,
for example — to the domain of more or less intentional actors like animals
or humans. Because of the intuitive differences, it is perhaps appropriate to
speak of agents, when the signal carriers are functionally such independent
entities with more or less “free will”. The question is, again, very much about
appropriate connotations. The discussions necessarily become very deep (for
example, see [30] and [7].

4.2.1 Humans as agents

The agent paradigm has become popular as a framework for studies on dis-
tributed intelligent systems [67]. Today it is mostly about “software agents”:
The agents have been explicitly programmed to behave appropriately without
centralized control [51]. To implement cooperation among the agents, compli-
cated communication protocols and common ontologies are needed, and it is
difficult to implement some adaptive behaviors in such systems. Now, on the
other hand, one has trivial data-based ontologies and semantics: Everything
important in data is buried simply in correlations between signals. There is no
need for communication strategies, because the only interaction takes place in
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the form of feedback through the environment; indeed, there is a new view of
seeing the structure of distributed systems (see Fig.4.4).

When extending the studies in the previous chapter to more or less intelligent
agents, when claiming that systems consisting of humans, too, implement similar
emergent functionalities, one has to motivate why the simple model structures
still are applicable. For example, what are the “mental degrees of freedom”?
As shown in chapter 7, neuronal elasticity in the realm of signals can easily be
motivated, but how about the higher level, the visible level of mental functions?
Indeed, at least there are some qualitative intuitions that are supported: In a
new situation the behavioral spectrum is wider for a novice than for an expert.
Through cumulating life experience the “mental stiffness” increases as the pro-
cess of automatization is manifested in all types of behaviors. Because of the
difficulty of quantifying abstract phenomena, nothing very concrete can be said
here — however, as studied in chapter 5, the variables in one’s subjective world
become the measures that characterize the objective world, too.

How about the learning strategy Hebbian-style — is that obeyed by humans?
There are two opposite mechanisms that are needed: Further adaptation to-
wards the resources in the case of intense activation, when doing the “right
things”, and reallocation of efforts in the case of deprivation, when doing the
“wrong” ones. And, indeed, it can be claimed that there exist the two classes
of basic low-level mechanisms that seem to be wired in human brains — and,
at least to some extent, also in less sophisticated animals:

1. Motivation strategies. When one invests effort in reaching some re-
sources, successfully managing in doing that, this behavioral pattern is
typically strengthened. In other words: When one’s activity x̄i is re-
warded implicitly in terms of resources in u, one’s behavioral profile is
adapted towards such practice, so that there will be more activity in that
direction. Clearly, this is very well in line with the assumed cybernetic
learning strategy. For humans, the resources and rewards need not be con-
crete — the “resources” in u can be different kinds of possibilities available
in the environment, and the reward can also be provided in terms of en-
couragement by some external critic. On the other hand, similar (but
less abstract) learning behaviors have been observed also in animals that
can modify their forage habits according to the available prey; in lower life
forms, the conditioned reflexes are a manifestation of the same non-genetic
accommodation processes.

2. Compensation strategies. What happens, on the other hand, if an
agent never succeeds in its strivings, always being turned down? Among
lower-level organisms, when the competition concerns food and other phys-
ical resources, this typically results in the organism gradually fading away
— however, for intelligent agents the results need not be so acute: When
the resources are interpreted as possibilities, there exist other options. The
psychological concept compensation means the mental reaction against
disappointments (among other protective mechanisms), where one claims
that “it was not what I wanted really”. In a way, it is only self-deception
— but it is very real in one’s subjective world. The “local reality” will
be re-evaluated, the unattainable resources are understated; in technical
terms, this means that one’s weightings of the variables are redefined.
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This may change one’s orientations altogether: Hopefully one can finally
exploit and further develop one’s personal capacities, when the domain of
one’s special talent is found.

When studying both of the above mental processes, and the corresponding be-
havioral adaptations, the creativity of a human seems to be endless. There
always exist new ways to see the world and its possibilities, and new ways to
better manage are invented. When a human implements system adaptations,
wider views and understanding is available: When there exist various separate
cybernetic systems coexisting in the same mind, cross-fertilization of ideas be-
comes possible.

Animals can actively not only change the weightings of the variables, but they
can also change the contents of them — moving to another environment, for
example — but human’s flexible mind makes it possible to change not only the
values but the variables themselves.

Introducing new variables means that the structure of the system changes.
Structural changes can be implemented in a human mind in a very efficient
way. Intelligence makes it possible for an agent to escape outside the existing
constraints of the prevailing ways of seeing the world. However, free will is a
fallacy — with a twist: Even though quite original behaviors are possible in
principle, not obeying the basic cybernetic principles is not seen as personality
— such destructive behavior would generally be regarded plain insanity.

4.2.2 Intelligent organizations

When seeing in the wider perspective, the above selfish strategies result in mer-
ciless competition. In the social animals, there seem to exist mechanisms to
easier find the sustainable society-level dynamic balances: Some primates share
a simple hard-wired social strategy that could be called monkeying, perhaps the
simplest form of co-operation. It is typical also for humans to mimic behaviors
and follow the leaders, making it easier for organization in low-level societies
to emerge. But humans are not bound to the hard-wired behavioral patterns:
Cultural evolution has bypassed the biological one.

There are some functionalities that are necessary for a cybernetic agent: One
needs sensing, inference, and memory, or, in concrete terms, measurement and
analysis of signals, recognition of correlation structures, and storage of these
structures. If the agents have more capacity, it is possible, for example, to
implement different kinds of optimization strategies. Whereas the simplest
agent only tries to survive, not taking other agents into account, blindly ex-
ploiting the resources it can see in its extremely narrow local world, a slightly
more sophisticated agent can see its environment in a wider perspective: It
can see the actions of its neighbors, and it can actively start avoiding compe-
tition. A more intelligent agent not only tries to go for resources according to
(3.13), but it also escapes neighbors, predicting the interactions and taking the
feedbacks into account beforehand, changing the “Hebbian learning strategy”
into “Hebbian/anti-Hebbian strategy” [92]. Such higher-level strategies make
it possible to reach emergence of higher-level structures (principal subspaces,
etc.) also in rigid, non-flexible environments, where feedbacks will not become
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implemented through the environment (this is the case, for example, if the pop-
ulation exploiting the environment is negligible as compared to the amount of
resources). And if an agent can see still wider horizons, it is possible to opti-
mize even further, reaching towards cybernetic optimization, balancing among
a network of neighbors; such balancing becomes easier if there is cooperation,
and if the agents can somehow negotiate.

Communication, or “negotiation” among agents in its simplest form is mere sig-
nal transfer: It is not necessarily a purposeful act, as distribution of the physical
chemical levels can be seen as transmission of variable values as well. In lower
animals and especially in insects, chemicals play a central role in communica-
tion not only within a single organism but also among them. In the world of
smells and scents, low concentrations of thousands of chemicals can be detected,
each of them augmenting the vector of available cybernetic variables, and it is
pheromone transfer among the signal carriers that guides the construction of
ant hills, for example. In higher animals and especially among humans, on the
other hand, more complex coding of messages takes place. It is the quality and
extent of communication among humans that determines the limits of learning
organizations as discussed in [71] — issues concerning “information bandwidth”
are discussed in chapter 5. Because the principles are (assumedly) identical on
different layers of cybernetic systems, the functions of a single human can be
extended in an organization of several humans assuming that information trans-
fer can be provided in a seamless way. The possibilities of the organization to
construct networked intelligence is dependent of the agents’ abilities to under-
stand each other; in this sense, perhaps it is the EQ, or emotional intelligence
quotient, that determines the capacity of the higher-level intelligence. It is all
about information transfer — systems can become one if the communication
among them is tight enough.

But if an agent is (too) intelligent, it probably uses its wits to choose itself how to
utilize the information. To avoid anarchy and to reach evolutionary advantage
on the society level, not whatever game theoretic optimization in the intelligent
agents can be tolerated as a general rule, however. To reach emergence of
higher-level patterns in the global system, it is beneficial if the agents share
some common code. There are no genetic chains, but there are cultural ones.
After all, the agents need to be humble, obeying some categorical imperatives
that somehow persuade or press the agents to think about the common good.
It is not a coincidence that in all prospering human cultures there have been
some religion dictating the roles for the individuals. However, the moral codes
can be implemented not only through religion, but also through philosophies or
through secular legislation — somehow expressing the Kantian idea “only act
in such a way that wouldn’t ruin the system if everybody acted that way”. And,
today, the modern imperatives guiding towards the “economical optimum” are
implemented in terms of fashions, etc. Culture and social codes help in finding
one’s niche without wasting ones energy in vain, kicking against the pricks.
There is a niche for only one clown in the classroom.

There are humans with varying properties. In an intelligent organization this
is taken into account, and the tasks and workloads are organized according
to individual abilities. A team needs its organizers, “mood makers”, etc.; the
traditional line production style optimization is not cybernetically robust. As
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the humans learn their jobs still better, adapting in their environments, coun-
teracting the local tensions, finally finding their niches, the operation of the
organization becomes streamlined. In the cybernetic framework the evolution
theory can be extended to human cultures without having to employ the cruel
ideas of “social Darwinism”.

One can also draw conclusions concerning wider organizations. The “Adam
Smith Type” capitalist economy is efficient, explicitly implementing the sur-
vival of the fittest, but a designed welfare state based on global-level optimiza-
tion directly implementing the global equilibrium can be even more efficient —
assuming that the underlying model of the society is correct. The laws, etc.,
should be determined based on correct predictions of the system dynamics and
inertia. The less one can afford experimenting and iteration, the more accurately
one should capture the balance already in design. Intelligent, more cultivated
strategies make it possible to avoid needless competition — struggling for life, or
suffering in general, as studied in the Eastern philosophies, and also by Western
philosophers like Arthur Schopenhauer.

To truly understand the universality of cybernetic thinking, one can extend the
studies from autocybernetic to allocybernetic systems: This far, the actors im-
plementing the functionalities have been themselves part of the system; now,
however, it is assumed that the actors operate in another phenosphere. Still,
after the variables are evaluated and the adaptation is carried out, it is the gen-
eral cybernetic principles that determine the domain area structure regardless
of the intentions of the actor.

4.2.3 Constructivistic systems

The extended intelligence in agents can be exploited in different ways. It is
all the capabilities that can be enhanced: New variables can be made avail-
able, more storage can be allocated, and structures of correlation can be defined
in new ways; “creativity” is the key to clever combinations of new capacities.
There can exist various overlapping optimization processes with different sets
of variables taking place simultaneously in one agent, opening up a wealth of
cybernetic, fractally overlapping systems. A human agent with his/her mag-
nificent mental capacities can operate on phenospheres that this agent is not
physically part of. There exists no exact borderline between autocybernetic and
allocybernetic systems — the larger the system is, the more the system follows
its own dynamics, and the human can only look aside; or, indeed, the human
changes to a mere signal carrier.

When the agents are human beings, perhaps the most characteristic allocyber-
netic systems are located in infosphere or ideasphere. The “idea atoms” are
called memes, and they are the “genes of the infosphere”, being the building
blocks to be appropriately combined [20]. The term “meme”, referring to some
concrete idea, is not always quite appropriate; typically, needs and desires are
not necessarily ever explicated. The human mind supplies for the platform for
the memes to operate: Humans collectively host the memetic systems, acting
as the signal carriers, and providing the machinery for emergy processing. Even
though constructivistic systems are explicitly designed by humans, after the
memetic platform has been consistently instantiated, so that reasonable bal-
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ances among “memetic tensions” can be found, it will start following its own
dynamics, the memes trying to prosper among competitors, assumedly obeying
the cybernetic principles. The final success criterion is the match with the envi-
ronment, memes together explaining the observation patterns. To constitute a
cybernetic system, there needs to emerge a dynamic balance, meaning that there
needs to exist a competition of counteracting memes finding equilibrium. The
human’s contribution to the memetic dynamics is that he/she defines the envi-
ronment for the memes, coupling the variables to the real world, choosing the
relevant observations (variables) and interpretations for them, also supplying for
their evaluation (weighting of the variables). The emerging structures depend
on how the world is seen — how the abstract and non-concrete phenomena can
be quantified, is further studied in Sec. 4.3.

Emergent structures in infosphere are, for example, theories or paradigms (when
talking about science), or “isms” (in politics). Study some examples of such
complex domains — there may be some cybernetic intuitions available.

Society and politics

In a social system, and specially in politics, the “variables” are those issues,
resources, possibilities, and needs, that are being discussed and debated. The
intuitive common goal is to reach a systemic balance state where there are no
more unjust evils. Of course, visions of the utopia differ as the weighting of
different issues differs among citizens in a pluralistic society. The views of ideal
society, or the agenda of aspirations, becomes manifested in the programs of
parties and profiles of candidates in elections. How to measure and quantify
the state of the complex social system, then? In the political arena, the contra-
dicting aspirations are made explicitly quantifiable through a kind of Analytic
Hierarchy Process [68], where alternatives are given to voters to choose from:
Different opinions become quantified in elections. Popularities of parties (num-
ber of votes in x̄) can be assumed to reflect the vector of needs ū in the society
— and, in the democratic system, this popularity is reflected in the capacity of
implementing the party visions. In a way, the role of candidates (and parties) is
to act as probes to identify the infinite complexity of the society (see Sec. 4.3).

Why democracy seems to prosper even though it is less efficient than a (Pla-
tonian) dictatorship, why is democracy typically restored even after turmoil
periods? Assuming that there is complete information available in the society,
democracy represents the most cybernetic political system, giving the maximum
information from the bottom level to the top, thus keeping such a system maxi-
mally up-to-date. Parties determine profiles of opinions; party popularity (num-
ber of votes x̄i corresponding to the party profile φi) reflects specific needs ūj in
the society, and this voter support is reflected in possibilities of implementing
party visions. When representatives are selected, not all decisions need to be
brought to the ground level. Is the current system the best possible, then?

In the era of enhanced information technologies, more sophisticated
voting practices could be employed, for example. The current voting
scheme is too coarse to reveal the nuances in opinions. Why not
allow a spectrum of votes, so that votes could be distributed among
candidates, the total weight of one’s votes still equaling 1? Today,
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each party has to be the voter’s only choice, making it necessary
to become a “general-purpose party”. In a long run, this results
in a democracy that cannot respond to changes: When all parties
become identical, no structure among the parties emerges any more.
In principle, in a fully cybernetic society, the parties should span
the principal subspace of existing aspirations; now, when only the
mainstream averages are followed, the developments in the society
become more like random search process. What is more, different
kinds of thresholds, etc., jeopardize the linearity of this model of the
society.

In any case, each tension (or aspiration) has to be finally compensated by
counter-tensions — otherwise, the system becomes pressed endlessly, and the
system collapses.

Seeing the politics as a cybernetic system perhaps makes it possible to under-
stand and react to the pathological developments. For example, today it is no
more possible to restrict the “variables” to those issues that one would like. In
the postmodern society there seem to exist no real acute problems, and criteria
are in a process of change: Politics is becoming entertainment, debates become
“true television”, where substance is substituted with appearance. Or, putting
it more philosophically: The cultural patterns emerging from the human values
and aspirations reflect the Weltgeist in the spirit of Hegel.

Scientific communities

Similarly, in scientific research there are complex domains to be explained: To-
gether the theories span the space of observations so that a reasonable balance
between models and reality is reached. In principle, the most important crite-
rion for a good theory is the match with reality — but the reality can be seen
in different ways, or the relevance of different phenomena can be assessed in
different ways. In natural sciences, the external world really exists and there
are concrete measurements available, but also there, it is the interpretations
and internal dynamics of the scientific community that plays a central role. In
the postmodern era of “ironic sciences” (as discussed in [40]), the similarities
among branches of scientific work are becoming more and more evident, and
consilience seems appropriate [90].

The central challenge in all scientific work is to define the variables and their
weightings: What is relevant, and how important it is. These issues are settled
when the framework is fixed: This framework can be identified with the paradigm
in the Kuhnian structure of sciences [49]. Within the paradigm, there are the-
ories, or scientific memes, competing for popularity, individual researchers just
acting as information carriers. Such paradigms are rather stable attractors —
as long as they can sufficiently address the real-life challenges. But after new
sets of theories clearly outperforms the previous ones, the paradigm shift can
be abrupt.

Determining what is “good science” is a specially challenging task. By defini-
tion, science should tackle with something that is unknown and unstructured,
so that no a priori weighting can be reasonably defined. Instead of the subtle
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contextual criteria, better quantifiable bureaucratic guidance is becoming more
and more dominant: It is easy to define numeric measures — like number of pub-
lications and amount of publicity, etc. Todays answer, common to all branches
of scientific work, is to trivialize the problems, inflating the strictly scientific
criteria. Also the criteria based on peer-reviews are problematic: When good-
ness of research is defined in terms of match with the scientific community, a
scientific paradigm becomes a self-sustained entity. Science is what scientists
do — as studied below, reality is molded by the actors — or, indeed, reality is
created by them.

Yet, however long the wrong tracks are, the Darwinian dynamics in science is
extremely efficient and cybernetic. When some scientific branch is most active,
new interesting facts being detected, it also is most adaptable: There are bright
minds and financing available, making adaptation fastest in the directions of
maximum benefit. On the other hand, nobody feels pity of the losing theories,
such researchers having to search for new directions, resulting in structural
rearrangements in that field. This all is perfectly in line with the Hebbian-type
learning. As contrasted with economic environments, there is a clear difference:
In science the idea is to “change the behaviors when the times are good”, but
in companies the principle is to “not fix if it still works” — adaptation taking
place only in bad times!

Case: Stock markets

As an example, study a better quantifiable domain field that is explicitly con-
structed but whose dynamics is still beyond control, and even beyond compre-
hension: Stock market was originally created for balancing the imbalances in
economics, but today it seems to have escaped the controls, following its own
chaotic dynamics. It seems that such a domain field offers a possibility of more
or less immediate application of new thinking; it has become an independent
cybernetic entity itself, pursuing balance but being vulnerable to catastrophes
(see chapter 5). Contrary to the claims, the behaviors in the market cannot be
reduced to the economical fundaments. The stock market is a prototypical ex-
ample of a yielding elastic systems: As the demand rises, the price goes up until
the balance is found. This balancing is very fast, and also adaptation of the
system is fast, as money is transferred in principle without delay and the model
structures exist only in the form of expertise in the analysts’ brains. Stock mar-
ket truly is an extreme example of maximum exploitation of information on the
edge of understanding (chapter 5).

The underlying dependencies among the exchange rates are not known — but
they need not be known. Indeed, because of the fast information exploitation,
the stock market can be seen as being in a dynamic equilibrium where oppo-
site drifts balance each other; what is more, as the agents all the time try to
maximize their profits, balances are being tested all the time, and there is max-
imum regeneration of information. The balance indeed changes to generation
of excitation, so that there is inherent drive towards the edge of chaos.

In principle, there is the underlying real world that determines the market prices
— however, the dynamics is detached from the underlying realm, behaviors
being based on internal tensions. It is like it is in cognitive systems — the
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Figure 4.5:
Evolutiona-
ry behavior
is typically
exponential

“grounding of semantics” can be left floating, as long as the “semantic atoms”
are included in the data (see chapter 7). As compared to memetic systems,
all relevant variables are visible in numeric form — they have the dimension
of money. Assuming that the market reactions are consistent functions of the
system state, including enough statistical features characterizing this state, self-
contained balances can be defined. If the market has had time to converge to a
higher-level balance, the neocybernetic principles can be applied for capturing
the system state as a whole.

In today’s world, the best proof of a new theory is the amount of money that
can be earned when using it. Thus, the stock market offers a nice test bench
— let us study a scenario to perhaps be tested in practice. Neocybernetic
guidelines make the abstract modeling problem concrete and compact. First,
to construct a model, statistical analysis that is based on the observation data
only is sufficient; no complicated rule structures, etc., are needed to capture
the balances. As discussed in 7.1.2, to capture the “cybernetic semantics”, one
also has to include the trends or derivatives of the variables among data in
addition to the variables themselves. There are also guidelines for carrying out
the preprocessing of the data: As explained in 4.3.3, the variables are scaled by
their mean values, and only thereafter the mean is eliminated. This way, the
cybernetically efficient variation is appropriately weighted; because the variables
are always positive, such scaling is possible.

The neocybernetic model structure is then based on extraction of statistical de-
pendencies among data in terms of sparse features (as explained in chapter 6).
The algorithm assumedly reveals the market state in the framework of the neo-
cybernetic market structure, showing the internal tensions within the market,
making it possible to carry out predictions of the plausible developments.

4.2.4 Boosted evolution

As the properties of constructivistic systems are difficult to capture, changes
in them are still more difficult to model. However, when constructing models
for complex systems, and when trying to predict the future, such evolution
processes are perhaps the most fundamental processes of all.

In the allocybernetic systems, individual humans implement the adaptation.
Constructivistic systems can be designed and optimized explicitly, and when
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the agents are such intelligent, it should be easy to see where to go? However,
as studied in the previous chapter (also see Section 4.3), the environment is
unknown, and it changes as the system changes. The models need to be based
on observations rather than on theories, and the adaptation process necessarily
becomes iterative. There has to be enough time to observe the changing behav-
iors in the changing world. However complicated the environment is, it needs to
be in balance with the system, and there exist some intuitions that are available
here.

Humans are the agents that determine the variables and implement the en-
hancements — and the developments are caused by individual geniuses, making
the evolution a very stochastic process. However, as seen from distance, details
vanish: To penetrate the whole population, to become a truly revolutionizing
change in thinking patterns in the large, any innovation needs to be accompa-
nied by a large number of related breakthroughs in separate minds.

The memetic systems, too, seem to have their own internal dynamics. In allo-
cybernetic systems, the agents do not experience physical hunger or other acute
motivations, and different kinds of driving forces are needed to look for new
frontiers. This mental imperative can be interpreted as “engineering spirit”,
curiosity that is boosted by greediness, resulting in objectives like citius – altius
– fortius. These human aspirations, as seen from outside, become manifested as
the systems “trying” to become somehow better: Faster, cheaper, more accu-
rate, etc. Typically, the system goal is hypothetical, never reached — zero cost,
zero delay, etc. — so that in this respect, the final balance is never reached,
systems evolving forever. Momentarily, the cybernetic balance is determined by
technical / economical / social possibilities and constraints.

In all its complexity, evolutionary processes can be abstracted in terms of
the coupling coefficients qi. Stiffness in the systems grows, coupling becom-
ing stronger, qi growing towards infinity. Why this happens — according to
(3.13), the emergy transfer between u and x̄ assumedly becomes boosted then,
impedances getting lower, but another point of view is studied in chapter 10.

Very different phenomena affect the adaptation of the coupling coefficients, and
this adaptation becomes a very random process. Parameters qi are determined
in other phenospheres, and there are many underlying variables and processes
contributing, the cumulative outlook of behaviors becoming more or less contin-
uous. In technical systems, when facing “designed evolution”, developments are
based on explicit investment calculations, economical pressures implementing
balancing tensions, and smoothness and consistency in developments become
explicitly underlined. Rather than studying qi, it is easier to concentrate on
1/qi, typically having the unit of “price”, “size”, or “slowness” of a device.
The final balance would be in zero, and as the process towards the balance can
again be assumed to be a “next-level” generalized diffusion process, there will
be exponential decay (see Fig. 4.5 for a manifestation of this “Moore’s law”).
Formally, this decay can be modeled as

d (1/qi)
γ′dT

=
1
qi
, (4.1)

where T yet slower time scale beyond t. No matter what is the prevailing level
of qi, the subsequent enhancements are relative to that level.
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4.2.5 Hegelian megatrends

When trying to characterize extremely large systems, and when connection to
concrete data is lost, the discussions necessarily become vague. Here, it is best
to trust intuitions of established visionaries. The best explication of cyber-
netic ideas since Heraclitus (and equally obscure!) is given by Georg Wilhelm
Friedrich Hegel (1770–1831). A more readable presentation of the “passions” of
memetic spirits is given, for example, in [77].

Hegel was very influential in his time; it is essentially his ideas that are reflected,
for example, in the writings of Johan Wilhelm Snellman, the inspirer of the
Finnish national spirit. According to Hegel, history of mankind in general, and
that of individual societies in special, is an evolutionary process1. In a way,
Hegel can be seen as one of the first system theoreticians: Only the whole is
consistent and a real thing, all partial explanations being illusory and deficient.
Many of his thoughts can be interpreted in terms of cybernetic concepts —
essentially, Hegel is speaking of very complex agent-based emergent systems. In
the Heraclitus spirit, the essence is not being but becoming.

Specially, in a constructivistic system composed of human ideas, thoughts be-
come diluted in the whole; true and false become intertwined, together con-
stituting a consistent whole. The concept of “true” here contains logic and
ethic considerations. What is more, everything is in change: The system be-
comes more and more complete in both logical and ethical sense. The results
of human endeavors, or nation-states, are manifestations of the history, being
— again applying modern terminology — relevant attractors of dynamical pro-
cesses. Also Hegel’s definition of what reality is like is very modern, emphasizing
relevance: What is reasonable is real, and what is real must be reasonable.

Hegel emphasizes systems over individuals. For example, for him freedom is
a contradictory concept: For individuals this is only freedom to follow laws
(or some categorical imperatives), to make it possible for the larger system to
become stronger and to develop further. The nation-state is not for its citizens,
the citizens are for the state; it is a “person” of its own, deserving its existence
over individuals.

The key concept in Hegelian philosophy is dialectics, or the idea of theses and
antitheses (later employed by Thomas Kuhn). It is one dominating thesis in
the society that finally finds an opposing antithesis, and together they form
a synthesis. Contradictions do not collapse the Hegelian system; such seem-
ingly illogical assumptions were attacked against by logicians. However, in the
cybernetic setting, this all is quite consistent: The opposing theses determine
tensions that together determine the dynamic balance that is necessary for the
higher-level categories to emerge. The idea of dialectics was further elaborated
on by Karl Marx and contemporaries; this is an example of how it is dangerous
to apply rational reasoning without empiristic support — extrapolations easily
result in irrational conclusions.

According to Hegel, all that fundamentally exists is really mind or some kind of
absolute idea. The absolute idea is a consistent thought that “thinks of itself”
— this is a poetic way of expressing a model being in statistical balance with

1Strangely enough Hegel did not yet foresee Darwin’s work, never extending his studies to
the biological realms
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World

World
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Figure 4.6: The traditional view of looking at complexity, on the left, and
the cybernetic view, on the right. The system implements a mirror (or a
lens?) that makes it possible project the infinite unstructured complexity
onto a compact set of variables

the environment (see next chapters). The essence of this “Geist” or Idee” is
similarly obscure as the Heraclitus’ Logos is:

Der Begriff der Idee, dem die Idee als solche der Gegenstand, dem
das Objekt sie ist.

4.3 Quantification of phenomena

In the earlier chapters it was concentrations and other quantities that were
easily coded in real-valued numbers. In complex environments, however, the
variables generally cannot be quantified in such a straightforward way, and
analyses have to be left on a more or less heuristic level. This applies specially to
memetic systems — but also in economical systems, for example, even though it
is money that makes values compatible, problems emerge if phenomena cannot
be “moneyfied”. Today’s economic tradition seems to ignore everything that
cannot be measured — but one should not deliberately limit one’s analyses
to approaches that already have been seen to be deficient when describing the
complexity of the real world — otherwise, only a hollow formal system remains.
Cybernetic considerations seem to offer new points of view here.

4.3.1 Mirrors of environments

As compared to traditional physical quantities, cybernetic variables are diffuse:
They cannot be detected and quantified in an explicit way from “outside”. They
are fragile: Just as other emergent phenomena, any formalization of them misses
their actual essence. They do not exist as independent entities, they cannot be
isolated from their environments, as they are only relevant in interaction. In
the cybernetic spirit, one can say that they are defined in terms of balances —
employing the mechanical analogue, they can be defined in terms of the ratio
between a “force” and the resulting “deformation”.

To appropriately maintain the balance determining the observation, it is nec-
essary to have the corresponding system connected in the environment. This
means that the system disturbing the environment constitutes a “probe” that
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changes the potential tensions into actual observables. The infinite-dimensional
complexity is projected onto a distinct set of variables. The results reflect not
only the surrounding world but also the agents and their ways of seeing the
world. Extending the Protagoras’ statement, it is not only so that “man is the
measure of all things”, but it is all cybernetic systems that constitute measures
of their environments. Remember the “Barnum effect”: When there are enough
variables, a consistent model can be constructed from practically any starting
points (compare to the popularity of horoscopes, numerology, etc.).

This close coupling of the system and the environment means that the world also
changes: Again employing the steel plate metaphor, affecting the deformability
in one location affects the whole plate. When the system is completely cyber-
netic, there is constant stiffness in the observation points, so that the variation
is pushed onto a constant level in baru — but simultaneously the system casts
the variation onto another set of variables x̄. In this sense, the environmental
variation is mirrored onto the system (see Fig. 4.6). There can exist excess vari-
ation in the environment, but it remains hidden if there are no measurements.
The world as it is seen is maximally supported, or spanned by observations;
world is realized only after the measurement is carried out (compare to the
“Schrödinger’s cat”). Indeed, it is not only in the world of the simplest ele-
mentary particles where the measurement disturbs the system being studied —
also in the other end of the continuum, when modeling extremely large systems,
measurements alter the system being studied (or, more accurately, the mea-
surement system alters the environment). In this sense, analysis of cybernetic
variables is related to discussions concerning the general problems of observer
effect.

Implementation of systems constitute the concrete “anchors” fixing the environ-
ment. Following Archimedes, one could say that “give me where to stand, and I
will move the earth” — fix one point and the rest of the world will change to fit
this constraint. As the world changes, the visible optimum state is dependent of
the earlier decisions. The variability of evolutionary adaptation becomes easier
to understand in this perspective: Because of the changing world, the optimum
state is not predetermined after all (compare to Fig. 4.2). Whatever are the
past developments, there are no dead ends, and further developments are based
on the prevailing view of the world.

The extended capacities in intelligent agents make it possible to employ new
variables, applying new interpretations. Variables in the memetic system are,
for example, new concepts that change the ways how the world is structured.
To find appropriate variables, intuitive understanding of the structure of the
domain field is needed. The domain area expert typically recognizes the im-
balance if there exists some, and innovations are introduced to compensate the
tensions. In science, new theories are proposed — in economy, new products
are proposed. A concrete example is needed here.

4.3.2 Cases of supply vs. demand

As an example of the “steel plate” analogue, study the product market. The
market here is seen as the “product universe”, unstructured entity, where the
products constitute the contact points to customer needs, defining the set of
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“Projected demand”

Figure 4.7: Exploiting the steel plate analogy (see Sec. 3.3.2). The un-
satisfied demands (unobservable) are like forces that deform the balance
market (here it is assumed that the force remains constant, so that the
variance of this uj is simply the square u2

j). When a product is introduced
(middle), it compensates some of the deformation, so that in that loca-
tion the residue deformation after adaptation assumedly is only 1/

√
qi,

as shown in (3.36)). When a competing product that in all respects
better matches the demand is brought to market (bottom), the earlier
product, masked by the new one, soon fades away: The deformations in
that location remain below the level 1/

√
qi, and this product becomes

“sub-cybernetic” (this behavior is verified also by simulations). Increas-
ing the value of local qi (lowering the price), or otherwise modifying the
market (advertising the product, for example) can still help

quantifiable cybernetic variables. When this universe is presented as a concrete,
visualizable entity, perhaps the simplification is not too radical (see Fig. 4.7).

The theories concerning the relationships between supply and demand are cor-
nerstones of modern microeconomics [61]. There, the intuitions concerning elas-
tic systems are clearly appropriate: For example, concepts like price elasticity
are employed there. However, even though “demand” is a practical abstraction,
it is difficult to quantify in general terms. It has been claimed that there cannot
exist demand before there is supply — indeed, it is Say’s law that puts it even
stronger: “Act of producing aggregate output generates a sufficient amount of
aggregate income to purchase all of the output produced”. Now, the “forces”
acting on the market are the potential demands, and the “deformations” are
the actualized demands. It needs to be noted that, again, only balances are
concentrated on, and it is assumed that in balance supply equals demand. In
this sense, the vision of cybernetic economy is an idealized one.

In Fig. 4.7, it is shown how the abstract demand deforms the market. This
demand is compensated by supply: A product is introduced — the properties
of the product determine where it is located in the market. Some of the de-
mand is projected onto this location, becoming a really measurable quantity.
In the market domain, it is the products that are the probes quantifying the
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complex reality: The environment does “not exist” before there are the probes,
so that the entrepreneurs restructure the world. In balance, it is the supply
of the product that must equal its demand. If a more appropriate product is
introduced, better matching the demand, the older product loses its support.
It is the “stiffness” of the market that determines the properties of the equilib-
rium, and if a product is too “loose” as compared to the market stiffness, it is
to finally vanish. Longer-range reformations of the steel plate as local changes
take place can be interpreted so that the new products either complement or
substitute other goods, changing their demand. If the demand is fixed, there
can exist a monoculture after adaptation, but if there is variation — various
“demand vectors” in different locations stochastically varying — there will be
diversity in balance.

New products typically increase market stiffness, compensating still new loca-
tions of deformation, making the steel plate less compliant; this increase in
stiffness is the natural route towards local evolutionary optimum. It is the
products that implement this increase in stiffness, finally being distributed to
compensate the external demands.

What is the physical interpretation of this stiffness, then? There are many
factors that affect this coupling, but perhaps the most characteristic is price,
or, actually, its inverse, so that the local qi is proportional to the inverse of
the price of the corresponding product. It needs to be recognized that for any
selection of price there exists a balance — but the market is deformed, demands
being redistributed accordingly. The higher the price is, the lower q becomes,
and at some value this product drops out from into the subcybernetic region,
finally fading away. If supply is well aligned with demand, and if there are no
competing products, higher prices are tolerated.

The trivial goal that is always fulfilled for a cybernetic market is the local,
product-wise balance of supply and demand, but the evolutionary goals on the
local and global levels are different: Whereas an individual product provider
tries to maximize the profit, maximizing the unit price or 1/qi, at the system
level it turns out that the market becomes stiffer, qi being maximized and
price minimized, so that demand is better compensated by supply. And in an
environment of independent distributed providers, if there is no monopoly, it
is this system-level criterion that outweighs the local criteria, the individuals
having to adjust themselves. How long the global-level evolution has proceeded
is dependent of how mature the market section is, and how thoroughly the
demand has been penetrated into.

Finding the “edge of the market surface” is of extreme importance for an indi-
vidual product provider. This edge between the cybernetic and sub-cybernetic
region can (in principle) be identified by experiments: Increase the price until
(in balance) the net income does no more increase. It is the “effective actors”
that determine the market structure, and if price changes do not cause changes
in demand, the product is disconnected from the market surface. Here it is
assumed that the product provider can respond to the whole balance demand;
if there exist some hard limitations in production, for example, elasticity in this
part of the market is lost. In the ideal case, the working economy becomes
an image of the abstract market: Products are appropriately located, and they
efficiently reflect the demands.
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Figure 4.8: Ab-
stract domains
constituting cy-
bernetic systems
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Where do the abstract demands originate from? Normally, such issues are not
studied very much — this domain of the obscure human decision-making has
traditionally been seen as something unmodelable. However, in the cybernetic
framework, where abstract notions become quantifiable, it may be possible to go
further. The human decision-making process assumedly is another cybernetic
system where different kinds of tensions — desires — coexist, and this mental
world can similarly be mapped in terms of a distinct number of cybernetic
variables. The connection between the two cybernetic systems is instantiated
by those cybernetic variables ui that are common to both domains. And, in
balance, it has to be so that the impedances in terms of qi match in both systems:
It is 1/qi that determines the variation of the variable, and this variation is the
same in both systems (see Fig. 4.8).

The above discussions can be generalized: One could say that complex systems
become observer-oriented systems, the roles of “subject” and “object” becoming
blurred. Indeed, they share the paradoxical properties of quantum mechanical
systems, being like “Sch̊”odinger’s cats”. In quantum mechanics, measurement
makes the wave function collapse, revealing the single outcome out from the
“cloud” of probabilities through the process of renormalization. Essentially the
same intuition applies to the macroscopic as it applies to the microscopic: As
studied above, the potential becomes actual through the process of becoming
measured. In the extremely small scale, one disturbs the system being studied
by accident, but in the extremely large scale, one has to disturb the system to
make the measurements representative. The observer can only acquire relevant
information about the system through becoming part of the system itself.

4.3.3 Towards different views of data

Two different, mutually incompatible approaches to seeing data have been stud-
ied this far: In this chapter, when studying populations, the models were
strictly additive and globally linear, whereas in chapter 1, the connections among
variables were multiplicative (models becoming locally linear after taking loga-
rithms). Is there any possibility of again reaching homogeneity, so that it would
be just one cybernetic model structure?
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There are two levels of studying cybernetic systems: First, there is the agent
level, being characterized by the individuals, and then there is the population
level, where the effects of individuals cumulate. It is the individuals that are
the actual actors, whereas behaviors on the population level are emergent. The
appropriate way of seeing the environment changes when going from individuals
to populations. The large number of individuals do not see the big picture, and
it is not the actual level of variables that is of relevance. When trying to see the
world from the viewpoint of an individual agent, it is first reasonable to divide
the variable values (total activity of all agents) by the (average) number of the
individuals — or, as the variable value is assumedly relative to the number of
individuals, the variable should be scaled by its nominal value. As presented
in the beginning of this chapter, the input variables, or the environment, can
similarly be assumed to be consisted of other agent’s activities, the same kind
of prescaling should be extended to the input variables u, too.

But when looking the world from the point of view of an individual agent,
additional modifications to data should be applied. As presented in the next
chapter, it is information that plays the central role in cybernetic systems. This
information is related to variation that the system experiences. Again, there
is a big difference between the population and the individual agents: From
the point of view of the whole long-living population, it is reasonable to study
global long-term variations, that is, the behaviors of x̄, whereas when studying
the short-lived individuals that only can see a fraction of the time range of the
whole population, the relevant variations are coded in the signals δx, transients
around the local nominal values x̄. This way, the whole range of behaviors in
the data u, fast and slow, are modeled separately, together covering all of the
variation. For the signals there holds x = x̄ + δx and u = ū + δu, and for the
accumulation of information, or “system memory” there holds

E{xuT } = E{x̄ūT } + E{δxδuT }, (4.2)

if E{δx} = 0 and E{δu} = 0. It turns out that this agent perspective —
normalization by the nominal value and subtraction of the nominal value —
is exactly the variable preprocessing that was proposed in chapter 1. Further,
to make the models of the two levels compatible, also in the case of long-term
modeling of populations, or when modeling the nominal values barx and ū, it is
reasonable to apply the same scaling: Variables are to be divided by their mean
values.

It needs to be noted that this kind of scaling is not typical in practical data
preprocessing — for example, this approach collapses for signals that have zero
mean. However, such scaling can be done at least if the variables are strictly
positive — as is the case with typical cybernetic variables.

When applying computational techniques for modeling data, determining the
scaling of measurements is normally difficult, and some rules of thumb are
normally applied: For example, the data is mean-centered and normalized to
constant variance. The problem here is that when the modeling is based on
(co)variations — as is the case when implementing PCA-like models, within or
outside a cybernetic system — the scaling of variables is of huge importance,
and formal variance equalization, even though being mathematically efficient,
is not necessarily physically motivated. When the data dimension is high, these
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difficulties only become more acute. Now it seems that there is a more practical
way of determining the scaling for cybernetic systems.

It seems that the behaviors and adaptations in cybernetic systems are dictated
by the observations extracted from the environment. The key functionality in
biological data processing seems to be redundancy elimination. When one now
(assumedly) knows the principles of biological data processing, why could these
data processing principles not be emulated, implemented outside the biological
system, using computational approaches, to have a “cybernetic view” of the
environment? When measuring phenomena, one uses the SI units, or some
other technical standards — but such units do not necessarily have anything
to do with the “natural” units, how the natural system sees the data. The
measurements should become compatible if one applies special normalization
for data: The measured values are to be divided by the nominal values. But
one can extend these analyses of how data is seen.

Following the discussions in chapter 3, it seems that automatic data normaliza-
tion is carried out for signals in cybernetic systems. There exist two extreme
cases:

1. One could speak of “pre-cybernetic” data, if the measurements u are ac-
quired from an environment where the feedbacks not yet have essentially
modified the environment. Then it is the scaling of the data in the form
u = Muorig, where M = E{ūūT }1/2, or M = E{∆u∆uT}1/2, that is
appropriate.

2. Then, one could speak of “post-cybernetic” data, if the environment ū has
been changed because of feedbacks in the way defined in chapter 3. Then
(if qi are assumed identical for different i) it is the scaling of the data in
the form M = E{ūūT }−1/2, or M = E{∆u∆uT}−1/2, that is appropriate
to reach the “cybernetic” view of data.

In the former case, it is essentially the framework of principal component anal-
ysis (PCA) or principal subspace analysis (PSA) modeling of data that applies.
However, in the latter case, it seems that all variation-based information is
ripped off the data, and PCA-based methods collapse if only such “cyberne-
tized” data is available. Eliminating the covariance structure means whitening
of the data, and there is a connection to independent component analysis (ICA)
or independent subspace analysis (ISA) here. In a post-cybernetic environment,
where covariance structure has been ripped off it is the higher-order statistical
properties only that remain available in the data; these properties can be made
visible for PCA-type algorithms when special kind of nonlinearity is included in
the structures (see fourth-order blind identification (FOBI) in [41]). Assumedly
there is a continuum between the extremes, and the above analyses are clearly
unsatisfactory.

As it turns out after closer inspection in chapter 6, where different views of
seeing data are further elaborated on, rather than pure PCA or ICA, it is sparse
coding that is being implemented by the cybernetic system. This coding is more
robust against scaling, etc, and, what is more, such more complex codings can
be reached without introducing extra nonlinearities.
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Now, assume that all phenomena have been successfully quantified. It was in-
formation that turned out to be crucial for appropriately quantifying behaviors
in cybernetic systems, and as it turns out, this concept is useful when abstract-
ing away the details of the domain field. In the next chapter, the cybernetic
domains are seen from yet another point of view, employing new and powerful
concepts.



Level 5

Role of Information in
Model-Based Control

The neocybernetic analyses started from simple, reductionistic studies. As the
analyses were extended to wider-scale systems, the focus points changed, and
new points of view were employed. However, to reach the truly holistic view, yet
other interpretations are needed. No new concepts are needed — it turns out
that one only has to exploit familiar concepts in new ways. For example, the
term “information” has been used routinely, but only intuitively: This is one
of the key concepts that open a completely new perspective towards cybernetic
worlds.

Many of the cybernetic intuitions become explicitly quantifiable in the neocy-
bernetic perspective. It turns out that when the powerful tools of control theory
become available, a beautiful new world becomes visible.

5.1 Another view at emergy

The concept of emergy was presented in chapter 3, and it turned out that the
evolutionary processes could be formulated in that framework. Emergy, the ef-
fect that is interpreted as tension, essentially differs from the concepts of energy
or power: It is deviation from the expected that is crucial — or information.

5.1.1 Information vs. noise

Ross Ashby coined the Law of Requisite Variety in 1952:

The amount of appropriate selection that can be performed is limited
by the amount of information available.

This is a deep observation — but very “Heraclitus-style”, being left obscure.
The concept of information is left vague here, and the consequences remain
unclear. However, speaking of information seems to offer just the appropriate

117



118 Level 5. Role of Information in Model-Based Control

connotations. To make it possible to efficiently apply mathematical tools for
analysis of information flows, the basic concepts necessarily have to be defined
in an accurate manner. So, information in the environment is presented by the
data, and this data is coded in real-valued signal vectors. How is information
manifested?

One is facing a reverse engineering problem here: It is known what the cyber-
netic system (assumedly) does with the data if acquires, and when employing
the new terminology, it is assumed that information is what information pro-
cessing in natural systems does. One has to hope that the intuitive notion of
information matches with what a cybernetic system is accomplishing. In chapter
3, it turned out that the weighting matrix in the pattern matching is

W = E{∆u∆uT}. (5.1)

This means that data is weighted by the correlation matrix when evaluat-
ing matches among patterns: The neocybernetic system must see information
in variation. The corresponding models are fundamentally based on correla-
tion matrices — principal subspace analysis is just a way of formally rewrit-
ing and redistributing this correlation information. The correlation matrices
contain atoms of information, entries E{x̄iūj} revealing cumulated pairwise
(co)variations among variables, or mutual information.

The correlations and covariances have traditionally been exploited in modeling
— what is new in neocybernetic models? Covariances and variances are simple
measures for information, being easily expressed and exploited, and they are
the basis of modern identification and minimum-variance approaches in systems
engineering. The key observation when comparing cybernetic data processing to
traditional identification was studied already in chapter 2: Traditionally, when
doing parameter fitting applying maximum likelihood criteria for Gaussian data,
the approach is opposite — variation is interpreted as something to be avoided
— and the weighting matrix is the inverse of (5.1). Variation is interpreted as
disinformation, or noise.

As Gregory Bateson more or less intuitively puts it [7]: “Information consists of
differences that make a difference”. It is not whatever variation that is thought
to be interesting in cybernetic systems: It is covariation among data items that
is not sensitive to surface-level phenomena like measurement errors, but reveals
the underlying common sources or deep patterns. No matter what is the appli-
cation domain, this covariation is always assumed to be interesting. The role of
the cybernetic machinery is to capture the information in compressed form with
minimum number of parameters; the correlation matrices that are constructed
are essentially storages of the mutual information among data. When the ba-
sics are simple and efficiently implementable, accumulation of the information
structures makes emergence possible (see chapters 7 and 9).

Such a mechanistic view of information is, however, somehow incomplete. The
concept of information also carries something veiled and mysterious that is re-
lated to knowledge and meaning. One should not lose the power of intuitions;
indeed, the concept of information gives tools to attack the problem of relevance,
too.
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When applying Shannons information theory (or Kolmogorov / Chaitin (algo-
rithmic) information theory), the definition of information is strictly syntacti-
cal. There is no domain area semantics involved, and thus extreme universality
is reached. However, some paradoxes remain: What you expect, contains no
information, and it is noise that has the highest information content. When
applying the neocybernetic view of information, semantics (in a narrow, formal-
ized sense) is included in manipulations, making the analyses non-universal —
but there is universality among all cybernetic systems. The approach is intu-
itively appealing: What is expected, is the most characteristic to the system,
and uncorrelated noise has no relevance whatsoever. Capturing the cybernetic
semantics and modeling of knowledge is studied in more detail in chapter 7.

5.1.2 State estimation and control

A cybernetic system is a “mirror” of its environment, optimally capturing the
information there is available. This is not merely a metaphor — note that the
formulas in chapter 3 can be given very concrete interpretations:

• Model. It turns out that the neocybernetic strategy constructs the best
possible (in the quadratic sense) description of the environment by captur-
ing the information (covariation) in the environmental data in the math-
ematically optimal principal subspace based latent variables:

x̄ =
(
E

{
x̄x̄T

})−1
E

{
x̄∆uT

}
∆u. (5.2)

• Estimate. It turns out that the neocybernetic strategy constructs the
best possible (in the quadratic sense) estimate of the environment state
by mapping the lower-dimensional latent variable vector back onto the
environment applying the mathematically optimal least-squares regression
formula (2.22):

û = E
{
x̄∆uT

}T (
E{x̄x̄T })−1

x̄. (5.3)

• Control. It turns out that the neocybernetic strategy integrates modeling
and estimation to maximally eliminate variation in the environment:

ũ = u− û (5.4)

Even though the operations are represented here in such compact and central-
ized form, all operations are strictly local, and the represented net effects are
only visible as emergent phenomena; for example, the feedback part is implicit.
Implicit feedback makes the mappings more conservative: For example, the es-
timate between x̄ and u is indeed implemented applying the regularized least
squares formula (2.20), with the role of the regularization parameter q now in-
verted. The issue of modeling ∆u rather than u directly is studied in Sec. 5.2.1;
when q increases, u and ∆u approach each other what comes to the n most
significant eigenvalues.

The above observations mean that a cybernetic system implements model-based
control of its environment. In terms of information as defined above, this control
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û

Adaptation
Resource

Population
level

Level of
individuals

v

Figure 5.1: Cybernetic system seen through the eyes of a control engineer

is the best possible. However, note that the controller is defined as a static
structure, control emphasis being shifted from dynamic transients to stationary
statistics; the hypothesis here is that however the information acquisition is
implemented (for example, as a time-series structure resulting in traditional
dynamic control structures; see chapter 7), the cybernetic system maximally
compensates that information. The implemented control is far from trivial:
It constitutes a multivariate controller where the n most significant variation
directions are equalized (or nullified). The symmetric structure of the modeling
/ estimation loop reminds of Heraclitus’ words: “The way up and the way down
is the same” (see Fig. 5.1).

In the selected framework, age-old intuitions become concrete. Indeed, the
control intuition — cybernetic systems do control — has been clear since Wiener,
but the mechanisms have been unclear. Ross Ashby also coined the Law of
Regulatory Models:

Regulator must not only have adequate amounts of variety available,
but also be or have a homomorphic representation of that system.

Since that, the same idea has been known in the field of control engineering
as the internal model control principle: A controller must contain an (inverse)
model of the system to be controlled. Still it needs to be emphasized here that
whereas traditional control is always centralized, based on some “master mind”,
now the control structures are completely distributed: The starting point was
local level feedback controls, but the final result is global level feedback control.

Ross Ashby also states that “for appropriate regulation the variety in the reg-
ulator must be equal to or greater than the variety in the system” (Ashby’s
“regulator” being the system, and “system” being the environment). However,
here his intuition is wrong. The capacity of the cybernetic system must be less
than that of the environment. If there is no scarcity of resources in the system,
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Figure 5.2: Abstract flows in a cybernetic system

no compression — or modeling — needs to take place, and no cybernetic system
can emerge. It is the environment that dictates the terms.

5.1.3 Flows of information and matter

Information is also the common denominator capturing the essence in cybernetic
systems. Everything that affects the behaviors can be seen as visible (measur-
able) variation or information; it is information that is being controlled in the
environment, and information is being cumulated in the model. Further, in-
formation makes different models commeasurable, and information determines
the semantics and goals of the system. Yet another viewpoint to the role of
information is available here.

The feedback part in the closed-loop structure in Fig. 5.1 is only an abstraction:
It does not correspond to a separate real process because it only represents the
non-ideality of the information transfer. It is interesting to note that for the
closed loop control structure to emerge, two different kinds of processes need to
co-operate — first there is the information flow into the model, and then there is
the material flow dictated by the model. Without the other flow the other could
not exist either. One could say that a cybernetic system constitutes a marriage
mind and matter, combining these two incompatible dualistic viewpoints (see
Fig. 5.2).

In the figure, there are the two flows shown separately: On top, there is the
flow of information (or emergy), and on bottom, there is the flow of matter
(and energy). Most is wasted — in information flow, the uncorrelated noise
becomes filtered, whereas in material flow, it is the dissipative losses that do
not get through into the higher-level system. Note that it is often assumed
that it is these dissipative material flows that are the manifestation of complex
system dynamics [64] — now these are just a side effect. It is the information in
the environment (or variations in the data) that dictates the structures within
the higher-level system, whereas it is the matter (or actual levels in the data)
that cumulate as some kind of biomass within this predestinated structure of
some kind of populations. Whereas the traditional matter and energy oriented
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views emphasize the level of dissipation, levels of flows being the most essential,
in the neocybernetic information oriented perspective constant flows are seen as
trivial and not interesting from the point of view of emergent structures.

One could even say that the cybernetic model to some extent captures the
Platonian ideal beyond the changing world.

5.1.4 Different views at the environment

Here, an example of what are the benefits of applying concrete definitions for
concepts is presented. And, again, it is visualized how the fact that real systems
are not ideal brings sophistication in the discussions; things do not necessarily
become more complex, but new nuances are introduced in the models, and
deeper understanding can be reached.

It is assumed that in a long run an evolutionarily surviving system exploits all
information it can see: Being capable of efficiently exploiting the resources is
a prerequisite of surviving in an environment, successful systems are the most
active in acquiring for more and more information. This optimality assump-
tion makes behaviors in an environment more or less unique and predictable.
When modeling such systems, the optimization task is somewhat trivial, when
constraints are given. The interesting challenge is to understand the different
mechanisms for information acquisition; why there can still exist different kinds
of systems in the same environment, can be studied by assuming that there are
different kinds of constraints in the information capture process, and different
systems see the environment in different ways. Here, a special aspect is concen-
trated on: There can be differences in how systems remember their experiences.
Within the introduced framework these issues have a compact “vocabulary”
(distribution of information is further elaborated on in chapter 6).

This far, the expectation operator has been employed in a sloppy way: In-
deed, expectation is a mathematical abstraction that cannot be measured, it
can only be estimated using the measurement samples. Accurate determina-
tion of expectation would necessitate an infinite number of samples — this is
clearly impossible at least in the changing environments. Instead of employing
the mathematically accurate definition, define the “expectation estimate” be an
(exponentially) weighted average over the past observations:

dÊ{x̄su
T
s }

dt
= −γsÊ{x̄su

T
s } + γsx̄su

T
s . (5.5)

Now, there is an exponential “forgetting horizon” what comes to the covariance
estimates: Newest observations are best remembered, whereas old experiences
fade away with time. In the similar manner, assume that there is inertia and
forgetting taking place in all data processing in the system, so that also the
incoming data is seen through such filter:

dus

dt
= −µsus + µsuin, (5.6)

Here, uin is the original input supplied by the environment, and us is the filtered
input actually seen by the system; the parameters µs > 0 and λs > 0 are the
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filtering coefficients, higher values meaning fast forgetting. This extension makes
it possible to take variation structure in time domain into account.

Such linear time domain filtering can most efficiently be represented and ana-
lyzed in frequency domain. It turns out that information can directly be ana-
lyzed in terms of power spectra.

To illustrate this, observe that for the Laplace-domain signals X̄ and Ū , one
can express the filtering of signals as X̄ = FŪ , where the transfer function for
the first-order filter (5.6) as

F (s) =
µ

s+ µ
Uin(s), (5.7)

and, further, the power spectrum of this becomes

H(ω) =
µ2

ω2 + µ2
Hin(ω). (5.8)

This reveals that the transfer from input power (information) to the power
that is actually experienced by the system is a function of angular frequency ω.
For low frequencies, H(ω) = Hin(ω), but beyond the cut-off frequency µs, the
experienced power decays linearly when studied on the log/log scale.

The filtering effects are visualized in Fig. 5.3 — there it is shown how the infor-
mation content of a signal can reside in different frequency regions. Frequencies
above the cut-off frequency µs are seen as noise by the system, and gets ig-
nored altogether. Frequencies below that are seen, but assuming that µs > γs,
they do not get cumulated in the system’s structures — these frequencies are
only filtered, or “manipulated” by the cybernetic system. Only variation in
the darkest area in the figure becomes cumulated in the model (or in the co-
variance matrices). Too high frequencies are invisible altogether to the current
system, leaving there room for other systems to flourish; but also in the lower
frequency range (“environment”), there is competition; even though such sig-
nals are visible to the system, there exist probably more customized systems
eliminating that variation. The net effect is that the system concentrates on
band-limited signals only, signals in other frequency ranges being interpreted
either as noise or as constant values — both containing zero information in the
cybernetic perspective. The observation from chapter 4 (the behavior of the
nominal state, and deviations around it can be modeled by separate systems)
can thus be extended and made better quantifiable.

Such differentiation among systems, makes them mutually dependent. Specially,
if the lower-range model changes — as it necessarily does in practice when time
goes on and the slow phenomena become better visible — the higher-range
systems need to adapt to this changing environment; and the needed adaptations
can be rather abrupt. Discontinuous changes in the environment are magnified
in the subsequent systems.

5.1.5 Cascades of trophic layers

Information is the “nourishment” for systems. It does not matter if the driving
force is loss of some resource (as when allocating staff labor) or surplus: Posi-
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tive or negative, the effects are the same. A cybernetic system sees information
(emergy) as resources available in the environment, and there is hunger for this
information. Again, this sounds teleological — but if some system applies this
strategy by accident, it immediately has evolutionary benefit in terms of in-
creasing resources. There is no guiding hand needed — but it is like with Gaia:
Even though all behaviors can be reduced to lower levels, simplest models are
found if stronger emergent-level assumptions are applied. It turns out that this
eternal hunger for information has resulted in very ingenious-looking solutions
for reaching more and more information, and, to achieve the necessary sophis-
tication, the systems have typically become ever more complicated. The issues
of such information pursuit are studied more in chapter 6.

The systems are hungry, but they are not greedy. Whereas a system exhausts
variation in its environment, there is the same variation inherited in the sys-
tem itself (remember that PCA model maximally relays variation to its latent
variables). This gives rise to a cascade of trophic layers: Another system can
start exploiting the variation that is now visible in the system (being part of
the environment as seen by the other systems). When the next trophic layer
has been established, there is room for a yet higher trophic layer, etc.

In nature, the basis for all life is the Sun. However, the “non-informative” sun-
light alone is not enough for cybernetic systems to make them flourish — or,
indeed, it is not enough to make them emerge in the first place. Additionally,
there are first the physical processes (planets orbiting and rotating) generat-
ing more or less cyclic variation in the physical variables, causing temperature
gradients. These give rise to second-level chaotic processes: When there are
temperature gradients, it is the highly nonlinear Navier-Stokes type equations
that produce increasing amounts in randomness in the variables, as being man-
ifested in climatological phenomena, etc. Now, the arena is free for cybernetic
systems to start exploiting this non-trivial information; after the information
already is there, linear processes are enough to utilize it. The input variables
for the lowest-level cybernetic systems (plants) are temperatures, nutrients in
the soil, rainfall, etc. On the level of herbivores, it is then the spectrum of
plants to forage on, and after that are the carnivores foraging on each other.
All loose information seems to give rise to new systems, and, in a way, this can
be described as “panspermia”. As the number of species increases, the complex-
ity also increases, as the subsystems become more and more interlinked: There
emerge pests and diseases to exploit the variety, too. It is only natural that
at some stage the lower level species adapt to utilize the higher-level biomass
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(Heraclitus’ Logos)

— without recirculation the (dead) biomass would cumulate indefinitely in the
resource vector. This makes it a cycle, and finally the natural circulation is
established as a consequence of locally controlled information exploitation.

When the succession of systems evolves, the highest-level systems can appear
in very different phenospheres. Above the biological systems, there are all the
man-made constructivistic systems — but they still live, after all, on the variety
resources of the nature: For example, take the scientific systems. Without the
simpler cybernetic systems there would be no natural sciences, and without more
complex cybernetic systems, there would be no social sciences; without uneven
distribution of nature’s structures there would be no need for explanations.
What science explores, technology exploits — environment being exhausted as
a result of such loop. All systems finally try to exploit (or eliminate when seen
from another point of view) the Sun’s fire, either directly or indirectly1. Indeed,
sun-worship is among the oldest rites. And Heraclitus said that the underlying
principle in nature is fire. However, in the cybernetic perspective, this is not
the key point: It rather seems that the goals of nature could best be explained
in terms of a fire extinguisher. (see Fig. 5.4).

When the internal inertia in the cybernetic systems is taken into account, one
can think of the information transfer between subsystems as some kind of a
potential flow from trophic layer to another. There is a “structured leakage” in
the information reservoirs; this can also be characterized as “directed diffusion”.
The subsystems are like (generalized) “ideal mixers” — mixing information
(note that the flows are not scalar variables but vectors). As linear systems, the
cybernetic mixers can be grouped in different ways; the subsystems seem to be
tightly connected and they always define a network, however they are regrouped.
When more and more layers are introduced, the ecosystem becomes more and
more continuous and smooth from the perspective of information distribution –
becoming a lumped parameter approximation of a parabolic partial differential
equation (PDE) diffusion model. The evolutionary process of sophistication
continues until there are incompletely exploited reservoirs of resources available.

1Or, actually, primus motor is the fire from the Big Bang: The geological conglomerations
and variations in soil properties that also have to be seen as cybernetic resources are not
caused by the Sun
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Finally the “landscape” should become smooth with no sudden drops, no matter
how the intermediate levels are constructed. Changes in resources get filtered
when they spread among the systems.

When looking at the wealth of systems that exist to implement the extinction
of fire, one cannot help thinking that the right hand does not know what the
left is doing. It is not about an “intelligent designer”; one could speak of a
“hardworking blunderer” instead2. The philosophical question is not where the
diversity comes from, but why there is something instead of nothing.

5.2 Control intuitions

Even though truly complex systems cannot be easily quantified, they must share
the basic principles: If a system is to remain consistent, there has to exist the
balance of tensions deep inside. Qualitatively, identical intuitions apply. When
the control notions are employed, it turns out that there are many intuitions
directly available for analysis of the behaviors in cybernetic systems — and vice
versa.

5.2.1 Rise and fall of adaptive control

Adaptation is the key property in truly cybernetic systems, meaning that they
are adaptive control systems, trying to implement more efficient controls based
on simultaneous observations of their environments [3]. If one has control engi-
neering background, one can immediately understand what happens in a truly
cybernetic system then: Adaptive controllers are notorious in control engineer-
ing, as they can behave in pathological ways. The reason for the “explosions”
is loss of excitation. Good control eliminates variation in data — and after this
there is no information where the model tuning can be based on, and gradually
the model becomes corrupted. After that, when the model is no more accurate,
the variation cannot all be eliminated, and the control performance can be very
poor. But as the control fails, the variation cannot any more be suppressed,
and there will exist information in observations once again. The model starts
getting better, and after that the control gets better, and the cycle of good
and bad closed-loop behavior starts again. This kind of oscillatory behavior is
typical in loops of simultaneous model identification and model-based control.
This result is paradoxical: Pursuing good balance on the lower level results in
high-level instability.

Is it reasonable to compare complex cybernetic systems to simple controllers?
This question is motivated as the processes in real life systems are so much
more delicate — but still there is some resemblance in the emergent behaviors.
Compare to ancient empires: It seems to be so that there is a life-span for all
cultures, after which even the strongest civilization collapses. Why is that? For
example, during “Pax Romana”, there were no enemies, and the once famous
Roman army became ruined, morally and otherwise – and then there was a

2It would take a truly “intelligent” agent to streamline the natural systems. God forbid
that there should be such re-design efforts ...
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collapse after severe disturbances3. And this increase of sensitivity does not only
apply to human societies (see Fig. 5.5): For some reason, massive extinctions
seem to take place in 62 million year cycles [65]. Do you need some meteors
to explain extinctions — or is this simply because of evolution dynamics? It
seems that current explanations to collapses in general prefer simple solutions
(see [22]).

Extreme optimization in some respect results in worsened fitness in changing
conditions, and a collapse of the highly specialized subsystem (or the whole
ecosystem) is possible. Of course, nature has developed mechanisms to cope with
this challenge. For example, in natural systems, there are multiple local minima
simultaneously represented. Different species are optimized with respect to their
local view of the environment, and as such a pool of structural alternatives
is maintained, not the whole system needs to collapse when the environment
changes as suitable candidates also exist.

To reach smoother behaviors, there exist other alternatives in addition to the
multiple model approach, and, again, the technological experience can be ex-
ploited here. In control engineering, techniques have been developed to tackle
with the adaptive systems: One of the basic techniques is to add noise to intro-
duce fresh information in the closed-loop system, preventing the control from
becoming too good. A more sophisticated technique can be seen as an extension
of this: The controls are designed to artificially make the system roam through

3But explicit emphasis on the army results in the Soviet-type collapse: If there is no real
need at some time, such investments are cybernetically non-optimal, meaning that the system
cannot outperform its competitors in other fields in the evolutionary struggle
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the admissible region, thus exciting the modes, and mapping the responses
and latent dynamics. For example, in complex industrial plants such control
strategies are commonplace, reagents being added until some specific criteria
are reached, and after that reagents being reduced until some other criteria are
reached. Of course, this results in oscillation (limit cycles) in the closed-loop
system, and thus in variability in product properties — but, regardless of its
limitations, such cycles are employed also in real natural systems, caused by,
for example, the cell cycle in cultivations. Formally, a well-behaving system is
seemingly permanently on its stability limit.

It seems to be always so that the optimality goal has to be relaxed to reach
good behavior. The above solutions — messing the control up with more or
less stochastic or deterministic noise — add the element of randomness and
unpredictability in the system as seen from outside. However, there seems to
exist yet another elegant technique that is inherently applied by the natural
cybernetic systems. The most important ingredient here is again trivial, caused
by the nonideality of nature: It is the stupidity of agents that facilitates the
emergence of sustainable systems.

5.2.2 Paradox of intelligence

As compared to traditional adaptive controllers, the cybernetic strategy where
the feedback is implemented implicitly through the environment, results in “gen-
tle” adaptive control, form of buffering, where the variation is not fully elimi-
nated, and the closed loop behavior does not become pathological: There will
always remain enough excitation in the signals. One could also speak of passive
control as only attenuation of signals takes place; how near complete elimination
of excitation one goes, is determined by the coupling factors qi. This is because
it is ∆u rather than the estimate u itself that is being eliminated from the input
data, making the overall system evolutionarily stable and sustainable. But such
control, leaving some of the input uncompensated, is technically not optimal —
and cybernetic systems always pursue better controls ...

Indeed, getting too ambitious, implementing extreme optimization, and full
exploiting the information completely wiping out excitation, is also a possible
scenario in a cybernetic system — if the system is sophisticated enough. This
kind of invasive, fully compensating control can take place if the agents realizing
the control are “too smart”, implementing the feedbacks explicitly, actively,
rather than waiting for the environmental reactions.

To implement such extreme optimization, the different signals have different
roles as seen by the agents: The inputs and outputs need to be functionally sep-
arated from each other, meaning that the system necessarily has more sophis-
ticated, predetermined structure, as seen from outside. When the competition
among agents is explicitly taken into account, one can start the modeling from
(3.4) and write

d x

d t
(t) = −ΓAx(t) + ΓB u(t). (5.9)

Here, the gradient expression is extended by taking into account that the diag-
onal Γ makes it possible for agents to have differing adaptation speeds. Now,
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when defining

A = ΓE{x̄x̄T }, and B = ΓE{x̄uT }, (5.10)

one changes the original feedback structure in chapter 3 only minimally. Essen-
tially all signals are handled identically, and weight adaptation is identical for
all signals — but there is a twist: If a signal is known to be recirculated, if it
belongs to the x variables, its value is additionally multiplied by −1, as shown
in (5.9). This is what it takes to actively implement the negative feedback:
The agents only need to distinguish between “positive” and “negative” inputs,
or information about resources and competitors, respectively. Implementation
of the explicit feedback in this way results in combined Hebbian/anti-Hebbian
learning (see [92]). The matrix A now defines the communication (or, at least
information transfer) among the agents. In large systems, the size of this matrix
(having n2 elements for an n-agent system) can become considerable necessi-
tating structured coordination of signal transfer. In any case, if u varies slowly,
the steady state for x is defined through the mapping matrix

φT = E{x̄x̄T }−1E{x̄uT } (5.11)

so that x̄ = φTu. From discussions in chapter 3, when ∆u is now everywhere
substituted with u, it is clear that the columns in φ span the principal subspace
of u, and PSA is implemented explicitly for u. Remember that as the feed-
back in the “smart” structure is implicit, all signal manipulations taking place
within the system, the input data is not disturbed. In this sense, the signal
transfer is idealized, information theoretic, assuming that observation can be
implemented without exhaustion of the signal source. Also in this sense, the
smart agents assumedly operate on a higher abstraction level, not being bound
to their immediate surroundings. The disadvantage is that as the input signal
is not touched, no control is automatically implemented. In the model-based
controller structure in Sec. 5.1.2 two items are also changed:

• The model becomes

x̄ =
(
E

{
x̄x̄T

})−1
E

{
x̄uT

}
u. (5.12)

• The estimate becomes

û = E
{
x̄uT

}T (
E{x̄x̄T })−1

x̄. (5.13)

However, cybernetic systems are for control purposes — so, if the feedback
structured are separately hardwired, applying the “smart” model for explicit
control, all available variation in u is exhausted. This results in all the familiar
problems of traditional adaptive control. When you can optimize, you typically
do it, even though optimal is the enemy of good in the sense of robustness and
sustainability: “It is hard to be humble when you are so strong”!

But there are also benefits when feedbacks are optimized — the system can truly
be smart, and there is evolutionary advantage. Unnecessary competition can be
avoided, resources can be allocated by negotiation (more or less democratically),
and the agents can concentrate on more productive issues. As a consequence, a
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Figure 5.6: Two learning strategies, two ways to see the world and change
it. In a system of “intelligent” agents, the interactions among the com-
peting actors are taken explicitly into account, being integrated in the
adaptation strategy, whereas in a system of “stupid” agents, adaptation
takes place in the direction of visible resources, the interactions becom-
ing evident only implicitly through the exhaustion of the environment
(details of differences in input coding are presented in chapter 6)

welfare state need not necessarily be less efficient than a pure capitalist economy
— assuming that the model of the (changing) environment (legislation, etc.)
remains up-to-date. The two types of feedback implementation strategies are
illustrated in Fig. 5.6.

5.2.3 Contribution in inverse direction?

It is not only so that control intuitions would be applicable in analysis of cyber-
netic systems — there is contribution in the inverse direction, too. It may be
that the locally adapting controller schemes could make it possible to implement
controls that cannot have been imagined this far. The applications can range
from sensor fusion to agent controls and complex networks in general. What
is more, the cybernetic systems of humans, the process operators, can perhaps
be integrated in the cybernetic models of the processes — issues of “human
factors” can perhaps be addressed fluently in the same modeling framework.

Today’s main challenge in control engineering is understanding complex au-
tomation systems: How emergent properties like robustness could be seen from
designs, how to find analysis and synthesis methods to address qualitative plant
properties?

An industrial plant is “first-level cybernetic” because there are controls imple-
mented so that it can sustain environmental disturbances and it (hopefully)
finds a new balance if the conditions change; the industrial process can be seen
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as an “artificial cell” with its own metabolism, “eating” the raw materials and
giving out the products. Applying intuitions concerning natural cells and their
robustness, one would like to extend from the first-level to second-level of cy-
bernetics, so that higher-order statistical balance between the system and its
environment would be reached, including constant stiffness against disturbances.
How to implement “evolutionary adaptation”, human acting as the “agent of
evolution”, then?

Neocybernetic adaptation principles are simple, in principle, and can readily
be implemented also in real systems. There are relations to traditional con-
trol approaches: Applying the cybernetic view of semantics (together with the
“snapshot”, its derivative is needed among the measurement data; see chap-
ter 7) it turns out that multivariate PD controls can be implemented; there
are also connections to internal model control. High dimensionality and noise
could assumedly be tackled with in unstructured environments ... This sounds
like a panacea, and such general solutions probably never exist. Perhaps one
should look at the cybernetic models more like methods towards implementing
sophisticated data mining and process monitoring, perhaps better matching and
supporting the mental views of human experts than what the traditional statis-
tical tools can do (see discussions in chapter 7). The automated “human-like”
preprocessing of the huge bodies of the measurement data and historical time
series, finding relevant correlation structures among signals, makes it possible
for the human expert to explore and perhaps exploit the available information
more efficiently.

When extending the idealized cybernetic studies to practical controls, there are
many challenges. The key problem is that when trying to impose the cyber-
netic principles afterwards on top of the existing automation system, where the
structures already have been differentiated hierarchically, and when there are
predetermined information blockages within those structures (see chapter 6),
one somehow has to “bootstrap” the cybernetic machinery. For example, the
following issues become acute:

• In industrial plants, there are predetermined goals of the system what
comes to the products and their quality. This does not match the self-
organization idea, where the system adapts to match its environment;
thus, the adaptation process needs to be somehow controlled.

• Related to that, the agents (controllers in the plant) are typically not
homogeneous and identical, what has been assumed this far. In real plants,
controllers are in different locations, and they are tuned to implement only
their specific control tasks — the SISO approach should be

extended into a MIMO.

In addition to the theoretical aspects, there are also more pragmatic ones: In
practical control, there is need of speed. The control quality is measured in
terms of real-time reactions, and there is no time to wait until the statistical
balance:

• The basic problem in dynamic control is that the time structure cannot
be ripped off, it is the signal transients that are to be controlled. The
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controllers should not only be a simple mirror of the environment; they
should be mirrors between the past and the future.

• Related to the previous item, there are the causality issues — in a real
system, pancausality cannot be assumed: For example, the past measure-
ments cannot be altered by later-time feedbacks. To implement feedback
through the environment, external structures are needed (see chapter 7).

One approach is presented in chapter 7, where the ideas of biomimetic control
are discussed. it turns out that such approaches can be studied in the framework
of model predictive control, where the model-based estimation of the future is
tried to be regulated by applying appropriate actions in current time.

In any case, to implement the cybernetic adaptation, the system must be stable
to begin with. The independence of the controls is an advantage, but it is also a
disadvantage: Stability of the overall system cannot be assured during adapta-
tion. This discourages all practicing engineers — before cybernetic control can
become reality, further studies are necessary.

It needs to be recognized that control theory is not in all respects an appropriate
framework to understand cybernetics as there are many practices that are in
contrast with cybernetic intuitions. Indeed, control is seen as a stereotype of
reductionistic engineering-like thinking, systems being localized and divided in
separate blocks, and within them control being centralized. One should never
underestimate the inertia that is caused by the role of practicing automation
engineers and plant operators not willing to alter their practices. The plant-
floor level constitutes yet another cybernetic (memetic) system with new sets of
tensions. One can expect some of the counterarguments to be rather fierce: For
example, a practicing engineer does not want to compromise the plant stability
at any cost (there is a big difference here between the engineers and economists
who are familiar with risks and complex environments — see next section).

5.3 Towards wider views

The presented ideas of information-oriented control-based perspective are so
simple that some comments can be said in general also about truly complex
systems without the knowledge of the details of the systems or their numeric
parameters. It seems that the most complex of systems, the memetic ones,
also share the behaviors that can be motivated more convincingly in better
quantifiable environments.

5.3.1 “System cybernetization”

There are two ways to implement enhanced controls in a cybernetic system:
Either the controls can be made more accurate, or the controls can be made
faster. These objectives can be reached not only through making the model ever
better, but specially by implementing tighter coupling. In a cybernetic system,
extreme optimization results in “stiffness” of the system, and worsened fitness
in changing conditions (see next section).
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There are many details in the control structure that can be manipulated to en-
hance the control — in complex cybernetic systems, the model adaptations can
be more complex than in typical adaptive controls, as the system structure also
can change; the developments can even take place in separate systems, and in
different phenospheres. The structure changes are again related to processing of
the critical substance, information: Either enhanced capture, transfer, or usage
of this information. When speaking of memetic systems themselves processing
information, the critical resource is actually knowledge, or “knowhow” about
clever usage of the available information. An intelligent agent constructing such
a system is always “at the edge of understanding”. For example, constructivis-
tic systems (technical, scientific, ...) evolve so that as soon as there is some
new understanding about relationships among variables, it is exploited to in-
crease system performance (if there are no compensating drifts, like cost, etc.).
This becomes manifested in industrial plants, for example, where new controls
are introduced to compensate deviations from the reference values if some new
relevant measurements are available, thus making the system remain better in
balance — and become more cybernetic. Otherwise there is assumedly evolu-
tionary disadvantage, as the system is “less cybernetic” than it could be. These
developments are implemented by humans, but, after all, the system follows its
own evolution where individual human signal carriers have little to say.

The cybernetization developments have to be gradual, as the world changes in
unpredictable ways as changes in the structures are employed. A clever balance
of opposing needs (tensions) cannot easily be determined by a centralized mas-
termind — if some specific aspect is omitted, all vacuums will be filled somehow
through unintended developments. Also the development efforts must be cyber-
netically balanced. Perhaps the best example is the downfall of the late Soviet
Union, where the goal assumedly was to reach a better society — by applying
the cybernetic governmental steering following the best theories of centralized
control. However, the means and ends were not in balance as they were centrally
controlled. Again, the main problems in Soviet can be characterized in terms of
information extraction and exploitation: In data input, there were problems as
the statistics were forged and not accurate; information was available too seldom
in the five-year plan frameworks; information transfer (specially in the low level)
was defective because of censorship and scarcity of communication devices; and,
finally, when the controls were applied, they could not be enforced because of
decline in moral standards — this decline also being caused by ignoring the
sophisticated cybernetic balances in social and ethical systems.

So, complex systems seem to develop autonomously towards becoming more and
more cybernetic, as being led by a guiding hand (see chapter 9). Regardless of
the domain, the limiting factor in this evolutionary process seems to be related
to extracting and exploiting information (or knowledge). Typical examples are
found in todays working life. First, study the other prerequisite for “cyberneti-
zation ” — better understanding of the system and gaining more information.
This is implemented through supervision, questionnaires, and more paper work
in general. And the other prerequisite — applying more efficient controls based
on the acquired information — is implemented through increasing administra-
tion, organizational changes, etc. This all is introduced in disguise: Who could
object to “missions and visions” or “developmental discussions”?
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Speaking of terminologies: The system of language use is an interesting example
of cybernetization in memetic systems. It seems that as the culture proceeds
towards its stagnation, it is a comprehensive decline: For example, when the lan-
guage becomes more “civilized”, certain ways of speaking become obsolete and
are substituted with bureaucratic, politically correct ways of speaking. How-
ever, small talk with mere cumulating periphrases becomes void, there is loss of
dynamics when the variations are eliminated in the well-balanced refined utter-
ances. When concepts lose real content, they are less capable of capturing the
“flesh and blood” — and the mental constructs can only receive their meaning
through interaction with the brutal reality. As discussed in chapter 7, true un-
derstanding goes only through two-way interaction with the environment. —
It seems that there exist languages (like Finnish!) where the dynamic range
still extends from very fine nuances to extreme bursts, concepts being clear and
accurate, but still poetically open-ended. Surprisingly, perhaps it is such “less
cultivated”, least cybernetized languages that are best suited for expressing one-
self — or for doing science, explicating and perceiving the real world outside
our standard constructions?

The result of system cybernetization is that diversity becomes eliminated. What
happens when finally all degrees of freedom vanish?

5.3.2 Faith of systems

It seems that all development ends in a collapse. If a system of cybernetic
systems are let to adapt freely, catastrophes are unavoidable. How to control the
adaptive control without paralyzing the system altogether? — at least, Nature
has not found the way to do this. One cannot backtrack from a dead-end, after
evolution there is a revolution — again see Fig. 5.5 (another perspective to
“saltationism” is studied later in chapter 7).

The mathematically oriented catastrophe theory flourished together with chaos
theory back in 1980’s, trying to explain the processes beyond collapses. The
goal was to understand continuous mathematical structures that give rise to
abrupt behaviors: Why the once stable balances finally become unstable. How-
ever, the trivial one-function experiments did not have very much connection
to real-life. In the framework of cybernetic systems one can now qualitatively
understand such processes with no additional fancy theories: The key point
is (again) the nonideal structure of information acquisition, and the resulting
hierarchic structure of systems in different time scales.

Above, in Section (5.2.2), it was observed that a cybernetic adaptation strategy
does not necessarily collapse — is there not a contradiction? — There is not,
because now one is studying wider perspectives: In (5.2.2), it was assumed
that the environment remains stationary, whereas now structural changes in
the environment and in the system itself have to be taken into account — after
all, true evolution is change in structures, not tuning of the parameters within
existing structures. A closer analysis reveals that there are internal and external
reasons for catastrophes. The internal reasons can be seen to be caused by the
fast-scale structures changing, and the external reasons are caused by the slow-
scale ones.

The fastest, catastrophe-like changes in the system balance can be explained
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in terms of nonlinearities — gradual changes in the system finally push the
system onto the watershed boundary, and after that a new attractor is suddenly
found. Such behaviors can easily be explained in the framework of sparse-coded
nonlinearities, where some degrees of freedom can remain latent and completely
inactive until the conditions are favorable (see chapter 6). As the history of
memetic developments reveals, new ideas can remain ignored for a long time
— after the turning point, developments can be very abrupt. Individuals are,
after all, just noise when looking at the cybernetic systems that are based on
statistical models, and developments can become relevant only after the whole
population is ready to employ them. There is no evolutionary benefit if too
smart enhancements are introduced too early — the key point is that the ideas
remain available in the systemic memory (genome, or “menome”).

The evolutionary changes within a system can often be characterized in terms
of increasing coupling, or the parameters qi increasing, finally the enhancements
ending in structural changes. Flourishing systems are living at the edge of chaos,
trying to capture the most up-to-date information (or knowledge); however,
beyond the borderline determined by the information bandwidth, the visible
variation is mostly noise, and the once acquired structure will be lost. What
is then the appropriate frequency limit? The system guessing right wins it
all. Explicit optimization is not easy here. For example, when making controls
faster, the continuous processes typically become discontinuous at some stage
as the acquisition of information cannot be immediate. And such discrete-
time control systems behave in very different ways as the originally assumed
continuous ones: As the sampling rate becomes too fast as compared to the
system dynamics, increase in the noise sensitivity follows, and robustness is
challenged in changing long-term conditions. There are real-life examples of
such tendencies: For example, in “quartal capitalism” samples are taken and
controls applied every 1/4 of the year, even though the market dynamics has the
range of years; also in modern politics, long-term planning becomes impossible
as the politicians have to take care of their everyday popularity according to
the population polls — and, what is more, the real time constants in a society
can be decades! In both cases, too fast adaptation and control actions can lead
to loss of informative excitation and problems with stability.

The structural impacts coming from outside, or from the environment, are
caused by low-frequency phenomena. Once some dependency structure that
a system exploits has been visible for a (too) long time, it is probable that
a slower system takes over that resource. The slowest processes are the most
dominant in the long run, and the faster ones are left completely empty-handed,
becoming unstable, the statistical balance corresponding to their local models
being lost. When the universe gets older, ever slower dynamics become visible,
and there is room for new systems to be born in the low-frequency end of the
spectrum (again, see Fig. 5.3). When the behavior of the nominal state (or
when the “fixed” environment, as seen by the faster system) changes, models
for variations around that nominal states become outdated. Hierarchy of sys-
tems is like a tree, slower ones being nearer to the “root”: When the “trunk”
is adjusted, the “leaves” can be violently shaken. The overall system structure
cannot change without making its subsystems outdated. Remaining fixed to
protect its own fine structure would mean system stagnation.
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The finer the constructions become, the larger are the catastrophes — this
applies also to memetic systems. Indeed, the magnificent span of German
philosophies during some 200 hundred years (ending in a complete catastro-
phe in 1945), starting from Immanuel Kant, continuing with Hegel himself,
Arthur Schopenhauer, Karl Marx, and Friedrich Nietzsche, accompanied by the
ideologies of Friedrich Schelling and Johann Fichte, and spiced by von Goethe
and von Schiller, is itself an example of such ambitious mental endeavors that
can only end in a nemesis. Indeed, it was Hegel himself who observed that the
state of peace is stagnation, and war has positive moral value: One understands
the “real values” again, there is katharsis. Along the same lines, the larger scale
downfall of the entire culture was studied by Oswald Spengler. But the ideas
are still there, the latent thoughts someday having an incarnation as some kind
of a synthesis.

To avoid deadlocks of development, mechanisms of regeneration seem to be
programmed deep in the structures of more sophisticated systems: The cycles
of death and birth makes it possible to get back to a fresh start.

5.3.3 Coordination of catastrophes

When this dual nature of balances and catastrophes seems to be such a natural
part of cybernetic systems, perhaps it cannot be all bad?

The unavoidable fact is that all complex enough environments are changing
over time. One reason for this is that the environments are composed of co-
evolving systems, and these processes never reach the final state — or, if you
start waiting for that, you will be hopelessly late. This dynamic nature of the
world is general, it can never be escaped by any system, and it applies fractally in
all scales; again, according to Heraclitus, “panta rhei”. There is a vicious circle
here: World evolves as the systems evolve, and as the world evolves, systems
need to evolve. What is more, such changes are not only quantitative — when
they continue long enough, quantitative becomes qualitative, and the whole
system structure becomes outdated. This is typical in evolutionary systems.

To implement up-to-date control of their environments, and to survive in compe-
tition, the systems have to constantly update their models of the environments.
Only change exists, but, according to the neocybernetic principles, balances are
to be modeled. It seems that nature has found a practical way to gather accurate
balance information even in changing environments: It seems that in some sense
nature “discretizes” the time-variant processes, so that the processes take place
in discrete time rather than in continuous time. First the environment is frozen,
then a snapshot is taken, and as the internal tensions cumulate, suddenly the
tensions are released to burst the old structures to have a fresh start. During
the balance periods optimization of parameters within the structural framework
takes place, applying the smooth neocybernetic adaptation strategies, but dur-
ing the collapses, new structures are introduced to escape the local minima.
Truly, the catastrophes themselves do not deliver information, they only pro-
duce noise and chaos: It is the balance periods between the catastrophes that
are the cookers of information. Catastrophes on the lower level are crucial for
the well-being on the higher level to reset the information-producing lower-level
systems so that fresh information becomes available. The higher-level system is
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a model over the possible solutions on the lower level.

How can all this be explained — this all sounds very purposeful: It seems that
one needs external control to coordinate the actions, to initialize the system,
to run the processes, to collect the data, and to exploit the information. Can
the above scheme be seen as more than a metaphor? Again, no master mind is
needed to orchestrate the alternation of the “sample and hold”. It just seems
that “perfect control” — the property of the ultimate survivor in evolution — is
an internal contradiction, resulting in extreme sensitivity and eventual collapse
of the system. This is the nature’s mechanism to guarantee the evolution and
emergence of ever higher-order systems; at least, when looking back from the
higher level, all lower levels have been obeying the this principle. In a way,
nature has built this “apoptosis”, or programmed death, in all its systems.
And it seems there is automatic synchronization: Only after the properties of
the environment are mapped, the controls can become complete — and, after
that, it is the whole construction becomes unstable at the same time. Overall
stagnation can be reached only when all subsystems have found their models,
and when a collapse is then launched at some location, because of however small
disturbance, the disturbance soon escalates, wiping away all submodels at the
same time.

Even though the continuous processes become discretized, there is no one-to-one
coupling to the time variable, and the strong tools from discrete-time dynamic
system theory are not available. If trying to model the succession of catastrophes
and balances, it is the transitions that are relevant, no matter when they happen,
and modeling tools for event-based system could be applied. Unfortunately,
there exist no strong analysis tools for such systems.

Can anything be said about the catastrophes in general? It is evident that
individual processes, or unique catastrophes, cannot be individually modeled —
but if seems that the catastrophes are by no means unique, they seem to repeat
all over again. One can perhaps abstract over individual catastrophes and find
a model for them on some slower time scale.

if the lower-level cycles of catastrophes and balances are correlated, it is infor-
mation to be utilized. The only problem here is that for the most interesting
systems, one cannot see the big picture yet, as one is living in the middle of the
turmoil and perhaps emerging new order. Whenever the higher-level structure
can be seen, it already exists, and our predicting attempts are late. It seems
that such behaviors can be analyzed only in retrospect. As a (very) crude ap-
proximation, it seems that there is some general constant here: For a system
to sufficiently develop, there are about a dozen regeneration stages at the lower
level: How many times cells renew during the lifetime of an organism on av-
erage; how many generations there are during a life span of a human culture;
how many individual species get extinct before the whole ecosystem collapses.
However, the variations here are huge: Some species just seem to be less vulner-
able to the changing environmental conditions — but, in many cases, such relics
seem to be secondary what comes to the main developments in the larger-scale
system.

In evolution biology, there are mysteries: The developments in natural evolution
seem rather peculiar. One of the questions is where are the missing links. It
seems that there have been very different kinds of species following each other
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with no transitional forms; similarly on the ecology level, there was the era of
dinosaurs followed by mammals, etc. A species can be there with no changes
for millions of years just to be suddenly substituted. This kind of succession of
balances and transients is known as saltationism. The lack of continuity in evo-
lutionary processes has been used also as an evidence by creationists; however,
as discussed above, this kind of behavior of bursts and balances assumedly is
characteristic to all evolving cybernetic systems.

5.3.4 Beyond the balances

Balance is needed for healthy functioning of a system, but catastrophes are
needed for healthy functioning of a “supersystem”. There must exist variation
on the lower level, otherwise higher-level developments cease. It would seem
that it is the higher-level system that is running experiments on the lower levels,
pushing those systems over their limit on purpose — but, again, there is no such
master mind. Catastrophes are built in the cybernetic systems themselves, no
matter if the generated excitation is ever exploited, or if it remains just noise
in the universe. A healthy evolving system follows its elan vital until the edge
of chaos — and beyond.

In some environments collapses in different scales are commonplace and — as
it seems — generally accepted as unavoidable. The stock market is a great
equalizer of tensions in economy, tensions manifested through sell and purchase
prices, being a simple example where the balances should be found according
to cybernetic principles. Again, the stock market dynamics is too fast as com-
pared to real market dynamics: Analysts use their mental models reflecting the
common beliefs, making the unquantifiable aspirations visible; these beliefs can
be very volatile. The agents try to be smart, trying to predict the competitors
and market reactions, thus making the stock market a constructivistic system
that lives a life of its own, detached from the reality. The money is not neces-
sarily where the needs are: The challenge of a modern society is to match these
tensions — needs and means — and it is here where more cybernetic think-
ing would be needed, more sophisticated models of the interdependencies and
their balances, not straightforward centrally-controlled legislation. In any case,
it seems that the minor everyday catastrophes are, as seen from outside, only
the mechanism of introducing the necessary excitation and information in the
market — but inevitably “the big one” also comes some day.

Extending the observations in chapter 4, it can be claimed that a democratic so-
ciety — if accompanied by transparency — is the most efficient political system
in terms of information exploitation. It combines gathering of bottom-up agent-
based innovations, and delivers top-down regulatory directives. But to remain
“alive”, perhaps democracy, too, needs its enemies, or some excitation from out-
side. The key question is how can the regeneration of the social structures be
implemented in the “postmodern” society, where all destructive developments
are prevented. Today, it is interesting to see what the alternative is — how long
can Europe become older?

Also in natural everyday systems the “catastrophes” are a part of normal be-
haviors in healthy systems: The limits are being tested all the time. Without
pushing the limits, the dynamic range becomes narrower. For example, take
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the living body: If the machinery is not “calibrated”, if there are not the neces-
sary degrees of freedom visible in data, missing compensation capacity against
certain excitations is developed. If the body does not get acquainted with micro-
bia, there can be an increase in autoimmune diseases. The genes only determine
the gross structure, but the fine-tuning of the system is found as a interaction
process with the environment: Diseases are minor catastrophes, extreme cases
that determine the dynamic range of the system. And as they say in the United
States: You cannot know what the business is all about before you have expe-
rienced some bankruptcies.

It is all cybernetic subsystems that are hungry for information: In extreme
balance the system starves. This can be extended even to analysis of mental
sanity: One needs to have “highs and lows” to experience what life is about.
And extreme feelings seem to be the seed for higher-level memetic systems, at
least what comes to artistic creativity. Of course, diseases are related to the loss
of balance in the biological environment, mental diseases are related to loss of
balance in the cognitive environment, and “social diseases” are related to loss of
balance in the social environment. If there are no real political issues in a welfare
society, the system becomes — concretely — insane. But extreme emphasis on
the balance is a fallacy: If there are no real obstacles or problems, these will
be imagined — or when life is too easy a healthy mind actively searches for
challenges, to find the balance of feelings between danger and security. The
“real artists” simply need to experience the highs and lows. Without mental
explorations and excitations one has an incomplete model of oneself and of the
world. This is where neocybernetics goes even beyond the Eastern wisdom:
The goal is not extreme harmony or elimination of variation — as they say it,
“in Hell you have merrier company”. Such discussions can be extended even
to purposeful life and what happiness is about: It is mastery of one’s life, or
awareness of one’s capability of coping with all possible challenges one might
face.

It has been observed that evolving morality, etc., are becoming fields of scientific
study [83]. This is true, but there is another tendency, too: In the neocybernetic
framework all biology is coming back towards more abstract philosophies.

It is tempting to draw some bold conclusions concerning issues that by no means
have been seen as subject to scientific study. For example, why there is evil,
why there is poverty in the world, or, why there is suffering? Indeed, suffering
seems to be necessary for a cybernetic system to fully develop. There are two
ends in the continuum – always somebody is the poorest. If there were no
differences, the heat death would have been reached. Questions like why there is
death can also be attacked: Death is dropping out from the dynamic equilibrium
to the static balance, it is nature’s means to assure regeneration in the system.
Whereas death is the final catastrophe from the individual’s point of view, it is
necessary from the point of view of the wider-scale system. At some stage of the
higher-level development, lower-level models are so outdated that it is easiest
to start all over again.

Is it perhaps so that engineering disciplines, like understanding of control engi-
neering, can give some mental building blocks for understanding of, for example,
what good life is? What is more, it is not only ethics, but also other branches of
philosophy that can be affected by the cybernetic considerations. These issues
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are studied in more detail in chapter 10. — However, next it is time to go back
into details: It is there where the beauty is.
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Further Studies and
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Level 6

Structures of Information
beyond Differentiation

The key concept in cybernetic systems is information, availability of informa-
tion determining the models that are constructed. Assumption of environment-
orientedness means that it is the information coming from the environment that
dictates the results in a more or less unique way.

Despite the assumed uniqueness there still are many ways how the world can
be seen and how this view can be interpreted. As the neocybernetic models are
based on observed correlation structures, by appropriate scaling of the variables
one can implement continuous modifications to the information that is visible
to the system. This all is familiar from principal component analysis. How-
ever, here the goal is to extend beyond the existent intuitions: What happens
when the amount of available information increases? How can the emergence of
structures be understood?

6.1 Towards more and more information

Being based on principal components, neocybernetic model is robust against
high dimensionality. To assure maximum information availability, a reasonable
strategy is to include all available data among the measurements — the modeling
machinery can automatically select the relevant pieces of information. When the
data dimension becomes high, there are also qualitative and theoretical benefits.

6.1.1 About optimality and linearity

Thinking holistically is a comprehensive challenge. For example, one should no
assume that there is some centralized optimization criterion being reached for
by the system. But if the data dimension is high enough, a common goal is a
useful abstraction: It turns out that optimality become reducible.

The most straightforward way to assure the supply of information is to inflate
the space of input variables, so that m, the dimension of input data, grows. To
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analyze this issue, assume that the cost criterion can be locally decomposed so
that its differential change can be expressed as a sum of N weighted parts:

δJ = c1δJ1 + · · · + cNδJN (6.1)

Here the sub-criteria are assumed to be locally linearizable, so that

δJi = QT
i δu (6.2)

for some parameter vector Qi and variable vector u. If the sub-criteria are
independent, for high number of variables there holds for correlations among
different vectors i and j

QT
i Qj

m
→ 0, as m → ∞. (6.3)

The more there exist variables, the better random vectors become orthogonal.
When solving for gradients, one has

δJi

δu
= Qi (6.4)

so that

δJ

δu
= c1Q1 + · · · + cNQN . (6.5)

Now, assuming that the variables are adapted along the negative gradient of
some sub-criterion, so that ∆u = −γQi, the global criterion also goes down:

∆uT δJ

δu
= −γQT

i (c1Q1 + · · · + cNQN ) ≈ −ciQT
i Qi < 0. (6.6)

This means that if the sub-criteria are mutually independent, and if the input
data dimension is high enough, the task of multi-objective optimization can be
decomposed. Local optimizations result in global optimization.

What is more, when the data dimension is high, getting stuck in local minima
is less probable. Multiple variables typically mean better continuity in the data
space, and perhaps also evolutionary processes can be characterized in terms
of “generalized diffusion”. How about the cost criterion (6.1) then — is it not
unrealistic to assume linear additivity of the sub-criteria? Again, it is high
dimensionality that helps to avoid problems. The more there are features (vari-
ables) available, the more probable it is that the problem becomes more linear
(compare to the idea of Support Vector Machines, where a complex classification
problem is changed into a simple problem in high dimension).

6.1.2 New sensors and innovations

When trying to affect the modeling results, selection of variables to be included
in input data is the most important decision. How to assure high dimensionality
and fresh information in the data, where to find the new sources of observations?
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New innovations and new sensors are needed by the system — the term “sensor”
being used in a relaxed sense here, as the information capture is to be seen in
the holistic perspective. It does not matter what is the physical manifestation
of the sensors, as long as the acquired information can cumulate in the model
structures. Some examples are given here.

• Spatial distribution can be utilized, that is, information from spatially
distinct locations can be used. This far it has been assumed that a sys-
tem is isolated — however, in a real ecosystem, neighboring systems are in
close connection, and they can be modeled as a whole. Specially, assuming
that there are no limitations for seeds to spread within some area (or no
limitations for information flow), the spatial structure can be “collapsed”,
assuming that the spatial distribution delivers relevant material about the
ecosystem in general. This can be utilized when constructing the covari-
ance matrices: Plentiful fresh data and variation is available when each
subregion within the ecosystem delivers its contribution to the behaviors
of the environmental variables.

• Temporal distribution can also be utilized, that is, information from
temporally distinct time points can be used. Assuming that a species in
an ecosystem has some (hard-coded) memory, it is not only the current
state of the environment that is seen by the population, but also the time
history: If the previous year was bad, the population is lower this year,
no matter what are the current circumstances. The longer-living the in-
dividuals of a population are, the longer is the “memory”, too. When
cybernetic models are constructed for such time-series data, it is no more
simple PCA that is being carried out; it is dynamic modeling in the frame-
work of (implicit) subspace identification [60]. It can be assumed that if
the food level variations are low, then — after adaptation — the envi-
ronment seems to support longer-living species. Is it because of this that
predators live longer than prey, the information being filtered more on the
higher trophic layers?

It turns out that the more there are variables, and the more there are possible
variable combinations — and the more there are ways to select the “interesting”
or most relevant features, different selections resulting in different models and
different views of the world. This is a special challenge in constructivistic sys-
tems, where the space of candidate variables is potentially infinite; in psychology,
one speaks of the Barnum effect, meaning that when there are enough degrees
of freedom, any model can be matched against the data (making numerological
studies, for example, often astonishing).

6.1.3 Example: Transformations implemented by nature

Frequency domain was employed in the previous chapter to study information
distribution among subsystems. But such considerations are applicable not only
at the ecosystem level — it seems that also within a single individual similar
analyses are appropriate. Specially in the processing of auditory and visual
information clever data preprocessing is needed to extract fresh features from
the temporal and spatial data. Again, it is a nice coincidence that there are
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powerful mathematical tools available for analysis and understanding of such
features.

When auditory, time-domain signals are received, the cilia in the inner ear
implement spectral analysis: Depending on the frequency, sound waves can
penetrate different distances in the cochlea. As the cilia are connected to the
auditory cortex, energy in each frequency range becomes an input signal of its
own, the number of inputs thus becoming expanded. What the brain then can
see in the preprocessed signals is combinations of formants; this means that the
patterns being modeled are phonemes.

It seems that similar frequency-domain reconstruction of signals takes place
also when visual signals are processed; however, now the information is not
distributed temporally but spatially. Simple networks of neurons can imple-
ment (two-dimensional) discrete Fourier transform. This kind of coding of the
images is beneficial because cross-correlation between two transformed images
efficiently reveals the dislocations and structured differences among the images.
For example, movements within the field of vision are manifested when succes-
sive transformed images are compared; on the other hand, depth cues become
available when using image pairs acquired from nonidentical locations (from the
two eyes). The succession of parallel / sequential transformed image vectors is
interpreted as input data samples; when the correlation structures among data
are modeled in the neocybernetic spirit, the resulting sparse components (see
later) perhaps reveal natural-like decomposition of visual patterns. This kind
of extra information concerning spatial dependencies among visual entities can
perhaps explain the properties of three-dimensional vision.

6.2 Blockages of information

When there is plenty of data available, not all need to be used. Here, some
examples are given how the results can be controlled by explicit channeling of
information, by explicitly determining structures of data flow. In a sense, it is
all about implementing non-idealities again — the ranges of seeing information
are limited.

6.2.1 Hierarchic models

As an example, study a cybernetic system with the following model matrices
(assume “clever agents”):

A =

⎛
⎜⎜⎝

· · · ·
· · · ·
· · · ·
· · · ·

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

·
·

·
·

⎞
⎟⎟⎠ . (6.7)

Dots in the structures mean that those connections are non-zero, whereas empty
slots denote missing connection. The aboveB matrix form can be appropriate in
sensor/actuator structures, where each actor has its own measurements. There
is no complete information available, and data flow becomes localized. The
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nonideal flow of information introduces distortion in the data, and the analyses
in chapter 3 become outdated: The degrees of freedom in input data are no
more a limiting factor, non-trivial structure emerges even though n = m. Closer
analysis reveals that the basis vector φi is dominated by the local measurements
ui.

More interesting results are found if one has triangular interaction matrix, each
actor only seeing the actors in front of it, the last actor being capable of seeing
all information. The structure becomes strictly hierarchic:

A =

⎛
⎝ ·

· ·
· · ·

⎞
⎠ and B =

⎛
⎝ · · · ·

· · · ·
· · · ·

⎞
⎠ . (6.8)

This means that the first variable is not affected by the other ones — it lives a
life of its own, exploiting all the information that is available in input. Thus, it
alone constructs a principal subspace model of the data; because this model is
one-dimensional, it basis vector must coincide with the first principal component
axis. In this sense, the first variable implements (trivial) principal component
analysis rather than principal subspace analysis. Such reasoning can be re-
cursively continued: The second variable is affected only by the first variable
representing the first principal component, meaning that its contribution is de-
flated from the data. This way, looking at the second variable alone, it is the
second principal component that must be represented by it. And the same anal-
ysis can be continued until the variable n, meaning that the hierarchic structure
implements explicit principal component analysis. Because of the information
blockages, principal components get separated, and structure emerges.

6.2.2 “Clever agent algorithm”

Implementing an algorithm is a compromise between theoretical and practical
aspects. Now it seems that the nonideality — triangular blockage of information,
as motivated above — enhances convergence, as the variables disturb each other
less. It turns out that the Hebbian/anti-Hebbian adaptation becomes a useful
PCA algorithm, as it is robust — there are few free parameters — and because
the explicit construction of the covariance matrix E{uuT} is avoided: In the
cybernetic cases, m is typically high, and the covariance matrix can be huge.

In Matlab syntax one can write the “vanilla” algorithm as showqn in Fig. 6.2
(matrix U containing the k sample vectors uT as rows, and matrix Xbar con-
taining the k internal variable vectors x̄T as rows).

The data structures Exx and Exu are initialized to small values (matrix Exx
having to remain positive definite at any time). The parameter λ determines
the adaptation rate. After convergence, the basis vectors can be picked out from
the matrix φT = E{x̄x̄T }−1E{x̄uT }.
As an example, a case of coding hand-written digits is represented. As data
material, there were over 8000 samples of handwritten digits (see Fig. 6.1) writ-
ten in a grid of 32 × 32 intensity values [50]. The 1024-dimensional intensity
vectors were used as data u, and the algorithm was iterated until convergence.
The results are shown in Fig. 6.3.
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Figure 6.1: Examples of
handwritten digits

while ITERATE

% Balance of latent variables
Xbar = U * (inv(Exx)*Exu)’;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar’*U/k;
Exx = lambda*Exx + (1-lambda)*Xbar’*Xbar/k;

% PCA rather than PSA
Exx = tril(ones(n,n)).*Exx;

end

Figure 6.2: Algorithm 1: Hebbian/anti-Hebbian PCA by “intelligent agents”

6.2.3 On-line selection of information

There are information flows and blockages on many levels in an adapting system,
and frequency-domain characterizations are possible here, too. The slowest-scale
control of information takes place in the adaptation processes: For example,
gene pools that restrict information to remain within the species implement
en extreme block for spreading of information. The results become visible as
peculiar evolutionary developments on the species level.

In the other extreme end, the information blockages can also be very temporary.
For example, the routing of information can be dependent of the actual signal
properties — meaning that the signal path is nonlinear. As seen from the
opposite point of view, it can be said that nonlinearities are information filters.

Linearity means homogeneity and predictability, whereas nonlinearity is the key
to emerging differentiation among structures. When dropping the assumption
of linearity, the strong guidelines are lost: There is an infinite number of pos-
sible nonlinearities available, and there is no general theory to understand the
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Figure 6.3: The 25 principal components extracted from the handwritten
digits. The 1024 dimensional feature vectors have been decoded as planar
patterns to reveal their connection to input data properties (dark regions
mean that there is no correlation with the feature and the corresponding
pixels; light blue regions denote high negative correlation, and light red
denote high positive correlation). Because of the hierarchically structured
feature extraction, the sparse subspace has been decomposed into the
actual PCA basis vectors: First, there is the mean vector, and thereafter
the correlation structures are presented in the mathematically motivated
decreasing order. The coding is efficient when there is scarcity of latent
variables, but the physical relevance of the features is questionable when
the basis dimension becomes large

resulting functionalities. What kind of nonlinearity to choose, then? It turns
out a good compromise is a function that implements a volatile switch.

f
cut,i (x) =

{
xi, if xi > 0
0, otherwise. (6.9)

This cut function (see Fig. 6.4) lets positive signals go directly through, but
eliminates negative ones. This function is piecewise linear — this offers the-
oretical benefits as between the transition regions linear model structures are
applicable. There exist also strong physical motivations for this selection of
nonlinearity: Whatever are the signal carriers — concentrations, frequencies,
agent activities — such activities can never become negative. In more complex
cases, for example, when modeling gene activation, the cut function is still appli-
cable: Remember that there are excitatory and inhibitory transcription factors
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fcut,i( )x

xi Figure 6.4: Nonlinearity for
online-blocking of information

controlling the process; there must be excess of excitation to start the process
in the first place, and the more there is excess, the more chromatin packing of
DNA opens up to promote gene expression.

Such a simple form of nonlinearity makes it possible to implement “soft” tran-
sients between structures. When a variable becomes active, a new dimension in
the data space becomes visible. As the nonlinearity is monotonic and (mostly)
smooth, optimization in pattern matching can thus take place among structures.

As explained in [92], locally unstable models become possible because of the
nonlinearity: Extreme growth in variables is limited by the cut functionality.
When combined with a dynamic model, it is possible to implement bistable “flip-
flops”, where minor differences in initial states or in the environment result
in completely differing outcomes. When comparing to natural systems, only
the stem cells are assumedly free of such imprinting; in practice, the evolved
“epigenetic states” can be very stable after such a development has started (for
the coloring of animal fur, see [81]). These peculiarities that are made possible
by nonlinear structures are not elaborated on here; the cut nonlinearity will be
employed in what follows only to boost linearity.

6.2.4 Switches and flip-flops

To see how the nonlinearity can affect the originally linear and well-understood
smooth behaviors, an example is needed. Assume that the “cut” function is
included in the system model so that one has

d ξ

d t
(t) = Ax(t) +B u, (6.10)

where the visible activities are limited to positive values:

x(t) = fcut(ξ(t)). (6.11)

Applying this model structure, a “comparator system” was simulated with two
mutually inhibitory subsystems:

(
ξ̇1(t)
ξ̇2(t)

)
=

( −γ1 −1
−1 −γ2

)
·
(
x1(t)
x2(t)

)
+

(
γ1 0
0 γ2

)
·
(
u1

u2

)
.(6.12)

The negative non-diagonal elements in A matrix implement negative feedback
among the subsystems. In simulations, γ1 = γ2 = 0.75; this means that the
eigenvalues of the matrix A are λ1,2 = γ1,2 ± 1 or λ1 = 1.75 and λ2 = −0.25,
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Figure 6.5: Incoming concentra-
tion ratio u1/u2 = 1.00/0.99

Figure 6.6: Incoming concentra-
tion ratio u1/u2 = 0.99/1.00

and the linear system without the additional nonlinearity would be unstable,
x1 and x2 escaping to infinity, the one in positive and the other in negative
direction. The variables escaping in opposite directions “pump” each other;
as the nonlinearity prevents variables from escaping in negative direction, it
simultaneously stabilizes the positive variable as well.

The simulation results (starting from zero initial values) are shown in Figs. 6.5
and 6.6. It seems that in this framework inhibition and excitation together
define a system where some variables stabilize to non-zero values and other to
zeroes (“winner-take-all”), depending on the input value distribution: Using the
above model, x1 wins and x2 vanishes altogether if u1 > u2, and vice versa, the
inputs being constant. It turns out that, qualitatively, the behavior is rather
robust regardless of the exact parameter values.

The presented model structure makes it possible, for example, to define a ge-
netic functional “state”. Remember that the gene expression is controlled by
specific inhibitory and excitatory transcription factors, these transcription fac-
tors forming a complex network, all of them being products of the activity of
other genes. Minor changes in input concentrations make the resulting envi-
ronment within the cell completely different: The “flip-flops” take either of the
alternative values depending of the ratio between inputs, and once they have
ended in some state, it is difficult to change it. In this sense, associations to
properties of stem cells are easily made: A cell that has specialized cannot any
more take some other role. Other bonus intuitions are also available: Today,
there is the link missing between strictly biophysical considerations and quali-
tative ones. The purely numeric, quantitative, continuous approaches and the
qualitative and discontinuous approaches are incompatible. The claim here is
that the presented model makes it possible to study emergence of structures.

In the framework that is boosted with nonlinearity, competition among agents
can be intensified: Effects of substructures can be wiped away altogether. Such
extreme behavior is only possible in nonlinear systems because it is due to the
nonlinearities that the system remains stable. Indeed, there emerge alternative
minima depending on the initial values. In complex cybernetic systems, mas-
tering such local solutions is of utmost importance, and rather than studying
individual nonlinearities, a higher-level view is needed.
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6.3 Real world of nonlinearity

The basic neocybernetic model is linear. This was a reasonable starting point as
there is no strong theory for nonlinear systems. Linear structures are, after all,
always easy, as there exist unique minima in a given environment; for nonlinear
systems this does not hold, and typically the results are not identical even if the
environment remains the same. However, nonlinearity is the nature of the real
world, and when the objective is to model it, the modeling machineries have to
accept this fact. So, how to characterize nonlinearities, and, specially, how have
the real systems managed to do that?

6.3.1 What is relevant, what is reasonable

This far, the method has been the starting point, and its properties have been
examined; however, now concentrate on the applications. Now there is the
whole wide world ahead of us, the class of nonlinear functions being infinite and
indefinite, and one should be careful not to open the Pandora’s box.

To have a balanced view of the problem and the possible ways to attack it,
one can utilize the above discussions, and exploit the cybernetic model of an
existing memetic system: Ideas have been competing in bright minds, and an
equilibrium can be observed. In the spirit of the Delphi method [25], different
arguments have been thoroughly discussed by experts — in the field of artificial
neural networks the problems of capturing “natural data” have been intensively
studied from different points of view (for example, see [36]). This ANN research
is a well-established branch where compromises have been found between what
seems promising from the point of view of representing natural data and what
seems possible and practical from the point of view of available tools, and today,
a “model of models” can be compiled: What are the dimensions of the problem,
what are the interesting applications and promising methodologies. Within
such a memetic “supersystem” the degrees of memetic freedom are manifested,
helping to see the “intra-paradigm paradigms”, combinations of aspirations and
visions, where different points of view are weighted in different ways.

Some advantages can compensate other disadvantages. For example, despite the
theoretical deficiencies, there is so much physiological and mathematical support
for linear structures that today there exists a large body of literature, and still
there is active research in that direction. As a paradigmatic approach, there are
different kinds of algorithms to implement principal component analysis, and,
further, there are different kinds of extensions to the basic models (see [26]).
These studies are motivated by the physiological studies concerning the Hebbian
neurons, and they are further boosted by the strong theoretical intuitions and
interesting applications: The research is still going strong specially in the field
of independent component analysis [41].

Another family of intuitions have motivated the study of feedforward perceptron
networks: It has been observed that within this model structure, all smooth non-
linearities can be approximated, at least in principle. In practice, this unlimited
expressional power is a problem: To select among the alternative functional
structures and to determine the parameters within the selected structure, there
is need for very high numbers of data. Often some additional assumptions are
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(implicitly) employed for pragmatic reasons — for example, typically one limits
the search to smooth mappings. There is also another class of model structures
with equally high expressional power: The radial basis function networks are
based on basis functions, simple prototype functions of localized support (like
Gaussians); when such functions are scaled and scattered appropriately in the
data space, their combined envelope can again be matched with any smooth
function. As compared to the perceptron networks, the basis function networks
are better manageable as the representation there is more local and easier to
interpret.

The above ANN structures have continuous output, and they can be applied for
function approximation; a more special application is pattern recognition, where
one only needs discrete output. There is a very special network architecture that
deserves to be mentioned here because of its close relation to the neocybernetic
discussions concerning dynamic models and balances: In Hopfield networks the
input is given as an initial state to the system, and a dynamic process searches
for the minimum of the energy function, revealing the pattern that is nearest
to the input. The construction of the network is such that it assures that the
attractors of the dynamic process are the stored patterns. However, as compared
to the neocybernetic model structure, now there is no input; the end result is
unique after the initial state (the incomplete pattern to be completed) is given.

All of the above neural network structures are mathematically rather involved;
in the other extreme, there are the intuition-oriented approaches where it is
the actual brain structures and functionalities that one tries to reproduce. One
of such intuitions concerns brain maps: The mental functions have their own
locations in the brain, related functions and patterns assumedly being stored
near each other. The self-organizing maps try to mimic the formation such
(two-dimensional) maps [46]. There are many applications what comes to data
visualization: On the SOM map the high-dimensional data distributions are
often made better comprehensible. As the high-dimensional real-valued vectors
are coded in terms of N integers (map nodes) only, there is extreme data com-
pression, and information loss cannot be avoided. The most interesting issue
about the SOM is that in some sense it seems to match our mental structures
— perhaps there are lessons to be learned here (see chapter 7).

It seems that all ANN methods attack only one issue at a time. To address differ-
ent needs, a compromise is needed; and it can be claimed that the neocybernetic
model can be extended to combine the ideas of basis functions, dynamic attrac-
tors, and intuitive considerations, combining comprehensibility and expressional
power in the same framework.

6.3.2 Models over local minima

For a moment, it is beneficial to look at modeling in the probabilistic perspective.
When seen in the probabilistic framework, the goal of a model is to capture the
data distribution, the model explaining as economically as possible where an
individual data sample is located in the data space.

How can the neocybernetic model be characterized in terms of distributions? It
is not the degrees of freedom alone (as studied in chapter 2) that would capture
the variable distributions; when elasticity is also taken into account, tensions
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pulling the system towards balance, samples tend to become clustered around
the nominal state. Assuming that the scores have normal distribution (being
results of many independent equally distributed random variables being added
together), and assuming that the basis axes are mutually independent, one could
use the multivariate normal (Gaussian) distribution spanned by the degrees of
freedom as representing the behaviors of cybernetic variables. However, natural
data is multimodal, it cannot be represented by a single one-peaked (Gaussian)
distribution — but an arbitrary smooth distribution can be approximated as a
combination of (Gaussian) sub-distributions. Together the candidates define a
basis, so that (if there is enough of them and they are appropriately combined)
one can implement a mixture model. Strictly distinct clusters are implemented
if the representation is sparse (see below).

Thus, the radial basis function metaphor would be applicable here; however,
the structure also suggests more appropriate interpretations. Because the basis
functions are now linear, the vectors φi determining the basis functions through
the dot product operation, so that the matching against the input is calcu-
lated as φT

i u, the basis functions have infinite support and there is no finite
maximum. One does not only have a mixture of basis vectors that determine
the distributions, one has “basis subspaces”, determining the directional com-
ponents present in data. The structural components define feature axes to be
exploited by the higher-level model.

This far the model has been assumed linear. If the representation is sparsely
coded, so that only a subset of features is employed at a time (see 6.4), the con-
tributions of some features (the least significant ones) being cut to zero, there
emerge structural alternatives, not all submodels sharing the same components.
The sparse coded structure, where the substructures are linear, becomes piece-
wise linear. When the active components vary, there exists a wealth of candidate
structures. Out of the n available features, in principle one can in the sparse
coded case construct as many structurally differing distributions as there exist
partitionings of the n variables between active and inactive ones. For large n
this becomes a huge number. Such wealth of distributions is difficult to visu-
alize: The sub-distributions are not clusters in distinct locations, and, indeed,
one should not think using intuitions from low dimensions. What does this kind
of a world look like, is elaborated on in chapter 7. In any case, such sharing
of features is versatile, and it helps to reach generality and efficiency of coding;
from now on such mixture of linear submodels is assumed as the prototypical
model when the strictly linear models no more suffice.

When the mixture metaphor is employed as the basis of modeling, some ex-
tensions to the adopted model framework are needed; in a complex hierarchic
system it is not only the highest level that is assumed to be nonlinear, but the
model extension needs to be applied fractally. Before, the models were based
on the linear features determined by vectors φi, and stacking of submodels was
straightforward, linear structures being directly summable. Now one needs to
extend to nonlinear features: When seen from above, the mixture model also
defines a “feature” to be exploited by the higher-level model. To facilitate this,
to make the extended model compatible with the linear model, the mixture
model needs to look the same as the simple one, when seen from outside. The
“interface” of the simple model is the latent variable activity, or score of the fea-
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ture, in the form x̄i = φT
i u; the submodel only delivers one real number to the

outer world, revealing the match of the input data with the submodel. Also the
mixture model has to be manifested in the similar manner to the outside world
when such a model is further being used as a submodel — how to accomplish
this?

The experience with the linear case helps here: The goal of the basic neo-
cybernetic model is optimum match with the environment, and as complete
reconstruction capability as possible so that no variation in the input data is
lost. The latent variable x̄i is a measure for how the submodel φi alone man-
aged in this matching task, or, indeed, how much this submodel was “trusted”
in this task, the balance of these latent variables being determined through
competition among candidates. When φi are interpreted as basis functions, the
outputs x̄i represent the matches, or activities of individual, vector x̄ revealing
the success pattern, determining a coding of the prevailing environment. This
view can directly be extended to the nonlinear case. The whole grid model is
to be collapsed to one number characterizing the fit with the environment; let
this number be called fitness of the model1. When employing the model, the
cybernetic fitness criterion is how well the environment can be modeled, or re-
constructed, and this can be expressed in the form |û|2, representing the length
of the reconstructed input vector when the model is used for its reconstruction.
To the outside world, the mixture model thus looks like

x̄i = φi(ū) = |ûi|, (6.13)

where φi(·) denotes some scalar-valued function, and |ûi| is the contribution of
the submodel i in the input reconstruction, when various submodels compete
in that task, and when equilibrium has been found. Remember that this “input
reconstruction” actually means resource exploitation, making the assumptions
about the same goals of subsystems generally justifiable. The value |x̄| becomes
zero if the environment cannot be captured at all by the submodels, whereas
if there is complete match, the whole variance of the input data is transferred
further. It is also variance (average of the reconstruction vector length squared)
that is a universal optimality measure in the nonlinear as well as in the linear
case. Discussions concerning information, etc., thus remain valid also in the
nonlinear case. The presented fitness definition abstracts away the implemen-
tation of the submodel, encapsulating it as a black box — indeed, it need not
even be based on the presented mixture structure; there are no constraints as
long as the model structure has mechanisms of producing the estimate ûi. This
means that the neocybernetic framework offers a general-purpose environment
for studying very different kinds of coevolving complex systems.

No communication among submodels is needed: The model becomes balanced
just in the same way as in the linear case. No matter how the individual sub-
models are implemented, they compete with each other, exploiting the resources;
better models exhaust the available variation, leaving less resources for others
to exploit. The coordination among submodels is again implemented implic-
itly through the environment, and there is no need for external supervision and
“selection of the fittest” as in traditional clusters-based structures, etc. The
universal “fitness criterion” is the modeling capacity: How well a (sub)model

1Indeed, there is a close connection to genetic algorithms here
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can explain (and thus exploit) the environment. Trusting one’s own observa-
tions, or the available remaining resources, makes it possible to implement local
adaptation without compromising the emergence of higher-level structures.

To conclude, the mixture models constitute the basis functions for the next-
level models. In the linear case it was the vectors φi that were thought of as
characterizing the submodels, φT

i u giving the matches; in the nonlinear case it
is φi(u) that returns the submodel activity.

The operation of the cybernetic model is defined through a dynamic process;
similarly, the mixture model should be seen as implementing a set of such dy-
namic processes. Each of the submodels that determines a sub-distribution
simultaneously determines an attractor in the data space, hosting a local min-
imum of the cost criterion, where the data matching process converges in fa-
vorable conditions. The final location of the fixed point within the basin of
attraction is dependent of the input data. There are no “strange attractors”
or the like, everything is quite traditional, being based on even (locally) linear
processes and local balances. The proposed combination of linear and nonlinear
structures seems to usually assure unique fixed points in the framework of many
basins of attraction, thus combining simplicity and expressional power. How-
ever, being such a powerful framework, not very much can be said in general
terms about such mixture models; one approach to examine the possibilities,
based on simulation, is studied in chapter 8.

Model consisting of multiple attractors — this seems to be an appropriate way
to model complex natural systems, too. Remember that nature is working in a
distributed way, there is no central design unit: Finding the absolute optimum in
a complex environment is just as difficult for nature as it is for humans. Nature
is so varied because different solutions have ended in different local minima of
the cost criterion. Perhaps a cybernetic model constructing a multiple model
characterization over the alternatives better captures the natural diversity of
natural systems? The cybernetic model can be seen as a compressed model
optimized over local candidate solutions. This is a major difference as compared
to traditional modeling where it is the only global optimum that is of interest.
Remember that many problems of computability theory are concentrated on
the NP-hard problems that are practically undecidable in large systems — but
rather good local minima are easily found.

6.3.3 How nature does it

The mixture model seemingly has a complex hierarchic structure of submodels.
Does such a “model library” need to be stored in some centralized location
and maintained by some master mind? The answer, of course, is no — nature
routinely runs such mixture models in a distributed manner.

Traditionally when deriving clustered basis function models, the key challenge
is to determine the locations and the outlooks of the basis functions. Now it
is the competitive learning among agents that carries out the matching against
the environment in a distributed manner: The basis functions themselves are
composed of still simpler basis functions — the agents themselves. When look-
ing at cybernetic systems, it is important to recognize that it is not only one
system that is running at a time: It is typically populations where there are
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individual more or less identical subsystems. This populations-based structure
is quite universal, and it applies fractally to all levels of the systems: Within
an ecosystem there is the large number of separate species, and within a species
there are the individual animals2; in an economy there are the companies, and
within the companies there are the humans; in a tissue there are the cells, and
in the cells there are the chemical molecules.

Nature implements the whole mixture model in a parallel fashion, running the
subsystems side by side, and constantly evaluating the performance of them.
Optimization in such a structure is completely distributed. Each individual
represents a local optimum having adapted to match its local view of the en-
vironment; the number of individuals representing a single solution reflects the
relative goodness of the solution candidate, a good solution (or niche) being ca-
pable of supplying more resources to share. It is the whole set of functionalities
that together characterize the nonlinear system of systems — the final mixture
model representing a human, for example, being a coordinated-looking compo-
sition of the functions of its subsystems. Regardless of the distributed nature of
the structure, the non-coordinated submodels can still share common features
if there exist statistically consistent properties visible in the environment (see
chapter 10).

There is no need of explicit coordination whatsoever — the mixture model is
a simple extension of the linear case that was already shown to self-regulate
and self-organize. As interactions with the environment are crystallized in the
activity patterns, it is the feedbacks through the environment that assumedly
again can accomplish the regulation task. What is more, all agents agree upon
the goodness criterion — maximum activity and exploitation of the environment
— and after that explicit coordination is no more necessary as the structure
assumedly emerges from the competition. Whether or not some structure truly
emerges in such a system is a difficult question — yet, the practical experience
seems to support this hypothesis.

As a more abstract example, think of a formless social or memetic environment
where it is difficult to uniquely quantify the structure or the variables. As
studied in chapter 4, the neocybernetic view offers an escape here: It is the
subjective individuals or individual minds that anchor the environment in the
realm of observables. The population of minds determines the outlook of the
constructivistic world, or the model for it — and, indeed, without this model
the world itself would not exist!

The seemingly inaccurate and non-optimal mechanisms of representing the prop-
erties of individuals — genes in a biological system, and memes in a memetic
one — seems to be nature’s way to assure that not all submodels can end
in the same local optimum. When there is no continuity among representa-
tions, separate individuals more probably produce different outcomes, ending in
separate local minima of the cost criterion. Differences in genes span new di-
rections in the high-dimensional property space, mutations perhaps augmenting
this space, introducing new functionalities. Yet, there is some continuity, as it
is the combination of the parent’s genes that characterizes the offspring, mak-

2The ecosystem consists directly of the individual animals — the level of “species” is
motivated for pragmatic reasons, because the spread of genetic information is limited by the
species boundaries
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ing the mechanisms of property inheritance more continuous, facilitating some
level of simple parameter tuning even within a fixed structural framework. The
genotype just determines the framework, and it is the dynamic interplay among
the system and its environment that determines the outlook of the final pheno-
type. On the other hand, as the personal catastrophes (deaths of individuals)
are non-synchronized, statistical properties of the population do not change
abruptly, and the adaptation of the population becomes smoother. The non-
linear environment becomes modeled by local attractors; in a converged model
the submodels are rather densely located, exhausting the information available
in the environment more or less continuously.

The Darwinian mechanisms that come here to play to exploit the submodels,
implementing the adaptation of the population level mixture model, good solu-
tions among submodels being promoted in the mixture. The basic structure of
an individual is determined by the genes, and within that framework, the famil-
iar neocybernetic adaptation processes assumedly have tuned the parameters
so that it is the best that can be achieved within that framework, so that the
structures, and thus the underlying gene combinations, can be compared in an
objective way. However, the idea of “survival of the fittest” is not so categorical
as it is normally thought to be: Best solutions dominate, yes, but the outper-
formed ones also can survive, making the view of the reality more complete.
Indeed, samples far from the mainstream solutions can carry very much valu-
able information. There are no outliers among the reproducing individuals, all
models are valid: If an individual has survived so long, there must be something
special about it; it is the whole adolescence that is there to filter out the actual
mistakes. What is more, one needs to remember that the environment is not a
predetermined entity, but it consists of other ever-adapting subsystems, and a
stubborn individual can change its environment to make a new personal niche
exist.

The role of birth and death are very central in Darwinian evolution theory.
Now the system is more important than any individual; life is in the system,
and in the population of individuals. As long as the system survives, there is
no actual death. Another point is that because the genes only offer the pool
of alternatives, the properties of an organism being mainly determined by the
environmental conditions, one specific gene combination does not have such a
crucial role.

Comparing to the Darwinian theory, again there is the fit criterion that plays
a central role. However, now it is not about the search for the absolutely best
fit — the population-level system searches for a set of good fits to implement a
good mixture model, to better capture all aspects of the nonlinear environment.
Indeed, the essence of modeling of the environment is not to find the actual
winner, but to find the definition of what fitness is and map the whole “fitness
landscape”. And the primary reason for diversity is not to be prepared for the
unknown future — the reason is simply to exploit the prevailing environment as
efficiently as possible, now and here, with no future prospects. The traditional
Darwinian thinking suffers from a intellectual discrepancy: Whereas the evolu-
tion mechanisms and fitnesses are defined on the level of individuals, the results
are visible and meaningful only on the emergent level of the whole population.
Whereas the lower and higher levels are traditionally incompatible, now both
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levels are combined in the same model framework, the individuals being sub-
models that together constitute the systemic model of the species — and the
individual species further being submodels that together constitute the systemic
model of the ecosystem. Thus, one can proceed from the analysis of individuals
to analysis of populations, and from the analysis of species to the analysis of
ecosystems; and if one can extend from the analysis of the existing taxonomies
to the spectrum of possible ones, from characterizing details to seeing larger
patterns, perhaps biology (and ecology) someday become real sciences.

There also exist less concrete populations where the same cybernetic ideas still
apply. In a scientific world, for example, being capable of seeing similarities
among individual paradigms and combining them in a larger model is similarly
a central goal; rather than going deeper into the paradigmatic system, one tries
to find more general systems connecting paradigms. In some environments the
submodels need not be co-existing and parallel: The “populations” can be, for
example, sequential, as it is often the case when speaking of human cultures.
However, memetic systems leave signs of themselves, scriptures and artifacts,
and as long as these signs can still be deciphered, faiths of various cultures can
be reconstructed, and these cultures can be understood as consistent systems.
Indeed, being based on such submodels, the highest-level memetic system can
become alive — being manifested in a truly cultivated person. The human ca-
pacity blooms when one can put things in a perspective, constructing a balanced
model of all aspects and dimensions of human culture: The human endeavor is
to truly know what it is to be a human, and to understand how the human is
connected to the world around him/her. It is not about memorizing details; it is
about having a compact model where the individual facts have been combined
into more general dependency structures.

6.4 More about sparse coding

For a moment, return to the linear case — it turns out that closer analysis gives
insight to understand the general case, too, and the linear submodels efficiently
support the emergence of the localization in the nonlinear global model.

It has been observed before that a cybernetic system implements principal com-
ponent analysis, the submodels representing the (local) observations in terms of
(global) variation structures. This is a simple result, as PCA is a mathemati-
cally rather trivial operation. Is there nothing else to be said about cybernetic
data processing? Indeed, the PCA view is not the whole truth, it only deter-
mines the framework for data compression. Within the compressed data space,
it is the selection of the latent basis that plays a major role when interpreting
the results.

6.4.1 “Black noise”

In chapter 3, connections among x̄ and ū, and among x̄ and ∆u were studied.
When studying the theoretical mapping between x̄ and the original undisturbed
input u, it turns out that the eigenvalues of E{x̄x̄T } can be expressed in terms
of the n most significant eigenvalues λj of the original data covariance matrix
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Figure 6.7: Consequences of adding “black noise” are opposite to white
noise: The variation decreases in all directions — if possible

E{uuT}, as observed in chapter 3. Specially, if the coupling coefficients qi
and bi are different for different neurons, the i’th eigenvalue (or latent variable
variance) becomes

√
qiλj − 1
bi

, (6.14)

indices i and j being ordered randomly. This reveals that there must hold
qiλj > 1 for that input variance direction to remain manifested in the system
activity — if this does not hold, variable x̄i fades away. On the other hand,
for the modes fulfilling the constraint, interesting modification of the variance
structure takes place; this can best be explained by studying a special case.
Assume that one has selected qi = λj and bi = 1 for all pairs of i and j. Then
the corresponding variances become

λj − 1. (6.15)

In each direction in the data space, the effect of the system is to bring the vari-
ance level down by a constant factor if it is possible (see Fig. 6.7). Analogically,
because white noise increases variation equally in all directions, one could in
this opposite case speak of “black noise”.

What are the effects of this addition of black noise in the signals? First, it
is the principal subspace of u that is spanned by the vectors φi. But assum-
ing that this subspace is n dimensional, there exist many ways how the basis
vectors can be selected, and some of the selections can be physically better mo-
tivated. For example, in factor analysis the PCA basis vectors are rotated to
make them aligned with the underlying features, and the same idea takes place
in independent component analysis. In factor analysis, it can be assumed that
the underlying features can be characterized in mathematical terms applying
the idea of sparseness: When a data vector is decomposed, some of the latent
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variables have high scores while the others have low scores, increasing the differ-
ences among latent variable variances. This goal can be iteratively implemented
in terms of criteria like varimax or quartimax, etc. In its extreme form, spar-
sity means that there are only a few of the candidates employed at a time, and
the goal of modeling, rather than being minimization of the number of over-
all model size, it is the minimization of simultaneously active constructs. This
means that the total dimension of the latent basis n can even become higher
than the dimension m of the input data, the basis being overcomplete.

As shown in Figure 6.8, the Hebbian feedback learning offers an efficient ap-
proach to achieving sparsity-oriented basis representation of the PCA subspace.
Whereas the overall captured variation (shown both in yellow and red color in
the figure) is not changed by orthogonal rotations, the variation over the bias
level (shown in red) can be changed. As the nominal PCA approach typically
distributes variation more or less evenly along each latent variable, it is most
of the variation that remains below the threshold level; now, as it is the area
above the threshold level that is maximized, non-trivial basis representations
are reached. When doing sparse coding, one can have n > m.

There are no closed-form expressions for implementing sparse coding for given
data — there are only iterative algorithms. It seems that the algorithm proposed
by the Hebbian feedback learning offers a compact and efficient alternative (see
Fig. 6.9; compare to the algorithm in 6.2).

In the algorithm, the fixed states are first solved; because of the assumed lin-
earity, infinite iteration changes into a matrix inverse. Actually, the linearity
assumption here does not exactly hold: To make the sparse components differen-
tiate, the cut nonlinearity is applied for x̄, and, in principle, the matrix inversion
does not give the fixed point (however, the system tends towards linearity; see
below). The determination of Xbar is an extension of that in Algorithm 1,
making the matrix inverse better invertible:

x̄ = E{I + x̄x̄T }−1QE{x̄uT} u. (6.16)
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while ITERATE

% Balance of latent variables
Xbar = U * (inv(eye(n)+Exx)*Q*Exu)’;

% Enhance model convergence by nonlinearity
Xbar = Xbar.*(Xbar>0);

% Balance of the environmental signals
Ubar = U - Xbar*Exu;

% Model adaptation
Exu = lambda*Exu + (1-lambda)*Xbar’*Ubar/k;
Exx = lambda*Exx + (1-lambda)*Xbar’*Xbar/k;

% Maintaining system activity
Q = Q * diag(exp(P*(Vref-diag(Exx))));

end

Figure 6.9: Algorithm 2: Feedback Hebbian SCA by “selfish agents”

This is solved observing the loop structure, and exploiting (3.36). One can
add the triangularization of the covariance matrix Exx here, too, to separate
the components. The matrix Q is diagonal; “proportional control” with P as
the control parameter is applied for (logarithms of) variable variations to keep
the variation level of the variables in reference (Vref is the vector of reference
values). Because the elements at the diagonal of Q are distinct, the components
become distinguished, as discussed in chapter 3, and rather than implementing
sparse subspace analysis, the algorithm implements sparse component analysis.
Finally, after convergence the mapping of the model can be expressed as φT =
QE{x̄ūT }.
The neocybernetic algorithms can also be characterized in terms of mathemati-
cally compact formulas and theoretically powerful concepts. The sparse compo-
nents represent (linear) submodels that together characterize a complex domain,
perfectly matching the nonlinear case in 6.3.2. Summarizing, one can say con-
clude:

It is the “clever agents” applying Hebbian/anti-Hebbian learning
that implement theoretically correct principal component analysis
that can be explicitly employed for theoretically optimal least-squares
regression; the “selfish agents” applying feedback Hebbian learning
implement sparse component analysis and simultaneously implicitly
carry out robust regularized least-squares regression to control the
environment.
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This far all has been linear, the sparsity pursuit being implemented only through
basis rotations. When the cut nonlinearity is included in the algorithm, cut-
ting the minor (negative) variations explicitly to zero, only then the algorithm
becomes strictly nonlinear. It turns out that the convergence properties of the
algorithm can be enhanced considerably then. Because of the optimized rota-
tions, one already has minimized the cross-cluster effects, and for “typical” data
located in such clusters, there probably are no crossing-overs between linear sub-
models. Structure changes are located in deserted regions in space, and rather
than being piecewise linear, the model is “practically linear”. In the converged
system, the role of nonlinearity is rather transparent. But there is more.

The nonlinearity that is introduced in the structure does not make the system
essentially more complicated. When studying closer the data processing (again
see Fig. 3.3), it is interesting to note that the nonlinearity that is now applied
is outside the inner loop, just filtering the incoming information. The basic
functionality of the system is still determined by the closed loop as shown in the
figure, converging so that the best possible linear matching between the realized
x̄ and ∆u is implemented, however these signals are externally deformed. This
means that despite the nonlinearity, the model tends back towards linearity and
statistical optimality.

6.4.2 Towards cognitive functionalities

Modeling of the environment is common to all cybernetic systems. The proper-
ties of the environment — like nonlinearities — are best quantifiable when the
system resides in infosphere, the signals being better commeasurable, and the
existing data structures are intuitively comprehensible.

Example: Modeling of biped walking

When studying the geometric structure of limbs, it is evident that the dynamic
model for them is highly nonlinear. Still, to keep a two-legged body stable,
very precise control is needed. Whether such control structures can be based on
linear submodels that are tuned applying measurement data, was studied in [34].
The available data consisted of state vectors characterizing the orientation and
velocities of a simplified two-legged structure and its relation to the surrounding
world. The nonlinearities in the adopted model structure were distributed in
substructures; it was assumed that the nonlinearities are smooth, and “nearby”
data samples share the same locally linear model — that is, the observation data
was first clustered, and data within each cluster was used to construct a local
linear model. Because of the high assumedly redundant dimensionality of the
data, the linear models were based on PCA compression of the observation data,
and the motion controls to achieve the walking gait were thereafter reconstructed
applying principal component regression based on that model.

It turned out that the clustered model could reproduce the motion controls in a
satisfactory manner, and the simulated motion remained in control. However,
the model was not quite satisfactory: From the cognitive point of view, the
model structure was not very plausible. There was the predetermined struc-
ture with separate levels of inter-cluster and intra-cluster operation — coarse
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Figure 6.10: The 25 sparse components extracted from the handwrit-
ten digits (random ordering). It seems that different kinds of “strokes”
become manifested (see below)
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Figure 6.11: How the different digits (left) are represented by the 25
sparse-coded features (above). For example, it seems that feature #14 is
only active when the input pattern is “0”, feature #22 when it is “1”, etc.
Feature #13 correlates strongly with “2”, as the other patterns seldom
occupy the bottom rows. Some patterns have various alternative forms
(like “3” is represented either by the feature #6 or feature #19). For
most of the input patterns there are no unique matches — they must be
composed of parts (for example, “4” seems to be a sum of features #12
and #18). Whether or not the features are disjunctive or conjunctive is
determined by the optimization machinery as the data is processed
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matching against the clusters, and after that the fine tuning against the cluster-
specific submodels. It seems that some higher-level control is necessary here
during the model usage as well as during model adaptation. However, it turns
out that this is not the case.

As discussed in chapter 7, a grid of linear Hebbian neurons implements the
neocybernetic model, modeling the nonlinear environment. Hebbian feedback
learning implements the PCA compression of the data, constructing a sparsity-
oriented model. Sparse coding results in differentiation of the substructures,
or emergence of localized “clusters”. Within this framework explicit control of
clustering or selection among submodels can be avoided because of the competi-
tion among substructures, the best matching submodel automatically receiving
most of the activation. There is contribution also by the lesser submodels —
this means that there is smooth transfer between submodels in the data space.

What comes to the cluster-based representation of nonlinearities, there is also
no need for additional functionalities in the neocybernetic framework. Still,
there are challenges: How to implement the input–output structure so that the
regression onto the control signals can be implemented in a plausible way? And
how to implement optimization towards smoother and faster movements beyond
the available prior behaviors?

Structures in infosphere

To illustrate the structure based on sparse codes in more abstract terms, again
study the case of hand-written digits (see Sec. 6.2.2). Each of the latent variables
x̄i was kept active by appropriately controlling the coupling factors qi. Figure
6.10 shows the results when applying the presented algorithm (see also discussion
in Fig. 6.3), and Fig. 6.11 presents how the converged features were oriented
towards the input patterns. Note that the goal of this coding is not to distinguish
but to find similarities — that is why the received feature model is probably
not good for classification tasks.

The behaviors in this experiment differed very much from those when applying
principal component coding: During the convergence process, in the beginning,
something like clustering emerged, each data region being represented by a
separate variable; as adaptation proceeded, the features started becoming more
orthogonal, and patterns were decomposed further. What is interesting is that
this kind of “stroke coding” has been observed also in the visual V1 cortex
region in the primate brain (see [29] and [59]): It seems that the visual view is
decomposed into simpler, statistically relevant substructures.

What if more complex data is modeled applying the same kind of sparse coding
schemes? This was studied using textual documents. There were some hundred
short descriptions of scientific reports on different aspects of data mining. Very
simple representation of the texts was selected: It was assumed that the docu-
ments can be characterized by the set of words that is found in their descriptions.
Data dimension was huge as there was one entry for each of the words in the
data vectors. The document were represented by their “fingerprints”, or data
vectors containing their word counts. After some data preprocessing (see [92]),
sparse coding was applied, and the resulting sparse structures representing the
correlation structures among the words are shown in Fig. 6.12. It seems that



166 Level 6. Structures of Information beyond Differentiation

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
web

parallel

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

memory

distributed

algorithm

human

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 visual

innovative
collaboration

product

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

customer
recommender

help

network

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

model

statistical

bayesian

ilp
(inductive logic programming)

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

error

0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

kdd
(knowledge discovery in databases)

dimension

step

spatial

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

object

association

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 rule

knowledge

Implementations Usability

MethodologyApplications

Algorithms Inference

Figure 6.12: Results when textual material (documents on “data min-
ing”) are modeled applying sparse coding techniques: It seems that the
emerging data structures capturing the correlation structures among the
words are generalized keywords characterizing the different dimensions
in the documents. The nine keywords are projected against the original
words that are listed on the horizontal axis in alphabetical order; long
bars denote high relevance. The keywords are named afterwards after
studying the semantics of the words characterizing them.

the extracted data structures can be used to bring structure even to this seman-
tically complex domain: Different documents can be represented as weighted
combinations of the contextual “strokes”.

Even though one should be careful about too strong conclusions, these exper-
iments still motivate excursions to truly challenging domains of cybernetics,
namely, to the world of cognitive systems — this is done in the next chapter.



Level 7

Cybernetic Universality
and Lives in Phenospheres

It seems that living systems carry the intuitive connotations that characterize
cybernetic systems in general. The key question then becomes what is life.

The problem with life sciences is that there exists only the one example, the
carbon-based DNA life available to us for analysis. The goal here is to extend
from life as we know it to life as it could be, from traditional biological systems
to “bio-logical” ones, where the logic follows the relevance-oriented, cybernet-
ically motivated lines of thought. Indeed, one could define universal life as
higher-order dynamical balance in the environment, whatever that environment
happens to be. The definition covers, for example, living systems in the chemi-
cal environment (lower-level life) and and in social environments (higher levels
of life). Because of the very compact structure of cybernetic models, different
systems become formally analogous, and when interpreting a system’s behaviors
in another framework, some fresh intuitions can be available.

Concrete examples are the best way to present the challenges. In this chapter,
infosphere will be exclusively studied: After all, the cognitive system is well
understood — or, at least, it has been studied very much. Specially, it will be
studied what is the interpretation and essence of the sparse-coded mixture mod-
els (chapter 6) in that domain. And perhaps understanding the peculiarities of
systems in such a complex environment helps to see the possibilities of evolving
life in general: Indeed, when a living system is defined as above, the universe is
full of strange life forms — literally, what you can imagine, it exists.

7.1 Modeling of cognition

The neocybernetic framework not only allows modeling of the coding of individ-
ual patterns, it can perhaps give tools to attack the functioning of the complete
brain. There is the intuition backing up us here: The cognitive system simply
has to be cybernetic — even in various ways (see [30], [53]).
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7.1.1 Population of neurons

For simplicity, assume that the brain consists of identical neurons that follow
the Hebbian learning rule [37]. It is evident that Hebbian learning exactly
follows the same evolutionary learning principle as presented in chapter 3: If
the neuronal input and the neuronal activity correlate, the synaptic strength
increases. Indeed, the Hebbian neurons are paradigmatic examples of cybernetic
agents, the “resources” now being the incoming signals. Employing the idea of
looking at the neurons as a population of competing individuals, one can see the
neuronal “ecosystem” as a self-regulative entity. No central control is necessary,
nor some “operating system”, it is all about a distributed agent-based pursuit
for activation. This competition becomes is very concrete: It has been observed
that there are nerve growth factors that control the “wiring” of tissues; here it
is the winner neuron(s) only that prosper, and become connected.

But it is the inter-neuronal connections where an especially delicate control is
needed. Let us study a scenario. Suppose that there is a pool of more or less
occupied neurons available competing for activation. If there is currently very
little activation coming from outside to a neuron (E{x̄2

i } remaining low), the
neuron’s internal feedbacks make it search for more activation (the coupling
factor qi increasing; compare to the algorithm in Sec. 6.4.1). The “hungri-
est” winner neuron (or the winners if there is plenty of activation to share)
connects itself to the sources of temporary activation, essentially coupling the
simultaneously active input signals together1. The winner neuron hopefully be-
comes satisfied and less “hungry”, exploiting the resources (signals) thereafter
allocated for them. That neuron (or set of neurons) starts representing the
corresponding association structure, defining a (subconscious) “concept atom”.
If such activation patterns are relevant, if they occur sufficiently often so that
the corresponding neurons do not starve in the loss of activation again, these
memory structures remain valid also in the long run; otherwise the association
is volatile, fading gradually away. As atomary concepts are connected to previ-
ously activated ones, sequences of concepts emerge. In the long run, the original
time structure becomes ripped off: The sequential chains of neurons becomes
a parallel group of simultaneously active neurons, competing for more or less
the same input resources, and some kind of a semantic net emerges. Because of
identical correlations-based learning in all neurons, the connections in the net
gradually become bidirectional, and an “associative medium” is constructed,
being available for yet other (still more elaborate) concept atoms to be con-
nected to the available activity centers in the medium. Lower-level concepts are
inputs to higher-level concepts — but as time elapses, structures become cyclic
and more or less blurred, the network becoming “panexplanatory”.

This all is more or less trivial — the added value, the main contribution of the
neocybernetic perspective, comes from the ability of explaining how the above
declarative representations change to associative ones, or how the shift from
novice to expert can be explained. The key functionality is the self-regulation
and self-organization property of the Hebbian feedback system: As the Hebbian
adaptation takes place, locally and independently in each synapse, the declar-
ative structures become swallowed in the associative medium. As correlating

1The overall activity of the network remains constant — when there is no external activa-
tion, as in sleep, the system becomes activated by random noise
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concepts are appropriately connected together, links of the semantic net become
denser and numerically optimized.

The above process of automatization is the key process in the mental system.
This all sounds very simple, even a bit simplistic, and indeed this is not the
whole story. The mental machinery is not there only for data packing.

7.1.2 Role of semantics

When proceeding from the level of signal processing to processing of information
and knowledge, one is facing new challenges, because one needs to address issues
that are the most relevant to the human mind: A cognitive model is void, its
essence escapes, giving rise to Chinese room type arguments [70], if it does not
somehow capture the semantics of the constructs. One needs to extend from the
infosphere, where it was simply data (co)variation that needed to be captured,
to “ideasphere”. The units of information to be modeled are indeed knowledge;
mental models should somehow capture “information flows of information”.

Cognitive functionalities, like intelligence, are emergent phenomena. It is as-
sumed here that intelligence is an illusion that emerges when a large number
of simple structures cumulate. For analysis, one needs to be capable of re-
ductionistically decomposing the cascaded system hierarchy into self-contained
entities. It is here assumed that the principles remain the same also on the new
emergent level, so that the processes can be reduced back to processing of data.
Now, assuming that these simple structures are individual cybernetic models
for subdomains, how to avoid the infinite recess, concentrating on a single level,
truncating the succession of models? In other words: How to assure that the
data delivered to a cybernetic system constitutes a “cybernetic closure”? How to
fix the grounding of semantics, or make the concrete data contain the necessary
“atoms of semantics”?

The concept of semantics needs to be formalized at some level. When pro-
cessing signals, the relevant information being expressed as (co)variation, one
concentrates on contextual semantics, where the meaning of the structures is de-
termined in terms of their interconnections, finally reducing back to the system
inputs (naturalistic semantics). For a cybernetic system, however, this kind of
static definition is not enough, one once again needs to extend the studies to
dynamic domain to have a grasp of cybernetic semantics. It was balances that
were the key issue in neocybernetics, and the cybernetic models are models over
such equilibria. These balances need to be buried in data, or, the data needs to
be made balanced.

Again, it is the dynamic equilibria and tensions that are the basic notion here.
In each state there is a tendency to move in some direction; this “flow” is propor-
tional to the unbalanced tensions in that state, and can be utilized to quantify
the counteracting forces. Such tensions are also visible in the observation data:
State changes, or differences between successive states are proportional to the
flow. When such derivatives are included in the data, they represent the addi-
tional compensating forces and using them it is possible in that state to reach
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Original configuration Actual move = state change

Reconstruction of board Hot spots (threshold 0.05) Hot spots (threshold 0.1) Hot spots (threshold 0.15)

Figure 7.1: Reconstruction of the board and visions of the future in the
beginning of the game

the cybernetic balance among data:

u′(k) =
(

u(k)
du
dt (k)

)
≈

(
u(k)

u(k + 1) − u(k)

)
. (7.1)

Such “preprocessing” of observations, emphasis on changes or differences be-
tween successive ones, can also be motivated in terms of psychological and neu-
rophysiological studies — constant inputs become saturated, changes in sensors
are better detected. From the control point of view (see 7.2), there are also
connections: If the variables contain the derivatives in addition to the absolute
values an (extension) of (multivariate) PD control can be implemented. Math-
ematically one could speak of the complete set of variables as spanning a phase
space. Comparing to mechanical systems, if the original variables are “gener-
alized coordinates”, together with the derivatives they determine the system
state.

As an example of the relevance of the above discussion study a case where chess
configurations are modeled. Chess is the “banana fly” of cognitive science, being
a simple domain, but still being far from trivial. There were some 5000 config-
urations from real games used for modeling2. The coding of the configurations
was carried out so that for each location on the board (altogether 8 × 8 = 64)
it was assumed that there are 12 different pieces (at most) that can be located
there, and for each of them there was a separate entry in the data vectors.
This means that there are altogether 64× 12 = 768 binary entries in the highly
redundant data vectors — and when the derivatives were included and u′ was
defined as in (7.1) the data was 2× 768 = 1536 dimensional. The sparse coding
algorithm in Sec. 6.4.1 was applied for the data with n = 100, so that 100 chunks
(as the memory representations are called in cognitive science) were extracted.
After convergence typical chess configurations were reconstructed as weighted

2I am grateful to Professor Pertti Saariluoma for the data material and for encouraging
discussions
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Original configuration Actual move = state change

Reconstruction of board Hot spots (threshold 0.05) Hot spots (threshold 0.1) Hot spots (threshold 0.15)

Figure 7.2: Reconstruction of the board and visions of the future at some
later phase in the game

sums of the chunks: In Figs. 7.1 and 7.2 the results are presented. Visualiza-
tion of the high-dimensional data structures is a challenge — in the figures, the
modeling results are approximatively illustrated by projecting the numeric rep-
resentations back onto the discrete-valued board realm. On the leftmost images
in the figures, the observed chess piece configurations u(k) are presented: On
top, there is the outlook of the original board, and on the bottom, there is the
reconstruction when using a storage of only 100 numeric chunks that are appro-
priately stacked on top of each other. In such a typical case, almost all pieces
can be correctly recalled (the vector û(k) is thresholded so that only pieces with
relevance ûj > 0.5 are shown). The remaining images illustrate the “flow” of
the game, or derivative du

dt (k) in the current state k: Again, on top, there is the
observed change in the configuration, and on the bottom, there is the estimate,
visualized applying three different threshold levels. The pieces upside down de-
note vanishing pieces. Note that the reconstruction is purely associative, and no
check for validity is here carried out, so that some “ghost spots” also exist. On
top of the associations, higher-level reasoning would also be needed to screen
the reasonable moves.

It seems that when cybernetic semantics is incorporated in the data, some cogni-
tively relevant functionalities can be emulated: For example, it becomes possible
to attack the challenges of attention. It turns out that the “hot spots” in Figs.
7.1 and 7.2 are located rather appropriately, and, as it turns out, it is indeed
the expert-selected move that has a strong representation. The results remotely
remind the mental operationing of a real chess expert: It is known that chess
experts only concentrate on the “hot spots” on the board. This kind of attention
control has not been satisfactorily explained. Of course, the current experiment
only studied very elementary patterns on the board, and to capture phenomena
like functional chunks, to reach towards really “understanding” the game, one
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could introduce more complex (cybernetic) preprocessing of the observations 3:

u′′(k) =
(
ū′(k)
x̄′(k)

)
. (7.2)

It is interesting to note that it has been claimed that some 50000 chunks are
needed to satisfactorily represent the chess board [17]. Now the numeric nature
of the chunks and inherent optimization of the representations makes it pos-
sible to reach a much more compact model for a domain. What is especially
interesting is that the errors that the model made were cognitively credible and
“expert-like”.

7.1.3 Epistemology of constructs

In today’s artificial intelligence (AI) paradigms (like in semantic webs and ear-
lier in expert systems), it seems that one is interested in ontologies. However,
the essence of knowledge is not in the objects but it is in the ways of conceptu-
alizing and representing them. What kind of epistemologies are dictated by the
underlying “wetware”? Or, more appropriately: What kind of structures are
dictated by the cybernetic machinery and data distributions? In Whorf-Sapir
theory it is observed that concepts are the basis of cognitive phenomena; now
the emphasis is on the structures beyond the concepts.

First, the mathematical structures can be compared to cognitivistic models.
Perceptions are lower-level observations that are filtered through the mental
model. In concrete terms, x̄i determines the relevance of the concept (cate-
gory/attribute) number i when perceiving the input. As seen in another per-
spective, the sparse coded momentary weights x̄i stand for the cognitivistic
notion of short-term memory, containing “indices” to long-term memory con-
structs. These LTM constructs are the profiles φi expressing the elementary
patterns of exhaustion of available activation. Sparsity is manifested as STM
capacity. This scheme is completely distributed and locally controlled; the com-
puter paradigm with its centralized registers, memory units, and data transfer
among them, can be abandoned in this framework. The cognitivistic emphasis
on constraints is well in line with the cybernetic assumptions: Without limita-
tions to allocated capacities, there would be no need for optimization, and there
would be no need for emergence of abstracted models.

As it is assumed that it is essentially the same Hebbian perceptrons that imple-
ment all the functionalities, there is the common neural basis of the cognitive
constructs, dictating their structure. The “conceptual spaces” (see [31]) are not
based on clusters in the data space but on optimized axes of degrees of freedom
determined by the linear sparse-coded features. Because of this uniformity, it
must be so that for example categories and their attributes have essentially the
same kind of structure, each determining the other: The resulting epistemology
of categorization differs from traditional views (see [66]). Categories being com-
binations of attributes (features), and the attributes are each other’s attributes,

3For example, a variable where one would have a weighted sum of all own pieces, minus
weighted sum of all opponent’s pieces, would make it possible to include a gross evaluation of
who is leading the game; tension towards maximum of this variable would directly incorporate
the “will to win”
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determining their contents. Concepts are models abstracted upon examples, so
that observations can be explained as economically as possible when employing
them; these “concepts” are subsymbolic, but they change to symbolic if their
relevances exceed the threshold. Still, all of these structures are numeric rather
than symbolic, “fuzzy” rather than distinct, all processing taking place on the
numeric level. From the theoretical point of view, it is nice that such collaps-
ing of class structures makes the paradoxes of the Russell type impossible —
there are “sets of sets”. As seen from another modeling point of view, it turns
out that the “is-a” hierarchies and “has-property” structures become unified.
The uniformity and uniqueness of mental structures extends to all levels and
conceptual constructs: Also subclasses, and, specially, instances of classes, are
similarly represented as interconnected degrees of freedom (see Figs. 7.3 and
7.4):

A dog is a subclass of a pet, and Fifi is a subclass of a dog —
but, simultaneously, a dog is a part of the contents of a pet, and
Fifi is part of dog. Inheritance is not hierarchic but becomes a
network: Examples of a dog determine what brown color is like, and
the concept of brown partly define what dogs are like. Speaking of
dogs activates associations to pets, and vice versa.

This means that the framework of fuzzy subsets offers an appropriate framework
for mental constructs — subclasses belong to superclasses, but also superclasses
belong to subclasses. The subclasses characterize the properties of the superclass
to some extent. Fuzziness seems to be an appropriate word to characterize
categories, distinct categories are just our way of explicating the world. How
colors are see, for example, is dependent of the culture: In some cultures specific
concepts do not have relevance. This fuzziness applies also to other cybernetic
systems outside the cognitive one. As Theodosius Dobzhansky has observed,
“the problem of what is a species is among the most acute in biology”. Concepts
are just attractors in the surrounding infosphere, or they are not.

The model of the cognitive structures is comprehensive, also including feelings,
etc. Feelings also have their contents, their semantics being defined in terms of
connections to prior experiences — and the contents of other experiences are
flavored by the feeling attributes. The difference with feelings is that they seem
to be more physical and “deeper” than concepts in general, being bound to the
chemical realm: Typically a part of their contents is related to levels of adrenalin,
etc. The key point in cybernetic models is that all information is used and all
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correlations are modeled. When signals are not existing purely in the infosphere
but also, for example, in the chemosphere, a tight web of connections to the
environment is constructed, constituting a grounding of “self”. If associations
become reconnected, the contents of the feelings can also change — neuro-
linguistic programming (NLP) can truly change the way we see the world.

Concepts are names of categories; they are statistically relevant constructs ab-
stracted over individual observations, dependency structures that become ad-
dressed, attractor structures that have sustained the tensions in info/ideasphere.
The traditional dilemma – the gap between symbolic and numeric representa-
tions – is solved because it is manipulation of numbers that makes distinct
structures (symbols) emerge from data: Symbols are attractors of the dynamic
processes that carry out the data processing. To “bootstrap” an appropriate
concept structure, a delicate iterative process is needed. Explicit programming
of the concepts is possible, declaratively defining the connections to other con-
cepts, but mere structures with no relevance fade away. There need to exist the
structures to instantiate the dynamic processes, but according to the principles
of constructivism, the structures need to be relevant to flourish. As the poet
says: “you can only teach what already exists in the in the dawn of the student’s
understanding”. Without guidance, if the concept formation is completely left
to the student (as is the tendency in today’s pedagogics), the emergent struc-
tures become more or less random, as the syntactic categories cannot uniquely
be determined based on the examples alone.

Above, the data samples are identified with “observations” or “sensations”, and
the results are (artificial) “perceptions” (vectors u and x, respectively), etc.
Such direct interpretations of data structures as constructs in cognitive science
are rather bold — but in the cybernetic sense they are accurate enough, be-
ing relevant attractors carrying the correct intuitive connotations, details being
ripped off. In the similar manner, there also exist more ambitious consequences
that seem appropriate.

7.1.4 On expertise and consciousness

There are many intuitions that are offered by the neocybernetic approach. For
example, one can claim that expertise in a specific domain is based on appropri-
ate features or chunks existing in the conceptual space. An expert matches the
observations against his mental view, thus compressing the data into domain-
oriented representations. Applying this low-dimensional representation, miss-
ing variables are “filled in” as the known variables are matched against the
model, and this way, “associative inference” is implemented (see Fig. 7.5). One
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Figure 7.5: Traditional view of expertise (on the top left) makes it possi-
ble to implement rules of the form IF x = xi THEN z = zi, etc., whereas
when distributions are employed, inference becomes subtler, being an
associative (maximum likelihood) pattern matching process against the
existing knowledge model

of the traditional challenges in artificial intelligence – the “frame problem”,
not understanding the context — vanishes because of high dimension of data:
Even the less important information is carried along in the data structures,
the high-dimensional knowledge representations being never isolated from their
surroundings. The distribution-oriented view of expertise with continuous fine
structure allows subtle, non-binary reasoning, and also merciful degradation of
mental capacity as a function of scarcity of resources is manifested.

According to the domain-area experts, or members of Mensa (!), intelligence
is the ability of recognizing similarities between patterns — this is what the
intelligence tests actually measure. And patterns can be seen as correlation
structures. Extracting and modeling of such correlation structures is very much
in line with what the cybernetic machinery does. Finding a connection between
far-apart correlating units can be said to be an idea (or innovation), and the
general ability of finding such new couplings can be called creativity. And when
exploiting the Eastern wisdom: In Buddhism, awakening is a comprehensive
experience, a moment of intuitive, associative understanding.

No explicit determination of the “mental view” is possible — this is due to the
limited bandwidth of input channels. Activation of appropriate concepts has
to be carried out through a sequential process, sequences activating marginal
distributions, gradually spanning “virtual data” in the environment4. Similarly,
also the output channels are band-limited. Coordinated decoding of associative
representations is needed for all communication — not only among people, but
also among mental substructures, that is, when thinking takes place, when in-

4It seems that the transfer of complex information always has to be implemented in a
sequential form — for example, when looking at a scene, the saccadic eye movements change
the single image into a sequence of subimages that are thereafter reconstructed in the mind



176 Level 7. Cybernetic Universality and Lives in Phenospheres

formation is transferred between subsystems that previously have perhaps not
been connected. Higher-level tasks, like planning or explicit inference are based
on coordinated processing of sequences. Consequently, it is not enough to ex-
plain the processes from declarative to associative, or coding of information —
also the inverse direction, or decoding associative representations to sequen-
tial ones, should somehow be explained by the mental model. This decoding
is not so natural process as the coding seems to be: For example a human
expert cannot typically explicate his/her knowledge. This would mean loss-
lessly projecting the very high-dimensional virtual distribution onto a set of
one-dimensional sequences, natural sentences or formal rules. Such “sequen-
tial codes”, or languages, will be elaborated on later; perhaps understanding
the relevance of languages when trying to understand “living” systems in other
domains, too, is the main message here.

There also exist more vague concepts, like that of consciousness, can be ad-
dressed in the neocybernetic framework. There are many contradicting intu-
itions of how consciousness should be defined — the heated controversies being,
of course, caused by the fact that consciousness is the essence of our specialty
among animals. The views vary from the highest (consciousness is the culmina-
tion of intelligence) to the lowest level (consciousness is ability to feel something
like pain), or even below that (consciousness can only be explained in terms of
quantum effects).

Awareness of self, or “knowing that one knows that one knows”, is assumedly a
holistic, emergent phenomenon that cannot be reduced. However, in the adopted
framework this structure of infinite recess can again be collapsed. In the neocy-
bernetic spirit, it can be assumed that the mental machinery constructs a more
or less sophisticated model of the environment; when this model becomes com-
plex enough, the “self” becomes a relevant entity in the model that successfully
helps in structuring the observations and behaviors in the environment. Indeed,
when there is a model of one’s own model, a system can be said to be conscious.
This would mean that animals have consciousness in varying degrees — but
also non-biological cybernetic systems would be conscious to some extent. On
the other hand, a small child not distinguishing itself from its mother is not yet
conscious — but the “brain prosthesis” can truly capture the mind.

The “cybernetic grounding”, or the concretization of the intuitions concerning
mental processes as being based on infinite recess, also solves many problems
about the hermeneutic circles. For example, the traditional definition of knowl-
edge is that knowledge is something like motivated, true belief. Defining one term
then means first defining three terms — these terms being, after all, dependent
of the concept of knowledge. In the neocybernetic framework the chains of asso-
ciations converge to a balance of referential tensions as they are implemented as
stable dynamic processes, the “fuzzy ostensions” being defined by the elements
in matrix A. The deepest concepts, too, become matters of scientific study as
instead of “truth” the essential thing is relevance: Do there exist appropriate
attractors in the ideasphere. Counterintuitively — making the truth relativistic
it becomes universal. Similarly, many other age-old philosophical dilemmas can
be given cybernetically concrete interpretations.
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7.1.5 Theories of mind

As an example of a wide variety of deep discussions concerning cognitive phe-
nomena that are related to cybernetic considerations, study the philosophy of
Immanuel Kant (1724–1804) here. Kant was the first to observe that even
though we have our subjective mental worlds, there is something objective:
Even though we experience the a priori existing noumena in different ways be-
cause we have different senses, we all share the same predetermined machinery
that processes the observations. Thus, there is possibility of objectivity among
people (see chapter 10). Without saying it in modern terms, Kant is actually
speaking of models and people sharing the same modeling principles, solving
(to some extent) the problem of what is the relation between the external world
and internal mind, and how an experience is possible in the first place. He
was the most significant cognitive theorist long before his ideas of were coined
in psychology — and he indeed was a pioneer of scientific study in this field,
criticizing the use of mere pure reason.

One of the basic principles about the human perception machinery is — accord-
ing to Kant — its capability of constructing causal structures among observa-
tions. The background here is, of course, the fact that our mental constructs
invariably seem to have such a functional structure between causes and effects.
This observation has successfully been exploited for modeling (for example, see
[62]). However, as observed already by David Hume, one cannot ever see causal-
ities in data, only correlations, that is, one cannot without external help detect
cause/effect relationships, only simultaneity of phenomena. This seems to be
an eternal dilemma when trying to explain the human brain: There has to exist
some guiding hand constructing the causalities appropriately, and an external
mind is needed?

It can be claimed that the neocybernetic model offers a solution to this causality
dilemma (compare to chapter 3). Because it is only one’s own actions ∆u, as
induced by the environment, that are being coded in x̄, one implicitly knows
the structure among causes and effects — there is no paradox any more here.
True causality structures are indeed built deep in the Hebbian feedback adapta-
tion strategy: Only models are constructed that are tested in the environment
through feedback. The process of true “understanding” is a two-directional pro-
cess — to truly grasp something, you need to have your “hands on” it, seeing the
reaction of the world to your action, as observed also by today’s pedagogists5.
When looking at the cybernetic model (and now one needs to study the “stupid
agent”!), the matrix A is not actually any more a correlation matrix but a “cau-
sation matrix”; the machinery constructs a pancausal model out from noncausal
observations. The information flow from the environment to the system has al-
ways been seen as important, but now it is the inverse, or the feedback flow
that plays an equally important role: Otherwise there is no emergence of order,
and, specially, there will be no causal structures — and this “probing”, testing
for causality, is built deep in all levels of the structures in cybernetic systems.
Note that the causality as seen here is not “trivial” succession on the time axis;

5The Finnish words for “to understand” and that for “concept” (or “käsittää” and “käsite”,
respectively) literally have their origin in the words “hand” and “to process by hand” (or “käsi”
and “käsitellä”). Surprisingly, it seems that different cultures have “grasped” or “handled”
such deep concepts in similar ways: In German, it is “begreifen”, etc.
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the variables ∆u and x̄ find their values simultaneously.

The central role of the self-centered causal models is reflected on the highest
levels of consciousness. The sense of free will is one’s interpretation of what is
happening to him/her in the turmoil of the world. Human’s mind is built in
such a way that when one’s intentions match with what truly takes place in the
world, one feels like being the subject rather than the object there.

Kant also discusses transcendental arguments concerning the world outside:
What kind of properties in the environment are necessary to make construction
of the mental model (as he sees it) possible. Even though such discussions are
very deep and somewhat obscure, there are simple ideas underneath that still
hold; these ideas are contrasted here to the structure of the cybernetic model and
the environment. Kant concludes that there are essentially two key properties
of the world that are needed:

• Space. The observations need to have spatial structure to become man-
ifested as something else than chaos. This ability to distinguish be-
tween variables is implemented through the basic structure of the cyber-
netic model: It is assumed that the variables are localized in the vectors,
and within the vectors each variable has a distinct role.

• Time. Human-like cognitive phenomena are fundamentally based on tem-
poral structures. In the cybernetic models, the time axes have mainly been
ignored this far, and in what follows, such extensions are implemented
through the properties of the environment.

The above starting points nicely draw the borderlines — what kind of mod-
els one reasonably can construct and what to ignore. Concerning the spatial
structure, there are the basic wiring between the senses and the brains, signals
determining the basic dimensions of the space that exists in the brain; beyond
that, the assumption of tabula rasa can be employed. There are no innate ideas
or predetermined faculties in the brain, and the universal modeling ideas should
be applicable. But Kant’s intuition is deep: Taking the spatial structure only
into account is not enough. When attacking the temporal structures, however,
the simplicity objective has to be relaxed. In what follows, the time-domain
complexities of the real world are hidden outside the system — it suffices to
study what it takes if the system is to optimally implement a cybernetic struc-
ture in such an environment.

7.2 Manipulating the environment

What is the reason for cognitive systems to emerge in the first place? Nature
has not built the mental machinery to think of philosophies.

There is a consistent continuum from basic neurons to the human brain —
from the simplest structure to the most complex ones, the objective is always
to change the environment. This far in the cybernetic studies the system has
adapted to match the properties of the environment, but now its role is changed
from a silent object into an active subject. Only reacting to the environment,
simply trying to survive is not yet what one would think life is; intuitively, there
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must be more passion and free will involved. To be capable of manipulating the
environment in more sophisticated ways, more complicated control structures
than what have been studied this far are needed. The following discussion is to
be seen only as a demonstration of challenges the cognitive system is facing.

7.2.1 About artificial intelligence

When trying to understand intelligence in wider perspectives, one is entering
the zone of (even more) speculative studies. Rather than doing analysis of the
environment one tries to make synthesis towards a somehow modified environ-
ment. When trying to understand intelligence in general, and when trying to
synthesize it, the lessons learned in the field of artificial intelligence are invalu-
able. Indeed, the goals of artificial intelligence are getting nearer to those of
cybernetics — sometimes the letters AI are interpreted as agent intelligence or
ambient intelligence.

AI research is a marvelous example of a cybernetic domain where memes com-
pete violently. Cognition, and specially intelligence, are sensitive areas – it is
something that is seen as something that is human’s own. There are many ar-
guments and counterarguments, the tensions evidently not finding a generally
agreed balance. For example, the extreme pessimists claim that human mind
cannot study its own functioning; on the other hand, the extreme optimists
claim that after twenty years computers are so fast that they beat the human.
Perhaps one should already be capable of outperforming a housefly, then? The
periods of enthusiasm and disappointments have alternated, and the whole field
has had its collapses and rebirths. It is good to recognize the memes from the
past.

There were many starting points for AI back in mid-1900 — one cornerstone was
Norbert Wiener with his Cybernetics, and another influential figure was Alan
Turing. Indeed, it was Turing that defined the AI paradigm and its objectives:
He coined the goal of AI research in his (modified) imitation experiment —
a computer is intelligent if it can mimic human [80]. But is it enough that
behavior only looks intelligent? This is still today the mainstream approach,
but the resulting applications are examples of the “shallow view” of AI, where
the intuitive feeling of intelligence seems to escape.

Another contribution of Turing (and other pioneers) was the introduction of
the computer metaphor in AI: After showing that the “Turing machine” can
implement any computable function, it was easy to assume that also mental
functions can be emulated by computer-like structures. Indeed, the standard
models for explaining cognition, like the Anderson’s ACTR, are still based on
memory registers and separate compartments for functionalities [1]. However,
the computer metaphor with centralized elements necessarily fails the reality
check; there is no explicit transfer of information and no separate localizable
memory structures in the brain, but it is all an integrated whole.

But, indeed, Alan Turing was the first to admit that there is more to a zebra
than the stripes.

The original approaches to AI seem to be having their reincarnation today: The
modern “Brooksian robotics”, for example, goes back to very basics of action
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and reaction structures [11]. In the same spirit, the successes of connection-
ism have also brought the emphasis from high-level symbolic — cognitivistic
— approaches back to low-level data processing with inner structures of no
representation. Turing’s “black box” approach to intelligence has its roots in
behaviorism; however, today cognitivism or constructionism are mainstream
cognitive science. Should not AI follow here — back towards symbols? Perhaps
a synthesis is possible, perhaps it is possible to make the developments a spiral
rather than a recurring cycle? The claim here is that the cybernetic framework
is the key towards this synthesis.

It seems that the original intuitions about intelligence due to Wiener are still
valid: The basic function of the mental machinery is to implement control of
environment. But rather than implementing behavioristic control, one can im-
plement more sophisticated model-based controls applying the neocybernetic
models with internal representations. When an integral connection with the
environment is implemented, “deep AI” can be reached. This connection is not
only embedded AI in the traditional sense, but “cybernetic AI”.

Implicit control is the basic property of a neocybernetic system. However, now
the control view needs to be extended from the side-effect towards the basic
functionality. It turns out that some qualitatively new structures need to be
introduced, and a certain level of sophistication is needed to support and adapt
those structures.

7.2.2 Reflexes and beyond

The assumption here is that when a system reacts appropriately to the environ-
ment, illusion of intelligence emerges. In its simplest form, such reactions can be
seen as reflexes, atomary manifestations of intelligence, representing reasonable
behavior — facilitating survival — with no brains truly involved. But there is
a continuum towards more convincing functionalities: For example, study the
behavior of a cat — when it sees something move in its field of vision, it turns
its head towards the movement and attacks. In lower animals, like in frogs, such
behaviors are still more prominent: Movements in its visual field activate the
reflexes. Automated sensor/motor loops can be seen as extensions of simple re-
flexes, being learned rather than hard-wired, but still by-passing higher mental
faculties. As seen from outside, such more or less automated reaction already
gives an impression of “real-life intelligence”. And this intelligence is reached
by a simple cybernetic feedback structure as shown here.

Here, artificial reflexes, learned but sub-conscious, are studied, and for that
purpose, the originally static model framework is extended to dynamic cases.

Earlier the cybernetic system was seen as a mirror of the environment, environ-
ment being mapped onto the system state and from there instantaneously back
to the environment, the time axis being compressed into a singularity. Now it
is the controller system that implements current state as a mirror between the
past and the future, and, what is more, an adapted control also should somehow
implement balance between the past and the future. The cybernetic key princi-
ples are still applicable: The goal of the system is to eliminate variation in the
environment. When variations in the environment are interpreted as threats,
low-level intelligence already has immediate application: Getting away from
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threats can be seen as control towards zero activation in the local environment.
Based on such environmental challenges, emergence of higher and higher levels
of mental functions and reasoning skills is evolutionarily comprehensible: Facing
a combination of stimuli, should one fight or escape?

The subjective variables are bound to the system controlling the environment
— this means that the same goal, or changing of the observed environment, can
be reached in different ways: Either by explicitly altering the environment and
its variables, or through reaching another viewpoint, meaning that the system
moves with respect to the fixed environment. The same solutions apply in both
cases and the actual mechanisms of how the variables change need not be known
by the local controller.

Estimate the future, and when this future is known — eliminate it, bringing the
future to zero state. As compared to traditional control engineering disciplines,
this resembles the dead-beat strategy. This kind of control has its weaknesses,
including stability and robustness problems in challenging environments, and
more complicated control schemes could be studied here, too — however, the
dead-beat scheme is taken as the starting point. Still, there exist many ways
to implement the cybernetic control depending of the special properties of the
environment to be controlled; some alternatives are studied in what follows.

First, take a very simple case that is a direct extension of the original idea of
“static control”: Assume that if no action is taken, there is no change in the
state of the world, so that the future equals the past. This assumption is well
applicable in steady environments where change in the variables takes place
only through movements of the system. However, responses to one’s own ac-
tions need to be identified to implement smart controls. To make this simpler,
assume distinct, distinguishable excitations, and assume low level of coupling
(small q) so that complex dynamics in the environment can be ignored; further,
assume that all variables can be affected, that is, with strong enough control, all
variables can be zeroed — otherwise there can emerge stability problems in the
controller adaptation. To avoid incorrect adaptation, assume that the initial-
ization of φ is implemented appropriately. If all these assumptions are fulfilled,
only a minor extension to the cybernetic basic model needs to be introduced,
namely, delayed adaptation: When the control signal ¯̄c(k) is there, the matrix
φT

c = qE{δ¯̄x(k+1)¯̄cT (k)} is updated only after the results of the applied control
are visible (see Fig. 7.6). Time indices are used here to synchronize the data,
denoting the latest piece of information being employed; the “double bars” are
used here because the observations x̄ are the inputs into the controller layer;
these “single bar” signals are to further find their balance against the new layer
latent variables, or control signals ¯̄c. The model can only be updated afterwards
— but it can be applied online because it is the current information only that is
employed in control; in addition, the inversion of the control signal because the
negativity of the feedback has to be explicitly done, so that the actual control
is −φc ¯̄x(k).

The right-hand side in the figure represents the process of model construction,
where the dependencies between the control signal and the resulting observa-
tions are recorded, and the left-hand side represents model usage, or on-line
construction of the control signals. The information flows from the “prior in-
put” x̄(k) to the “latent variable” c̄(k), and from there back to the “posterior
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input” x̄(k+1), now assuming that the control signal and the two inputs are in
balance — the former balance being implemented by the model machinery, but
the latter balance being hopefully provided by the environment. In a stationary
environment perceptions in the future are assumed statistically equivalent the
perceptions in the past.

The intuitive idea of this control is to make the change in the state inverse
of the current state, meaning that, when the new state is reconstructed as a
sum of the old state and the change, the outcome will be zero state — meaning
successful control. The past and the future perceptions are “folded” on top of
each other. The procedure can be summarized as follows:

1. Observe the environment u(k) and find the compressed perception x̄(k)
corresponding to ū(k).

2. Using the perception x̄(k) as input, find the balance ¯̄c(k) = φc ¯̄x(k), and
apply the control −¯̄c(k).

3. Update the model by the cross-correlation between ¯̄c(k) and x̄(k + 1), let
k → k + 1, and go back to step 1.

In principle, the above scheme defines a framework for mastering independent,
co-adapting motor neurons, so that many uncoordinated muscles can do individ-
ual “agent control”: The coordination emerges as the reactions in the environ-
ment are observed. Because of the “humble” nature of adaptations, redundant
control structures can be implemented, so that the dimension of c is higher than
that of x.

As compared to the standard neocybernetics discussions, some new thinking is
needed here: The ultimate homogeneity cannot any more be reached. Struc-
turally, it is necessary to integrate also output (or control) in the models, mere
input data processing is no more enough. Above, it turns out that this can be
reached easily: An appropriately constructed model for input simultaneously
implements an optimized model for output (control signal) construction. Ap-
plying this trick, simple structures only are needed as explicit model simulations
can be avoided.

Technically, there are extra structures needed to capture the time-domain struc-
ture between data. When it is no more one static pattern at a time but a
discrete-time succession of samples, some sampling mechanism is needed. And
further: Many of the above shortcomings that plagued the presented scheme
can be fixed when even more sophisticated structures are employed. Specially,
above the details of dynamics were ignored; to proceed, a simple model of the
environment is no more enough — a wider view of the world needs to be sup-
plied to the controller. One has to be capable of simulation, or estimation of
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the future in a changing environment, before being capable of eliminating the
expected future deviations. The key point here is that there is a continuum
from simple to complex behaviors, all new innovations making the control sys-
tem in some respect better, thus defining a more or less smooth evolutionary
path towards extensions.

7.2.3 Extending the mind’s eye

In the earlier chapters it has turned out to that a good strategy to inspire new
functionalities in the model structures is to take into account the nonidealities
there necessarily are. In the similar manner, when studying the extensions that
are needed when aiming towards extensions to the cybernetic controls, nonideal-
ity of the world being controlled have to be considered. These nonidealities are
related to the time-domain structure of real-life phenomena: There is dynam-
ics, being manifested as inertia, and explicit delays being manifested as latent
times between the action and the corresponding reaction. The constraints of
the real world become acute and no easy tricks are available: The past cannot
be affected any more, and the future is not available yet. To manipulate the
world in reasonable ways, to change from an object to a subject, the system has
to be prepared to tackle with such properties of the surrounding world.

What is more, the world is characterized by a diversity of variables. There is a
multitude of alternatives when analyzing the dependencies among observation
entities: Certain variables can have causal structure, or they can be independent
of each other. Even if there is correlation among variables, there is no certainty
about their mutual causalities — but when implementing control, it is strict
causalities only that can be utilized. When deriving the cybernetic models
(chapter 3) all variables were assumed to be equally manipulable — indeed, this
is what the assumption of “pancausality” is about; this assumption was applied
also when implementing the control strategy in the above section. In the real
wide world outside the restricted domains, the idealizations do no more apply.
The adopted learning principle — increasing the connection strength if there is
correlation between the input and the internal state — results in ever-increasing
signals, ending in explosion, if the feedbacks from the state cannot bring the
input signal down. Of course, these difficulties only become more severe when
the dynamic nature of the environment is taken into account: The information
about the control effects comes only after a delay, and mere “frustration” of the
controller can also result in instability. There are no external critics to moderate
the adaptation processes, just as there is no a priori knowledge about the causal
structure available.

The complex causal structures are the main theoretical problem when striving
towards more active controls. Not all dependencies contributing in the outside
world can be detected. — But, indeed, the complete structure of causalities is
not needed. Note that the observed correlations can be utilized for prediction
even though the underlying mechanisms are hidden. There are different routes
to the same end result, and it suffices to identify the mechanisms of one’s own
actions to the future. This way, first mapping the observed current state to
the future (applying observed correlations), and from there back to one’s con-
trol actions (inverting the observed causalities), the general “model predictive



184 Level 7. Cybernetic Universality and Lives in Phenospheres

u k( )

kk d+1 k+1

Variable 1 time series

Variable time seriesN

Past Future

u k( 1)
Current view of the world

Figure 7.7: How the sensory registers can capture the state of the world

control” can be implemented, when seen in the control engineering perspective.
To implement such a scheme, explicit prediction or anticipation of the future is
necessary.

How to represent the past and the future? It turns out that both the past
and the future, even though containing infinite amounts of information, can
be collapsed into a singularity, and thus can be coded efficiently: According
to system theory, an appropriately selected state vector can code the past of a
finite-dimensional dynamic system; and if it is assumed that the controls are
successful, there is only a short sequence of transients in the future before they
are eliminated.

To tackle with the time-domain peculiarities of the world, and, specially, to
implement the necessary structures to support prediction of the future, one
can employ the concept of a mental image. In Fig. 7.7, a simple possibility is
presented that can capture the state of the world containing linear dynamics of
(at most) order d − 1. The time series of relevant variables up to current time
are assumed to be stored as a high-dimensional vector structure (vector length
here m = Nd). The sampling interval is assumed to be selected appropriately
to capture the natural dynamics. When PCA-like data compression is carried
out, the degrees of freedom can be captured — in this case this means that the
dynamics of the signals can be losslessly coded. The time series representation
makes it possible to express discrete derivatives, so that there is no need to
include the derivatives separately among the data (see Section 7.1.2). The
control can be based on such mental images: In prediction, the current image
u(k) is mapped onto the future image u(k + d).

The representation of the world becomes high-dimensional, and the control
strategies need to be robust against redundancy and irrelevant information. But
if such robustness can be reached, natural-looking functionalities can be recon-
structed: for example, finding correlation patterns among seemingly unrelated
observations makes it possible to simulate conditioned reflexes.

Getting back from the assumption of extreme homogeneity to tailored struc-
tures means that also the assumptions concerning separate structures for sen-
sory memory, different kinds of registers and buffers, etc., become necessary
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again. The simplicity objective applied in modeling must not override the facts.
And, indeed, it has been observed that there are various specialized functional
structures in the brain. Processing of dynamic phenomena seems to be a central
part of brain functions: For example, the cerebellum is known to be related to
processing of low-level dynamics. Model-based simulation, or reconstruction of
the future, truly seems to be characteristic to brains (compare to “mirror neu-
rons”, etc.). And the modern brain imaging techniques have revealed that when
perceiving dynamic phenomena, there exist brain waves at certain frequencies;
it is tempting to assume that such cyclic operation is related to the mind’s in-
ternal discretization machinery that changes the continuous flow of sensations
into a discrete-time sequence of perceptions.

7.2.4 Implementing more sophisticated controls

When studying the possible control-motivated extensions to the basic neocy-
bernetic model, it seems that there exist many alternatives. At least in simple
environments, various structures can implement the necessary functionalities;
and there exists a huge body of control engineering understanding readily avail-
able to boost the intuitions (for discrete-time control of dynamic systems, see,
for example, [4]). Here, the above ideas are extended to tackle with the observed
challenges.

Again, the idea following the cybernetic principles is to bring the world state
back to intended balance state, or to the origin of the subjective variable system.
An enhanced control structure is presented in Fig. 7.8. Still, this scheme is
not quite universal: For example, here it is necessary that all goal points are
balance points, so that zero error means zero control. There are three parts in
this structure — modeling of change, prediction, and control construction —
and some key points are briefly explained below.

First, it is change in the environment that is being modeled — what remains
always constant is not interesting from the point of view of information acqui-
sition or from the point of view of control: Variables that do not affect or that
cannot be affected should be ignored. What is more, this change is defined as
the difference between the actual state of the environment and the state that
was predicted; this makes it possible to concentrate on phenomena that are truly
new and contain the most of fresh information. When modeling the difference
between the observed and the estimated state, one needs an additional signal
coming “from the past”: The input/output structure becomes “two-directional”,
input coming essentially from two sources (compare to Fig. 3.7). The past in-
formation is unalterable, thus not introducing additional dynamics in the model
structure.

The middle part in the figure represents the key functionality, or the predic-
tion of the future state based on the current state. The prediction is simple
least-squares mapping between the former and the latter mental images —
adaptation of this mapping model can only be carried out afterwards, when
the future is visible, but the model can be used without such delay. To imple-
ment the least-squares mapping with minimum number of auxiliary structures,
it is assumed that internal feedbacks in the neurons keep their activities at a
certain level. When the coupling coefficients qi are individually controlled to
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make variance of ¯̃x(k) have value 1, then, according to the discussions in chapter
3, the whole covariance matrix E{¯̃x(k)¯̃x(k)T } becomes an identity matrix, and
the least-squares mapping from the previous to the next state becomes simply
¯̃x(k + d) ≈ E{¯̃x(k + d)¯̃x(k)T }¯̃x(k). As all variations E{¯̃x2

i } are equal, it turns
out that triangularization of the covariance is necessary to distinguish between
the variables. Again, modifications of the cybernetic adaptation strategy are
needed: It is not the input and output that are used for updates, but this time
it is the input and the earlier input.

Finally, the construction of control itself follows the same lines of thought as
in the above simple control scheme in Sec. 7.2.2. Before further adaptation,
appropriate initialization of the data structures is first needed: This means, for
example, explicit stabilization of unstable systems. The control also needs to
be bootstrapped: An external controller is needed in the beginning to instan-
tiate the control model, and during adaptation, the cybernetic controller only
gradually takes over.

The presented control scheme is versatile, at least in principle: If nonlinearity
(the “cut” function) is included in the perception structures, one has sparse-
coded feature-based control. The key point is that even the most complicated
control tasks (like biped walking) can be implemented applying the piecewise
linear structures that are based on local principal component models (see [34]).

The above discussions concerning cybernetic control are by no means exhaustive.
The key point to observe here is that when trying to exploit the inherent time-
domain structures of the world, extensions to the basic neocybernetic model
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structure are necessary. The above structures cannot be generalized to other
domains — is there something universal that can be said about the world-
induced cybernetic structures?

7.3 Planning and beyond

The above discussion concerning the cognitive system is by no means applicable
to other cybernetic systems as such. In cognitive systems where the function-
alities are based on neuronal connections one can easily design additional con-
structs that implement explicit prediction and other functionalities. In other
domains there typically is less freedom, the functionalities being dictated by the
physical laws of the environment. Whereas the cognitive system has evolved for
planning, or for simulation of potential worlds and for consciously changing the
environment to fit one’s targets, in other domains there exist no such explicit
goal-directedness. Or is there? It seems that it is difficult to reach some general
model that would cover all cybernetic systems; some ideas are universal, though
— and somehow addressing the intentional changes in the environment is one
of such principles. Again, when looking at the very functional approaches that
natural systems have found to tackle with such challenges, it is evident that
there are lessons to be learned.

7.3.1 From reactivity to proactivity

When the cognitive system was taken as an example of cybernetic systems,
some general aspects of the cybernetic models — like the possibilities and inter-
pretations of sparse coded subspaces — could be made better comprehensible.
But, after all, perhaps that example best illustrated how different the systems
in different phenospheres can be. Whereas intelligence can be defined as the
capability of tackling with and managing in new, unknown environments, life
can be characterized as the capability of tackling with and managing in familiar,
known environments. Intelligence is manifested in creativity, but life is man-
ifested in routine. For some systems the changes in the environment repeat,
and the future is known for a long time ahead. Mastering this routine, acting
reasonably when one knows what there is to expect — this is the key challenge
here from now on.

The case of cognitive systems illustrated the need to tackle with not only the
current environment but also with the future environment. This is a new and
crucial point: This far feedback control has been emphasized – it is what the cy-
bernetic agents implement when they adapt to their environment, either explic-
itly (as in “intelligent agents”) or implicitly (as in “selfish agents”). Feedback
is a robust way to tackle with unknown environments, as the balance is effi-
ciently restored after the disturbances are detected. But such feedback control
is always reactive: You will do nothing before things go wrong. Prediction of
the future disturbances would make it possible to implement proactive control,
where disturbances are compensated before they ruin the system. When the
sources of disturbances are known, one can implement — applying engineering
terminology — feedforward control.
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Feedback is the only reasonable control scheme when there is noise in the envi-
ronment — or actions of other unknown systems. But when the environment
is already well in control so that its degrees of freedom can freely be manipu-
lated by the system (or set of systems), and when all degrees of freedom are
under control, the problem setting is very different. The systems can take an
active role. To begin with, the environment changes, and after that, the system
changes; but when the systems are “mature” and dominant in their environ-
ment, it can be so that as the systems change, the environment follows. When
the environment is thus under control, there is no limit: The histories of cumu-
lating manipulations can become longer and longer. The environment can be
tailored at will by the systems — but where should it be driven to? This is not
important, the key point is that all subsystems agree upon the direction so that
the balance can be maintained. As Lewis Carroll puts it:

“Cheshire-Puss, would you tell me please,
which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where,” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

When the population is a model of the complex nonlinear world, it is the in-
dividual submodels that have to map the whole Wonderland. Only through
such ant-like search in that world the ranges are found, the possibilities becom-
ing investigated, so that the emergent-level model of local landscapes can be
compiled (even though this knowledge will ever remain distributed). In retro-
spect, different route selections can be evaluated against each other, and then
it is the Darwinian mechanism that can efficiently optimize among possibilities.
When the world has been mapped, it is reasonable to follow the right path.
The cognitive models can be assumed to construct their model of the future
by trial and error; in other phenospheres, however, one possibly cannot afford
mistakes, getting lost in the forest. Especially if the route is long, there is no
time to waste. The cognitive system has its limitations — remember that even
learning the muscular sequence of the golf swing takes a lifetime. In practice, to
find the desired place again, to take only the right turns, one necessarily needs
instructions. To implement such route maps, nature has been very innovative.

All complex population systems seem to be based on different kinds of instruc-
tions, and there are different kinds of implementations in different phenospheres.
In biological systems these instructions are coded in the genome, being innate,
and the flow of information is one-directional, so that the phenotypes cannot be
reduced back to the underlying genotype. On the other hand, memetic systems
are based on the cognitive “tabula rasa”, the instructions getting acquired from
canonical scriptures, and the flow of information is partly two-directional as it
is the clever minds that produce the scriptures (even though this explication of
expertise is typically difficult). The achievements in the cultural arena would
not be possible if they were based merely on the generic adaptation capability
of the cognitive medium — not everything can be learned the hard way. The
fast advances in cultural evolution are only possible because the production of
culture is cumulative, and the evolutionary developments there — creation of
new cultural achievements — can directly be based on the prior ones.

Note that it is still the same optimality criterion as before that is assumed
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to guide evolution — the match with environment, or ability to exploit envi-
ronmental resources determines fitness. Among the structures, however, there
are no visible “gradients”, there is no visible direction to go, and enhancement
can be observed only in retrospect. Thus, evolution of structures is not abso-
lute in the sense that goodness can be compared only as related to alternative
structures that have been experimented with; there is only “partial ordering”
of locations on the map.

As was learned from the case of cognitive systems, trying to reach out from the
current time towards the future necessarily requires structural developments in
the system; the more ambitious one is, the more sophisticated structures are
needed. Also the steps along the longer paths towards the desired locations
in the future are structural changes. The steps of structure change are com-
bined with parameter tuning in between; between the structural changes the
balance is restored around the new structure — this way, not all details need
to be codified in the instructions. Such succession of qualitative changes grad-
ually modifying the system outlook are characteristic especially to evolutionary
processes. Before, it was observed that catastrophes are the key to structural
changes, the whole old structure being reset; however, explicit instructions are
a way to avoid catastrophes, new structures being build upon the existing ones.
Individual systems are not to question the instructions — it is the interplay
between the systems and the overall environment that is the most important
thing, the subsystems just supporting the emergence of something “better”.
That is why, in some cases the death of the system is also predestinated in the
instructions; this kind of apoptosis can take place when the system has done its
share in changing the environment.

How is it possible that there is such wisdom built in the very mundane systems?
An example is needed here, and, as it turns out, the case of biological systems is
very illuminating: Following the above lines of thinking, the levels of individuals,
populations, and whole ecosystems become the same, being based on individuals
following the same instructions — just interpreting the instructions in different
ways.

7.3.2 Ontogeny of systems

The process of finding balance in a system, as discussed before in linear terms,
can in more complex systems be highly nonlinear, becoming a full-grown organ-
ism consisting of structural changes.

Development of a complex system is a step-by-step process. The system has
to be bootstrapped: The lower-level subsystems first need to be instantiated,
all attractors activated within a functioning environment — indeed, they have
to be brought to life — before the higher-level systems can survive in that
environment. A complex system cannot be instantiated as a one-step process
– or, at least, nature has not found the way to do it. This means that a new
individual has to repeat the same steps as its ancestors to become living. Yes,
all steps from the beginning of life, starting from the simplest chemicals and
catalysts, in principle have to be repeated.

There cannot exist structures of pure information; they must reincarnate in
some physical form. And any physical system is vulnerable to decay and wear
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— they must be regenerated periodically. This two-way nature of all systems
gives rise to deaths and births of individuals, or “system carriers”.

According to the assumption of Ernst Haeckel (1834–1919) the development of
an individual embryo repeats the development of the whole species, or, as he
expressed it, “ontogeny recapitulates phylogeny” (see Fig. 7.9). Even though his
idea has been heavily criticized, how else could it be? After all, as we now know,
it is mostly the same genes that are shared by very different species. The same
basic genes are shared by all of the biological living systems, even though these
genes may be interpreted in different ways, and they can become activated at
different stages of development. More complex life forms (that have assumedly
emerged later) have newer genes of their own, but they still consist of the same
underlying simpler functionalities, the whole path from the beginning to the
end being covered in the “building instructions”. The more there is common
in the two genomes, the longer history the species assumedly share. Of course,
Haeckel’s idea is a simplification — essentially the same truths can be expressed,
for example, in the form of von Baers Law: “Features common to all members
of a major taxon of animals develop earlier in ontogeny than do features that
distinguish subdivisions of the group”.

The system has to be instantiated in a single individual to become alive; for
biological systems, this means individual animals, and for memetic systems, this
means individual human minds. There is always a physical rack that is needed,
and the system size cannot grow beyond the capacities of that medium. One
concrete constraint is the life span: Because of the inertias in the environments,
it takes time before the balance is reached after each structure change. For
a system to evolve further, there must be enough time for the system to be
“downloaded” — and this is only the basis where the new developments are to
be built on. When the species history gets longer and more sophisticated, the
instructions need to become more efficient; and it is not only the history of the
one species but it is the history life on earth. It seems that the “higher” animals
having longer history to repeat, have managed to streamline the development
processes — in addition to typically having longer life times and duration of
gravity in general. How can this be explained?

Sometimes processes become streamlined as shortcut paths are found between
the original routes, the development becoming more straightforward. However,
more typically, it seems that, at least to some extent, acceleration of code read-
ing is built in the biological medium itself, and no structural changes are needed
to boost the processes: Along time, balance periods between structural changes
seem to become shorter and shorter. Where does the acceleration of processes
come from? Remember that the steps in development are based on new genes
becoming expressed, and these genes are there available, just waiting to be-
come activated. This activation takes place whenever the level of appropriate
excitatory factors has reached the threshold level; to make structural develop-
ments follow each other at a faster pace, it is only the question of making the
underlying quantitative processes more prominent — typically this happens as
the quantitative cybernetic matching processes are polished. Whereas the genes
themselves are evolutionarily old and they are mostly shared by different species,
it is the genetic control structures that have evolved later, making it possible to
easily alter the details of gene expression. From the succession of waterfalls and
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Figure 7.9: Graphs that are today usually called “Haeckel’s lie”. Ernst
Haeckel claimed that the embryos of fish, chicken, human, etc., are evolv-
ing through the essentially same phases, repeating the common history
of species development

quiet waters, structural changes and balance periods, the development processes
seem to evolve towards torrents, continuous fast-flowing rapids.

The instructions need not be implemented strictly sequentially — as long as
hierarchy among subsystems is maintained, the higher-level constructs being
based on the lower-level ones. For example, in the developing embryo, the
subprocesses are parallel and somewhat independent. The changes in expression
rates of the corresponding genes can also develop at different rates. Indeed, such
differences in gene expression properties are known in developmental biology
as heterocrony. As the genetic controls become more efficient, control signals
becoming stronger and more consistent, the genes are activated earlier; the faster
some control starts the more prominent that structure typically is in the adult.
Especially in vertebrates the basic structures are the same, differences in the
outcome being to a large extent based on at what time during the development
the genes started becoming expressed.

There are basically two main classes of systems: The biological ones in the chem-
ical domain being based on genes are “natural systems”, whereas the memetic
ones in the cognitive domain being based on memes can be called “man-made
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systems”. There is very much in common among them what comes to the role
of the “instructions”. Just as genes are shared among species, memes are shared
among cultural works, a new combination of memes being a structurally new
“species”, mental or physical artifact, to build further culture on. The “memetic
phylogeny”, or cultural evolution, is fast because it is free of the physical con-
straints of the interpretation machinery: The mental machinery is a universal
medium for all kinds of memes, structural changes being implemented in “soft-
ware”. What comes to “memetic ontogeny”, also the memetic systems need
to be instantiated, starting from zero, in each mind separately. Again, the
developmental subprocesses can be, if not parallel, still uncoordinated: When
reconstructing a memetic system it does not matter in which order you read
the books as long as you understand the used concepts. Similarly as the genetic
systems, also memetic ones (like scientific theories) are streamlined as they are
matured; to fit in a single mind, they need to be optimized to become extended.
This streamlining does not apply only to the meme combinations themselves,
but also to the medium: the mental machinery develops from the simple ways
of thinking towards more mature ones. Indeed, the reasoning processes can also
been seen as an evolutionary ones, starting from simpler mental structures and
ending in more appropriate ones. In the beginning finding connections between
mental variables is more or less random, new structural changes being called
ideas or innovations, bursting out from prior balances to new conclusions of re-
leased tensions; but after rehearsal, such inference processes become more fluent
and automated.

When modeling the most interesting cybernetic systems, it seems that mastering
the evolutionary processes would be of paramount importance. To understand
such phenomena one needs tailored frameworks to model sequential processes.
It turns out that one needs domain-specific languages and grammars.

7.3.3 Representations of evolution

To understand living systems, evolutionary phenomena are perhaps the biggest
challenge. All systems where there is evolution are basically based on sequential
representations by nature. The reason for this seems to be that a sequential suc-
cession of instructions is nature’s way of passing information over gaps between
systems. Linear codes can be easily read and reproduced — copied, stored, and
transmitted. Even though being sequential, implementation of such code cannot
usually be characterized as being process-like: The interpretation of the code is
detached from the time variable, instructions being read and substructures being
defined in a somewhat sporadic manner. There do not exist strong mathemati-
cal tools to master such mappings between topologically so different structures.
Still, conceptual tools for formalizing evolutionary non-continuous processes are
needed: One needs compact model structures to capture the functioning of the
codes. It is different kinds of formalisms and languages with special grammars
and vocabularies that can be applied for capturing such codes. What do we
know about such representations?

In the memetic domain, there exist ample evidence and experiences about the
properties of codes and their interpretation. Contribution of AI or cognitive
science in this context is that the memetic representations are studied a lot
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there, the connections between natural languages and the corresponding mental
constructs being a central topic there. Perhaps some questions that have not
even been formulated yet concerning evolutionary systems have already been
answered?

The objective of all natural language use is to instantiate more or less indepen-
dent subsystems in minds. How well that code matches the existing environ-
ment, how relevant it is, dictates how “living” that subsystem becomes, being
perhaps later exploited for a larger-scale memetic system. A code-form repre-
sentation should correspond to a high-dimensional associative representation,
so that the knowledge can thus be stored outside the living system, making it
possible be put alive in another mind later. The coding is not unique, and there
are different kinds of codes, as the dynamics of the attractors can be waken
up in different ways. In its most compact and explicit form, the bare bones of
expertise can be represented as declarative rules that are explicit partial pro-
jections of the high-dimensional representation onto low dimension. There is
plenty of material on the challenges of doing the inverse, when going back from
the declarative to the associative, or from “novice” representations to expert
representations. These age-old AI problems become a more general problem
plaguing all cybernetic systems: The essence of a complex system is difficult to
represent in code, and it is difficult to implement that code as a system. But if
it is the nature’s way of representing the system outside the system itself, the
way to survive over the succession of deaths and births, it should assumedly be
pursued also by humans trying to do the same.

As there is intuitively such a close connection between the codes in memetic
and the genetic systems, one is tempted to speculate. Expertise is difficult to
explicate, but it still can be written in books, no matter how fragmented that
representation necessarily becomes — is it really so that nature has not found
any way to reach such bi-directionality in the genetic system? The dynamic
balances can be constructed using the genetic code, but it seems evident that
the code cannot be modified by the system state. However, when comparing
to the use of language, it is the available memetic codes that are recombined;
language structurs need not be recreated, they are just activated appropriately.
Similarly, perhaps the genetic code can be seen as a set of rather constant build-
ing blocks, gene atoms, and the main emphasis is on the instructions telling how
to combine them. Just as texts can be constructed on the fly by combining the
available memes in more or less fresh ways, gene functions can be combined
in an equally flexible fashion. The epigenetic cellular state, or the vector of
transcription factor activities, reveals how the control genes are reprogrammed.
This system state can then be inherited in a Lamarckian fashion without affect-
ing the underlying genetic codes. Perhaps the increased flexibility explains why
the control genes seem to be so influential in higher life forms?

The mappings between the code and the functioning system are not one-to-one,
not unique in either direction. It is clear that in the high-dimensional dynamic
system of continuous-valued variables there is more information than can ever
be stacked into a finite code consisting of distinct variables. But also in the
opposite direction, when putting the code alive, misinterpretations are possible
because the systems are instantiated in different environments — and it is, after
all, the personal environment that determines the relevant attractors.
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Figure 7.10: From sequential to parallel — each representation being
meaningful and interpretable only in an appropriate environment

In Fig. 7.10, the relationships between the description of a system and its im-
plementation is illustrated. The description determines the structure, and the
system itself matches the structure against the environment by fitting its pa-
rameters — and simultaneously changing the environment. The system is the
mirror of the environment only within the determined structural framework. It
is the environment everywhere coupling things together, supplying for the inter-
pretations: The environment is the key to assessing the relevance of a system as
it is finally the match against the environment that determines the validity of a
system and its internal tensions. Also the language of the codes, grammar and
vocabulary, is determined by the environment, because it is the environment
that has to interpret the code.

The role of the environment cannot be overemphasized, as it is the final judge
supplying for the domain-area semantics. Only if the structures are interpreted
in the right environment they can become living attractors; without interpreta-
tion all structures and signs are void. In this sense, one could speak of “natural
semiotics”. For example, the ancient texts are not only undecipherable sets of
tokens, but they carry semantics even after the original culture is dead — as-
suming that the memetic attractors still exist in our culture, and the cultural
context can be reconstructed.

The environment having such a dominant role, it is questionable whether there
can exist any general theory of evolutionary systems. It seems that evolutionary
processes cannot be abstracted away from the details of the properties of the
underlying medium. A code is only meaningful if the environment — or the
interpreter of the code — is also exactly defined. Interesting analysis is still
possible — in the following chapter, ideas concerning such codes carrying the
domain-oriented interpretations are studied in terms of an example case. There
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are so many efforts on trying to understand the memetic code, the natural
language, so that, for a change, study the genetic code and the special challenges
of the chemical domain. How does the “proteomic code”, the sequence of amino
acids, dictate the protein structure?
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Level 8

From Building Blocks to
Theories of Everything

When studying the cognitive system in the neocybernetic perspective, as was
done in the previous chapter, some interesting results can be found. However,
when the semantic grounding is left floating, so that concepts are defined contex-
tually only in terms of other ones, there is the annoying question haunting: “So
what?” The resulting models are just computational constructs; intuitively they
cannot have very much to do with “real” intelligence that has to be grounded
on flesh and bones. This problem does not only apply to the cognitive sys-
tems: Generally, one has problems if trying to capture behaviors in complex
domains where semantics is detached. The lower-level system one is studying,
the more there is need to attack the deep coupling between the system and the
real world. Only if the domain-area semantics is to some extent captured, the
computing machinery can reveal something relevant and non-trivial that has
not been programmed in the code in the beginning.

What are these unexpected results — and what does this capturing of semantics
mean? The problem here is that the essence of domain-area semantics assumedly
is different in different domains, and no generic approaches perhaps can be
determined. However, specific examples can be illuminating, giving hints of
what cybernetics is all about after all.

Here, a very detailed case is studied, the environment with its semantics being
implemented; the environment is that of complex molecules, and the application
domain is modeling the sequences of amino acid sequences corresponding to the
translated genetic code. The sequences of atoms in the molecules are codes
themselves, and the objective here is to interpret that “language of molecules”
that is interpreted as functionalities in the chemical environment. From the
point of view of understanding living systems, the case of amino acids is crucial,
because they determine how the final functional proteins are folded, thus dic-
tating their structure and function. The protein structures are the basis for all
biochemical processes, and they are the basic structures in all living organisms.
Understanding such codes is the key to real “bioinformatics”.

And if the principles of life can be reduced back to quantum physics, perhaps
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there is life in large-scale physical systems, too? The wild speculations in the
end reveal the value of analogues as a source of intuition.

8.1 Computationalism cybernetized

Ludwig Wittgenstein observed that the language determines the limits of one’s
thinking: If there are no appropriate concepts, there is no way to express one-
self. Similarly, one cannot discuss complex systems without appropriate con-
cepts. However, in the adopted evolutionary framework, this thinking goes
much deeper: No humans are needed there to use the language; the language is
there for interaction with the environment, it is the environment that reads and
interprets the code. There is a code, based on a special language, to make it
possible for the system to “express itself” — or, indeed, in very concrete terms,
the system is defined in that language. Without domain-oriented languages ap-
propriate constructs and interpretations cannot be defined, and the systems do
not become alive in their environments.

8.1.1 Formal and less formal languages

The essence of evolution, or any developmental processes, can be represented
as code — or, anyway, different kinds of codes is the way how nature does it.
The brain is not a unique medium of decoding languages — perhaps it is the
most versatile, but qualitatively the mental system is by no means alone in its
aspirations towards capturing the complexity of evolutionary systems. The deep
structures of the language [18] are different in different domains. What do we
know about such representations?

In addition to the natural languages, there exists a wealth of formal languages
being used today. It is instructive to study the special case of programming lan-
guages, as there seems to be evolution among them, too, from clumsy towards
more natural ones. The larger the programs have become, the more struc-
tured the formalisms have become, being better capable of representing differ-
ent substructures in the observed world. In modern programming languages,
the computation has been “packaged” tight, the control of computation being
distributed; the programming languages have evolved through procedural lan-
guages to the today’s object-oriented ones. The development of programming
languages seems to lead towards representations that more and more match
the mental structures: In modern languages, there are “classes” that stand for
categories, “objects” being individual instances or examples representing the
class. The implementations of the attributes, or the “methods”, however, are
rather different. To make the programming languages more useful, different
kinds of sequential control structures are employed; parallelity or fuzziness in
data processing, however, is not heavily addressed, reflecting the dominance of
centralized thinking. Of course, there are also the pragmatic reasons for the
shortcomings, the processors in today’s computers operating one instruction at
a time in an all-or-nothing fashion.

The programming languages, as well as the other code systems, are used to
describe the desired functioning of the world. In the general-purpose program-
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ming languages, all this functioning needs to be implemented explicitly in the
code. In the other extreme, one can think of a code that only determines the
structures, the functioning being supplied by the language interpreter: The en-
vironment can carry out the functionalizing, or “waking up”, of the non-living
structures, if it supplies ready-to-use hooks to existing functionalities, or dy-
namic attractors just waiting to be activated — that is, if the code matches
with the semantics supported by the environment. Codes just select among the
candidate attractors to put up the system.

By definition, however, formal languages are formal or syntactic, missing seman-
tic content. Just as in formal logic, the syntax is separated from the details of
the domain field to keep the structures general. In the other extreme, there are
the spoken natural languages that are overfull of semantics, being loaded with
non-formalizable nuances. A speech act consists of not only the actual utterance
but there are, for example, the facial expressions and gestures, and there can be
the spices of humor and irony accompanied. The (collective) mental system has
developed natural language for communication face to face, not for losslessly
storing and transmitting information in text form. Are there other kinds of
“somewhat natural” languages that would be appropriate for representing the
coordinated developmental processes in other phenospheres? Such a cybernetic
language should be some kind of a compromise between formal and natural,
capturing a narrow domain with restricted semantics, offering a window to the
attractors of dynamic low-level processes in the environment.

To understand the challenges being faced, another aspect about truly natural
languages needs to be pointed out. As studied in chapter 3, the key observation
there was that everything is implemented locally by uncoordinated actors. This
fact applies here, too: The exact-looking representations are not so exact, they
are just the emergent nominal patterns. The same applies to codes — meaning
that one needs to master the regions within and between the codes. In principle,
all diversions from the exact code are errors, but, in practice, there are “degrees
of impossibility”. As there is normally just one way to interpret the codes, new
innovations cannot be studied: Adding noise just breaks the structures, making
codes completely undecipherable. One needs (and nature needs) a possibility
for “domain-oriented noise”, where alternative routes of evolution can be taken
in reasonable directions to escape the current stasis. It has been observed that
random mutations practically never result in enhancement of the genetic code
— it is like adding typing errors in a book: If the text can still be read, there are
no meaningful changes in the contents, there are no new memetic structures.
Even though the code is represented as a linear list, its structure is hierarchic,
and there is huge difference in the effects depending on whether the mutations
are in the “leaves” of the hierarchy, or in the “root”.

To have more understanding of languages that are not so fixed to the distinct
symbols, and to make the topology among the constructs visible and analyzable,
wider perspectives are necessary. One needs to implements also “metainforma-
tion” for reading the information in the actual code. Only looking at the lan-
guage is not enough as this metainformation concerning the code does not exist
in the code itself — it is in the interpreter mechanism, or in the environment.

To determine an appropriate interpretation of the code, the semantics of the
environment has to accompany the language. Actually the key point is not



200 Level 8. From Building Blocks to Theories of Everything

the language but this interpreter, or compact representation of the application
domain. How to determine the attractors that are relevant in the domain to
be employed by the systems? If this can be done explicitly, computers can be
employed, and the “seminatural” language changes to a programming language,
facilitating analyses of complex system in silico. The computing power alone
does not help if the computer does not do the correct things, but if the envi-
ronment is implemented appropriately, computationally keeping the dynamics
running, supplying the domain-specific dynamic attractors, simulation of the
development processes can be carried out.

Wolfram [91] says that tomorrow’s science is based on simulation. Even though
his basic hypotheses is not true (cellular automata are not the only available
model family), perhaps he is not totally wrong. Simulation is the way to es-
cape the formal rules and formulas in the theories — but it is not simulation
of the system itself, it is simulation of the environment that is needed. Tradi-
tional theories are still needed — first to implement the domain-area semantics,
and after simulations for compiling the results. Simulation is the method of
creating data, fresh processes supplying alternatives or local solutions, the fi-
nal cybernetic model then being composed over the map of alternatives in the
environment.

8.1.2 Simulators of evolution

Evolution is more that mere adaptation in an environment; it involves structural
change taking place after the initiation of the system. If this kind of evolution
takes place within a single individual it can be called development — in any
case, modeling such processes is crucial when trying to capture the essence of
biological systems. Unfortunately, there is no strong topology for systems where
structures evolve. When seen in the mathematical perspective, the changing
structures can be characterized as the processes being highly nonlinear; there
are typically no closed-form mathematical solutions to them. A robust and
generic approach “homogenizing” the details of nonlinearities is iterative: The
models can always be simulated.

Just as the nonlinear representations, codes, too, can have very different out-
looks — for example, there are many natural languages that still span the same
mental view. There do not necessarily exist any one-to-one mappings between
the surface forms of languages — their correspondences can only be evaluated
in terms of semantics, through the deep structures, or the activated attractors
in the appropriate environment. Only in this sense uniformity among represen-
tations can be reached: Codes are identical if they result in the same system of
internal dynamics. General analysis of codes and their correspondences can only
be carried out through the simulation of the environment — perhaps this is the
way towards a general theory of “natural linguistics”. To make the syntax and
the semantics go together, the point of view needs to be changed. It is not the
code that is simulated; it is the environment that runs, and when codes are put
in, they are interpreted in that process, so that the operational systems emerge
from the simulation. Simulator of the environment remains intact, the systems
changing; the special challenge is caused by the fact that changing of the sys-
tems can also change the environment possibly introducing new attractors and
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modifying the old ones. Of course, the codes can be put in the potion only
after the connection between the language constructs and the existing dynamic
attractors are defined.

As is evident, the implementation of the simulators in different environments
are different, but there are some general ideas. All complex environments share
common characteristics: One of the challenges — nonlinearity — was discussed
in chapter 6; The other challenge — time-varying nature — was studied in
chapter 7, and also in this chapter. To support nonlinearity, one needs to
support a population of individual processes, where each of such submodels
takes care of its personal local attractor, or local minimum of the cost criterion;
to support varying in time, the simulator has to decode the instructions changing
the system structures in a coordinated way. To summarize, the simulator has
to simultaneously (fractally!) host different types of processes:

• To tackle with the nonlinearity of the world, there have to be parallel
processes.

• To tackle with the time-variability of the world, there have to be sequential
processes.

The contribution of the cybernetic thinking here is to offer intuitions. For exam-
ple, how the population of competing submodels can be maintained and kept
stable — of course, this control is localized, coordination being implemented
implicitly through the environmental feedbacks, and the neocybernetic frame-
works offers an off-the-shelf framework. The other cybernetic contribution is
the emphasis on balance pursuit: At each level, dynamic equilibria are searched
for — it is these balances that are the dynamic attractors, or the domain-area
“concepts”. For example, in the case below, the domain-area semantics is im-
plemented based on the neocybernetic model. One can concentrate on such
important issues rather than details in simulations.

In short, the role of the simulation machinery is to host the proto-systems in an
appropriate environment, shuffle this container, and see the spectrum of out-
comes — just as one would do with in vivo experiments. It is the computer
that now supplies for the mindless signal carriers that operate on the structural
building blocks to construct the final systems. The population of surviving
systems characterize the local solutions, representing the distribution to be an-
alyzed. The process of “running the programs” in such an environment is a
form of Markov Chain Monte Carlo simulation. As compared to today’s ap-
proaches for doing this kind of first-principles simulation, there are only minor
differences: For example, the models based on the basic theories of quantum
theory are too involved to deliver enough relevant information as the simula-
tions are very computationally demanding; now one does not need such detailed
calculations, as it is not only shuffling and cumulating of numeric errors. When
one concentrates on the relevant attractors only, one has convergent rather than
divergent models, and errors due to simplifications fade away. But what is this
“emergent-level quantum physics”?

All this sounds magnificent — but can such mechanization of semantics ever be
carried out in any interesting domain? In what follows, the basics of physical
chemistry are studied. Study what kind of consequences it has if a molecule is
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regarded as a (truly) cybernetic population of charge fields; try to constitute
an absolute grounding of semantics in such domain, define appropriate data
structures that seamlessly reflect the underlying realm, and define the rules for
combining the data structures. The pursuit for semantics must be extended
to the very kernel — indeed, when studying physico-chemical systems, it is
quantum theory that is addressed. From the point of view of understanding
biological systems, this problem setting is very relevant: For example, if the code
is the sequence of amino acids, its interpretation is the three-dimensional, folded
and functioning protein molecule — and this is the nature’s way of implementing
structures that are defined in the genes. In this environment, the translation
of a sequential code into a high-dimensional structure is implemented in very
concrete terms. This has to be seen as a (very) preliminary sketch of what the
actual implementation of a “proteomic simulator” could look like.

8.2 Emergence in a physical system

Erwin Schrödinger, one of the pioneers in modern physics expected and hoped
to find new physics through a study of life [69]. He saw a deep connection
between the high-level systems and the low-level principles. Also since him,
similar more or less well-grounded intuitions have been exploited: For example,
the mysteries of cybernetic processes — not only life itself, but cognition, etc. —
have been reduced into the twilight of elementary particles, hoping that “free
will” emerges from the unpredictability of quanta. Perhaps there exist more
concrete contributions, too — fundamental physics is after all the realm where
the living chemical systems reside, and it is here where the system semantics,
and “grammar” of the codes, has to be based on.

8.2.1 Cybernetic view of electrons

There is no central control among individual electrons, but the electron systems
— atoms, molecules — still seem to be stable and organized. Either there is
some yet unknown mechanism that is capable of maintaining the stability and
the structures — or, it is the neocybernetic model that applies. The latter as-
sumption is now applied, and the consequences are studied. The starting point
(set of electrons) and the goal (cybernetic model) are given, and the steps in
between need to be motivated; of course, this is a risky way to proceed, as ev-
erything is interpreted in a predetermined way. Results are not conclusive, the
goal is just to present an idea and an approach that is offered by the adopted
neocybernetic framework as there can be new useful intuitions and interpreta-
tions available. Perhaps these studies can be motivated using the words of Max
Born:

All great discoveries in experimental physics have been made due to
the intuition of men who made free use of models which for them
were not products of the imagination but representations of real
things.
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So, assume that the nuclei are fixed (according to the Born-Oppenheimer ap-
proximation), drop the electrons in the system to freely search their places, and
see what happens.

When studying the elementary particles, traditional thinking has to be turned
upside down: For example, it seems that in that scale the discrete becomes
continuous, and the continuous becomes discrete. Distinct electrons have to be
seen as delocalized, continuous charge distributions; however, their interactions
have to be seen not as continuous but discrete, being based on stochastic pho-
tons being transmitted by the interacting charge fields. This view needs to be
functionalized.

Assume that there are two (non-measurable) charge fields i and j, variables xi

and uj representing their momentary intensities. These fields are manifested
through the photons emitted by them; the probability for a photon to be trans-
mitted is proportional to the field intensity. For two fields to interact, the
photons need to meet — assuming that the photon transmission processes are
independent, this interaction probability is proportional to the product of the
intensities, or xiuj . However, such momentary elementary interactions cannot
be detected; the macroscopic phenomena are emergent and become analyzable
only through statistical considerations. It is electric potential that is such an
emergent phenomenon, assumedly being a longer-term average of interactions
over time.

To estimate the energy that is stored in the potential fields, one can calculate
pij xiuj, where pij is the overall probability of the two fields to overlap. Because
the field has a dual interpretation, also representing the probability for a charge
to be located there, one can estimate the probability of coexistence as pij =
E{x̄ix̄j} when the two charge fields are assumed independent. Energy is a scalar
quantity; when there are various overlapping charges, their total potential can
be expressed as a sum

∑
i,j pijxiuj , or when expressed in the matrix form,

xT E{x̄ix̄j}u. However, there are different kinds of charge fields, attractive and
repulsive. Assuming that the vector x contains the negative fields, representing
the electrons, and u represents the positive charges, one can write for the total
energy

J =
1
2
xT E

{
x̄x̄T

}
x− xT E

{
x̄ūT

}
u. (8.1)

In the former term there are the self-referential structures (there is potential
energy stored also when a single charge field is put together), and its outlook
can be motivated as in 3.1.2. The key point here is that when appropriate in-
terpretations are employed, it is the neocybernetic cost criterion that is found,
meaning that the solutions for electron configurations also implement the same
neocybernetic structures. If the assumptions hold, there is self-regulation and
self-organization among the electrons, emerging through local attempts to reach
potential minimum. Not all electrons can go to the lowest energy levels, and
“electronic diversity” emerges automatically. Surprisingly, because of their de-
localization, “overall presence” and mutual repulsion, the electron fields imple-
ment explicit feedback, following the model of “smart cybernetic agents” (see
5.2.2).
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It is interesting to note that there are no kinetic energies involved in the energy
criterion, and no velocities or accelerations are involved. As seen from the
system perspective, the charges are just static “clouds”. This means that some
theoretical problems are now avoided: As there are no accelerating charges,
there are no electrodynamic issues to be explained as no energy needs to be
emitted, and the system can be in equilibrium. In contrast, such electrodynamic
inconsistencies plagued the traditional atom models where it was assumed that
the electrons revolved around the nucleus, experiencing constant centripetal
acceleration, so that radiation of energy should take place.

Whereas the electrons are delocalized, the heavier nuclei can be assumed to be
better localized. The key observation here is that the analysis of the continuous
space — modeling of the charge distribution of electrons — changes into an
analysis of a discrete, finite set of variables, or the nuclei. The idea of “mirror
images” is essentially employed here — rather than studying the system itself,
the electrons, its environment is analyzed: In this special case it is the environ-
ment that happens to be simpler to operate on. Assuming that the interactions
among the distinct nuclei can be represented in terms of a covariance matrix
E{ūūT }, the charge distributions of electrons are revealed by its eigenstructure.
When the eigenvectors are denoted as φi, one can rename the constructs: The
“orbits” of electrons, determined by the eigenvectors, are discretized (molecular)
orbitals. Following the Max Born’s formalism, the “squares” of orbitals repre-
sent “real” probabilities, or actual charges — and, indeed, the basic quantum
theoretical assumptions seem to hold: For example, the integrals, when changed
to summations, again equal

n∑
j=1

|φij |2 = φT
i φi = 1. (8.2)

Because of the properties of eigenvectors, the discrete orbitals are mutually
orthogonal. Traditionally, it is assumed that there is just room for a unique
electron in one orbit (or, indeed, for a pair of electrons with opposite spins).
However, now there can be many electrons in the same orbital, and there is no
need to employ external constraints about the structures, like assumptions of
spins, etc. The charge field can be expressed as ψi =

√
λi φi, so that the overall

charge becomes ψT
i ψi = λi. The “variance” λi is the emergent measurable total

charge in that field. This means that there are some conditions for the charge
fields to match with the assumption of existence of distinct charge packets:

1. The eigenvalue λi has to be an integer times the elementary charge, this
integer representing the number of electrons in that orbital.

2. The sum of all these integers has to equal the number of valence electrons,
sum of all free electrons in the system.

These constraints give tools to determine the balance configuration among the
nuclei (see later). As studied in 3.2.3, the energy drop in the orbital is related
to λ2

i .

How to quantize the continuous fields, and how to characterize the effects in
the form E{ūūT }, and how to determine the parameters? And how is this all
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related to established quantum theory? In short, how are the above discussions
related to real physical systems? These issues are studied next.

8.2.2 Molecular orbitals

Atoms are already enough well understood — at least what comes to the hy-
drogen atom (!). The contemporary theory of atom orbitals can explain their
properties to sufficient degree. However, it seems that one needs new approaches
to understand the emergent level — or the level of molecules. Molecular orbitals
are interesting because the chemical properties of compounds are determined by
their charge distribution — essentially these orbitals reveal how the molecule is
seen by the outside world.

The molecules have been a challenge for modern physics for a long time, and
different kinds of frameworks have been proposed to tackle with them: First,
there are the valence bond theories, where the individual atoms with their or-
bitals are seen as a construction kit for building up the molecules, molecule
orbitals being just combinations of atom orbitals; later, different kinds of more
ambitious molecule orbital theories have been proposed to explain the emergent
properties of molecules. In both cases it is still the ideas of atom orbitals that
have been extended to the molecules. Unfortunately it seems that very often
some extra tricks are needed: for example, to explain the four identical bonds
that carbon can have, peculiar “hybridizations” need to be employed; and still
there are problems, a notorious example being benzene (and other aromatic
compounds) where the “bottom up” combinations of atom orbitals simply seem
to fail. And, unluckily, it is exactly carbon and its properties that one has to
tackle with when trying to explain living systems and their building blocks.

When thinking of alternative approaches, it is encouraging that molecules have
been studied applying discretized eigenvalues and eigenvectors before: For ex-
ample, Erich Hückel proposed an approach that is known as Huckel’s method,
also reducing the analysis of energy levels in molecules into essentially an eigen-
value problem [8]. However, this method is still based on combinations of atom
orbitals, and being based on crude simplifications, it is regarded as an approxi-
mation. It is also quite commonplace that linear additivity of orbitals is assumed
on the molecular level — normally it is atomic orbitals that are added together,
now it is molecular orbitals directly. Indeed, basic physics is linear; the problems
are normally caused by the huge dimensionality of the problems.

Now it is assumed that all of the molecular orbitals extend over the whole
molecule, and it is assumed that (8.1) characterizes the electrons; the challenge
is to combine this with current theories and models. It is the time-independent
Schrödinger equation that offers a solid basis for all quantum-level analyses
[10]. It can be assumed to always hold, and it applies also to molecules (h is
the Planck’s constant, and me is the mass of an electron):

− h2

8π2me

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x). (8.3)

Here, V (x) is the potential energy, and E is the energy eigenvalue correspond-
ing to the eigenfunction ψ(x) characterizing the orbital. As ψ(x) is continuous,
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Schrödinger equation defines an infinite-dimensional problem, and as x is the
spatial coordinate, in higher dimensions this becomes a partial differential equa-
tion. Normally this expression is far too complex to be solved explicitly, and
different kinds of simplifications are needed. Traditional methods are based on
reductionistically studying the complex system one part at a time, resulting in
approaches based on the atom orbitals. Now, start from the top: As studied in
the previous section, assume it is simply a non-controlled play among identical
electrons that is taking place in a molecule. It is all “free” electrons that are
on the outermost shell that are available for contributing in the orbitals, that
is, for a carbon atom the number of valence electrons is increased by the num-
ber vC = 4, for hydrogen vH = 1, and for oxygen vO = 6 (!). What kind of
simplifications to (8.3) are motivated?

The time-independent discrete Schrödinger equation that is effectively being
studied is defined now as

−V0φi + V φi = Eiφi, (8.4)

where φi are now vectors, 1 ≤ i ≤ n, dimensions equaling the number of atoms
in the molecule n; because of the structure of the expression, these are the eigen-
vectors of the matrix V − V0 corresponding to the eigenvalues Ei. Comparing
to the discussions in the previous section, there holds Ei = λ2

i , the eigenvectors
being the same. Rather than analyzing the infinite dimensional distribution
of electrons study the finite-dimensional distribution of nuclei; one only needs
to determine the x × n elements of the potential matrix V − V0 to be able to
calculate the orbitals (or the negative charge fields around the positive nuclei).

To determine the matrix of potential energies among the nuclei, the challenge
is to determine the terms corresponding to the first term in (8.3). The diago-
nal entries of V − V0 are easy: Because the “local potential” is assumedly not
essentially affected by the other nuclei, the atoms can be thought to be driven
completely apart, so that the non-diagonal entries vanish; the diagonal entries
then represent free separate atoms, so that the electron count must equal the
number of available valence electrons, that is, the i’th diagonal entry is propor-
tional to v2

i , where vi presents the number of valence electrons in that atom.
For non-diagonal entries, the sensitivity to changes to distant nuclei becomes
small, so that the term with the second derivative practically vanishes, and the
corresponding entry in the potential energy matrix is according to basic elec-
trostatics approximately proportional to vivj

|rij | without normalization. Here, |rij |
stands for the distance between the nuclei i and j. When the preliminary po-
tential matrix has been constructed, elements of the matrix V − V0 have to be
justified so that the eigenvalues of the matrix become squares of integers, and
the sum of those integers equals the total number of valence electrons.

So, given the physical outlook of the molecule in equilibrium, one simply car-
ries out principal component analysis for the matrix V − V0, finding the set of
“discrete orbitals”, or orbital vectors ψi and the corresponding eigenvalues Ei

and electron counts λi. The elements of the vectors ψi reveal around which nu-
clei the orbital mostly resides; the overlap probability pij is spatial rather than
temporal. For illustration, study the benzene molecule: Benzene is the proto-
type of aromatic compounds, consisting of six carbon atoms and six hydrogen
atoms in a carbon-ring. Altogether there are 30 valence electrons (6 times 4
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for carbon, and 6 times 1 for hydrogen). The results are shown in Fig. 8.1 —
compare this to Fig. 8.2: It seems that the three first orbitals have essentially
the same outlook in both cases. Now there are altogether 7 electrons on the
lowest energy level! All orbitals extend over the whole molecule; the hydrogen
orbitals are also delocalized — such delocalization applies to all molecules, not
only benzene. Note that the orbitals having the same energy levels are not
unique, but any orthogonal linear combinations of them can be selected; such
behavior is typical to symmetric molecules. The “bonding energy” is the drop in
total energy, or the difference between the energies in the molecule as compared
to the free atoms; possible values of this energy are discretized, now it (without
scaling) is 1 · 72 + 2 · 42 + 3 · 32 + 6 · 12 − (6 · 42 + 6 · 12) = 12.

The presented approach is general and robust: For example, the unsaturated
double and triple bonds as well as aromatic structures are automatically taken
care of as the emerging orbitals only depend on the balance distances between
nuclei: If the nuclei remain nearer to each other than what is normally the case,
there also must exist more electrons around them. Spin considerations are not
needed now, as there is no need for external structures (orbitals of “two-only
capacity”) to keep the system stable and organized. However, no exhaustive
testing has been carried out for evaluating the fit with reality. When different
molecules were experimented with, the results were not fully satisfactory. Any-
how, the objective here is to illustrate the new horizons there can be available
when employing non-centralized model structures.

8.2.3 Characterizing molecules

The time-independent Schrödinger equation (8.3) is not the whole story. As
explained, for example, in [10], the complete wave equation consists of two
parts, the other being time-dependent (and location-independent), these two
parts being connected through the energy eigenvalue E. The complete solution
has the form

ψ(x, t) = ψ(x)e
√−1 2πEt/h. (8.5)

Because of the imaginary exponent, the time-independent part oscillates at a
frequency that is determined by the energy level of the orbital. Now in the case
of discretized orbitals, one can write for the orbital vectors

ψi(t) = ψi sin
2πEit

h
. (8.6)

Each energy level also oscillates with unique frequency. This means that the
orbitals cannot interact: Because the potentials are assumed to be related to
integrals (averages) over the charge fields, there is zero interaction if the fields
consist of sinusoids of different frequencies. On the other hand, if the frequencies
are equal, the time-dependent part does not affect the results. This way, it seems
that each energy level defines an independent interaction mode, and these modes
together characterize the molecule — and also each of the individual atoms
within the molecule. Thus, define the matrix Ψ where each of the columns
represents one of the atoms, from 1 to n, the column elements denoting the
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Figure 8.1: “Cybernetic orbitals” ψi in the benzene molecule (see text).
The larger dots denote carbon nuclei and the smaller ones hydrogen nu-
clei, distances shown in Ångströms (1 Å= 10−10 m). The orbitals, shown
as circles about the nuclei, have been scaled by the corresponding λi to
visualize their relevances. The circle colors (red or blue) illustrate the
correlation structures of electron occurrences among the nuclei (the color
differences are to be compared only within a single orbital at a time)

contribution of each of the orbitals, from 1 to n, to the total field in that atom:

Ψ(t) =

⎛
⎜⎝

ψT
1 (t)
...

ψT
n (t)

⎞
⎟⎠ =

(
Ψ1(t) · · · Ψn(t)

)
. (8.7)
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Figure 8.2: Benzene
orbitals as proposed
in literature (see [56]).
Compare to Fig. 8.1

So, rather than characterizing an orbital, Ψj represents the properties of an
atom j within the molecule. The key point here is that the elements in these
vectors reveal the mutual forces between the atoms: If the other of the atoms
always has excess field when the other has deficit — the orbitals being “red”
and “blue”, respectively, as in Fig. 8.1 — the atoms have opposite average
occupation by electrons, and the positive attracts the negative. On the other
hand, in the inverse case there is repulsion among similar charges. These forces
determine whether the atoms can get enough near each other to react; indeed,
this force is closely related to the concept of activation energy that is needed to
overcome the repulsion among atoms. In the adopted framework, this activation
energy can be formulated as

ΨiΛ2Ψj , (8.8)

where the total energy is received by weighting the attractive and repulsive
components by the appropriate orbital energies (Λ being a diagonal matrix
containing the electron counts on the orbitals).

There are only some 100 different atom types, but it seems that there are no
bounds for molecule types and behaviors. The above discussion gives guidelines
to understanding how this can be explained and how this understanding can
be functionalized. A sequential molecule is like a “string” whose vibrations are
modulated by the additional “masses” that are attached along it. Because of the
linear structure of the protein chain, it is clear that the interaction covariance
matrix is diagonally dominant. it is an interesting question how different amino
acids in different locations are reflected in the frequency structure of the final
molecule. In the proposed framework, it is also possible that the oscillating
charge fields interact with the nuclei; this gives rise to extra complexity in the
characterization of molecules as the mechanical vibrations can also affect the
chemical properties of the compounds — for example, different isotopes having
different masses can have differing behaviors.

Because of the universal quantization of the energy levels, the repulsions and at-
tractions are, in principle, comparable among different molecules — but there is
the question of synchronization of the oscillating fields. What is more, the pro-
posed characterization of the molecules is not exhaustive: For example, “hand-
edness” is beyond this kind of analysis, and optical isomers have identical repre-
sentation even though they have differing chemical properties. Because of these
shortcomings, the representation is not a general-purpose one — but within a
single molecule there may be new tools available.
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8.2.4 Folding of proteins and splicing of RNA

All genetic programs are manifested as proteins being products of a complex
process of DNA transcription and RNA translation. The proteins are used ei-
ther as building blocks themselves or as enzymes catalyzing further reactions.
Assumedly the proteins are as diverse as the genes themselves — how can pro-
teins have so different properties, being composed of the very basic atoms? It
has been proposed that it is the physical outlook, or folding of the proteins that
is largely responsible for the properties.

The DNA, and after that RNA, only determines the linear sequence of amino
acids, the formation of the three-dimensional structures taking place afterwards.
But, of course, it is the sequence of amino acids, as being interpreted by the envi-
ronment, that determines also the final outlook of the molecule: There is affinity
among far-apart atoms in the molecule as determined by the structure. Because
of its importance, this folding process has been studied extensively, mostly ap-
plying computational approaches. But no matter how heavy supercomputation
is applied the long-range interactions cannot be revealed or exploited when these
long-range effects are abstracted away to begin with in the standard molecular
models.

This protein folding seems to be an example of a wider class of phenomena:
Intra-molecular affinities have to be understood to master many different kinds
of processes. For example, study RNA splicing.

In eukaryotic cells, the gene sequences in DNA contain non-coding fractions, or
introns, in addition to the coding ones, or exons. During the processing of pre-
mRNA into the actual messenger-RNA, the non-coding portions are excluded
in the process of splicing where the exons are connected to form a seamless
sequence. What makes this process specially interesting is that the splicing
process does not always produce identical messenger-RNA’s, but there are al-
ternative ways — sequences can be interpreted as introns or as exons in different
environments. It has been observed, for example, that a single mouse gene can
in theory produce more different kinds of proteins than what is the size of the
whole genome. No doubt understanding the splicing mechanisms will become
very important, as nature has found this mechanism because it offers a flexible
way to alter the gene expression results without having to go through the highly
inefficient route of evolving the whole genome. However, today these mecha-
nisms are still less understood than what protein folding is — and it seems
that the real essence of RNA splicing cannot even be explicated yet. Because
there is no central control, it is evident that the locations that are to be recon-
nected need to attract each other. Again, it would be invaluable to master the
attractions and repulsions among the atoms in the molecule.

When analyzing reactions, it is often the energy levels before and after a reaction
that are studied. However, when studying reaction probabilities, analysis of the
final energy levels is not enough: The key point is to see whether the reaction
can ever take place. It needs to be recognized that carbon is very reactive, and it
forms a bond whenever two atoms are enough near each other — the total energy
seems to go down as there are more atoms in the molecule. The most important
thing is the activation energy, or the energy that is needed to bring the atoms
near each other. Indeed, if the activation energy is low — or, specially, if the
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reacting components attract each other — the reactions probably take place.

Understanding the underlying principles of attraction and repulsion among
atoms gives tools to understand not only the folding processes, but also cat-
alytic (or enzymatic) reactions; and it is enzymes that are responsible of most
of the biological reactions. How is it possible that there seems to exist an infi-
nite number of catalysts even though the number of alternative form for “keys”
and “locks” seems to be so limited? The new view explains that there can
exist an infinite number of energy levels, and thus there can exist an infinite
number of attraction patterns. When applying the “holistic” view of molecules
as electron systems, orbitals extend over the whole molecule. All atoms count,
and it becomes understandable how atom groups far apart can alter the chem-
ical properties of the whole molecule. Specially, in this framework it can be
explained how the coordinated-looking very long reaction chains of transcrip-
tion and translation can exist. The sequential reading of codes can be locally
controlled when there is “chained catalysis”: Only when the previous piece of
code is processed, the next step is catalyzed by the previous reaction result.

Now there are enough tools to implement an “emergent-level simulation” for
modeling the protein folding: Rather than doing the extensive quantum theo-
retical ab-initio simulations, represent the chemicals in terms of their emergent
affinity structures Ψ, and shuffle the potion, producing a distribution of chem-
icals and their structures in equilibrium. That is, put in the “codes” — linear
amino acid sequences — and let the environment interpret and process them
into a “system”. Note that the representations Ψ change as the physical ap-
pearance changes, the atoms traversing in the force fields, and these also need
to be adapted; what is more the physical outlook also affects the possibilities of
the atoms to approach each other, and this also needs to be taken care of in the
simulations. Whenever orbitals come near enough each other, they automati-
cally merge, thus forming a bond1. The simulation is also simulation of nuclei
movements: Given a nucleus combination, the orbitals can be determined, and
after the charges are found around the nuclei, and when the physical constraints
are taken into account, the total forces affecting the nuclei can be calculated.
When the nuclei are moved slightly in the directions of their attraction, the
orbitals need to be calculated again, and the whole loop is repeated, until a
balance is reached so that no residue attraction remains.

The interpretation of one-dimensional code into a high-dimensional operational
representation (see 7.3) is very literal in the case of protein folding — the chain
of amino acids becomes a many-folded structure. The end result is the folded
protein; and it has been claimed that it is this structure that mainly determines
the functions of the molecule. Is there anything more to be said here?

After all, one is interested in the functions, the tissues or catalytic effects of
enzymes, not in structures themselves. Is there any possibility of analyzing how
the function of a folded protein emerges from its structure in general terms? It
should be clear that it cannot be the physical structure alone that would offer
the complete answer: Molecules cannot perceive physical dimensions; neither
is it some three-dimensional jigsaw puzzle in the tissues. It is tempting to

1As soon as there is any interaction among atoms, the potential matrix has non-zero non-
diagonal elements, and a mixture of orbitals is found; indeed, this model predicts the tunneling
of electrons also among far-apart atoms
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hypothesize that it is not only the physical structure, but again the cybernetic
structure that plays a role here: As the energy levels of the molecule specify
its oscillatory structure in the quantum level, perhaps neighboring molecules
find synchronization and become aligned. There emerges resonance, and the
molecule-level structure is repeated and magnified, being manifested as a special
type of homogeneous tissue, or — why not — as a crystal lattice in the inorganic
case. The resonances define a Pythagorean “Harmony of the Phenospheres”,
cybernetic balance of vibrations ... is this the key to the next emergent level
where the molecular components are combined into a next-level structures?

8.3 Towards “cosmic cybernetics”?

The previous example raises the question whether the physical systems also are
cybernetic. If the cybernetic principles are rooted so deep in the structure of
matter, perhaps there are reflections also on the wider scale? After all, the
systems in the large also are locally controlled only, and there is balance and
non-trivial structures in the universe. The advocates of “theories of everything”
claim that after combining the different kinds of basic forces, everything can
be explained; however, problems of cognition, for example, do not belong to
this “everything”. The real GUT theory has to explain emergence; does the
cybernetic thinking have something to offer here?

8.3.1 Formation of stellar structures

For example, when looking at complex physical systems, like galaxies, etc.,
where there also are individual “agents”, the stars, one can see that together
the bodies constitute seemingly self-organized, long-living constellations. As
compared to the neocybernetic studies, and when studying the possibilities
of extending such considerations to stellar systems, there are many problems.
First, because of the geometries and the outlook of the gravity law, the formu-
las are highly nonlinear; second, as the forces are determined by the mutual
orientations among the stars, and as these orientations constantly change, it
seems that there cannot cumulate any structure among the stellar bodies. The
main problem, however, is that there seems not to exist a repulsive force: Grav-
ity attracts bodies, and if there exist no balancing mechanisms, no cybernetic
self-regulation or self-organization can emerge.

Still, the solar systems and galaxies are rather stable. Originally there were only
clouds of stellar dust, but, based on local interactions only, different kinds of
structures have emerged. There evidently exist balancing effects — and, indeed,
as the attraction increases speed, the experienced centrifugal forces try to drive
the bodies apart.

How can the cybernetic ideas of elasticity, optimality, and adaptation be moti-
vated when it is mindless stellar bodies that implement all functionalities? How-
ever counterintuitive it may sound, all mechanical systems in the global scale
for some reason implement optimization. In Lagrangian mechanics, and later in
Hamiltonian mechanics, it is observed that the Newtonian laws of motion can
be reformulated as optimization problems: Along the motion trajectory, the
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time integral of the quantity L = WkinWpot reaches its minimum value, where
Wkin is the kinetic energy of the system, and Wpot is the potential energy. This
starting point has been applied a long time for deriving dynamic models for
mechanical systems, but it is not applicable for analysis from the point of view
of neocybernetics.

Since the Newtonian times, the emphasis in dynamic modeling has been on
accelerations induced by forces. However, in a galaxy in balance, such accel-
erations — even though everything is after all based on them — seem to be
rather irrelevant. As in the case of electrons before, now try to eliminate the
accelerations. Acceleration means change in velocity; assume that the veloci-
ties remain constant in the large, and the neocybernetic steady state prevails.
Study the possibilities of finding an “emergent model” for a galaxy where the
component-level interactions are abstracted away. What would such a model
perhaps look like? What are the local-level adaptations that can be justified
in such a non-adaptive environment where the laws of mechanics and gravity
cannot be adjusted?

What kind of alternative “stationary” models there are for central motion? A
characteristic model family is offered by the Navier-Stokes equations of fluid dy-
namics: Vortex structures in flows are commonplace. Indeed, the vortex model
offers intuitively appropriate behavioral patterns also for representing gravita-
tional fields, down until the black hole like singularities. Correspondingly, in an
combined electric/magnetic field such rotors also exist. The common denomi-
nator characterizing such models are vector products between some vector-form
quantities. Such mathematical representations can be seen as the emergent
evolutionary goals that are easier visible in systems with vortices of faster time
scales than in slow gravitational systems that still are in their transitory state
towards that final balance. In each case, the underlying actors (photons vs.
mass units) assumedly only obey tensions determined by their local environ-
ments, and the challenge now is to reinterpret the variables to implement the
observed behaviors in terms of physically relevant, locally observable quantities.

Of course, this all is very vague, but some bold (yet schematic) conclusions are
here possible. The hypothesis here is that the eventual stationary gravitational
vortices can be modeled using vector products between the velocities of bodies and
the forces acting on them. One motivation for this selection is that the product
of (scalar) velocity and (scalar) force has the dimension of power — and this
quantity sounds like a reasonable emergy measure to be pursued in a mechanical
domain. Assuming that the momentary velocity vector of a particle j is denoted
as vj and the total force acting upon it is Fj , the size of the corresponding vector
product is |vj | |Fj | sin(αj), where αj is the angle between the vectors, and the
average of it is E{|vj | |Fj | sin(αj)}. When approaching the steady state, the
average gets nearer to the momentary value.

But what is the assumed adaptation scheme among mindless bodies, why should
they try to do maximization of some quantity and how could they implement
that? It needs to be observed that orbits that maximize the cross product cri-
terion (under converged central motion) are circular orbits where the velocity
and acceleration remain perpendicular. It can be assumed that if such circu-
larity constraint is fulfilled by all stellar bodies, their orbits minimally interact
and remain intact, whereas non-circular behaviors are more probable to die
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out through collisions. This means that circularity is evolutionarily beneficial:
Circularity of orbits serves as an emergent fitness criterion — even though the
actors never see the chaos around them in such a wider perspective.

If the gravitational system is interpreted as an elastic one (stronger force mean-
ing shorter radius and faster motion when the angular momentum is preserved),
the product |Fj | sin(αj) can be seen as the external input, and |vj | can be seen
as an internal variable, one can express the local-level aspirations in the neo-
cybernetic framework when one defines the system state as xi = |vj | and the
inputs as uj = |Fj | sin(αj). When the local maximization takes place, global-
level emergence assumedly takes place: The final state after convergence under
elasticity assumption minimizes the familiar cost criterion

min
x

{
E{1
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{
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}
x− xT E

{
xuT

}
u}

}
. (8.9)

Looking closer at (8.9), one can see that the former term represents kinetic
energy, being essentially based on products of velocities; the diagonal elements
represent translational components, whereas the non-diagonal entries are in-
ertial components. Following the neocybernetic spirit, the state vector x can
be compressed in the PCA spirit so that the essence of the system is mini-
mally affected. It is here where the added value can be seen: As the state
space is compressed, the huge number of individual mass entities becomes rep-
resented by a simpler model. This essence of the emergent model is in the
lower-dimensional inertia matrix that can be determined through observations
as E

{
xxT

}
. It turns out that the uncoordinated stellar units can be seen as a

more or less three-dimensional rigid body. Still, before the final convergence in
infinity, there is still noise in the system: The local whirls among the stellar
bodies are manifested in the model as non-vanishing variations in the data. In
principle, the model does not only capture the movements of the galaxies and
stars, but also stars and planets, and planets and moons in its statistical struc-
ture. The larger model can also be decomposed: Single solar systems can be
characterized in terms of their local PCA structures. The evolution towards
circular orbits around a single mass center still continues — for example, the
tidal effects gradually bind the motions of the moons.

Perhaps the Pythagorean “harmony of the celestial spheres” can be defined in
terms of principal component modes (stars on the wider scale and planets on the
narrower one), modulating dissonances being caused by local rotations (orbiting
planets and moons, respectively, etc.) and ellipticity of the orbits.

8.3.2 Everything, and more

The neocybernetic principles can be claimed to span behaviors from the ele-
mentary level (orbitals) to the cosmic level (orbits) — but hypotheses can be
made even beyond that, towards the most extensive levels of all.

The neocybernetic models pop up in very different cases: Perhaps this is not a
coincidence. Many complex systems can be characterized in terms of optimiza-
tion, models being derived applying calculus of variations, the explicit formulas
(constraints) being the emergent outcomes of underlying tensions. For exam-
ple, Maxwell’s electrodynamics can be formulated in terms of such optimization.
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Figure 8.3: Illustration of how the four-dimensional space-time is de-
formed as a concentration of energy (mass) is found in the universe

What if the idea of distributedness of underlying stochastically behaving actors
is explicitly employed, perhaps it is the neocybernetic framework that automat-
ically pops up?

The faith here is that all observable behaviors even in the most universal levels
are finally implemented by uncoordinated low-level actions. In addition to the
stellar and planetary motions, there are also connections between astrophysics
and cybernetics on the more fundamental, less immediate level. It seems that
all non-trivial systems that still exist after those millions of years have found
their ways of implementing adaptive feedback, otherwise no self-regulation and
self-organization could have been reached. And, indeed, it seems that the idea
of elasticity is intuitively applicable also in wider scales — for example, the
Einsteinian tensors are tools to formalize pressures, or tensions (see Fig. 8.3).
There are problems when trying to apply the relativity theory to elementary
particle level; in this scale, all variables are quantized and the continuum models
collapse. There also exist models based on “cell-structured universes” that are
(more or less) compatible with the Einsteinian cosmology — the cybernetic ideas
could directly be applied in such models, neighboring cells being interacting
subsystems transferring emergy: Compare to Fig. 3.5, where impulses traverse
through the “space” as the coupling between “cells” is tight enough.

There are efforts to find the Grand Unifying Theory (GUT) that would combine
all basic forces like combine electromagnetics, gravity, weak and strong nuclear
forces into the sme framework. Elasticity seems to offer fresh ideas also in the
field of basic physics: Beyond the observations, in super string theories, the
elementary particles are seen as vibrating springs (or vibrations of strings). But
regardless of the form of the final theories, it seems that thinking of the universe
as an elastic self-balanced shell reacting to external pressures, this “shell” being
distributed in matter particles, offers a useful framework for studying matter.
The Heisenbergian thinking is to be extended, as it is all interactions (not only
measurements) that affect the system, the effective variables being reflections
of the emergent balance among the system and the environment. Measurable
variables are “interaction channels”, each interaction mechanism introducing a
spring of its own; individual seemingly static relations of the form x̄i = qiūi con-
nect observations through some coupling coefficient qi. The natural constants
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are not predetermined, but they are the visible manifestation of the balance ratio
between reaction and action. The modern theories employ some 11 dimensions
(some theories necessitating introduction of several dozen dimensions!) where
there are some “collapsed dimensions” among them: Now there is no upper limit
to the dimensions as they are no actual coordinate axes but they only represent
the number of interaction channels into the universe; and it is easy to think of
the vanishing degrees of freedom as being only tightly coupled to others through
the cybernetic feedback controls. The constants of physics should not be seen
as predetermined quantities: There are propositions that the natural constants
are gradually changing as the universe gets older. One of such propositions is by
Paul Dirac, who claims that cosmology should be based on some dimensionless
ratios of constants (known as “large number hypothesis).

If the cybernetic thinking universally applies, one can exploit the understand-
ing concerning such systems: Perhaps universe as a whole is optimizing some
criterion? This would help to escape some deadlocks one is facing today.

It has been estimated that to have a stable, non-trivial and long-living universe
that can maintain life, the natural constants have to be tuned with 1/1055 accu-
racy. Such astonishing coincidence has to be explained somehow, and different
families of theories have been proposed. First, there are the anthropic theories,
where it is observed that the world just has to be as it is, otherwise we would not
be there to observe it; the other theories are based on the idea of multiverses,
where it is assumed that there is an infinite number of “proto-universes” in ad-
dition to our own where physics is different. However, in each case it seems that
physics reduces to metaphysics, where there are never verifiable or falsifiable
hypotheses.

If the universe is (neo)cybernetic, each particle maximizes the share of power it
receives, resulting in the whole universe becoming structured according to the
incoming energy flows. Then there is no need for multiverses, as it is the only
the best alternative that really incarnates. It is as it is with simple subsys-
tems: Fermat’s principle says that light beams “optimize” selecting the fastest
route; it is the group speed that determines the wave propagation, the emerging
behavior representing the statistically most relevant alternative. Similarly, the
only realized universe is where the optimality of energy transfer is reached.

Again, applying the neocybernetic intuitions concerning adaptive controls (as
studied in chapter 5), the reasonably evolving universe must not be too balanced:
Perhaps there must exist some level of asymmetry to avoid the final stagnation
and subsequent collapse — this collapse perhaps signaling the end of the universe
as we know it, giving room for the “next version” to start the cycle from the
beginning.

The idea of the evolutionary universe is intriguing. How about the adapta-
tion and evolution mechanisms? The key point is not whether the cybernetic
thinking can be applied to modeling non-living physical systems — the most
interesting question is whether the universe can be interpreted as being a living
entity itself. Perhaps this all is not only loose metaphysics: As studied in the
next chapter, it seems that there seems to exist a nice connection between the
universal physical principles and the neocybernetic systems.



Level 9

Arrow of Entropy and
Origin of Life

As was observed before, in some cases there are credibility problems when trying
to model complex systems applying simple methods. However the credibility
problems are fixed, at some stage the models become not only incredible but
truly impossible. When very improbable phenomena are assumed to cumulate
ad infinitum, no time in the universe is enough to make emergence to happen.

There exist plenty of examples of such very improbable processes in biology: For
example, the gene transcription from DNA to RNA consists of a huge number of
marvelous coordinated-looking steps that are needed, and so does the translation
process of RNA further to proteins. How do the locally controlled atoms know
when to adhere and when to let loose when the sequential reading of the codes
is being carried out? And these are only subprocesses — above them, there are
the developmental processes in an individual and evolutionary processes in a
population that are equally astonishing. How do the systems climb the endless
steps of increasing complexity?

Admitting that there are still challenges is the first step towards more plausible
models. Unprejudiced analyses make it possible to see things in a perspective
— and, suddenly, it turns out that all is clear. When correct interpretations
are applied, it turns out that actually the systems are not going in the direction
of increasing improbability; they go down towards maximum probability. The
systems struggling against the flow of entropy is just an illusion (see Fig. 9.1).

In this chapter, this viewpoint is applied to the analysis of how life could have
emerged from the non-living. Indeed, it does not matter how long the ladders
are; when you are going in the right direction it does not matter how long it
takes. There is enough time — as long as the processes go in the right direction.

9.1 Thermodynamic view of cybernetics

The most universal framework that governs all physical systems is thermody-
namics. The thermodynamic concept of entropy is among the most fundamental
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Figure 9.1: The paradox of
entropy flow is just an illusion
(graphics by Maurits Escher)

ones in nature, and when searching for universal laws governing cybernetic sys-
tems, among others, these issues need to be addressed.

9.1.1 Entropy and order

Applying the thermodynamic interpretation (as defined by Rudolf Clausius),
entropy reveals the extent to which the energy in a closed system is available to
do work (as defined in a somewhat sloppy manner). The lower the entropy level
is, the more there is free energy. In a closed system, entropy level cannot de-
crease; it remains constant only if all processes within the system are reversible.
However, because the natural processes typically are irreversible, entropy in the
system increases, so that energy becomes “inert”. Even though the total amount
of energy remains constant, according to the first law of thermodynamics, it be-
comes less useful, according to the second law of thermodynamics. Ultimately,
the system ends in a thermodynamic balance, or “heat death”, where there is
no more free energy available.

This direction of increasing entropy seems to be opposite to what takes place in
cybernetic systems. The accumulation of complexity in the evolving structures
seems to fight against the second law of thermodynamics. The easy answer here,
of course, is that cybernetic systems are open systems, where there is energy
transfer between the system and its environment — the total entropy level in the
whole universe increases despite some “countercurrents” in the flow. However,
there are some rough edges in this explanation: This assumption means that
the strongest of theories, thermodynamics that should govern everything, is
not applicable in cybernetic systems, becoming void and useless if the system
just decides to develop. There seems to exist a gap between “normal” and
“abnormal”, evolving systems (see Fig. 9.2). Why do not the cybernetic systems
not choose the “easy way”, following the flow of entropy?
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Figure 9.2: Two vessels — an ideal mixer and an “idea mixer”. Two
systems where there seemingly is something very different from the ther-
modynamic point of view: In the former case, in the perfectly stirred
tank, addition of energy decreases order and structure, whereas in the
latter case, in the cognitive system, activity increases order, new struc-
tures being constructed

There also exist different, more or less closely related definitions to entropy. In
statistical mechanics (by Ludwig Boltzmann and Willard Gibbs), and analo-
gously in information theory (by Claude Shannon), entropy is related to prob-
ability: More probable states (observations) reflect higher entropy than less
probable ones. In a sense, entropy is the opposite of information — less prob-
able observations contain more information about the system state. In such
discussions, the second law of thermodynamics, or the increase in entropy, is
reflected so that systems tend to become less ordered, and information becomes
wasted.

It seems that intuitions concerning entropy are to some extent contradictory, or
at least obscure. One hypothesis assumes that entropy, being among the only
one-directional quantities in physics — defines the direction of time. Perhaps the
most marvelous conclusion is that the universe cannot shrink because that would
make particles be closer to each other — thus the system being more ordered,
total entropy in the universe going down. This would also mean that time would
start going backwards! Perhaps there is room for yet other interpretations.

The probability-bound interpretation of entropy is appealing, but it also seems
to result in paradoxes: For example, a symmetrical pattern is intuitively more
ordered, containing more information, and consequently having lower entropy
than a completely random pattern — on the other hand, symmetric pattern can
be seen to contain less information than a random pattern, because the redun-
dancies caused by the symmetricity can be utilized to represent the patterns
more efficiently, so that the entropy level should be higher now. Indeed, it can
be claimed that the “algorithmic entropy” is higher in a symmetric pattern than
in a non-symmetric one. To confuse concepts concerning order and symmetry
even more, or, rather, to reveal the inconsistencies in our intuitions, think of
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Inside the model

Outside the model

Time

No model

Figure 9.3: Illustrating the effects of cybernetic control (dots denote
“information units” and their conglomeration): The case without model
(on the left) has high probability at start time, and thus high momentary
entropy; the case with model (on the right) has low total information
over time, and thus high sustainable flow of entropy. Note that the
information stored in the model is constant and thus negligible, being
defined once for all

the following claim: A totally unordered system can be said to be extremely
symmetric as the components cannot be distinguished from each other.

The intuition has been seen as the basic tool in neocybernetics to reach good
models — such thinking seems to collapse here; but can the power of intuitions
still be preserved? The answer is yes — here it is assumed, according to the
original intuition, that orderliness, or loss of disorder, is a manifestation of
low entropy. The key point here is that the simplicity of symmetric patterns, or
ordered patterns in general (loss of information in them), is just an illusion: The
missing information of the pattern is buried in our mental pattern recognition
capability. If the same data is to be presented without the supporting underlying
cognitive machinery, or specialized interpretation and analysis tools, there is no
handicap — the redundancy cannot be exploited, and no compression of data
can be reached. In general, a higher-level representation makes it possible to
abstract the domain area data; in other words, as has been observed, a model
is the key to a compressed representation. And this idea can be extended to
cybernetic systems in general: It need not be our personal cognition machinery
that constructs the model storing the excess information; any cybernetic system
can do that in its own more or less narrow environment.

In the cybernetic perspective, the two views of entropy can be combined in a
natural way: On the one hand, it is about balances and pursuit towards heat
death, and, on the other, it is pursuit towards least information, as measured
in terms of variation. What is more, it turns out that evolution of structures
increases entropy.
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9.1.2 Control changes it all

The cybernetic systems, as studied before, are characterized by balances: First,
the determination of x̄ is based on finding the dynamic equilibrium as deter-
mined by the system model. Second, the system structure as determined by the
matrix E{x̄ūT }, is also a dynamic equilibrium as determined by the statistical
properties of the environment. Indeed, in a cybernetic system there are bal-
ances at each level — and, in this sense, the convergence towards a steady-state
model is completely in line with the second law of thermodynamics: Variation
(information) around the balance is maximally being eliminated, the “local heat
death” almost being reached.

Where does this balancing property come from? It is the structure and order on
the higher level — or the model — that makes it possible to control the lower
level, or to reach the information elimination there. Evolution is the process of
introducing ever more complicated structures that facilitate ever better control
of the environment, either implicitly, as in lower-level biological systems, or
explicitly, as in man-made systems. In any case, the cybernetic controls boost
entropy — and the more sophisticated the control is, the higher is the rate of
entropy production. In this way, rather than opposing entropy, the cybernetic
system tries to maximize entropy — quite in accordance with normal physical
systems. It is all about correct viewpoint, and selecting the system boundaries
appropriately. It is the control system intuition that is needed to solve the
“arrow of entropy” paradox.

Because of the simple definition of information (information being manifested
as variation), it is possible to distinguish between information being captured in
the structure (the model) and information being left in the signals (unmodeled
noise). The cybernetic system acts like a Maxwell Daemon, distinguishing be-
tween two “containers” of information and noise, compressing information and
pumping “negative entropy” into the emerging structures, thus causing positive
entropy be left outside the structures (see Fig. 9.3). The key point here is that
the single container of negative entropy (the model) is outweighed by the large
number of samples with increased entropy level (data variation in the environ-
ment being suppressed), thus being a thermodynamically sustainable scheme.
Whereas the momentary entropy increases, the “emergent entropy”, the average
of entropies over the whole environment and over all future decreases when the
cybernetic strategy is employed. The same thinking applies to entropy as to
other quantities when the neocybernetic perspective is applied: The time axis
is abstracted away, only the average over the long-term loss of information is
considered.

Perhaps the most important consequence of the new interpretation of the cyber-
netic systems is that reductionistic approaches become possible: Traditionally,
the only systemically consistent level of studying such complex systems, with
the whole environment being involved, was the holistic level, the whole universe
being seen as one entity. Now each subsystem can be studied independently,
as an independent thermodynamically consistent entity. The traditional view
of seeing the relationship between the system and the environment is turned
upside-down, or actually inside-out, environment now being the innermost part,
being controlled by the system (see Fig. 9.4). It is the environment that is seen as
the object, and the system is the subject, manipulating the environment, and a
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Figure 9.4: Reaching entropic consistency within systems. Left — tradi-
tional view, right — cybernetic view

more complicated system always sees the lower levels as through a looking-class.
The highest-level model where the negative entropy is concentrated remains out-
side the boundaries. The original input into the environment is white noise; as
seen by the highest-level system, the lower-level systems distort this noise, and
the systems tries to capture this distortion, or the redundancy there is in the
observations. It does not matter how many levels of systems there are, the same
principle of modeling always applies. Note that the low-level systems only see a
narrow view of the complex environment, and it is only this limited information
that is relevant to that system — the whole complexity of the world needs not
be captured.

9.1.3 Another view at model hierarchies

When the view of “information units” is employed, it is perhaps motivated to
take a closer look at models themselves. The model is a container of information
that characterizes the patterns that distinguish the system in question. To
have some perspective, note that the cybernetists Norbert Wiener and Arturo
Rosenblatt have argued that

The best material model of a cat is another, or preferably the same,
cat.

However, this view only applies to a trivial structure of models, when just a
isolated single cat is being analyzed. In the beginning, modeling truly starts
from representing all available information, the “world model” consisting of the
data directly, but when abstracting over individuals, the model becomes more
compact, the set of common patterns becoming smaller. When consistent vari-
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ations from the nominal are detected, the best model for the whole category
of cats summarizes the similarities or invariances characterizing all of the “cat”
samples. Neocybernetic models are the collections of invariances over variances.
This model compression, or separation of information between the containers
is implemented automatically by the cybernetic adaptation and control mecha-
nisms. At this level, the model contains the detected similarities.

But this kind of simplification is not all that happens. As has been observed,
neocybernetic systems are not alone — and, similarly, also neocybernetic models
form a hierarchic interlinked structure. If there is a hierarchy of models, further
compression of the sub-level model takes place: Redundancy in information gives
rise to a higher-level “model of models”, or, as seen in the control perspective,
“control of controllers”. A generalized view of control can be based on the
view of eliminating information invariants, or transferring them onto the higher
level, being shared by different domains. As there are common patterns among
features, the higher-level model captures this redundancy. This means that
the same information is represented in the lower-level model only once. At the
higher level, when differentiating submodels from each other, the model contains
the detected differences. The hierarchy of cybernetic models optimizes among
the representations of similarities and differences, assumedly minimizing the size
of the overall model.

Seeing information as bits — in the spirit of information theory — makes dif-
ferent levels of controllers commeasurable. No matter how a feature is defined,
directly in terms of a measurement or through a complicated algorithm, there
is no qualitative leap in their algorithmic complexities; information can be col-
lapsed onto the same format, and structures within the models also become a
matter of analysis and control. At the lower level, there is identity among in-
formation sources (features) that deliver the same information (distinguishing
between categories in an identical way), whereas when seen from above, the
information (algorithmic complexity) in the model is minimized, so that the
simplest representation remains. The cybernetic adaptation and compression of
information always follows the same principles (as studied in chapter 3) — the
key issue when escaping in a phenosphere to a higher level is that of determining
the features (see Fig. 9.5).
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This analysis that is based on the formalized view of information applies also
to memetic systems — for example, when looking at science, one can even
find new perspectives into the groundings of model thinking. Simplification
of a model is a manifestation of existence of a higher-level control, and when
studying science, these models are theories, also becoming more compact as
being “controlled” by the higher-level controls; these controls are defined by the
paradigm of doing sciences in general, governing the principles of all scientific
work. This means that as any science is a subsystem in a controlled hierarchy
of cybernetic sciences, it is bound to become more and more simplified as the
hierarchy matures: Only the most powerful explanations survive. Indeed, such
simplicity pursuit (compare to “Ockham’s razor”) is traditionally taken as the
philosophical foundation of all modeling without any attempt to justify it. As
the scientific discipline is a cybernetic system as is the subject of its study, this
simplification is perhaps not only an engineering-like shortcut: The same kind
of simplification takes place also in nature.

The qualitatively separate levels in the models are also visible in practical real-
life systems — study the flows and information hierarchies in an industrial
process plant:

1. Physical flows are the real flows of matter and energy in the process.

2. Information flows typically consist of the feedback controls governing
the physical flows.

3. “Knowhowflows” consist of supervision and optimization of the under-
lying control structures.

The goal of traditional control is balancing of the time-domain dynamics by
exploiting the causalities; this process-specific layer supplies for the cybernetic
medium to be exploited by the domain-independent cybernetic structures. Min-
imization of variances in product quality, and robustness against environmental
disturbances, is implemented finally applying the concrete controllers. The ideas
of feedback control are the same in all kinds of physical systems. In the sim-
ilar way, the ideas of cybernetics are still more general, covering all kinds of
control systems, abstract or concrete. One has to proceed from “bulk informa-
tion” to metainformation or knowledge (information on information). The level
of “cybernetic controls” on the metainformation level is somewhat ill-defined
— indeed, as soon as all information flows in a cybernetic loop are unambigu-
ously fixed, it becomes a traditional control loop. Even though (as observed
above) one always operates on the same kind of information units, it is reason-
able to distinguish between levels: The cybernetic framework combines systems
from different phenospheres. The plant-level idea of an industrial system is
functional, combining subsystems, both memetic and physical in appropriate,
ingenious ways. Information is transferred between phenospheres, or “paral-
lel universes of information”; one could distinguish between eksoinformation,
or “inter-domain information”, and endoinformation, or “intra-domain infor-
mation”. The lower-level controls exploit the available endoinformation that
can be included in the formal loops, whereas the eksoinformation can be called
“knowhowflow”. In knowhowflow one can exploit expert understanding and
common sense reasoning, and humans are integrated in such closed loops. This
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flow is typically very stochastic, and there are only the tensions visible; it is im-
possible to formulate the actual processes explicitly, but, again, the final state
is well-defined. The key point in expertise exploitation is selection and pre-
processing of the appropriate variables and weighting of them. The drifts are
manifested in the engineering-like pursuit towards better solutions — cheaper,
faster and more accurate measurements, actuators, and algorithms. Whenever
the features are formulated, or the “probes” are defined (see chapter 4), model
adaptation takes place in the familiar way. There is a balance among techno-
logical possibilities and economical constraints.

9.1.4 Principle of maximum entropy production

Traditionally, the second law of thermodynamics is thought of as being a univer-
sal, more or less metaphorical principle. The existence of systems with inverted,
entropy-decaying nature has made it difficult to motivate explicit utilization of
this principle in practice: It seems that the entropy principle cannot be applied
in a reductionistic way for analysis of concrete large-scale systems.

Now, according to the above discussions, the entropy in a subsystem always
increases when seen from the higher-level system. In a cybernetic system, en-
tropy increases in a consistent manner, there is “balance pursuit” at all levels,
completely in line with the second law where thermodynamical balance is the
ultimate goal. Because of this consistency, any subsystem at any level — when
its boundaries are appropriately determined — can be studied separately, and
also holistic systems can be analyzed in a reductionistic manner. In this sense
there is no more difference between different kinds of complex systems: Liv-
ing systems and non-living ones, for example, can be modeled in the same
framework. Whereas the first law of thermodynamics (energy principle) offers
powerful tools for deriving static models, it seems that the second law (entropy
principle), being a fundamentally flux-based concept, offers generic tools for
deriving dynamic models — also for complex adaptation processes. As long as
there are in a thermodynamic system heat resources, or heat differences, there is
capacity to do work; similrly, as long as there is emergy in a cybernetic system,
there is capacity to adapt and “live”. There is directed (generalized) diffusion,
or “leakage” of emergy from the environment, evolution making this leakage
from the reservoirs become faster.

If entropy production can be seen as a consistent process, the next step is
to assume that it happens as fast as possible. It can be assumed that it is
the most efficient strategies that only remain visible, characterizing the whole
system when seen from outside. In the spirit of principles of least action or
minimum energy, as originally proposed by Maupertuis, and later extended by
Euler, Lagrange, and Hamilton, one can propose the principle of maximum
entropy production for characterizing the processes of information decay. Such
somewhat teleological modeling principle give strong tools for looking systems
and their adaptations in a perspective.

When information is seen as a concrete measurable quantity, formally incom-
patible systems can be put in the same framework, and the intuitive visions
concerning behaviors in cybernetic systems can be functionalized. The entropy
levels, or, rather, changes in the levels, determine the free energy, and they can
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be applied as a measure for tensions in a cybernetic system; this measure can
be expressed as bits of information. Let us study what this means in practice
when doing entropy pursuit — what is the maximum speed of information con-
tainer separation, or what is the rate of the “emergent dynamics” in cybernetic
adaptation processes?

Assume there are k samples of data. Information is extracted from this data in
terms of more or less computational features, defining different ways of looking
at the system. In the spirit of information theory, the features are reduced to
one bit: They contain elementary characterizations of the form “yes” or “no”.
Further, for simplicity assume that the probability that a random independent
feature gives the correct classification is p; then the probability that the feature
remains indistinguishable from the others all the time during sampling is

pk. (9.1)

If the acquired information is optimally exploited, the probability that a super-
fluous feature does not become ripped off decays exponentially. In practice, the
optimum speed of adaptation becomes dependent of the signal-to-noise ratio in
data — but at last in this (extremely) simplified case, the rate of elimination of
bits in both environment and in the model takes place exponentially. Indeed,
this is what one would expect.

The above discussions are not only a theoretical exercise: They offer powerful
conceptual tools to attack complex evolutionary systems. The new view turns
the direction of thermodynamic tensions, changing the destructive-looking ten-
dencies into constructive ones, making the originally improbable developments
probable after all. The power of the new intuition is illustrated here by dis-
cussing one of the biggest mysteries there is — the origin of life. The question
about the origin of life is not only a philosophical problem: When trying to
extend biology from the analysis of distinct examples, individual animals or
species, to the scientific analysis of general principles, it is necessary to un-
derstand the common principles all of them share: Emergence of a cybernetic
system is a birth of an individual. Fundamentally, it is this origin of life that
is faced by each living system — after all, the individuals repeat this process in
their development starting from non-living chemicals.

9.2 Ladders towards life

The processes of DNA transcription and translation into proteins are much
too amazing to be credible — and still it happens all the time. It seems so
cleverly orchestrated that it is easy to assume that a guiding hand is necessary
in these processes. Thinking of this all having emerged all by itself, by some
“blind watchmaker” — this is the basic dilemma where creationists have all the
memetic weapons at their hands. However, in the cybernetic setting the things
turn upside down, and it can be claimed that the most plausible explanation for
origin of life is non-divine.
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9.2.1 Paradoxes of living systems

There exist various seemingly reasonable presentations about the origin of life
in the literature — for example, see [13] and [23]. There seem to exist no real
problems whatsoever, and even questioning the trivializations is seen as next to
insane [21]. However, it seems that it is these explanations that are missing the
common sense.

When the origin of life is discussed, it is often claimed that the key problem is
to explain where the first DNA molecule came from — after that, reproduction
etc. should be no more problem. And when a reproduction machinery is avail-
able, and mutations in the code take place, it is the Darwinian principles that
only need to be followed to explain today’s diversity in nature. Even though
such emergence of DNA is highly improbable, there was billions of years time.
Unfortunately, as revealed by the famous Miller-Urey experiments, just adding
mindless energy in the potion of chemicals, only simple amino acids are pro-
duced — more complex molecules just are not energetically stable enough. But
it is still possible, is it not?

However, the question of whether a single molecule ever came on stage is still
rather irrelevant. To understand the true nature of the problem, study the
following scenarios:

• Assume that the DNA sequence once were produced in the primordial
sea. However, there are no mechanisms to read to code, and in a matter
of days in the harsh conditions of the early earth the molecule breaks
apart. Alone the single molecule is completely void: There is information
for the structure but the structures never become actually constructed.

• Assume that there is a complete body of an animal being washed on the
shore of the primordial sea. However, if it is dead it is dead and that
is it, it never comes alive again. Now there are all the structures ready,
but the functions have forever ceased; the dynamic attractors cannot be
instantiated by any amount of energy.

• Finally, assume that some living Robinson lands on the shore of that
primordial sea. However, there are no other live forms already there, and
there is no food to eat. Even though there are all the necessary structures
and processes appropriately running in the body, there will be death in a
matter of weeks.

Indeed, it is evident that there cannot exist life alone, isolated from other life,
or from its natural inhabitat. Life is manifested in interaction with the environ-
ment — or, when putting this in more pointed way, life (or ability to host life)
is the property of the environment. The problem of life is not about explaining
a single molecule; the whole ecosystem should be explained simultaneously. It
is evident that this observation makes the problem even more difficult. True,
the one fixed molecule would be simpler to explain than a dynamic system with
active interactions — but this is what life is. The role of the single molecule in
explaining life is like the role of a single logic formula when explaining intelli-
gence.
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When seen in the correct perspective, there are no paradoxes here — it is only
the traditional ways of thinking that are paradoxical. Concerning the evolution-
ary processes there also exist strange intellectual dead ends: For example, it is
often assumed that the evolutionary fitness determined by the ability to produce
offspring most efficiently, or by the ability to adapt to new environments most
efficiently. However, the simpler an organism is, the faster it is to reproduce
and to modify itself — leading to degeneracy of structures, and world power
of bacteria! What is more, the assumed power of the mechanisms of natural
selection also seem to be a myth: Those who have done random search in a
high-dimensional space, know how notoriously inefficient it can be.

Alongside with artificial intelligence, there are efforts to construct artificial life
(for example, see [28]). However, these efforts are plagued by the same problems
as the behavior-based AI research: It seems that the emphasis is on superficial
patterns. The criterion of relevance is based on how interesting a simulation
looks. And it is all computer programs and algorithmic procedures — what you
program there is the only what you get out; only what you can think of, you can
implement. But it seems that life is an emergent phenomenon so that its essence
cannot be captured in definitions. Trivialization of the complex questions only
results in what one could call (following the AI terminology) “shallow life”.

The new view of cybernetic systems as pursuing balance is fundamentally differ-
ent from traditional intuitions. It has been assumed that “interesting” complex
systems are “at the edge of chaos”. When studying the processes of life, the
mainstream view is expressed by Ilya Prigogine: Life is “as far as possible”
from balance, whereas death means final balance. Erwin Schrödinger phrased
this as “What an organism feeds upon is negative entropy; it continues to suck
orderliness from its environment”. Also in cybernetic systems, static balance
means death — but a living system is characterized by (thermo)dynamic, non-
static balances. The ways of thinking have to be inverted: Whereas a living
thing is traditionally assumed to play an active role, now it just has to adapt
to its environment; it is the environment that pumps disorder into the system,
and life processes try to restore balance, or homeostasis. The system controls
the environment, yes, but it is the environment that dictates how it is to be
controlled.

It seems that the neocybernetic starting point is useful, capturing the correct
intuitions here: The goal of a system is the ability to find the best balance with
the environment. To implement this, there are not only structural adaptations
available, but continuous matching processes take place to fine-tune the struc-
tures. And in evolution, becoming structurally more complex is the method
to reach better match with the complex environment. These issues are studied
closer in what follows.

9.2.2 Balanced autocatalysis

The definitions of what life is are very intuitive, and no matter which set of
characterizations is selected, there always exist counterexamples. In the neocy-
bernetic perspective, the following definition is employed here: Life is higher-
order balance with the environment. What kind of assumptions are needed to
make this definition plausible?
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Looking from the point of view of the end result, seeing the living organism as
being at the mercy of the environment makes it seem very volatile. However,
analyses must be started in the bottom-up direction: Starting from the simplest
of environments and proceeding towards more sophisticated ones, always making
the outer system supervise and control the inner one towards local heat death,
puts the system into an active role. Applying the vision of inversion of the arrow
of entropy, the problems seem to become solved one by one, balances being
restored in each phase separately. Getting to the higher levels, bigger picture is
seen, the entity becoming better and better controlled, keeping the emergence
of sophistication in the developing system thermodynamically consistent. The
assumed balance with

So, start from the bottom and select a narrow view of the environment, let the
system adapt there, and only after that widen the view. The transition from
intuitively non-living structures to living ones becomes smoother; on the bottom
of hierarchies one has chemical evolution.

One of the central prerequisites for life is the capability of reproduction. The
simplest example of chemical reproduction is demonstrated in autocatalysis,
where a chemical catalyses a reaction where this same chemical is produced; the
autocatalyst thus can make copies of itself. Assume that for some chemicals A,
B, and C there holds

A ⇔ 2A
A + B ⇔ C. (9.2)

The autocatalyst A acts like switch, activating the reaction producing chemical
C from B. If there is chemical A present in the system to begin with, it will
forever continue to be there no matter how much the solution is diluted. The
chemical A thus characterizes the functioning of the system, selecting functions
by making the corresponding reactions possible that otherwise would never take
place. In practice, the autocatalytic reaction chains must be more complicated
than the above one; it has been shown that the probability that a random set
of chemicals is autocatalytic becomes high under certain assumptions.

Autocatalysis makes it possible to explain inheritance of functions between
chemical systems. Indeed, autocatalytic sets are seen as the explanation for
origin of life by Stuart Kauffman and others [44]. However, there are theo-
retical problems: Looking the chemical reactions syntactically, as a cookbook,
there seems to be an explosion of chemicals. There is no self-regulation in the
system, and there seems to be no emergence of structure. Indeed, it seems that
autocatalytic systems typically only produce sticky tars, ending in deadlocks.
In the neocybernetic framework this problem is solved: The system consists
of balance reactions that proceed only in favorable conditions. It is the envi-
ronment — or the reaction set itself — that takes care of self-regulation, the
autocatalysts determining the spectrum of possible degrees of freedom in the
chemical system. And the function is more relevant than the structure. In a
system of autocatalysts function is manifested without solid form; structure is of
secondary importance. But as illustrated in the next section, the physical prop-
erties of the world can make structures automatically emerge without explicit
maintenance.
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9.2.3 Chemical evolution

To understand the life processes in their simplest form, it is here assumed that
chemicals participate in equilibrium reactions, as presented in chapter 1. To
facilitate the emergence of something more interesting, three basic hypotheses
concerning the reactions are made:

1. There are autocatalytic chemicals present among chemicals.

2. There is a medium available where interactions can take place.

3. There are mechanisms available for keeping chemicals together.

In the simplest case, this means that there is liquid water for chemical solu-
tions to react in. Using the traditional vocabulary, one can speak of primordial
soup, where there are chemicals and energy available (for example, see [21] and
[88]). To keep chemicals together, it can be assumed that there are some kind
of partially isolated “droplets” in the medium (see Fig. 9.6). The physical en-
vironment makes the droplets behave like “proto-cells”. The growth of such
droplets can be explained in terms of good match between the environment and
the autocatalytic set characterizing the contents of the droplet: The reactions
are active, keeping up the “metabolics”. Chemical properties determine the
internal balance in the droplet, but it is physical phenomena like osmosis and
surface tension that together determine the size of the droplet, and whether it
splits up. Because of the geometric constraints, the chemical reactions in the
droplet are also affected: As there is less surface, there is smaller total intake of
chemicals; and if some of the droplets is surrounded by other droplets, it experi-
ences a very different environment, thus perhaps exhibiting different reactions,
and different chemical functions.

The droplet has to maintain its integrity, so that it does not dissolve in the
surrounding water. This can be assured if the contents of the droplet are, for
example, based on fatty acids or some gels. It is the chemical reactions within
the cell that have to provide also for the supply of this substrate. In more
sophisticated cases the proto-cell can have some membranes that are based
on phospholipids or other compounds with amphipathic character, having hy-
drophilic and hydrophobic parts. The more complex scenarios can employ the
ideas of vesicles, globules, or micelles to host the reactions, having restricted
exchange of chemicals and energy with the environment. Similar scenarios have
been proposed a lot in the literature — but even though structures that resem-
ble “cells” can emerge in a rather autonomous manner, it is clearly not such
physical structures only that characterize living systems.

The key difference here as compared to the standard autocatalysis models is
that the proto-cells are not whatever droplets, but they can host complicated
sets of balance reactions. Such an equilibrium system is a local mill of entropy.

The entropy considerations in the beginning of this chapter were rather abstract,
and can be applied only as evolutionary processes are seen from outside. But
what are the mechanisms — how is the increase in entropy manifested in the
lowest level of a developing proto-cell? A well-balanced proto-cell offers a good
platform for biologically relevant functionalities to emerge. The neocybernetic
structure has evolutionary advantage as seen in the thermodynamic perspective.
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Figure 9.6: Illustration of how there can exist “cells” also without actual
hereditary material: There can be nutrient intake, cell growth, reproduc-
tion, and even differentiation in the low level with no explicit developmen-
tal control. a. Droplet containing a set of autocatalysts is characterized
by a reaction, say, A→B. b. There is plenty of chemical A available, so
that concentration of B increases, and osmosis makes the droplet absorb
water and grow in size. c. The droplet splits up in smaller ones because
of the weakening of the surface tension; adhesion keeps the droplets still
together. d. The middle droplets experiencing a new environment, dif-
ferent chemical reactions become appropriate, reaction now being B→C;
such developments continue depending of the mixture of autocatalysts

First, the “heat death” within the system makes it possible for the very frag-
ile molecules, like proteins, to remain whole, balance thus promoting survival;
second, the balance makes it possible for very vague phenomena to become mag-
nified — the “signal-to-noise ratio” in the system becomes high, revealing the
remaining information in the signals, balance thus promoting more consistent
evolution by making the appropriate adaptation direction better visible. In a
well-maintained balance, it is enough that there is some special chemical that
can only be utilized by the new cell type with a special set of autocatalysts;
this gives it the adequate competitive advantage. Only if there exist alternative
solutions (in terms of chemical solutions), secondary aspects like reproduction
speeds become relevant in competition. Thus, around the balance, increased
complexity is an evolutionary advantage, and proto-cells hosting more complex
(and typically slower) reactions will survive in the chemical evolution.

No specialized “cell organelles” are needed to implement the basic cell-like func-
tionalities; it is just assumed that the proto-cells are not completely isolated but
search for the balance of reactions in the prevailing environment. It is easy to
imagine what can happen next: Different proto-cells or cell groups can start
exhausting each other’s surplus products, and become symbiotic. From the
point of view of a single functional unit, other ones start to do the “sanitation”,
exploiting the excess “waste products” — otherwise the reactions cease, the
proto-cell suffocates, or, at least, its well-being becomes jeopardized. But, as
seen from the point of view of the neighbors, such excess products are available
resources, deviations from the nominal to be exploited. If the different kinds
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of proto-cells are dependent of each other, they probably grow and divide at
the same rate, following the cybernetic balance; this is a rather plausible route
to “multiglobular” systems (again, see 9.6). Cells without partners starve and
become outnumbered. As seen from outside, different cell groups represent dif-
ferent sets of reactions, so that functional differentiation starts taking place.
Control of the flourishing diversity is local, following the cybernetic principles;
because of the physical realm, the experienced environments differ, and differ-
entiation among cells start taking place.

When looking at the early development of an animal embryo, this kind of sce-
narios of differentiation is exactly what seems to take place even today in a
fertilized egg: First the prototype cells form a morula or blastula, where the
totipotent cells start differentiating depending on their environments. In a way,
the Haeckel’s intuition (see 7.3) should apply also to the earliest phases of life,
giving motivation to the above studies: Individuals repeat the whole sequence
of becoming alive. Perhaps there is something to learn in today’s developmental
processes when trying to reconstruct the origin of life. Of course, there still is
an essential difference: Even in the simplest cell today there are the instruc-
tions, or the DNA code readily available, and the development is in this sense
preprogrammed. But in the stem cell phase of morulas, no genetic imprinting
has yet taken place. The simplest processes need no instructions; genetic code
is only needed when there are alternative routes to select in the development.
Perhaps the genes only started orchestrating the natural processes.

9.3 Codes and beyond

Can the above-like non-genetic, strictly chemical behaviors be called life? To-
day’s life forms in biosphere are all characterized by genetic code, and it seems
that there is a huge leap from non-genetic to genetically controlled. However, it
seems that evolution towards such more sophisticated control of structures can
still be explained in a rather consistent way, and no giant leaps are needed.

9.3.1 Towards programmed structures

The functionalities in the proto-cells need not be something clever or preplanned,
as long as they exploit the chemicals available in their environments and produce
something else — in short, being successful is capability of being active, exploit-
ing the available chemical resources. The environment is not predestinated, as
it is the surrounding set of successful proto-cells that create this environment.
When there is appropriate accommodation, the system as a whole starts looking
“clever” — but only as seen in retrospect.

When studying the possibilities of more complicated functionalities to emerge,
one needs to distinguish between two separate things: First, there is the ability
to reproduce, and, second, there is the ability to modify cellular metabolics.
Traditionally, it is assumed that it is the same solution (genetic code) that is
responsible for both of these capabilities — but this need not be the case. It is
the autocatalysts that have the reproduction capability; some other chemicals
can be multifunctional ones. In the lowest level, it is enough that some chemical
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operates in different ways in different chemical environments. For example, inert
and active states can be toggled depending on the environmental conditions
like pH or temperature. This means that the reactions are nonlinear. The
operating modes of the cell being integrated in the chemicals themselves, the
cell functionalities are accordingly changed when the environment changes.

In the proto-cells, genetic code is also not necessarily needed to control be-
haviors; not even any complex molecules like nucleic acids or amino acids are
needed in the beginning. No code reading capability is necessary to begin with.
Of course, it is practical if the two presented capabilities, reproduction and
multifunctionality, are combined in a single autocatalytic molecule. And — as
seen in retrospect — it seems that DNA has outperformed all other mechanisms.
The combination of DNA as the code and proteins as the tools for implementing
functionalities is a very versatile combination, offering almost as flexible plat-
form for different kinds of chemical structures as the neural machinery offers for
cognitive structures.

Still, all information that is inherited needs not be transferred in the form
of DNA. The Lamarckian theories have been neglected because it has been
claimed that there are no necessary mechanisms to implement such views —
however, also in the highly developed forms of life, there are other mechanisms
available. It need not be assumed that the initial state of the stem cells is
completely null; there can be some chemicals that follow the genetic material
into the gametes, being manifested in the tsygote. This kind of inheritance can
be called epigenetic, being also related to genetic imprinting. However, it is not
any acquired properties that can be inherited this way; it is the commands of
which of the available genes are activated in the beginning. Another issue is
that it has been recognized that the microbial symbiotic fauna seems to be also
inherited from the mother. As has been recognized, this symbiotic inheritance
can essentially affect the metabolic processes that are activated in off-spring.

Such symbiotic systems illustrate that everything needs not be coded in the
same genome in a centralized manner. Coordinated operation and reproduction
is possible without sharing any genetic material. For example, mitochondria in
cells have their own genetic codes; lichens are associations of a fungus with a
photosynthetic partner that can produce food for the lichen from sunlight. All
the subsystems are still based on DNA of their own; these codes need to have
coevolved.

Even though there were only a single set of codes, there is need for coevolution.
For example, the trinity of DNA, RNA, and proteins necessarily had to be there
from the very beginning in some simple form, even though the roles of the
components need not have been so clear-cut — the theory of the “RNA world”
as the immediate predecessor of the modern life forms probably cannot hold. As
discussed in the following section, the developments from the beginning of life
to the present day have to be smooth — the basic structures cannot be changed
abruptly. Even though there are tensions towards more sophisticated structures,
it would be difficult to understand huge sudden steps in developments. The
interesting question that remains is what the actual autocatalytic set of simplest
proto-DNA, proto-mRNA, and “protoin” is.

Continuity (and differentiability) of functions is the key to efficient optimiza-
tion in mathematics; otherwise, one only can do random search, and in a high-
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dimensional space this is extremely inefficient. How can continuity and con-
sistent adaptation be reached when the functions are based on discrete genes?
And, further — how can the very discrete nature of structures in the phenotype
be explained if the functions are continuous?

The key point is that it is not a static one-to-one mapping from the genotype
to the phenotype, but it is dynamic processes that implement the mapping,
the static-looking patterns being the final dynamic equilibria. As the genetic
system is in contact with its environment, it searches the balance; redundancy
of the genes, and the quantitative nature of gene expression makes it possible to
reach continuity. And because of the sparse-coded nonlinear nature of the genes,
there can exist various equilibria: Minor changes in environmental conditions
can result in very different outcomes, giving raise to emergent structures.

Genes are modified in a Darwinian process of mutation and crossover; however,
the genes are not actually optimized. The main role of evolutionary processes
is to generate variation: The goal is to supply material, a pool of alternatives,
whereas the local balances within a cell finally select the appropriate genes,
revealing the actual potential and limits of the new genetic combination. The
genetic process determines the (sparse coded) subspace in the metabolic space,
and other processes are utilized for final optimization within those subspaces.
The genes only determine the potential in terms of available degrees of freedom,
whereas the environment determines the actual, the location of the equilibrium
in the search space. In each cell the same functionalities in latent form wait to
be activated. Optimality of solutions is defined in a very local and immediate
fashion, there is no need to wait feedback from explicit “goodness” evaluator,
with the delay being of the order of one generation — level of match with
the surroundings suffices. Yet another fact needs to be recognized: There is
no global single fitness criterion. Each variable is being matched more or less
independently, so that, in a sense, “parallel processing” for fitting the data is
implemented, further enhancing the adaptation speed.

The genes are hierarchic, and there is often accumulation of various individual
genes that is needed to implement some more sophisticated functionalities. The
benefits of the genes are visible only after the whole structure is completed —
how can the sudden emergence of such complete functionalities be explained?
However, the local minima are not necessarily very far apart, and the chain of
gene activations can still be reasonably cut in subparts, as studied below.

9.3.2 Case: Development of an eye

It has been claimed that evolution theory cannot hold — there exist a plenty
of highly complex structures that are functional only when they are complete.
As long as the structure is not yet fully developed, the infrastructure for it is
only a burden, and evolutionarily disadvantageous; this should mean that the
barrier between the local fitness maxima is too wide to be crossed. The complex
organ should have emerged immediately, without intermediate steps, and this
is simply too improbable. A typical example is the eye — an example that has
been studied widely in literature.

However, it turns out that there is a path from no-eye to a complete eye con-
sisting of simple gradual steps where each stage is evolutionarily beneficial.
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Indeed, it has been observed that the eye has developed various times in differ-
ent branches of the “tree of life”, and the solutions are not unique. Below, one
simple scenario is presented.

Still, it seems that the population-level feedback loop between better proper-
ties and consequently more probable survival is too inefficient to support the
consistent development of structures — and, especially, the simultaneous de-
velopment of separate functionalities seems like a too lucky coincidence. For
example, enhancements in the eye cannot be exploited if the processing of the
neural signals is neglected; the eye and the brain have to develop in a somehow
orchestrated fashion. — Indeed, it seems that neocybernetics may offer some
tools to understand such dilemmas, as in that framework the fitness criterion
can be distributed. All cells simply try to maximize the emergy they receive
from their environments, whatever form this variation takes; emergy is not only
physical nourishment but information in general. There is no need for external
evaluation; variation or information can be regarded as beneficial no matter
whether that information can be exploited locally or not. As the system itself
is quite well-balanced, increasing variation reflects enhanced coupling with the
environment. Increasing excitation in the eye means increase in nerve cells, and
increasing excitation in the nerve cells means motivation for brains to develop.
It may be (it is) so that at the higher (proto)animal level better processing of
the visual signals means better possibilities of responding to the threats and
opportunities in the environment, thus improving the survival of the organism
as a whole, but the underlying organs and tissues can see the developmental
gradients more instantly.

In Fig. 9.7, a simple scheme is depicted where the development of an eye can be
understood. Each step in the series of stages means more accurate detection of
behaviors in the environment — first, there is the capability of seeing whether
it is dark or not; second, the direction of the light source can be detected; after
that, it becomes possible to tell patterns from each other, with ever increasing
accuracy and sensitivity. The presented development process is by no means
unambiguous — for example, compare it to the compound eye structure of a
house fly.

As compared to discussions in chapter 8, it is again interesting to study the
relationship between the genotype and the resulting phenotype — what the
“interpreter” is like, and how “semantics” in the physical and physiological
environment can be defined in the above hypothetical case. Evidently, the
results of interpretation are this time determined by the limited information
delivery in the physical domain. The physical dimensions are crucial — it can
be assumed that the signals are transferred in terms of chemicals; as there is
no way to control the spreading of the chemicals, the environment of cells is
determined in terms of concentration gradients. This means that the codes
have to be essentially location-based, the fixed points in the configuration of
cells being determined by some activated cells expressing some special genes and
producing some signaling chemicals: It can be assumed that the concentrations
of the diffusing chemicals decay monotonically (exponentially?) as the distance
to the imprinted cells increases.

Chemicals, or, indeed proteins, are the only immediate outcome of gene expres-
sion — how are the chemical concentrations changed to physical properties of
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Figure 9.7: The development of an eye can be explained as a continuous
process of enhanced information retrieval. In a, there is just a single
light-sensitive cell — but knowledge of whether it is dark or light is al-
ready valuable information. In b, physical reasons can make the cells
differentiate, as the amount of absorbed light depends on the direction
where the light is coming from — and knowing where there is light can
be crucial information. In c this differentiation has proceeded, so that
what one has is a simple “needle’s eye” camera — it is already possible
to distinguish between different light sources. Later, in d, the process
of increasing the eye resolution ends in the opposite walls of the cavity
merging together — this, too, is beneficial as the robustness of the proto-
eye increases, the sensor cells becoming isolated from the environment.
It is clear that there is evolutionary advantage if this filter layer becomes
more transparent — and as it does, in e, one has a lens, making it pos-
sible to reach much higher light sensitivity and resolution at the same
time. Finally, in f, the ready-to-use muscle functionality is employed to
deform the lens, thus increasing the adaptation capability of the eye. It is
clear that the brain has to co-evolve to make use of the available new in-
formation — if the information is not cleverly exploited, the evolutionary
pressures vanish and the consistent developments cease

tissues? Enzymes and transcription factors can promote cell metabolism and
reproduction, and possibility of increasing activity means increasing biomass.
The thickness of tissues is related to numbers of cells; further, the transparency
of cell layers is related to thickness, etc. — when the physical properties of cells
become manifested, all physical functionalities are available that are prerequi-
sites for imaging and image processing. Again, the physical constraints result
in emergence of smart-looking structures — as seen in retrospect: Development
of cavities facilitates differentiation among the light-sensitive cells, etc.

According to the above lines of thought, below is a simplified example of what
the “eye program” could look like, when a “transcription” from DNA into an
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explicit pseudocode is carried out:

1. IF ‘‘location’’ ≈ p1

THEN imprint ‘‘EYE’’:

utilize light sensitivity, emit ‘‘eye’’ and NGF

2. IF ‘‘SKIN’’ AND ‘‘eye’’ ≈ p2 AND ‘‘lens’’ < eps

THEN split up

3. IF ‘‘location’’ ≈ p1 AND ‘‘EYE’’ ≈ p3 AND ‘‘lens’’ < p4

THEN imprint ‘‘LENS’’: develop transparency, emit MGF

4. IF ‘‘lens’’ ≈ p5 AND ‘‘muscle’’ < p6

THEN imprint ‘‘MUSCLE’’: grow towards MGF, emit ‘‘muscle’’

etc.

In the above code, each of the four rules represents a function of its own, or a gene
(or set of redundant genes), as listed in order of assumed activation. The first
row in the rules describes the control part, the rest determines the “actions”. It
needs to be recognized that the “interpreter” for the code is distributed, running
separately in each cell; the code is identical in the cells, so that differing reactions
are caused by the local environments. The communication and coordination
among the cells is implemented trough special signaling chemicals that are in
the code denoted by quoted lowercase names. The quoted uppercase names
denote imprinting — that is, the cell is assumed to have reached some specific
state and its role has been determined.

The first gene becomes activated if one (or more) chemical levels match the
preset value(s) p1; such “location” signals truly exist in a real embryo where, for
example, they implement the anterior–posterior an dorsal–ventral asymmetries.
The comparison operation is streamlined here — this genetic control perhaps has
to be composed of several elementary toggles as presented in 6.2.4. When this
gene is activated, the corresponding cell will forever have the role of an eye, its
special property being light sensitivity. Simultaneously, it produces chemicals:
when the signal “eye” diffuses outside the cell, the neighbors can detect its
existence, and nerve growth factor NGF starts persuading nerve cells to connect
to the cell. The second gene can only be activated in a skin cell: If there is an
appropriate distance to the eye cells (chemical “eye” in the surrounding tissue
having decayed to the level p2) and there is no “lens” signal present, the cell
starts reproducing, thus making the number of cells grow, causing the skin get
wrinkled, leaving the eye cells on the bottom of a cavity. It is assumed that
neighboring cells automatically attach to each other when they are in contact.
The reproduction ceases as the lens develops — this happens in the cells that
are in the center of the eye area but are not eye cells. In evolution, such lens cells
develop towards better transparency. The lens cells also secrete nerve growth
factor, trying to persuade muscle cells to attach to the lens. The last rule
represents the muscle as being exploited by the eye — however, muscles are of
course general purpose structures, and they can be activated also through other
sequences.
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The “muscle” example above is characteristic to genetic systems — once the
muscle functionality has been “invented”, it is readily available and can be ex-
ploited in different organs. It can pop up in different structures — and if it is
beneficial (as it is in the eye), this new functionality is supported by later evolu-
tion. The genetic substructures are ready to pop up as soon as such functionality
is needed; in this sense “genetic design” is like functional programming.

The functional structure of the genes as proposed above is very simple offer-
ing just the coarse framework for physiological structures; within this discrete
representation, there is continuity in the structures. Quantitative fine-tuning
is possible in terms of the parameters p1, p2, p3, p4, p5, and p6 affecting the
eye dimensions. As the two halves of the genome are inherited from differing
individuals, the threshold values in the parents typically become averaged in the
offspring. This is an efficient optimization scheme when there is only a narrow
region of acceptable parameter values available. Different-looking species are
possible when different parameter values are selected — and, indeed, as most of
the genes are common to all life forms, some kind of fine-tuning of their effects
is necessary.

9.3.3 Optimality in mechanical structures

Not everything can be coded in genes: After all, genes represent central control,
and if employing only them, behaviors would not be tuned maximally — or,
at least, adaptation towards the optimum would be very slow. The genetic
machinery needs to be accompanied with better adjustable mechanisms to reach
the fine tuning. In a way, it is as it is with cognitive systems: The lowest level
(chemical concentrations or synaptic weights) is continuous, the “intermediate
level” (organ structures or conscious thinking) is discontinuous, and the highest
level (complete optimized organism or automated behaviors) is again more or
less continuous and optimizable; to facilitate real-life survival, automation of
slow cognitive processes has to take place, and, similarly, the final polishing of
the structures in living bodies takes place after the actual implementation of
the codes. Especially, this means that evolution of fitness cannot be based on so
delayed mechanisms as it is assumed when speaking of natural selection; more
immediate feedback mechanisms are necessary.

In principle, the neocybernetic optimization principles can be applied in any
environment and at any level. However, the intuitions about uniformity among
signals collapse when the system is a sophisticated functional entity; the vision
of a cybernetic system as reflecting its environment also becomes far-fetched.
The relationship between the system and its environment becomes blurred as it
is the other organs that deliver the input signals to an organ — this environment
also changes, and one should implement optimization for all systems simultane-
ously. Can the basic neocybernetic model of separate system and environment
be applied any more when all signal are internal ones? This issue can be studied
when looking at Fig. 9.5 again: When the system and the environment become
one, the only thing that remains outside is the feature extraction. Now this
generation of features, or manipulation of measurements, is not artificially con-
structed by some designer, but it reflects the effect of how the real world distorts
the signal transmission process among the organs.



9.3. Codes and beyond 239

To make the above discussion more concrete, let us concentrate on the question
in what sense the outlook of an organism can be captured in compact formalisms
and optimized therewith. To proceed, one needs to imagine how the organs act
as probes deforming the “steel plate” around them (see chapter 3). The outside
world is not known, but iterative adaptation within the individual organs (or
cells) still optimizes the system.

To have some more background, it is necessary to get acquainted with the
techniques of modeling mechanical systems. In Lagrangian mechanics it is ob-
served that the Newtonian laws of motion can be reformulated as optimiza-
tion problems: Along the motion trajectory, the time integral of the quantity
L = WkinWpot reaches its minimum value, where Wkin is the kinetic energy of
the system, and Wpot is the potential energy. Applying the vector of generalized
coordinates q, the kinetic total energy can be expressed as

Wkin =
1
2
q̇T I q̇, (9.3)

where I is the inertia matrix, and the vectorq̇ stands for the generalized veloc-
ities (translational or rotational). Does this not look familiar? Indeed, when
defining x = q̇, the basic neocybernetic cost criterion can be interpreted in this
framework:

J =
1
2
xT E

{
x̄x̄T

}
x− xT E

{
x̄FT

}
F. (9.4)

Now, E
{
x̄x̄T

}
can be interpreted as the inertia matrix. If F is the vector of

forces and torques that can sustain the corresponding velocities, E
{
x̄FT

}
be-

comes some kind of a viscosity matrix and the latter term in (9.4) is the viscous
work (or power lost in movement). This is an extension of the Lagrangian think-
ing: Forces in the assumed system are non-conservative, as the “potential” is
not free of the velocity variable.

It is an open question whether the above cost criterion truly has relevance in real
life. Yet, if it does, this cost criterion offers a framework for analysis of natural
life forms; what is more, it makes it possible to create “cybernetic designs” in
life-like (biomimetic) structures. It is clear that the balanced designs are optimal
in such a sense that maximum amount of correlated forces are transferred into
movement.

Assume that muscle cells (forces) and sensory neural cells (velocity measure-
ments) are modeled together. The relationship between these variables is de-
termined mainly by the limb configuration — this relationship implements the
“feature generation”. When the integrated system becomes optimized in the
neocybernetic sense, constructing a statistically balanced model for the rela-
tionships between the variables, the system speed and agility become optimized
automatically: There will be maximum possible velocity in structured (sparse
coded) directions with the minimum effort. The iterative optimization process
can end in outlooks that differ very much from the initial. Local adaptations in
the structure (as accumulated in the inertia and viscosity matrices) are reflected
in the increasing overall “fitness” of the global structure. Even though the goals
of adaptation are not fixed beforehand, the direction of “better performance”
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is known by the local actors, and the post-genetic developments are not ran-
dom — there are gradient directions visible. For example, rehearsing of muscles
makes it possible to learn the model between the forces and corresponding limb
velocities; adaptation of this model results in ever more optimal and economical
(and thus more “beautiful”) trajectories — the final outlook of the body need
not be coded in the genes.

9.4 Are we alone?

As discussed above, it can be assumed that life unavoidably emerges if the
conditions are favorable, and if there is enough variation in the conditions so
that the modeling task is non-trivial. And as the arrow of entropy is inverted,
it is not difficult to imagine that intelligent life is just the next step in the
inevitable development of life forms. But if the origin of life and intelligence
can be explained in such a straightforward manner, one is facing yet another
paradox. When there assumedly exist millions of planets that can host life, and
as the evolution sooner or later results in intelligence emerging among the life
forms, there is a question that was originally coined by Enrico Fermi: “Where
are they?”. Why cannot we see the activity of the other civilizations? There
simply must be other (more) intelligent civilizations in the universe in addition
to us.

When the radio frequency spectrum has been scanned, nothing “intelligent-
looking” has been found, only noise has been detected in the signals coming
from the stars. But there is a simple (partial) explanation available here. One
can only search for redundancies in the signals — but, from the point of view of
transmission efficiency, redundancy necessarily means unoptimality. A message
with all redundancy ripped off looks like noise if the decoding scheme is not
known. It is a very short period in the history of a civilization that transmissions
are not optimized and packed; in our case it is something like 100 years only. —
But it even seems that the other civilizations actively try to keep the distance,
why is that? One can make some hypotheses here.

Why are they not trying to contact us — as we do, sending easily decodable
signals to us on purpose? But, on the other hand, why should a civilization
make a big number of itself? Only civilizations being in the early stages of
their intellectual development make a big fuzz of themselves — the older and
more mature ones observing this blustering sympathetically. If a civilization
is to survive the turmoil periods there are in the development, the periods of
chauvinistic arrogance need to be overcome. Indeed, knowing that there are
civilizations millions of years ahead of us we should perhaps be a bit ashamed.
It is plausible that we could not even recognize the systems far ahead of us:
After the chemospheres and biospheres, our frontier systems today reside in
infosphere. But after the principles of intelligence (or infosphere cybernetics,
really) are fully implemented in the computer, developments in infosystems
become very fast — so fast that when the time axes in information modeling
processes collapse into singularities, qualitatively yet another level is perhaps
reached. It is impossible for us to understand the higher-level systems: It is
like biological systems facing cognitive systems — trying to “understand” the
structures on the emergent level is an intellectual contradiction.
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But why is this passivity so categorical — why do none of the higher-level
civilizations even play with ourselves? Indeed, this consistency promises that
we are on the track of something big here.

It seems that this complete silence is purposeful: They do not want to disturb
us, they want to see how we manage on our own. Preservation of life and nat-
ural diversity is seen important by all intelligent civilizations — and there is a
reason for that. The analyst does not want to disturb the processes he/she/it
is observing. The problem of life seems to remain an eternal challenge for intel-
ligent minds: Understanding the mystery of life is understanding survival, and
it seems that it is cybernetic-like modeling over the spectrum of possible forms
of life that will continue as long as the civilization lives. More material, more
fresh data is needed to map different local solutions in different environments.

But it is not only curiosity that drives such galactic research — such research
is necessary to maintain sustainable development. Also extraterrestrial life is
facing the limits of its home planet, and the only way forward is available in
the infinite space. All evolving civilizations have to be based on science and
information pursuit, searching for new frontiers. The link between science and
the society is the question of life and death to a civilization, even more than
what we can understand today. The more intelligent a species is the more it is
dependent of scientific research, as acquiring new information seems to be the
survival strategy. The intelligent species necessarily have found the principles
of cybernetics, and they must understand that the only way to avoid cybernetic
stagnation and catastrophes is to receive ever new information, and new sources
of information. It might be so that it is us as a peculiar example of living
systems that provide a piece of this crucial information. What is the nature of
this information, then? Of course, such knowledge is beyond our capabilities of
understanding. We cannot yet see “higher-order life” in such a wider perspective
where our world would just be a single sample case.

From the point of view of the higher-level intelligence, we are running just
another experiment. As Douglas Adams observed in his “Hitchhiker’s Guide
to the Galaxy”: The Earth is a giant simulator. Perhaps some day — if we
pass the test of survival — we receive an invitation to the “Galactic Board
of Intelligent Species” where the universal experiment designs are coordinated.
And perhaps it is our maturity test — being faced by any developing civilization
— to understand the cybernetic processes, tame them, and avoid the downfalls,
making the succession of ever more deadly catastrophes a steady process of
sustainable development.

The risk of mankind committing an explicit suicide is today a well-understood
risk — but it seems that there also exist more latent threats to a developing
civilization. As studied in [22], the developments in Tasmania may give us a
hint of this risk:

Some 10000 years ago Tasmania was cut off from the Australian
mainland, and about 4000 Aboriginal Australians remained totally
isolated. When Europeans discovered Tasmania in the 17th century,
it was technologically the simplest, most primitive human society.
Native Tasmanians could not light a fire from scratch, they did not
have bone tools, they did not have multi-piece stone tools, they
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did not have axes with handles, they did not have spear-throwers,
they did not have boomerangs, and they did not even know how to
fish. Incredibly, archeological investigations have shown that during
those 10000 years of isolation, the Tasmanians actually lost some
technologies that they had carried from the mainland to Tasmania.
What caused this decay in civilization?

There were no catastrophes in the Tasmanian culture — before Europeans,
there were no rivals and no external disturbances to shake the system that had
reached the stagnation. The smaller the population is, the faster it seems to
reach the stasis — but, similarly, a planet-wide monoculture can decay; what is
the difference between evolution and devolution?

Living systems seem to share the property of vitality — there is some kind
of arrogance, tendency to grow and conquer. Growth has to be eternal, but
this growth need not be physical, it can also be mental. The internal spirit
is a matter of life and death — and even though the cybernetic principles are
universal, the evolutionary processes cease if this spirit is missing. It seems that
vitality must be explicitly maintained. What does such loss of memetic vital
force look like in concrete terms? It can be claimed that it is pessimism —
as seen in the scale of the whole civilization — that characterizes the end of
culture: When everybody starts looking back into some lost paradise, trying
to oppose the change, there will be decay. The system as a whole must keep
up optimism and curiosity, looking forward even if facing the “cosmic angst” in
front of the unknown future.

It has been said that if an individual human being wants to be happy through-
out one’s life, keeping up optimism and good humor, one should do gardening,
letting living systems grow and seeing them prosper. Perhaps the same ideas
are the key to sustainable, non-explosive developments in the wider scale, too
— if an individual civilization wants to live “happily” ever after, it should do
“gardening” of lower-level civilizations. And just as a good gardener protects its
plants, nourishing and eliminating hazards, perhaps the “universal gardener”,
the “cosmic philanthropist”, also protects its planets, looking after us ... per-
haps the belief in personal gods (or UFO’s), our higher-level protectors, is not
completely unjustified?



Level 10

Models of Reality can be
Reality Itself

Modern philosophy to a large extent consists of commentaries on ancient philoso-
pher’s writings. But this way of doing philosophy is outdated: The world has
changed; we have so much new information about the world available today.
Neocybernetics may offer new ways of thinking about the world around us. But
this is not all: It can also challenge our ways of thinking about thinking. The
new approaches address the very basics of scientific work.

Immanuel Kant started the “Copernican revolution” in philosophy, calling it
the “prolegomena to all future metaphysics”. Today, the same kind of ideas can
be applied to any science; one could also speak of metabiology, metacognition,
etc., when speaking of the principles below the surface observations. Perhaps
neocybernetics is a step towards a “prolegomena to all future metascience”
in general. This final chapter discusses some issues concerning the emerging
“metascience”.

10.1 Models are what there is

Models try to explain observed real-life behaviors applying some simplified the-
oretical framework. Also in this text, everything has been about constructing
models of reality. And, traditionally, it is emphasized that models are always
false — they simplify, they only capture some specific aspect of the real-life
complexity; the essence of the real world cannot be captured. In principle,
this starting point about deficiency of models applies also to neocybernetics.
However, this is not the whole story.

10.1.1 Escape from the cave

Plato’s “Allegory of the Cave” illustrates a dilemma that has been haunting
philosophers throughout history:

243
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Imagine a prisoner who has been chained since childhood deep inside
a cave. The only thing he can see is the cave wall, where shadows
of objects outside the cave are cast. We know that the prisoner can
only see a very limited view of reality — but to the prisoner, the
shadows are the only reality he knows of. ...

The prisoner constructs his world view based on the very limited information
— but he still thinks that this is the whole “truth”. This may sound like a
strange situation, but, indeed, also our observations are limited by our senses.
In a way, we all are living in our personal caves (or cages): The reality cannot be
observed directly, and there is no guarantee that our senses succeed in delivering
a truthful image of the outer world. The transferred image is incomplete, but is
it also distorted? Our conceptions of the world is necessarily subjective — how
can one know that others share the same views?

There exist very extreme views: For example, René Descartes (1596–1650) ob-
served that, after all, the only thing one can know for sure is that one thinks,
and therefore this thinking mind must exist — “cogito, ergo sum”. A yet more
extreme view was coined by Gerorge Berkeley (1685–1753): There is no mate-
rial substance and all things are collections of ideas or sensations, which can
exist only in minds and for so long as they are perceived. This means that also
we exist only in the mind of our creator God! Such considerations are rather
fruitless — Immanuel Kant (1724–1804) was the pioneer when bridging ratio-
nalism and empirism. The perception is an interplay between what is “inside”
and what is “outside”: One only has access to the observation data, and it is
filtered through the mental machinery; but the principles of this machinery are
shared by all observers, and in this sense, there must be something in common
in the subjective world views.

In a way, Kant is speaking of internal models and matching of data against
them. And it is this model-oriented thinking that is the basis also in neocyber-
netics — the adopted model structure there is just another filter for the input
data. The models that are based on the data covariation in the PCA style are
advantageous as the data-based “semantics” can be characterized in a mathe-
matically rigorous way. Only statistical phenomena can be captured, so that
information on individuals is lost, but, on the other hand, the automated data
analysis makes it possible to abstract over particulars. One can avoid predesti-
nated, more or less subjective characterizations of the world; there is no need
for explicit “ontologies” as the structures are determined in terms of correla-
tion structures among data. The philosophical deadlocks are circumvented as
“truth” is substituted with relevance: Constructs are important if they exist,
what cannot be observed is not modeled.

It has been claimed that models are “out” — it has been always admitted
models cannot capture the essence of systems, but when studying complex sys-
tems in particular, it seems that they cannot even capture the behaviors of
them: In chaos theoretical models small deviations in initial conditions result
in completely different outcomes. In neocybernetic models, however, stochastic
variations are not significant. It is statistically relevant constructs or attractors
of dynamic processes within the phenosphere that are being captured, and role
of the transients fades away. As the approach is thus inverted, the emphasis
being on balances, in the resulting emergent models one can capture not only
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Mind 1

Mind 2

Mind 3 Reality

Observed data
“shadow”

Figure 10.1: Visualization of intersubjectivity. It does not often truly
matter what the reality looks like (pattern on the right), as long as the
subjective reconstructions (on the left) based on the measurement data
(the “shadows”) are similar — the mental constructs can then be shared
and are negotiable, being a solid basis for a “supermind” extending over
a single brain

the behaviors but also the essence.

10.1.2 Intersubjectivity and interobjectivity

The model construction principles of cybernetic systems also applies to the
cognitive domain: The mental system constitutes a “mirror image” of the en-
vironment as determined by the observations. No matter what the underlying
realm truly is like beneath the observations, the mental machinery constructs a
more or less unequivocal model of it; this modeling can be repeated in different
minds, and the results are always essentially identical as long as the statistical
structures in the observation data remain the same. This means that the sep-
arate minds then share the same mental representations, and intersubjectivity
among minds has been reached. It may be that this mental model does not
represent the real world object in the best possible way — but from the point of
view of the minds understanding each other, this does not matter (see Fig. 10.1).
Thus, there is a possibility of constructing yet higher level models based on the
consistent world view shared by the intelligent agents.

The models in the infosphere remain intact even if the models were implemented
in another medium. For example, if the same cybernetic modeling principles are
copied in the computer, there will be a fundamental correspondence among the
data structures as constructed by the computer, and the mental representations
as constructed by the brain in the same environment. This makes it possible
to reach intersubjectivity also among artificial and natural minds: The world
models can be essentially the same, not only between humans but also between
humans and computers. This makes it perhaps possible to reach artificial intelli-
gence in the deep, not only in the shallow sense. Clever data processing becomes
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possible: The computer can carry out the data preprocessing in a complex en-
vironment, and the constructed data structures can be interpreted directly in
terms of corresponding mental representations. The cybernetic computer can
do real modeling, not only tuning of predetermined parameters in man-made
models, applying the metainformation it then has.

But intersubjectivity can also exist in the same way directly among comput-
ers in Internet. Today’s ideas of “semantic web” are plagued by the need of
defining hard-coded artificial ontologies; when the network of cybernetic com-
puters is truly semantic, computers can interact without the help from humans.
When the human is dropped out of the network altogether, the possibilities of
AI become practically limitless as the communication among computers and
adaptations in them can take place practically instantaneously. The time axis
once again contracts towards a singularity, and the emergence of yet higher-level
systems can take place. In the spirit of Friedrich Nietzsche, the smart comput-
ers can host “oversystems” recognizing that their “God is dead” ... perhaps it
is clever to implement Isaac Asimov’s “Three Laws of Robotics” in computer
hardware when it is not yet too late!

Intersubjectivity is not all there is; indeed, one can reach interobjectivity. If
nature itself tries to construct models for eliminating free energy in the system
applying model-based control, as presented before, the human trying to model
these cybernetic systems can touch not only the shadows of the behavior (in the
Platonian sense), but the actual essence – these models can be fundamentally
the same. This means that if some naturally evolved cybernetic system (an eco-
logical system, for example) is modeled by a human applying the appropriate
(cybernetic) principles, this model has a deep correspondence with the system
itself. Essence of systems is not in the building blocks but in the information
structures. This is a very deep observation: Human can truly understand one’s
environment; there is a unity of knowledge and nature, and epistemology and
ontology become the same (see Fig. 10.2). The model can represent the ac-
tual system losslessly regardless of the non-ideal noisy observations there are in
between.

It is the common endeavor of Nature and Human to understand the Universe —
and both of these are built by the Universe itself ... for doing introspection! As
the reality is too complex to be modeled in the simple mathematics of neocyber-
netics, more sophisticated models are needed: The human carries out the task
nature has given him, modeling those systems that are too complicated. In any
case, the end result is the same — models are used for better understanding,
for exploiting the resources and bringing them to heat death.

10.1.3 Unity of models

Usually in sciences, there is less and less in common between fields of research,
as one goes deeper and deeper. In cybernetic studies, however, it seems that no
matter what is the scale, going deeper and deeper makes different fields have
more and more in common. This is due to the starting point: As it is com-
pletely distributed systems that are being studied, the analyses boil down to
understanding the underlying individual agents being at the mercy of their en-
vironments. Survival there, and capability of exploiting the available resources,
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“Range of one’s
Possible Worlds”
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Figure 10.2: From Platonian shadows to Platonian ideals. Neocybernetic
analyses can extend the range of human understanding: One can not
only construct models of the systems in the environment — one can
reconstruct the systems themselves in one’s mind in a more fundamental
sense. In the spirit of Eastern philosophies, one’s world and one’s mind
can become one

can be reached when the very simple rules are followed, these rules supply-
ing self-organization and self-regulation being always the same; when seen from
above, the systems always seem to be composed of consistent balancing tensions.

Atomic physics underlies chemistry, biology is based on chemistry, psychology
emerges from the biology of neurons; sociology, economics, etc., are built on
the interaction of countless individual humans. But closer analyses reveal that
there are also interactions between these levels, and the hierarchy of disciplines
is becoming a matrix. Consilience, as discussed by Edward Wilson [90], is an
intuitive belief that the fields of human intellect are fundamentally the same.
In the neocybernetic framework this intuition can be extended: The unity of
disciplines does not apply only to sciences. As there is the tight coupling be-
tween mind and matter, there is a relationship between mental and material
cybernetic systems, so that everything becomes a strange, fractal but holistic
mosaic. Neocybernetics makes it possible to carry out concrete analyses, as
everything can be understood in terms of measurable information: This means
that the domain of natural sciences is still extended — but, at the same time,
the fields of philosophical speculation are extending.

What are the neocybernetic models like — some characteristics are summarized.
To capture the emergent pattern, the time axis is eliminated in the models,
so that the final state of dynamic balance is represented. When the static
structure is found, its natural dynamics can be derived from its internal tensions,
abstracting over individual trajectories, so that one has model over plausible
behaviors. In the slower time scale, there is adaptation towards constant stiffness
of the system as experienced by the outside observers — this characterizes the
evolutionary goal of the system. As the cybernetic model is general, applicable
for analysis of very different kinds of systems, analogies are a valuable tool for
understanding complex systems.

When looking the model closer, it is interesting to note that at certain level of
model complexity it is causal representations that become the most appropriate.
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This claim has a very solid motivation, as studied in chapter 3: Modeling is done
in terms of own actions and corresponding reactions from the environment, or x
is the cause for ∆u. In this sense, the hierarchy of models becomes a hierarchy
of causalities.

Heinz von Foerster essentially claimed that the mind (a cybernetic system) can-
not understand systems of the same level of complexity, or another cybernetic
system — there is the problem of infinite recess. Analysis of such intertwined
systems, or “Second-Order Cybernetics”, ends in problems: Thinking about a
system necessarily invokes both levels, first-order and second-order systems, and
there is a mess, one cannot distinguish between them in analysis. In neocyber-
netics, there are no qualitative leaps between the levels of systems; the hierarchy
of levels collapses into a singularity. Human can be liberated from the loop of
analysis, there are powerful conceptual tools for artificially “understanding” the
inner and outer processes alike: The human thinking is just another system to
be analyzed.

10.1.4 About “truly general relativity”

Unification of models sounds like a panacea: Assumedly one only has to write
this one world model once and for all? However, even though the model of
the environment is objective and deterministic, as studied above, it is still not
unique, and there is still diversity of systems.

There will never exist a complete world model as the model is relative to the
observer and observations. How the potential becomes actual and in which form,
is dependent of the coupling between the observer and the system — or in other
terms, determination of the features that are used to characterize the system.
And, further: As studied in chapter 4 in context of the ‘steel plate” analogy, the
environment being measured (the world) is deformed to match the probes. It is
not only time (and space) that are relative — all information that is acquired
is relative. The Heisenberg’s “uncertainty principle” does not only apply in
microscale, the same compromising has to be accepted also in macroscale, when
observing large complex systems: If coupling is made tighter, the environment
is deformed and the measurements change. And when doing observation, it is
necessary to firmly push the systems to make them reveal the real structures
of the underlying tensions. World consisting of elastic systems tries to yield
and escape measurement, information being redirected in the non-restricted
dimensions — one could speak of a “generalized Le Chatelier principle’. As
Heraclitus observed, “nature loves to hide”.

There is an age-old philosophical dilemma: If a tree falls in a forest with no one
to hear it, then does it make a sound? — similarly one can ask whether a system
exists if there is nobody to model it. If there is variation, it is information only
if it is exploited by some system. George Berkeley claimed that “to be is to
be perceived”. To exist, or to be relevant, is to be in interaction with other
systems and affect them. Systems and models are mixed, and experimenting
and identification takes place all the time — the world is truly a holistic place.
But also subparts can be studied, because such subpart reorganizes to fit the
observer’s expectations. A human is also a probe, an interface of a memetic
system into the world.
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The system is different when it is seen by some other — and the world as a
whole is different when seen by some other. This observer (model constructor)
need not be a human, it can also be another system. It is not because of
subjectivity of models — it is because the system truly is different when seen
through other eyes. If one selects some variables to construct a model with, the
environment is reformed to obey the assumptions. The world view can become
consistent because it is forced to become consistent, and the starting points can
be motivated afterwards.

Man is the measure of all things — and this can be extended in the cybernetic
spirit, as a system is the measure of other systems.

Speaking of relativity and numerical nature of models can lead to incorrect con-
notations. Statistical models sound like something uninteresting — if statistical
averages and expectations are concentrated on, nuances vanish, and one only has
some obscure “genderqueer models”. However, in neocybernetic modeling the
emphasis is on variation and differences; sparse coding in the final models means
that structures that are relevant as independent entities become separated. In
the spirit of Eastern masters:

Before Zen, men are men and mountains are mountains, but during
Zen, the two are confused. After Zen, men are men and mountains
are mountains again.

10.2 About “new kind of science”

Stephen Wolfram [91] prophesized that old ways of doing science are powerless
when studying complex systems — traditional mathematics has to be forgotten.
As has been observed, such absolute pessimism is probably not motivated; one
only needs to apply new interpretations and fresh ways of thinking when doing
mathematics.

10.2.1 Mathematics in a change

As has been already observed, the potential of “old science” are not yet ex-
hausted. But the ways how observations are interpreted are changing; and
because it is this observation data that is the basis of one’s world view, one is
actually facing a new kind of world.

Wolfram’s vision of ignoring mathematics altogether is futile, as any reasonable
formulation of logical thinking is mathematics, after all. And there exist other
motivations for sticking to the old modeling tools: As Eugene Wigner [87] ex-
pressed it, “the amazing applicability of mathematics to the physical world is a
mysterious, undeserved and inexplicable gift”. The main philosophical problem
is not the applicability of mathematics to our descriptions of physical reality,
but, rather, the major role of human-created mathematics in the discovery of
new phenomena. What is more, it often turns out that it is the very simple
mathematical machinery that only is needed — perhaps the reason for this is
that in neocybernetic models, as studied before, no sophisticated mathematics is
truly needed? Cybernetic models are based on mathematically simple quadratic
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optimization criteria. And there is another thing to remember: A cybernetic
system implements sparse coding among its variables. When looking at the re-
sulting models, this means that relationships between variables are compressed
and projected onto separate relations of the form x̄i = qiūi. Complex systems
are decomposable, only the action (input variable) and the reaction (correspond-
ing latent variable) need to be studied at a time. Rather than having to manage
the mess of all contributing variables at the same time, one can concentrate on
a subset of localized variables.

Still, there are some points that deserve a closer look; what are the character-
istics of this mathematics that is especially efficient in this discovery of new
models?

Since the ancient Greeks, the methods of doing science have remained the same.
The rules of the “game” were invented obeying some aesthetic and pragmatic
objectives. For example:

In Euclidean geometry, only a compass and a ruler were allowed in
derivation of theorems, and there had to exist a finite sequence of
operations for reaching the result. It turned out that a vast body
of problems really could be formalized in this way – but, on the
other hand, some problems turned out to be too difficult. Whereas
an arbitrary angle could easily be divided in two equal parts, the
seemingly analogous problem of trisecting an angle could never be
accomplished. What is more, there were annoying inconsistencies:
As the division in two and four equal parts was so simple, why the
case there between them is so different?

For the Greek, mathematics was only a free men’s pastime activity, not to
be applied in real life. From the practical point of view, however, having a
homogeneous conceptual toolbox that would work in all cases without abrupt
collapses would be more useful. In the era of the computer, the rules of the
game can be changed: Infinite procedures have become realistic. For example,
employing this opportunity, trisecting the angle can be carried out by dividing
the angle in two alternating halves an infinite number of times.

In the traditional way of thinking, the computational approach is not elegant
— but it offers the homogeneity: Algorithms crunch the numbers, no matter
what is the input data. The neocybernetic models simulating the operation
of underlying agents, as implemented in the parallel fashion applying matrix
methods, is robust but efficient — indeed, as Albert Einstein has said, “God
does not care about our mathematical difficulties; he integrates empirically”.
Among mathematicians, there is resistance against computational approaches
as the calculations cannot be carried out using pencil and paper, but a computer
is needed. On the other hand, when seen in the neocybernetic perspective, the
paradigm that trusts iterations towards convergence are very natural: Compu-
tation is also a process proceeding towards a dynamic balance.

Another change in mathematical thinking is most profound: In the neocyber-
netic spirit, relevance is more important than absolute truth or provability.
When modeling large-scale complex systems, one can never assure that all as-
sumptions are met that have to be fulfilled for some mathematical result to
hold. This means that analyses can become either very misleading or completely
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meaningless because of sloppy simplifications. Even if the theories say that in
certain circumstances the identification algorithms, say, converge to fixed values,
this convergence can take infinite time — and sometimes it does, meaning that
such methods are not practical. It is better to collect real information from the
system and apply the models that are naturally dictated by the system; when
data is gathered over longer time of system operation, and relevant structures
— those that are visible in behaviors — in the data can be determined through
statistical analysis. The same “sloppiness” also applies to today’s methodolo-
gies: Different kinds of soft computing methods, etc., are today routinely used
even though their operation cannot always be assured — it is enough that they
usually work. Such practices can change the direction where the whole field
is proceeding, as research is what the researchers do. The humans determine
what is “hot” and what is not. When modeling ecosystems, for example, the
dynamics of memetic system needs to be mastered just as well as the genetic
one.

It should not be forgotten that a research community is a cybernetic system fol-
lowing its natural dynamics — and another complex cybernetic system with hu-
man minds as a medium is that of practicing engineers, those who finally either
use the new approaches or not. One must not underestimate the role of intuition
when estimating the dynamics in such system — completely new methodolo-
gies cannot easily penetrate. In this sense, neocybernetics nicely combines old
and new ways of thinking: For example, in the field of industrial automation,
the basic ideas are already quite familiar — control, information, ideas of local
linearity, etc., are routinely employed.

There is also need for fresh ways of thinking what comes to the mathematical
tools — but the need of fresh thinking goes deeper than that.

10.2.2 Questions of “why?”

Natural sciences like physics traditionally try to answer the “how?” questions:
One derives formulas to explain behaviors and to estimate them. In biology and
ecology, for example, the questions are of the form “what?”, describing nature
in terms of direct observations, and constructing taxonomies. In humanistic
sciences the emphasis even seems to be on “who?”, concentrating on singular
cases rather than on statistical relevance, not to mention general rules. There
is a hierarchy among the sciences what comes to their power in explaining
phenomena — one could say that “how?” is an emergent-level problem setting
as compared to “what?”, and one cannot reduce such explanations to a set of
lower-level ones in a one-to-one fashion. In the same manner, the next emergent
level above “how?” is “why?”.

If we trust Theodosius Dobzhansky, evolution must be seen as the basis of all
biological and ecological phenomena. And the kernel of evolution boils down to
this question.

It has been said that by definition science does not answer questions of that type
— teleology and finalism are notorious words today. But what if this constraint
could be relaxed; what if this starting point is just a problem of current ways of
thinking, still reflecting the cybernetic battle between religious and non-religious
explanations? After the studies in the Middle Ages, when all explanations had
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to be divine, they now must not be. After the other extreme we are now in the
other, and balance is still being searched for. Indeed, these issues seem to be a
taboo — so aggressive is the resistance against the creationistic movements, for
example.

Still, it is clear that the old problem settings are becoming obsolete. Today, the
data is so high-dimensional that there is an infinite number of ways how they can
be explained — if only accepting the “how” explanations. There is never enough
fresh data to cover the exponentially increasing space of the variables. Postmod-
ern science is becoming a “fiddler’s paradise” where the strangest formulas and
theories are proposed. Observation data can be reduced into unequivocal for-
mulas only if applying strong model structures and modeling principles — and
the models based on the question “why?” give the tightest framework with the
least number of free parameters. Instead of speaking of some primus movens or
elan vital one can also more neutrally speak of maximum entropy production as
studied in chapter 9; however, this is just a terminological trick, the fundamental
underlying explanation for the behaviors remaining equally mysterious.

In technical terms, nothing very peculiar takes place: Finalistic criteria are often
reflected as optimization problems. The motivation for this is that operation in
a cybernetic system is based on the competition among the low-level agents —
as seen from outside, in the slower scale, the “losers” cannot any more be seen,
only “winners” being visible. The Fermat’s principle (light chooses the fastest
path) can be explained in terms of photon populations; similarly, the idea of
the “selfish gene” [20], for example, can be reduced to analysis of populations.
The way of looking at the emergent illusions just makes the system look clever
and behaviors in them look pre-planned; finalistic arguments make it possible
to express the emergent patterns in a compact form.

When doing cross-disciplinary studies, one must not underestimate the role of
intuitions and connotations there are. After all, however, it does not matter
whether one speaks of emergy pressure or tension — or of “life force” or “will”,
in the sense of Arthur Schopenhauer.

There also exist other kinds of emergent-level criteria for constructing models.
Remembering that our own mental machinery has been polished by millions
years of evolution, one can perhaps also propose “anthropomimetic modeling”.
What kind of dependency structures does the mental machinery utilize in its
subconscious modeling process? Using everyday terminology, it seems that one
of such principles is beauty, or, more specifically, symmetry. Symmetries make
it possible to capture dependencies in patterns, thus efficiently compressing in-
formation, as studied in chapter 9. Harmonic patterns please the eye because
they match our innate models — or they help to enhance the models. Ex-
tending this to other systems is not as esoteric as it sounds — why should the
human be the only example of natural systems where such sophisticated models
of fractal symmetries are introduced; perhaps nature is beautiful of necessity,
to make the quantum-level systems cybernetically modellable and thus control-
lable? Perhaps nature is understandable not only at the conscious level, but
also on the very deep sub-conscious level — but, still, this beauty is there not
to please us; it may be that an ugly universe could not be balanced in the first
place! Anyway, symmetries are more or less explicitly used as the starting point
of modeling in quantum physics today — mainly for pragmatic reasons, as this
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is the only way to decrease number of parameters there, but perhaps these sym-
metries really reflect reality. It is not only the best of possible worlds, in the
sense of Leibnitz (and also in the neocybernetic sense), but it is also the most
beautiful one — Miss Universe, as judged by the jury of systems (including us).

Perhaps there are still more general ideas available — guidelines that could
be exploited to model and control the higher-level memetic system of science
making itself. When trying to understand the world, and when modeling it
scientifically, one is facing data coming from complex systems. But if the system
being modeled is cybernetic, one already knows that there exists a model — the
model that is implicitly being used by nature for keeping that system hold
together. Here it is reasonable to present the Gaia hypothesis by Joe Lovelock:

The Goddess of Earth (Gaia) has purposefully designed the geolog-
ical, climatological, etc., processes to support life.

This strange principle makes it possible to draw strong conclusion concerning life
on earth; there also exist closer analyses (for example, see [45], [33]). Similarly,
one can propose such emergent-level laws — let us define the “Pallas Athene
Hypothesis”, or, actually, the “Antero Vipunen Hypothesis”, as follows:

The God(dess) of Science has purposefully designed the biological,
ecological, etc., processes to support science.

The triumph cannot end now — the Goddess of Science protects us so that
nature will continue to be graspable to humans, and science will continue to
prosper. It seems that system complexity and analyzability go hand in hand: If
nature has been able to construct sophisticated model structures for the cyber-
netic systems, why not us? The claim here also is that cybernetic systems can
always be modeled, human’s task is to detect these models. When searching for
the models, there are always many ways to proceed; but the above hypothesis
gives strict guidelines about where to go next; indeed, this whole text is based on
such assumptions — or the world is seen through “neocybernetic eye-glasses”.
One of such fundamental assumptions was that of (piecewise) linearity: Other-
wise, reductionism does not work. However, even though the model structures
are linear, it is not so that the combined system would be simply decomposable:
As new boundaries against outer environment are exploited, new “forces” are
detected, and the “steel plate” is no more the same. But when one starts from
simple assumptions, the result remains simple — the linearity assumption is
like the parallel axiom: if this assumption is adopted, a consistent, nontrivial
framework can still be derived, revealing a very different view of the world.

Actually, the key question in neocybernetics is not “why?”, but “why not?”.

10.2.3 Mental traps

Many beliefs from the past seem ridiculous to us — how about our beliefs as
seen hundreds of years in the future? Even though we know so much more
than the medieval people, it is difficult to imagine what we cannot yet imagine.
And, indeed, because of the new measurement devices and research efforts, the
number of “non-balanced” observations and theories is now immense. There
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are many fallacies and logical inconsistencies in today’s top science — many of
these are related to the astonishingly clever orchestration and implicit control
of complex processes. Categorically avoiding the “why?” questions results in
unsatisfactory models: Today’s explanations for gene transcription and trans-
lation, for example, make the role of message-RNA sound, really, like an agent
story, this agency representing some central intelligence.

Today’s challenges involve different kinds of complex networks, and today’s
conceptual tools do not help in understanding them. Indeed, when seen in the
appropriate perspective, most challenges today can be characterized in terms
of networked distributed agents: For example, the advertised possibilities of
nanotechnology can only become true if some mechanism of self-organization
and self-regulation among the nano-things can be implemented.

The agents doing science are humans, and it is the patterns of “common sense”
thinking that have to be overcome to reach new ways of seeing the world. A
person that has adopted Western thinking is in the prison of centralized think-
ing. To understand complex cybernetic systems, old thinking patterns have to
be recognized. It is like the Zen masters say, “if you are thinking of Buddha, you
must kill it” — or if you notice that you are thinking you must stop it! It is the
religious ideas that are among the most fundamental patterns of thought, one
of them in the Western culture being the monotheist dogma of a personalized
creator. After detecting such thinking patterns, escaping them is still not easy.
Jean-Paul Sartre has said that even the most radical irreligiousness is Chris-
tian Atheism — one explicitly (aggressively) tries to eliminate all divine-looking
explanations, but in vain.

Getting distributed by definition means loosening the controls. Indeed, tra-
ditional centralized control is a prototype of Western ways of structuring and
mastering the world. But even though the Eastern wisdom better captures the
essence of cybernetic phenomena, engineering-like approaches are necessary to
“bootstrap” ones understanding, and powerful conceptual tools are needed to
construct new kinds of emergent structures. The hermeneutic mind alone is not
enough, one needs a link to the outer world. Some kind of synthesis of Eastern
and Western ways of thinking is needed; and neocybernetics seems to offer a
framework where it is possible to reductionistically study holistic distributed
systems.

Can “cybernetics” then offer some alternative content for one’s personal world?
Fortunately, creating maxims out of nothing is not needed — it has already
been done. Eastern holistic thinking offers a model of how to create the new
world view. For example, the underlying vitality principle beyond the Chinese
philosophy and medicine is based on the ideas of balancing and ordering (see
Fig. 10.3); in Indian philosophy many principles (stationarity, desire and conse-
quent suffering, etc.) reflect the cybernetic ideas; and the Japanese pantheistic
belief on the millions of Gods, each managing its own subsystem, is also ap-
pealing. According to Eastern philosophers, the reason for suffering is missing
knowledge and understanding.
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Figure 10.3: Chinese symbol for the
mystical ordering principle, also denot-
ing air or vapor

10.3 Rehabilitation of engineering

In the beginning, in chapter 1, it was wondered whether control engineering can
have anything to do with biology. As a conclusion, it can be claimed that there
is contribution in both directions.

Since 1960’s, after the great discoveries of modern control theory, there have
been no real breakthroughs in the branch of control engineering. It seems that
this stagnation does not need to last long: There is a Golden Age of control
engineering ahead. Control theory and tools can be applied not only in technical
applications, but also in understanding really complex system — biological,
social, economical, etc. There do not necessarily exist explicit controls in such
systems, but understanding the natural dynamics in such systems is still based
on control intuitions.

It is traditionally thought that philosophy is the basis of all science: Logic
is part of philosophy determining the rules of sound thinking. Mathematics
if “applied logic”, implementing the logical structures and manipulating them
according to the logical rules. Natural sciences, on the other hand, can be seen
as “applied mathematics”, where the ready-to-use mathematical formulas are
exploited to construct models. Finally, the engineering disciplines are “applied
science”. Engineering is inferior to the more fundamental ways of structuring
the world.

This is a formal view of how deductive science is done, and how new truths are
derived. However, also these viewpoints need to be reconsidered: If the pre-
sented neocybernetic modeling can cast some light onto the mysteries of what is
the essence of complex systems, the deepest of the philosophical branches, meta-
physics, is addressed. It is mathematics that offers the syntax for discussing the
issues of what is there beyond the observed reality, and it is control engineering
that offers the semantics into such discussions. It can be claimed that control
knowledge is necessary for understanding complex systems, natural or artificial
(see Fig. 10.4).

Martin Heidegger once said that as classic philosophy fades away, cybernetics
becomes a philosophy for the twentieth century. This will be even more true
in the 21’st century: Philosophical considerations can be interpreted from the
viewpoint of information science, they can be given fresh contents, and, what is
more, there are new conceptual tools available — the language of mathematics.



256 Level 10. Models of Reality can be Reality Itself

Philosophy
(logic)

Mathematics
(linear theory)

Engineering
(control)

Philosophy
(metaphysics)

Engineering
(semantics)

Mathematics
(syntax)

Traditional view Cybernetic view

Figure 10.4: New view of control engineering studies as delivering sub-
stance to philosophies
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Conclusion1: From Science
back to Natural Philosophy

When studying memetic systems, one can see that there are emergent hierar-
chies. For example, artificial intelligence research has strange appeal: It seems
to be always ahead of paradigms. If a concrete formulation is found for some AI
problem, it can be implemented by hard work; it is no more interesting — and
it is no more AI. When a study already has form and fixed paradigm, standard
methods and problems, it becomes a memetic system of its own. Similarly, there
is a category above all sciences, defying scientific study — we just know it exists.

11.1 Standard science — business as usual

Good science — this is one of the main goals in today’s universities. What
is the definition of “good science”, then? Indeed, today science is measured
using very concrete productivity criteria. Researchers and project proposals are
evaluated using panels, peer reviews, and different kinds of publication indices.
This information is utilized to redirect financing, for “focusing on the strengths”.
Who could oppose efficiency?

There also exist different kinds of development efforts to enhance efficiency in
universities. There are questionnaires mapping the working practices, and new
planners and analysts are hired to implement the “missions” and “visions”. New
practices are introduced, including “near-bosses”, “developmental discussions”,
etc, making matrix organizations hierarchical again. In short, information ac-
quisition processes are intensified, and system controls are adapted accordingly.

As the system becomes better measured and more efficiently controlled, the
system becomes cybernetized, as studied above. This means that the number
of degrees of freedom decrease, the system is better predictable and deviations
from the nominal are minimized.

But what is that “nominal” in science? In the Kuhnian terminology, it is as-
1The conclusions here obviously do not reflect the opinions of the University, or those of

the Department, or those of the Laboratory
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sumedly “standard science”. One should be searching for something new that
nobody knew before — but for such unknown thing there cannot exist measure-
ments and no controls. Doing science does not match the efficiency pursuit. To
survive, a researcher has to compromise: One has to trivialize the problems,
searching for “easy wins”, making his/her achievements better quantifiable and
predictable. Clever people adapt, optimizing locally, producing the stuff that is
being required. Diversity is effectively eliminated from the system.

According to the neocybernetic discussions, the system becoming cybernetized
ends in stagnation, free flow of thoughts changing to pre-programmed bureau-
cracy. But what is even more alarming is that there is loss of vitality. Enthu-
siasm is necessary in science2. By making the scientific practice non-appealing,
the brightest minds select other careers — they usually have the choice. Cyn-
icism and pessimism are very acute threats for loss of interest that gnaw the
memetic system from inside. The potential for breakthroughs is minimized, still
worsening the vicious circle of systemic degeneration.

Where is the opposition, counterarguments that would introduce some noise
and excitation in the system, preventing it from ending in stagnation? It has
to be recognized that there are powerful pressures keeping the status quo. The
arguments often become personified, and nobody wants to disagree with the
celebrated top scientists, those who have the aura of heavenly wisdom — and
who would not like the world to change. The general atmosphere is discour-
aging, as it is thought that the “backward-looking traditionalist” just “do not
understand”. There is too much to lose for a person trying to make a career.
It is the same problem with “scientific spirit” as it is with “free will” — people
do not want to take the responsibility, after all. Is there then any hope?

11.2 “Project 42”

In some form science will always survive, even though today’s ways of doing it
can collapse or degenerate. One needs to look at science in a wider perspective —
or, more generally, one should speak of natural philosophy. Natural philosophy
is the higher-level category hosting different kinds of incarnations of science. It
seems that cybernetization in sciences cannot be avoided, but after catastrophes,
new ways of doing science displace old ones.

After all, Isaac Newton was not a scientist: According to his own words, he was
a natural philosopher. Natural philosophy leaves mature, gradually paralyzing
sciences along the path of its ever-proceeding Geist.

But the above criticism about today’s science only applied to the framework,
not the actual substance — is there need for the contents of scientific paradigms
to change? It seems that regeneration truly is necessary. Richard Feynman has
claimed that one should not even try to understand quantum phenomena. The
best available theory today, or quantum electrodynamics, gives good predictions,
but offers no intuition into the world of elementary particles. Why should one
be satisfied with such unsatisfactory models? The purpose of science is not only
to carry out calculations, but also to reach understanding.

2As one astronomy graduate preparing her Doctoral Thesis lately confessed: “A trained
monkey could also type these figures in the computer”
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Neocybernetics – the New Science of Complex Systems

???

Figure 11.1: Official evaluation of the “neocybernetics” ideas back in 2005
(excerpt). The main purpose of the proposed project would have been
to complete a monograph on “Neocybernetics in Biological Systems”

In the “Project 42” the goal is to find models for life and universe — for all
complex systems3. And these models should be simple: The sincere belief is
that nature can be understood by a human. As an application, the goal is
to detect processes of cybernetization — and fight against it in those domains
where it is not suited.

It may be that this research is not good science. Indeed, this has been indicated
indisputably by the highest authority, the Academy of Finland (see Fig. 11.1).
But perhaps this is still good natural philosophy? As Edward Goldsmith puts
it when discussing his thoughts concerning Deep Ecology [33]:

... Our mainstream biologist, ecologists and anthropologists — will
certainly reject them. I hope they do. If they do not, then I know
that the laws must be seriously wanting, for I regard today’s main-
stream natural sciences (biology, ecology and anthropology) as being
very seriously misguided ...

11.3 Neocybernetics — an experiment design

Experiment designs in complex systems are difficult to carry out, and proving
hypotheses in memetic theories is practically impossible. The goal here is to
test whether the cybernetic ideas hold, and how the attractors in the memetic
sphere emerge and how they find their balance.

3According to “The Hitchhiker’s Guide to the Galaxy”, the trilogy in five parts by Douglas
Adams, the Definite Answer to the Ultimate Question of Life, the Universe and Everything
is 42. Only the question is inaccurate
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There exist no proofs for theories in complex enough domains. Verification of
claims, on the other hand, is implemented by checking whether they can pass
the credibility and relevance test. Ways of doing science change: Cybernetic
proof techniques are not based on truth but vitality, the capacity of the ideas
to compete and stay alive. If the theory passes such test, it has to capture some
essence of the real system as we see it. In the spirit of cybernetics, the proof
and the theory itself are intertwined and also relative to the context.

This text is a cybernetic proof of itself, or it remains a “proof” of the contrary,
and the readers of this text are the agents implementing the emergent proof.

Dear reader: If this text has had the momentum for some reason to reach your
knowledge just due to its own virtues, bypassing all scientific authorities, being
(seemingly) incompatible with today’s active scientific memes — then it must
be relevant (not claiming anything about its final truth).

On the other hand, if you do not ever bump into this text, you should be happy
in your ignorance: It was then probably not worth knowing in the first place, it
would have been only waste of time.

Seamless information transfer and its more homogeneous penetration is a pre-
requisite for science. This text is available in Internet — as it can be freely
downloaded, it hopefully finds its “memetic balance” in the ideasphere all by
itself. Scientific theories must always be based on cybernetic tensions among
arguments and counterarguments — I would be very happy if somebody would
propose what is the contents of level 11 and onwards in the ladder of deeper cy-
bernetic understanding. As Heraclitus and Hegel once observed, the key point is
not being but always becoming — perhaps the presented ideas help to smoothen
the transition to something qualitatively new.

If you have read this text and found it interesting and understandable (which
are, after all, the most relevant criteria for memes to survive in human minds),
I would be happy if you would send a note to heikki.hyotyniemi@tkk.fi.
Thank you for your interest!



Suuni jo sulkea pitäisi
kiinni kieleni sitoa
laata virren laulannasta
heretä heläjännästä

...

Vaan kuitenki, kaikitenki
laun hiihin laulajoille
laun hiihin, latvan taitoin
oksat karsin, tien osoitin
Siitäpä nyt tie menevi
ura uusi urkenevi
laajemmille laulajoille
runsahammille runoille
nuorisossa nousevassa
kansassa kasuavassa.

– Kalevala
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