Level 1

Genomics, Metabolomics,
and Distributed Networks

There are very different kinds of subsystems in a living organism. To reach
the level of systemic biology, one needs to be able to combine different model
structures. The great promises have encouraged the researchers already for a
long time to try and construct combined models (for example, see [85]).

When constructing models, it is first necessary to capture the essence of a do-
main field in mathematical structures. This is a delicate challenge, and domain-
area expertise is needed. However, it seems that when one follows the neocy-
bernetic guidelines, homogeneous representations can be defined for different
kinds of systems. In this chapter, appropriate representations for information
are first defined, starting from concrete low-level models, and abstracting them
towards general model structures. Further analyses in subsequent chapters are
based exclusively on these data representations.

1.1 Experiences with “artificial cells”

Information of the biological processes has increased immensely: Capability of
reading the genetic code, and new ways of gaining information of the genetic
activities (like Chromatin Immunoprecipitation or ChIP technique, see [74]) has
delivered us large amounts of data. It has been assumed that being capable of
deciphering the genetic code is enough to reach the higher level of understanding
of what life is. Perhaps some day all dependencies between phenomena and
control structures within a cell have been found. Is this not the ultimate goal?

Unfortunately, this is just one step towards capturing the essence of life pro-
cesses, and the goal will never be reached this way.

What is the contribution an engineer having no background in biology can have,
giving advice to domain area experts? — Counterintuitively, the engineer’s
contribution can offer wider views here. Systems thinking is universal, and,
experiences from other fields can be exploited. Perhaps the same deadlocks can
be avoided?
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Understanding of complex systems is the challenge also in industrial automation
systems. Despite the detailed system models, computers and simulators, the
behaviors and qualitative properties of the overall system are becoming more
and more difficult to understand. The systems are becoming like artificial cells
themselves:

Industrial plants also have metabolism, raw materials being exhausted
and others being produced. Originally, the production can be far
from optimum, but as soon as dependencies among variables are
recognized, they can be used for constructing new feedback struc-
tures to implement more efficient and robust production. However,
as the complexity of control structures cumulates, the system-level
properties cannot any more be easily seen — even though all indi-
vidual control structures are explicitly known, indeed, even though
they have been explicitly designed and optimized.

In both cases, natural and man-made cells alike, it turns out that the goal
of “evolution” is overall efficiency of production, no matter whether it is hu-
mans that are acting as agents for development or not. This can be reached
by implementing mechanisms for reaching best possible production conditions;
and this system integrity needs to be maintained without collapses. To main-
tain such balance, the system has to respond appropriately to the spectrum of
disturbances coming from the environment.

Mastering huge amounts of data and finding “holistic understanding” out from
it — this is the common goal in both cases, in artificial and natural cells alike.
And, indeed, here it is the engineering tools and intuitions that can be exploited
to find new kinds of approaches for attacking the complexity.

So, how to see the forest for the trees — how to see the cell metabolism for
the chemical reactions, or, further, how to see the organ functions for the cel-
lular phenomena? First, the details of the systems need to be understood and
captured in data.

1.2 Modeling cellular processes

When aiming towards truly adapting systems, the model structures should not
be fixed beforehand. It has to be assumed that there is minimum number of
preprogramming, and the final structures have to be extracted directly from the
observation data. One needs strong consistent frameworks where the observa-
tions can be interpreted. The hints of structure have to be coded in the data,
and the mathematical machinery has to be capable of exploiting these hints.
Indeed, this is a very ambitious goal.

1.2.1 From formulas to behaviors

Traditionally, modeling of complex systems is like search for the philosopher’s
stone: One tries to find the magical formula that explains all behaviors. Indeed
— all systems, large and small, are assumed to be governed by underlying
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formulas, the complexity typically being manifested in nonlinearity; this kind of
thinking is reflected also in today’s approaches in complexity theory. However,
in the case of truly large systems this objective becomes obsolete and absurd:
As the systems are distributed, their behaviors cannot be compressed into some
compact kernel.

Traditionally one tries to find the simplest possible formula that describes the
system as isolated from its environment and other systems. The system alone
is thought to represent itself in the most accurate way. But natural systems
are never alone. In line with the neocybernetic assumption of environment-
orientedness, it is assumed that it is the environment of the system that de-
termines how the system is run and which of the potential behaviors become
actual, selecting the subset of possible behaviors that is to be excited. In a
sense, the environment carries out experimenting with the system, changing
the conditions, and the system responds, finding a new balance reflecting the
properties of the coupling between the system and its environment.

To unambiguously characterize the system behaviors, also the properties of its
environment need to be quantified. In a complex environment, the simplicity
goal cannot any more be reached as there exist a multitude of variables de-
termining the environment. One is facing a problem of complexity exploding
in two ends: Instead of simplicity, there is structural complexity in the form
of the system model, and there is the dimensional complexity in the form of
environmental variables.

However, as shown in Fig. 1.1, the structural complexity of the model can be
ripped off by letting the complex behaviors be “interpreted” by the environment.
When the environment is seen as a “simulator”, and when one records the
resulting behaviors, one has only homogeneous, bare numbers left. There is
a high number of this kind of structureless data; assuming that the data is
collected in an appropriate way, the relevant behaviors are present in that data,
yet in a highly redundant form. The remaining task is that of detecting the
patterns, finding the compressed representation of the information buried in
the data — if this can be accomplished, one has a representation of the system
that is simple in terms of structure and dimension at the same time.

How is such simplification possible, and how could it ever be done without
human control and specific domain-area knowledge? First, the structural com-
plexity in the form of nonlinearities can be changed into dimensional complexity
when different kinds of nonlinearity prototypes are included in the data. Among
the multitude of simple nonlinear features, the original nonlinearity can be ap-
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proximated as a weighted combination of simpler ones. The question what
these domain-specific nonlinearity prototypes are and how they can be isolated
by applying appropriate data preprocessing so that model structure itself can
be kept simple and general is discussed in this chapter, concentrating on the
domains that are characteristic to a biological cell. After this, when the “be-
havioral essence” is present in the data, the second phase becomes possible:
That of compressing the internal structure in the data and crystallizing the
behavioral features. Only by making some assumptions about the nature of in-
formation (see chapter 2), the compression of the high number of environmental
and system-specific data is possible.

The complexity becomes parameterized; the more there are features, the more
accurately the behaviors can be captured. One can question whether the original
function form can be represented by a set of other functions — but from the
modeling point of view, if there is no difference in behaviors, the implementation
has no relevance. According to the identity of indiscernibles originally due to
Leibniz one can even claim that, “if all attributes of items A and B are identical,
A and B are the same”. Here data represents structure, the observations being
assumed to capture the identity of the object, relevance of phenomena is defined
in terms of visibility in data: As interactions make a difference, everything that
is of relevance must be observable. This has only pragmatic motivation — but,
later, closer look in these issues is taken: After all, the natural systems also only
see the data available in their environments, and they try to tackle with it.

High dimensionality is easier to tackle with than different kinds of complicated
structures — it turns out that the same tools are applicable to all systems.
When the complexity has been transformed into high dimensionality, one can
characterize the modeling task as being a search problem: When determining
the model, or the patterns characterizing the data, one is facing a technical
problem of finding the location in the parameter/variable space that corresponds
to the observed behaviors. As the dimension grows, the search space grows
exponentially. However, in the appropriate mathematical framework this search
can be implemented efficiently in a parallel form. In (linear) vector spaces, it
is multivariate statistical methods based on linear algebra that turn out to be
efficient tools (see chapter 2).

The delicate relationship between the system and its environment is studied later
closer; here it is enough to observe that all relevant nuances are represented in
the data. Data selection essentially affects the modeling results, and selecting
reasonable data and preprocessing it appropriately is a key question. One needs
to find a coding where the system state can be captured in data; optimality of
the representation needs not yet be worried about. To reach this, something
needs to be known about the system structure — here it is assumed that what
one is looking for is representations of networks.

1.2.2 Approaches to networks

It seems that an appropriate framework for studying the spectrum of the dis-
tributed cellular processes is that of networks, consisting of more or less inde-
pendent interacting actors. The genetic system constitutes a network, where
genes regulate each other, and also the metabolic system can be seen as a net-
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work among chemicals. And other complex systems, too — like ecosystems —
are networks between individuals. How to model such networks? There exist
dozens of alternative approaches — let us study some examples from opposite
ends of the continuum.

Graph theory

The traditional approach to modeling networks, dating back to Leonhard Euler,
was graph theoretic: The connections between nodes are assumed to be “crisp”
— either there is an arc or there is not. Causal structures can be modeled
using directed graphs with unidirectional arcs. This is also the traditional ap-
proach, for example, when representing control relations among genes, or when
representing metabolic cycles.

However, such graphs are descriptive as models — easy to grasp but difficult to
apply. There is the same problem as there is with all qualitative models: Just
knowing that there is some connection is not enough. Altering the threshold
level, the network easily changes from sparsely connected to more or less fully
connected. And as is known in control engineering, the numeric values in the
feedback structures essentially determine the properties of the whole system.

Indeed, in real networks, there is a continuum of interaction effects: The con-
nections are not of “all-or-nothing” type. The graph models can be extended
by adding weights to the arcs, etc., but at some point it is better to rethink the
structure all over.

Probabilistic networks

Probability theory offers consistent ways for defining weighted arcs. In Bayesian
networks, the theory of conditional probabilities is exploited, and chains of
“evidence” and resulting probabilities are expressed as tree structures. Whereas
graphs suffer from weak mathematical theory, Bayesian networks benefit from
strong underlying mathematics — assuming that the assumptions hold: The
evidence have to be independent of each other, etc. However, the nodes in
real life are often not independent of each other. There exist feedback loops
and alternative paths in complex networks, making the conditional structure
intractable, or at least very complex (see [62]).

Another popular model family for capturing dynamic phenomena is based on
Markov models, where the state transitions are probabilistic. However, now
the problems are caused by the dynamic structure: It is difficult to find the
typically large number of free parameters in such models. In real life, only a
too narrow view of the potential dynamics is seen to identify the parameters;
experiments typically are not very persistently exciting. And, again, there is the
basic problem: The causality structure should be explicitly resolved to reach
useful models.
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Neocybernetic approach

After all, practically every node in a complex network is connected to all others,
either directly or through intermediate steps. The neocybernetic approach is
explicitly opposite to the traditional interaction-at-a-time analyses: Now, pan-
causality is taken as the starting point. It is assumed that, after all, all nodes
are simultaneously causes and all are effects, with the exception of the explicit
system inputs. The network becomes more or less fully connected.

In balance, after the transients have decayed after some disturbance, the causal
effects find their balance of tensions, assuming — in the neocybernetic spirit —
that the underlying interactions and feedbacks are capable of maintaining the
balance. It does not matter what the details of this stabilization are as long as
the balance always is finally found.

The neocybernetic model tries to avoid the above problems of traditional net-
work models. It is a numeric model, consisting of non-crisp connections, but the
numeric values of these connections are not determined applying some proba-
bilistic hypotheses, but by observing the relations between the materialized node
activities. There is no centralized control or explicit network structure assumed
or solved, so that there is no need to determine for the individual interaction
strengths. Indeed, as is well known, the substructures in a closed loop system
cannot be distinguished — this truth is implicitly accepted in the neocybernetic
framework.

If the actual causality structures and dynamics are ignored, one could wonder,
what is there left of the system? The neocybernetic model is a static balance
model, or actually a model over the spectrum of balances as the environmental
inputs change. If the system happens to be linear, the system state is unique,
being a linear function of the input. These issues will be studied in more detail
later, and they will be exploited accordingly. Next it will shown that, truly, the
dependencies among variables in biological networks can be assumed (locally)
linear.

1.3 Case 1: Metabolic systems

As presented in [92], the original starting point in neocybernetic studies was
analysis of Hebbian neurons — however, when modeling biological systems,
such analyses do not deliver useful information. It is proteins, for example,
that are the means for implementing the cellular and organ-specific behaviors:
A more relevant framework in this case is that of organic chemistry. It is
the metabolic processes that eventually determine the cell behaviors, being the
visible manifestations of the cell character.

Study a hypothetical example reaction, where there are « reactants on the left
hand side, being denoted as A;, 1 < ¢ < «, and the 8 products on the right
hand side are B;, 1 < j < f:

a1 A —l—---—i—aaAa ]ig b1B1 —l—---—l—bng, AH. (1.1)
A

The metabolic processes are typically reversible, so that the reaction can take
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Figure 1.2: An example of metabolic pathways (courtesy of MediCel)

place in both directions (ks being the reaction speed in forward and k, in
backward direction). Symbol AH denotes the change in enthalpy, or inner
energy, when the reaction takes place. It needs to be recognized that it is not
only chemical reactions that can be expressed using such formulas; also phase
transitions, etc., can be expressed in this form.

However, chemical processes in metabolic systems can be very complex. For
example, the active reaction chains in yeast when mannose production is taking
place is shown in Fig. 1.2. And, what is more, such chains are just a part of the
story: There exist overlapping sub-networks, and depending of the “projection”,
the outlook of the graph changes. If some connection is explicitly cut, for
example, applying some gene kick-off technique, the results are typically not
what one would expect. The cytoplasm is typically strongly buffered — there
seem to exist reserve mechanisms for compensating for the disturbances.

One needs a mathematically more compact representation for chemical reac-
tions. How to “cybernetize” chemical reaction models applying the neocyber-
netic principles?
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1.3.1 Applying the neocybernetic guidelines

In short, the goal here is to capture the domain area semantics, or expert knowl-
edge in distinct pieces of information, and then pack this information into a com-
pact form that makes it possible to apply the mathematical machinery. What
is this domain-area semantics to be coded, then? From the point of view, the
key point is to somehow capture the balances in the system.

Information representation

The first problem is how to represent such a chemical reaction formula in a
useful numeric form. It seems that a practical way to code the reactions in a
mathematically applicable form is to employ vector formulation: Define a vector
C containing all chemical concentrations so that all A; and B; are represented
there among the elements. The “chemical state” can assumedly be captured in
this vector.

Let us look how this vector presentation can be exploited. If the coefficients
—a; and b; from (1.1) corresponding to the chemicals are collected in the vector
Gamma, one can express the total concentration changes in the system as

AC =Tz. (1.2)

Here, x is a scalar that reveals “how much” (and in which direction) that reaction
has proceeded. When there are many simultaneous reactions taking place, there
are various vectors I';; the weighted sum of reaction vectors I'; reveals the total
changes in chemical contents (assuming that the vectors are compatible).

Using the above framework, metabolic systems can in principle be modeled: If
one knows the rates of reactions, or the scalars x;, the changes in the chemical
contents can be determined. This idea of invariances within a chemical system
have been widely applied for metabolic modeling; the key term here is flux
balance analysis (FBA) (for example, see [27]). However, the rates = are not
known beforehand, and, what is more, the reactions are typically not exactly
known.

In many ways, the model structure (1.2) is not yet what one is looking for. The
main problem there is that the flux balances only capture the stoichiometric,
more or less formal balance among chemicals. It does not capture the dynamic
balance, whether or not the reactions actually take place or not. Luckily, there
exist also other ways to represent the chemical realm.

Thermodynamic balance

There is a big difference between what is possible and what is probable, that is,
even though something may happen in principle, it will not actually happen. To
understand the dynamic balance, the reaction mechanisms need to be studied
closer.

Assume that it takes a; molecules of Ay, as molecules of As, etc., according to
(1.1), for one unit reaction to take place. This means that all these molecules
have to be located sufficiently near to each other at some time instant for the



1.3. Case 1: Metabolic systems 33

forward reaction to take place. The probability for one molecule to be within the
required range is proportional to the number of such molecules in a volume unit;
this molecular density is revealed by concentration (when the unit is mole/liter;
by definition one mole always contains 6.022 - 1023 particles). Assuming that
the locations of the molecules are independent of each other, the probability
for several of them being found within the range is proportional to the product
of their concentrations. On the other hand, the reverse reaction probability is
proportional to the concentrations of the right-hand-side molecules. Collected
together, the rate of change for the concentration of the chemical Aq, for exam-
ple, can be expressed as a difference between the backward reaction and forward
reaction rates:

ac
T = ke e Ol 4 RaCEL - O (1.3)
In equilibrium state there holds dgﬁl = 0, etc., and one can define the constant

characterizing the thermodynamic equilibrium:

b
ky _ Coy o Cos (1.4)

k ar .. (%
A Al Aa

K =

Linearity objective

One of the neocybernetic objectives is that of linearity. Clearly, the expression
(1.4) is far from being linear — indeed, it is purely multiplicative. It turns out
that applying a purely syntactic trick, linearity of the structures can be reached:
Taking logarithms on both sides there holds

log K' = b11logCy, +--- +bglog Cy; — arlogCu, + -+ — aqlog C,,.(1.5)

To get rid of constants and logarithms, it is also possible to differentiate the
expression:

AC ACy AC
0=p —2 e ha—28 AL
G, e T,

a ACAQ
(63 C(Aa Y

SE (1.6)

where the variables 6C; = AC;/C; are deviations from the nominal values,
divided by those nominal values, meaning that it is relative changes that are of
interest. The differentiated model is only locally applicable, valid in the vicinity
of the nominal value.

Multivariate representation

A single reaction formula can also be expressed in a linear form when the vari-
ables are appropriately selected. However, to model complex systems consisting
of various reactions, the data representation needs to be extended: The differing
data vectors containing different sets of variables (the reactions employing dif-
ferent chemicals) have to be embedded in the same vector space to make them
compatible.
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Assume that the vector z is a vector containing all relevant variables captur-
ing the state of the environment and the system itself, including, for example,
relative changes in all chemical concentrations. This means that the vector I';
representing a single reaction can contain various zeros, assuming that the cor-
responding chemicals are not contributing in the reaction i. If the vectors I'; are
collected as columns in the matrix I', one can write the individual expressions
in (1.6) in the matrix form where one row is allocated to each of the reactions:

0=r7 4z, (1.7)
or, when written out,

0

].—‘1’1(521 + -+ Fm,l(szm
: (1.8)
0 = FLn(SZl +---+ Fm,n(sz’m;

where n is the total number of reactions, and m is the total number of chemi-
cals. This expression needs to be compared to flux balance analysis: Now one
only needs to study levels of concentrations, not changes in them. This is in-
deed essential in complex chemical systems, where the energy and matter flows
cannot be exactly managed. The key point to observe here is that analysis
of complicated reaction networks can be avoided: No matter what has caused
the observed chemical levels, only the prevailing tensions in the system are of
essence. The underlying assumption is that the system is robust and redun-
dant: Individual pathways are of no special importance as there exist various
alternative routes in the network.

It turns out that reactions can in principle be characterized applying linear
algebra in the space of chemical concentrations. However, in practice it is not
enough to only represent the concentrations if the properties of the whole system
need to be captured. What else can the vector u contain?

1.3.2 Characterizing the metabolic state

The measurement vector z needs to be further studied to make it possible to
capture all internal tensions in metabolic systems. As it turns out, the following
extensions can, for example, be implemented without ruining the linear structure
among the variables:

e Temperature. According to the Arrhenius formula, the reaction coeffi-
cients are functions of the temperature, reactions becoming faster as the
temperature rises, so that k& o exp(c¢/T"). This means that when this is
substituted in the formulas, and when logarithms and differentiations are
carried out, the model remains linear if the new variable is defined as
T = AT/TQ

e Acidity. The pH value of a solution is defined in terms of a nonlinear
formula: pH = —IgC+. Because it is essentially logarithm taken of
a concentration variable, one can directly include the changes in the pH
value among the variables, 2,4 = ApH.
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e Dissipation. It has been assumed that the systems being studied are in
thermodynamic balance. This homeostasis can be extended, however: The
steady state can be determined not only in terms of the variables, but also
in terms of their derivatives. This means that one can study dissipative
systems, where the rate of change remains constant, a constant flow of
chemical flowing into or out from the system. Looking at the formula
(1.3), it is clear that model linearity is not lost if one has variables like

ZC’ = AC/C

e Physical phenomena. It is evident that structures that are originally
linear, like phenomena that represent diffusion between compartments,
etc., can directly be integrated in the model, assuming that appropriate
variables (deviations from the nominal state) are included among the vari-
ables.

In strong liquids one cannot always apply concentrations, but one has to employ
activities instead, or actual activation probabilities. If it is assumed that these
activities are some power functions of the concentration so that A = a;C“2,
after taking logarithms the model still remains linear in terms of the original
concentrations. This means that — even though linearity is not compromised
— the variables may become multiplied by some unknown factors, so that there
is some scaling effect.

The vector z selected here is the measurement vector, containing all possible
quantities that can affect the system behavior — internal system variables and
external environmental variables alike. To have the actual data vector to be
employed in modeling, the vectors first have to be preprocessed and appropri-
ately scaled — these issues are studied in chapter 2. In practice, specially if
the relationships between units are not clear, it can be motivated to carry out
explicit data normalization to make data items better compatible (this issue is
studied closer in chapter 3).

1.4 Case 2: Gene expression

However, the above studies are not the whole story — genes are an integral part
of the metabolic system. Nature’s way of implementing the genetic descriptions
are mindbogglingly sophisticated — but when trying to capture the essence in
those processes, perhaps one does not need to exactly stick to the nonidealities
in the implementations? Here the goal of the system is seen as more important:
The complicated mechanisms are only needed to reach the consistent balance
among the system components.

1.4.1 Process of overwhelming complexity

Above, the domain of chemical reactions was studied and a coherent modeling
framework was proposed for capturing the relevant variables that characterize
the process state. However, the cell differs from other reaction vessels of organic
chemistry: The genetic system is essentially a part of the metabolic system,
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controlling it. What can be said about it, how can this level be integrated in
the system model?

The information required for building the proteins and controlling the cell
metabolism is stored in deoxyribonucleic acid (DNA); the operational units
in DNA are called genes. The proteins are synthesized in the process called
gene expression: First the gene sequence is coded into messenger RNA in the
transcription process, and, after being further modified and transferred from
the nucleus into the cytoplasm, this code is compiled by ribosomes into proteins
in the translation process. These proteins are either used as building blocks in
the cell, or they act as enzymes, catalyzing other processes.

What makes this gene expression process specially complicated, is the fact that
there exist feedback structures all the way along the process: First, the RNA
molecules and proteins are “postprocessed” by various mechanisms controlled by
some other genes and chemicals; second, some of the enzymes act as transcrip-
tion factors, explicitly affecting the activity levels of other genes. In each case,
there exist various complicated mechanisms (chromatin packing and dismount-
ing, gene activation and inhibition, protein phosphorylation, myristylation, and
glycosylation, etc.) how the interactions among the actors are implemented.
It seems to be a hopeless task to accurately model the individual processes
that are related in these processes (however, there exist various attempts to do
that, for example [54]), and it seems that the system of interactions needs to be
abstracted.

The gene interactions have been modeled applying abstract causality structures
— an example of genetic networks is given, for instance, in [78]. Many dif-
ferent model structures have been proposed, for example neural networks [82].
However, there exist no unique gene regulation pathways, processes having very
different time scales and relevances — simple projections onto a graph form
can be misleading. Here, in the neocybernetic spirit, the pancausality idea is
applied: In steady state, the transients have decayed, and all reaction chains
have found their balance; the temporal sequences have changed to simultaneous
patterns of effect flow, practically all genes participating in this equilibrium.
How to characterize the internal tensions among genes?

1.4.2 “Cybernetizing” a genetic network

The genetic control system is much too complex to be modeled explicitly. The
only possibility is to look at the genetic system directly from outside, studying
the overall net effects. Again, when concentrating on the final thermodynamic
balance among tensions, the time-domain complexities can be circumvented.
There exist some clues.

Stationarity and statistics

Abstract away individual actions and realizations of interactions in the network,
and assume that the stationary state has been reached. Is there anything one
can say about such a system in general terms?

It has been observed that there exist peculiar similarities among very different
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kinds of complex systems. For example, it has been claimed (see [12]) and
[5]) that distributions in self-organized complex networks statistically follow the
power law, that is, there generally holds

zj = czP (1.9)

for some behaviors-related variables z; and z;, and constants ¢ and D. Here,
z; stands for the free variable, and z; is some emergent phenomenon related to
the probability distribution of z;. This power law dependency seems to govern
all structures with fractal and self-organized structure For example, if z; is the
“ranking of an Internet page”, and z; represents “number of visits per time
instant”, the dependency between these variables follows the power law: There
are some very popular pages, whereas there are huge numbers of seldom visited
pages. As compared to Gaussian distribution, the power law distribution has
“long tails”; the distribution does not decay so fast.

It is interesting to note that the power law distribution is closely related to
another modern concept, namely fractal dimension. Assuming that the vari-
able z; represents some kind of “yardstick”, determining the scale factor, and
z; represents the level of self-similarity, so that when one zooms the original
pattern by the factor of 1/xz;, there exist z; copies of the original pattern (and
this zooming process can be repeated infinitely), the fractal dimension of that
pattern can be defined as

_ log z;

D (1.10)

~ log
When the pattern is simple, this definition coincides with the traditional ideas
concerning dimension, but for complex patterns, non-integer dimensions can
exist. Now, it is easy to see that, after taking logarithms, the parameter D in
(1.9) closely corresponds to the fractal dimension for the networked system.

Multivariate nature and linearity pursuit

In the multivariate spirit, one can extend the single-variable formula (1.9) by
including more variables — assume there exist p of them:

2P g De (1.11)

1=¢ m

If there is only one variable z; changing at a time, and one solves for z;, this
formula corresponds to (1.9). Furthermore, there can exist various such depen-
dency structures — assume there are v of them:

1 = ClZlDll""'Zl?l“
(1.12)
1 = Cyleul e Z/?V“.
Now, if one takes logarithm on both sides of the formula, one has
0 = logci+ Diilogzr +---+ Dyylogz,
: (1.13)

0 = loge, +Dyilogzy +---+ Dy logzy,.
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It turns out that the multiplicative dependency has become globally linear —
by only preprocessing the variables appropriately. To find a still simpler (locally
applicable) model structure, one can further differentiate these equations around
the nominal values Z;, so that there holds

0 = DllAE_?l +...+D1HAE?A,
: (1.14)
_ Az Az,

0 = D2 4. 4D,,50

Again, the variables dz; = Az;/Z; are the relative deviations from the nominal
state. It turns out that there again holds the linear dependency, for variables
having been preprocessed in an identical manner as in (1.7),

0=T7 4z (1.15)

The scaling of the variables is not determined in a unique manner. As it turns
out (in chapter 3) traditional normalization of the variable variances is mo-
tivated. Determining the “nominal state” is equally vague; if nothing else is
known, it has to be assumed that extensive information of the system variables
has been acquired, and the mean values characterize the nominal state. In what
follows, the “A” symbols are dropped for brevity; however, it is still assumed
that variations around the nominal state are small.

Combining the results of this section and the previous one, it can be claimed
that all phenomena that are relevant for characterizing the cellular state can be
captured in a homogeneous linear framework as shown in (1.15). It is interesting
to study the properties of data properties that are dictated by the assumed
structure.

1.5 Probability interpretations

When the above simple formulations were derived, individual phenomena were
abstracted away. There are no more individual samples or time points visible,
only their statistical long-term properties. Thus, it is interesting to briefly
elaborate on probability distributions.

1.5.1 Fractality revisited

Study the outlook of the multivariate fractal distribution. Assume that one of
the variables has been expressed in terms of the other variables

D;
log zj = — Z Fz log 2;. (1.16)
ity Y

Variable log z; is a weighted sum of assumedly large number of assumedly in-
dependent stochastic variables log x;. Because nothing more accurately about
these variables is known, it can be assumed, according to the Central Limit
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Theorem, that log y has normal distribution (or, indeed, lognormal distribution
— see [55]):

p(log z;) = ﬁ exp (— (log z; — ) /202> . (1.17)

Here, parameters ¢, u, and o are free parameters characterizing the outlook of
the distribution. Taking logarithms, there holds

log(p(log z;)) = ¢ — (log zj — w)? /202, (1.18)

This means that the multivariate fractal distribution is parabolic rather than
linear on the log/log axis, the three parameters being ¢, u, and o2 (see Fig. 1.3).

Assume that the system variables can truly be characterized as having the di-
mension of probability, that is, genetic activity of a single gene can be seen as a
probabilistic phenomenon. In such a case the above result gives new intuition.
Indeed, the result is in conflict with “traditional” assumptions concerning frac-
tal networks! This assumption seems to be supported also by evidence: For
example, in Fig. 1.4, a manifestation of properties of a complex network are
illustrated. It is clear that a parabolic curve better fits the observation points
— the new model suits structures that are not strictly scale-free.

1.6 About more complicated distributions

In practice, model linearity cannot always be reached by as simple preprocessing
of the variables as was presented above. For example, some genes can only be
active in the vicinity of some location in the chemical data space — getting
farther from that location in any direction makes the activity decay. The model
structure can still be kept linear by appropriate selection and preprocessing of
the variables; the key issue is to analyze how the system sees its environment.

If it is assumed that behaviors are results of high numbers of components inter-
acting, the model is multiplicative with respect to the concentrations or proba-
bilities. If logarithmic quantities are studied, one has additive models — one can
assume that this assumption of log-linear behaviors can be extended beyond the



40 Level 1. Genomics, Metabolomics, and Distributed Networks

it
T Siope =-1.49

- 1 L |. u“ A A i i
F W = @ W T W w0 w0

Figure 1.4: Properties of forest fires (from [52]): (A) 4284 fires on U.S.
Fish and Wildlife Service lands (1986-1995), (B) 120 fires in the Western
United States (1950-1960), (C) 164 fires in Alaskan boreal forests (1990-
1991), and (D) 298 fires in Australia (1926-1991). The number of fires is
given as a function of the burnt area

power law distributed variables. If the underlying distributions are Gaussian,
one only needs to take into account the observations in the previous section:
The behaviors can be assumed to be linearly related to quadratic functions of
the input variables. This means that the set of input variables can (as the first
approximation at least) be extended by including the squares of the most rele-
vant variables, and products of them, among the input variables. Including the
products of all variables among the features increases the size of the data space
considerably.

This approach to representing general nonlinearities can be motivated in math-
ematical and in pragmatic terms. Mathematically speaking, smooth nonlin-
earities can be represented applying Taylor expansion, and such series can be
approximated up to the second order when the quadratic terms are available.
From the pragmatic point of view, the Gaussianity assumption is well in line
with the Gaussian mixture model scheme (see chapter 6).

In this chapter, the homogeneity goal was reached: No matter what is the under-
lying realm like, the statistical properties of a complex network can be captured
in a data vector, and it can be assumed that linear models are applicable if ap-
propriate data preprocessing is applied. To truly capture all relevant variables,
it is reasonable to include all variables that are potentially relevant — it is the
task of the modeling machinery to select the most important of the variable
candidates and to determine the dependency structures among them. Also, if
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there exist nonidealities giving raise to further nonlinearities in the system, the
data vector can be augmented by the appropriate feature variables hopefully
capturing the structure of nonlinearities. This means that the data vector can
become very high dimensional, and the models to be studied explicitly need
to be robust against high dimensionality. This is a real challenge — specially
as tackling among the multitude of variables should be done not manually but
automatically.

The first step towards a model of complexity, and towards deeper understanding
of biological systems was taken in this chapter. However, the model structure
(1.7) is barren, being very descriptive, and it is not suitable for real applications.
Next, in the Level 2, the same model is first extended to capture the cell-scale
phenomena, and after that, a more suitable formulation, or the structure of the
“emergent models” is presented.
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