
Level 2

Emergent Models of
Cellular Functions

In the previous chapter, the data format was determined so that cell-specific
information (or any network-originated information) could compactly be cap-
tured. The next task is to find the higher-level presentations, or the actual
model structures, so that the underlying data can efficiently be exploited, and
the essence of the cellular behaviors truly becomes manifested.

The key issue in this chapter are the models, or how to construct them in an
appropriate way. It has to be recognized that models are always false, only
showing a narrow projection of the complexity in real life systems. But good
models can give intuitions.

Very simple mathematics only is employed here, and the model structures will
be linear. There is nothing new in the mathematics — it is the interpretations
that play the central role. Appropriate interpretations make it possible to es-
cape from the reductionistic level to explicitly holistic models. These “emergent
models” become practical when the components-oriented modeling view is ex-
hausted. The new model structures can be seen as revealing the functions that
take place in the complex system.

2.1 About “system semantics”

When searching for good models, philosophical questions cannot be avoided.
It is such modeling issues that have been studied for millennia: What is the
nature of systems, and how they should be represented. Indeed, what there is,
what one can know about them — these problem fields are called ontology and
epistemology, respectively (these issues are studied again in chapters 7 and 10).
Here all these mutually related issues are collected under the common concept
of semantics: What is the essence of a system, and how this essence should be
interpreted?

Semantics conveys meaning. Traditionally, it is thought that semantics cannot
exist outside human brain. However, to reach “smart models” that can adapt

43
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in new environments, one needs to make this meaning machine-readable and
machine-understandable. Otherwise, no abstraction of relevant vs. irrelevant
phenomena can be automatically carried out. Indeed, one is facing a huge
challenge here, but something can be done.

For the purposes of concrete modeling, the notion of semantics has to be for-
malized in some way: This very abstract concept is given here very concrete
contents, compromising between intuitions (what would be nice) and reality
(what can be implemented in reality). It can even be said that a good model
formalizes the semantics of the domain field, making it visible and compressing
it. Now there are two levels of semantics to be captured:

1. Low-level semantics. The formless complexity of the underlying sys-
tem has to be captured in concrete homogeneous data. The “atoms” of
semantics constitute the connection between the numeric representations
and the physical realm, so that the properties of the system are appropri-
ately coded and made visible to the higher-level machineries. In concrete
terms, one has to define “probes” and put them in the system appropri-
ately.

2. Higher-level semantics. The high number of structureless low-level
features have to be connected into structures of semantic atoms. Assum-
ing that the semantic atoms are available, this higher-level task is sim-
pler, being more generic, whereas finding representations for the low-level
domain-area features is domain-area specific.

The former task — coding the domain-area information in concrete data struc-
tures — was studied in the previous chapter, whereas the latter task — con-
necting the atoms of information into relevant structures — is studied in this
chapter.

The higher-level semantics determines how the information atoms are connected.
In our numbers-based environments, a practical and robust approach towards
capturing such contextual semantics is offered by correlations-based measures.
If the data is defined appropriately so that it captures the dynamical balances
in the system, the simple contextual dependency structures can also be seen
to capture cybernetic semantics of the domain (see chapter 7). Assuming that
information is conveyed in visible co-variations among data, structuring of lower-
level data can be implemented by the mathematical machinery without need of
outside expert guidance. Despite the trivial-sounding starting point, non-trivial
results can be found when the mathematical structures cumulate. This makes
it possible to reach “smart” models that adapt in unknown environments.

2.2 Constraints vs. degrees of freedom

The mathematical machinery has been traditionally used for solving engineering-
like, reductionistic problems. However, the focus is changing: One should be
capable of abstracting away the details and seeing the “big picture”. In such
cases one simply cannot go in the traditional bottom up direction — one has to
go top-down, explicitly starting from the system level. And one cannot assume
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there is some existing a priori model structure — the models have to be based
on observations. There are many challenges when new ways of thinking are
exploited.

2.2.1 System models and identification

It is assumed that in a system the data are somehow bound together, and it is
this bond that captures the essence of the system. The model structure derived
in the previous chapter was of the following form, explicitly characterizing the
bond between variables

0 = ΓT z, (2.1)

this matrix expression consisting of n separate scalar equations determining
connections among variables in z. Indeed, this formulation is the very traditional
approach to presenting structures within systems. For example, assuming that
the matrix Γ consisting of a single column, and the data vectors z(k), for k
indexing the discrete time axis, are defined as

Γ =

⎛
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, (2.2)

the connection among variables can be rewritten also in the form

y(k) =
d∑

i=1

aiy(k − i) +
d∑

j=0

bju(k − j). (2.3)

As it turns out, this is the traditional way of representing dynamics of a d’th
order SISO (single input, single output) system. A huge body of theory has
been developed, for example, for identifying the system parameters ai and bj

based on a set of observations of the variables y(κ) and u(κ) for k0 ≤ κ ≤ k (for
example, see [2]).

The models of the form (2.1) assume that the linear combination of the vari-
ables should be exactly zero — however, as the measurement values always are
inaccurate, this does not exactly hold, and one has to extend the original model:

e = ΓT z. (2.4)

Here, e is the model error vector — the goal of identification of parameters
in Γ is transformed into an optimization problem, where one tries to minimize
the overall error variance. Very much effort has been put on enhancing the
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numerical properties of the identification algorithms, typically starting directly
from the formulation (2.3), and for making them more reliable and robust —
after all, the determination of the parameters is typically based on least-squares
matching, and there are various reasons for problems [42].

First, a special challenge in traditional identification is caused by the nonideal
noise properties. Different variables can be corrupted by the noise in different
ways. And, in the case of colored noise, the uncorrelatedness assumption of
the noise samples becomes compromised, and the parameter estimates become
biased.

Second, if trying to capture all available information — by employing all avail-
able variables — in the models, as was proposed in the previous chapter, de-
termination of the parameters sooner or later becomes an ill-defined task. As
the large number of variables are more or less redundant, they are no more
strictly linearly independent of each other, and the numerical properties of the
algorithms can become very poor. For example, the variables y(k − i) in (2.3)
are in principle separate variables, but because of the smoothness in the signal
behaviors, the variables are certainly not independent. The data covariance
matrix (matrix that needs to be inverted in least-squares fitting) becomes badly
conditioned.

In today’s applications, these problems with high dimensionality severely plague
the traditional modeling approaches. It is not only the high number of input
data that causes problems, but the whole model structure is challenged. Ap-
plying the traditional model structure it is easy the implement SISO models,
but one should also be capable of tackling with more complex systems con-
sisting of various submodels — as in the metabolic system there exist various
simultaneous balance reactions taking place at the same time. In principle, the
data representation in (2.1) is naturally a MIMO structure, being a framework
for presenting various simultaneous equations just as well. This structure only
needs to be efficiently utilized. Are there alternatives to traditional ways of
describing (locally linear) models?

2.2.2 Emergent models

The structure of the model (2.1) needs to be elaborated on: This can be accom-
plished as the model is interpreted in terms of linear algebra. Mathematically
speaking, if there are µ separate variables, there are µ degrees of freedom in
the data space, but each (linear) constraint decreases the number of degrees of
freedom by one — specially, if there are ν linearly independent constraints, the
number of remaining degrees of freedom is only µ − ν. The linear constraints
constitute a null space within the data space: This means that in these direc-
tions there is no variability. The remaining µ − ν directions in the data space
constitute a linear subspace where all variation among variables is concentrated.

What do these degrees of freedom mean in practice? Originally, if there were
completely separate unconnected variables (subsystems), there would be the
maximum number of freedoms. When subsystems become connected, when
interactions between them are established, the variables become coupled, thus
reducing the number of free variables. Further, when feedbacks are introduced,
the remaining inputs and outputs of the subsystems can still be connected. It
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Figure 2.1: Schematic illustration of the covariance structure among data
when there are few constraints (on the left), and when there are many
constraints (on the right). The simplest presentation for the system
properties changes as the number of constraints increases, or when the
remaining degrees of freedom accordingly decrease

is specially typical in cybernetic systems where this scenario holds: Ability to
recover after disturbances is a manifestation of tightly interconnected system. In
such systems it is only a few degrees of freedom that remain more or less loosely
controlled. In the metabolic system there are dozens of individual underlying
reactions controlling the cellular metabolics, the chemical levels being balanced
accordingly.

The key point here is that essentially the same dependencies among variables
can be captured in terms of degrees of freedom as with constraints. At some
point, when the number of constraints increases, the most economical repre-
sentation changes: The simplest model with the least parameters is not the
constraints-oriented model but the freedoms-oriented model (whatever it will
be). According to the Ockham’s razor, one needs to switch to emergent models
when the system is cybernetic enough. In Fig. 2.1, the covariance structure
of the data space is depicted: When the null space of constraints is dead and
dull, all interesting behaviors are concentrated in the directions of remaining
freedoms. It can be assumed that relevant phenomena in the cell are revealed
by the “metabolic degrees of freedom”; it turns out that when applying very
compact and behaviors-oriented models, the system starts looking more or less
“clever” — indeed, speaking in such terms has to be postponed to next section.

Whereas the visible constraints are emergent patterns resulting from underlying
dynamic attractors, the degrees of freedom make it possible to model this process
of emergence and the structure of such patterns.

How is this dichotomy between constraints and freedoms manifested in concrete
terms? For example, study an infinite-dimensional distributed parameter sys-
tem that is governed by partial differential equations — a very natural way to
characterize natural complex systems. As these PDE’s are spatially discretized,
there is a large number of ordinary differential equations connecting the lo-
cal variables. Remember that only together with the boundary conditions the
PDE’s can uniquely determine system behaviors, thus giving rise to a very com-
plicated system of hybrid equations that can seldom be solved explicitly. The
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constraints are now there in the form of dynamic and algebraic equations —
the PDE’s and the boundary conditions, respectively. The emergent behavior is
typically manifested in terms of a low number of possible modes. For example,
in the case of a vibrating plate, typically there only exist a few vibration modes;
these “modes of freedom” can easier be modeled than the original constraints.
Such freedoms-oriented approach is also quite natural, as then one directly con-
centrates on the time domain solutions of the equations that are immediately
measurable in system behaviors.

Laws of nature are traditionally written in terms of constraints: The visible de-
pendencies among observed phenomena are recorded. But, again, these surface
patterns just emerge from underlying, more fundamental interactions. Perhaps
one should rather start thinking in terms of “freedoms of nature”.

It is difficult to escape the traditional ways of thinking: Traditional methods for
analysis (modeling) and design (synthesis) are based on models that are based
on constraints. And, indeed, constraints are the very basis of Wittgensteinian
thinking: Languages are the means of structuring the world in terms of connec-
tions between concepts. This also holds what comes to formal languages like
programming formalisms that the contemporary software tools are based on,
and also traditional mathematics is based on finding ingenious proofs, or paths
from a fact to another. Traditional mathematics exercises make nice pastime
activity as the solutions typically are unique and hard to discover; however, the
heavy mathematical machinery that is based on relevance is more general.

It is just as it is with detective stories: they make nice reading, but they are not
plausible. Sherlock Holmes once said that “When you eliminate the impossible,
whatever remains, however improbable, must be the truth”. But in real life
there are no clear-cut truths — modern detectives construct the “big picture”
out from the mosaic of more or less contradictory evidence: The plausible ex-
planation maximally fits the observations. This is today’s world — as there is
no unambiguous truth, it is relevance that is preferred; closer studies are needed
here.

2.2.3 Towards inverse thinking

One needs to find appropriate mathematical formulations for the above intu-
itions. The leap is mainly conceptual — one has to go to the other end of the
continuum, from structure orientation to data orientation. It is data originat-
ing from freedom structures that is more relevant than parameters originating
from constraint structures. As it turns out, this approach makes it possible
to avoid the age-old problem concerning symbolic and numeric representations:
The structures are not fixed beforehand — or, actually, they are ignored alto-
gether.

First, study the structure-oriented end of the continuum. For simplicity, assume
that one wants to capture the nominal state when observations are available.
Variations around the nominal state are interpreted — in the traditional spirit
— as noise that should be eliminated from the model.

Assuming that there are many sources of noise, one can abstract away the
properties of individual noise sources. According to the Central Limit Theorem,
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one can assume that the net effect of all noise sources is such that the error
distribution is Gaussian, that is the observations are distributed along a high-
dimensional bell-shaped curve around the mean value; it is this mean value
vector ζ that is being searched for. For the data distribution one can write the
density function

p(e) =
1√

(2π)dim{z} |E{zzT}| e
− 1

2 (z−ζ)T E{zzT }−1(z−ζ). (2.5)

In the spirit of maximum likelihood identification, one selects the best estimate
for ζ by maximizing the overall probability of the measurements

ζ̂ = arg max
ζ

{E {p(e)}} (2.6)

by adjusting the center of the distribution appropriately. Because logarithm is
a monotonous function, maximization of (2.6) equals minimization of

− ln p(e) = c +
1
2
· (z − ζ)T E{zzT}−1 (z − ζ) . (2.7)

When looking at this goodness criterion, it is evident that the “natural” scaling
of variables is reached if the measurements are preprocessed as

z′ = E{zzT}−1/2 z. (2.8)

In the space of these new variables z′, it is simply the Euclidean distances (or
their squares) that reflect the differences between vectors. This scaling explicitly
emphasizes the null space directions where there exists no variation in the data
space, thus boosting the constraints-oriented thinking. For the original data, the
weighting matrix when evaluating distances is W = E{zzT}−1; it is revealing to
note that for Gaussian data this expression is called Fisher information matrix.
Information is assumed to be in the inverses of covariances.

This is the today’s realm. The problem with the scaling (2.8) here is that if the
dimension of z is excessive, the scaling matrix becomes badly conditioned: If
there are linearly dependent variables, the inverse matrix cannot be found. In
cybernetic systems the variables typically are highly redundant due to the high
number of underlying constraints.

To proceed, one needs to look at (2.1): Even though the roles of Γ and z are
intuitively clear, this can be incorrect intuition. Mathematically, if Γ is a vector,
the roles of these two vectors are identical. There is duality among structure and
variables: The visible manifestations of structure are numbers in vectors, just as
the data is. It can be assumed that the information delivered by observations
is distributed among the structure part and the data part. Normally, it is
assumed that observations represent data — however, in this case when the
constraints dominate, it can be assumed that observations represent structure.
The situation needs to be turned upside-down: The information that is normally
used for modeling is now regarded as noise, and only the “leftovers” not exploited
by the traditional modeling approaches are concentrated on.

This kind of problems of traditional thinking can be concretized: For example,
inverse covariance weighting results in excessive emphasis on linearly dependent
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variables, the identification procedures trying to distinguish between identical
variables — what comes to representing the real properties of the data, such
emphasis is counterproductive. Another example: When identification is carried
out in the parameter space rather than in the data space, iterative adaptation
steps trying to pull the parameters towards better locations, pathological effects
can take place, specially, if the parameterization represents a dynamic model.
The reason for this is that dynamic behaviors are related to the poles and zeros
of the parameter polynomials rather than to the parameters themselves; convex
combinations of parameter vectors do not necessarily reflect the properties of
those vectors at all.

Now the model is constructed to capture the properties of the data directly, not
the properties of some man-made parameterization.

What this intuition means in practice, what are the consequences? Tradition-
ally, when searching for the structure, it is thought that variation outside the
assumed structure is noise — now it is assumed that this remaining variation
is interesting, reflecting those behaviors that have not been paralyzed by the
constraints. Somewhat intuitively, one could employ the idea of symmetry pur-
suit, defining the data-oriented portion of the measurements as the inverse of
the weighting in (2.8):

z′′ = E{zzT}1/2 z. (2.9)

This can be expressed also in another way: The symmetric weighting matrix
among measurements becomes (see next section)

W = E{zzT}, (2.10)

rather than being E{zzT}−1, as in the (2.8) case. This means that directions
of variation in the data are explicitly emphasized. What is nice is that no
matrix inversions are needed, and such operations remain well-behaving even
for high-dimensional data.

The motivation for the data weighting was here rather intuitive — however, in
the next chapter this issue will be concentrated on from another perspective. It
can be claimed that such weighting mathematically corresponds to the view of
data that locally controlled systems actually see in their environments.

2.3 Technical exploitation

For the rest of this chapter, assume that the presented view of data were ap-
propriate, and study the conceptual tools that are in place when this view is
being functionalized. The approach to modeling here is synthetic rather than
analytic: The approach is “technical”, not trying to capture the actual under-
lying processes but only trying to imitate the results. The key point here is to
present the best possible tools — multivariate statistical mathematics — and in
the next chapter it is shown that there truly can exist some connection to real
life.
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2.3.1 Subspaces and mappings

It is beneficial to see the more general setting, or what the presented framework
looks like when see from the point of view of mathematics and mathematical
tools. When functionalizing the freedoms-based model structure, one faces a
pattern matching problem where linear algebra is needed.

Data preprocessing

Forget about all connotations that the variables in z may have, and apply condi-
tioning to this data so that the technical assumptions become optimally fulfilled.

The first assumption is that of model linearity. Typically, problems are caused
by the fact that data from linearized models are affine, that is, additive constants
are needed in formulas. To get rid of the affine terms, the data can be trans-
formed to follow a strictly linear model, for example, applying mean-centering
— this is the standard approach when doing strictly data-based modeling where
the nominal values of the variables are not known.

However, these problems are only faced when doing constraints-oriented mod-
eling: When concentrating on the freedoms, no mean-centering is necessary.

The second assumption is quadratic nature of cost criteria. The reason for this
is that easily manipulated and explicit formulas can be reached. The quadratic
criteria mean that variations in the data are emphasized, and to reach reasonable
models, appropriate scaling of data needs to be carried out. Assuming that all
variables are equally informative, different variables can be equally “visible”
by normalizing them to have unit variance, because units are arbitrary. This
means that one uses either correlation matrices (if data is mean-centered) or
cosine matrices (if data is not centered) as association matrices (see [92]).

Whatever are the data preprocessing steps, the original data z will hereafter be
denoted ζ.

The data scaling is very crucial, affecting the results very much – the normal-
ization should be motivated better. Indeed, as shown in Sec. 3.3, if the data is
coming from a truly cybernetic system, it turns out that normalization is the
natural way of seeing inter-system signals.

Pattern matching

In concrete terms, the freedoms-based model characterizes the location of an
observation in the data space in terms of the degrees of freedom. The degrees
of freedom are manifested as n linear feature vectors ϕi being collected in the
matrix ϕ. Because of linearity, features can be freely scaled and added together.
The observed patterns, combinations of the variables, are assumed to be weighed
sums of such features, so that one can write

ζ̂ =
n∑

i=1

ξiϕi = ϕξ, (2.11)
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where ξ is the vector of weighting factors. If vectors ϕi are seen as coordi-
nate axes, ξi are the coordinate values. Use of the feature model becomes an
associative pattern matching process against data.

Assuming that n < m, arbitrary variable combinations ζ cannot be exactly
represented by the features, and when searching for the best possible match,
or estimate ζ̂, one is facing an optimization problem. When the representation
error ζ −ϕξ, weighted appropriately, is minimized, one can write the quadratic
criterion

J(ξ, ζ) =
1
2

(ζ − ϕξ)T
W (ζ − ϕξ) . (2.12)

The unique minimum is found when the gradient vector is set to zero:

d J(ξ, ζ)
dξ

= ϕT Wϕξ − ϕT Wζ = 0, (2.13)

giving the unique solution

ξ =
(
ϕT Wϕ

)−1
ϕT W ζ. (2.14)

In practice, this implements a mapping from an m dimensional space of ζ onto
the n dimensional subspace of ξ spanned by the feature axes. Variables in ξ
are called latent or hidden variables. Because of the data compression, exact
match is not found, and one can only hope that the ignored variation is noise,
not actual information.

How to distinguish between noise and information, then? Formally, there is no
difference in the manifestation of variations in the data, and one has to apply
ontological assumptions concerning the nature of relevant properties in the data.
First, following the above discussions, one should select the weighting matrix as

W = E{ζζT }. (2.15)

Selection of the feature vectors so that they would represent the most important
degrees of freedom can also be explicitly solved, and the solution is given by
PCA presented in Sec. 2.3.2. This means that one should choose ϕ so that
the subspace of the n most significant principal components of data is spanned
by columns ϕ. Indeed, it is not necessary that the features are exactly the
covariance matrix eigenvalues, ϕi = θi, but it suffices that there holds

ϕ = θD (2.16)

for some orthogonal transformation matrix D, so that DT = D−1. Correspond-
ingly, the latent variables are modified as ξ′ = D−1ξ. The optimal selection
of features is also non-unique — regardless of how the (non-singular) basis is
constructed out from the matrix θ, the same variation can be captured. This
means that after PCA, different kinds of factor analysis techniques, rotations,
etc., can be applied to find a physically better motivated basis. For example, if
the variables ζ have some constant bias, so that they are not zero-mean, it is
possible to determine variables ξ that also have non-zero-mean — they can even
always remain positive. When the variables represent some physical quantities,
such non-negative coding is more plausible.
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Regression based on latent variables

When the latent variables ξ are available, they can be exploited, for example,
for regression, mapping data from the latent basis ξ onto some output space of
y, so that y = fT ξ. If the mapping is implemented through the low-dimensional
latent basis rather than directly from the variables ζ, noise gets filtered out, and
more robust estimates for the output can be found.

Similarly as above, the criterion for a good mapping model is minimization of
quadratic criterion. When written for a single output variable yj at a time,
the mapping error becomes εj = yj − fT

j ξ, and a reasonable criterion is found
when the variance of this error, or E{ε2j}, is minimized. However, in some badly
conditioned cases a generalization is in place: Robust regression models are
found when the regularized criterion is applied where the parameter sizes are
also emphasized:

Jj(fj) = E{(yj − fT
j ξ

) (
yj − fT

j ξ
)T } +

1
q
fT

j fj . (2.17)

When the gradient is set to zero,

d Jj(fj)
dfj

= 2
(

E{ξξT } +
1
q
In

)
fj − 2E{yjξ

T }T = 0, (2.18)

one can find the unique solution:

fj =
(

E{ξξT } +
1
q
In

)−1

E{yjξ
T }T . (2.19)

When this procedure is carried out for all outputs yj separately, one can see
that essentially the same formula is found in each case, and one can write a
combined expression for all individual mappings as

f =
(

E{ξξT } +
1
q
In

)−1

E{yξT}T . (2.20)

If there is no need for regularization, that is, if the covariance E{ξξT } is invert-
ible, one can use the standard formulation

f = E{ξξT }−1E{yξT }T . (2.21)

A special regression case is where the output is chosen to be the original data,
y = ζ, so that reconstruction of the data is being carried out, noise hopefully
being filtered out during the compression process:

ζ̂ = E{ζξT }E{ξξT }−1 ξ. (2.22)

Now there are technical tools for implementing mappings from data onto the
feature subspace and back. The remaining problem is the determination of that
feature subspace.
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2.3.2 Multivariate tools

The distinction between constraints and freedoms can be elaborated yet in an-
other way. Remember that traditionally one wants to minimize the sum of
squared errors over the set of measurement data:

Γ = arg min
Γ

{
E{eT e}} , when |Γi| = 1 for all i. (2.23)

In this vector formulation, to have a well-conditioned optimization task, one has
to fix the model vector size to avoid trivial solutions Γi = 0 (this is reached by
introducing the additional restriction |Γi| = 1). This constrained optimization
problem results in search for constraints in the traditional sense — indeed, the
solution here is the method called Total Least Squares. When searching for the
freedoms instead, the objective is exactly opposite:

ϕ = arg max
ϕ

{
E{ξT ξ}} , when |ϕi| = 1 for all i. (2.24)

Note that even though it is freedoms that are searched, the mathematical ma-
chinery again is based on constrained optimization — constraints simply are the
kernel of today’s models! Here, vectors ϕ and ξ have been used to emphasize
their different roles as compared to Γ and e: Defining ξ = ϕT ζ, it is now the
“error” ξ that is to be maximized, and ϕ is the axis along which this maximum
variation in data is reached. If the vectors Γi and ϕi are interpreted as directions
in the data space, mathematically speaking they reveal maximum orthogonality
and maximum parallelity among these vectors and data, respectively. Applying
the objective (2.24), it is assumed that variation in data is interpreted as in-
formation, whereas traditionally variation is seen as noise. And, specially, it is
covariation among variables that carries information: Covariations can reveal
the underlying “common causes” that are reflected in the measurements.

The solution to the problem (2.24) is given by principal component analysis or
PCA (for example, see [6]). Without going into details (for example, see [42]),
the basic results can be summarized as follows.

The degrees of freedom can be analyzed using the data covariance
matrix E{ζζT }. The variability is distributed in the data space along
the eigenvector directions of this matrix, variance in the eigenvector
direction θi being given by the eigenvalue λi:

E{ζζT }θi = λiθi. (2.25)
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Figure 2.3: The remaining levels in the hierarchy of models in Fig. 3

Principal component analysis gives a structured view of freedoms in the data:
The axes θi corresponding to most significant eigenvalues span a subspace where
most of the variation in data is found (see Fig. 2.2). If n < m, meaning that the
high-dimensional data is projected onto a lower-dimensional principal subspace,
data compression takes place where the data variation is maximally preserved:
If an n dimensional PCA basis is exploited, the model captures

∑n
i=1 λi of the

total variation in data — assuming data normalization, this total variation is∑m
j=1 λj = m.

It turns out (because of symmetricity of the matrix E{ζζT }) that the eigen-
vectors are orthogonal (indeed, orthonormal), so that the principal component
directions can be used as a well-conditioned subspace basis vectors in a mathe-
matically efficient way.

Principal components offer a very powerful mathematical framework — but
is it physically meaningful? Complexity intuition says that self-organization
of structures necessitates some kind of nonlinearity and instability: To reach
emergence of differences, one needs positive Lyapunov exponents in functions,
and to stabilize such divergent processes, nonlinearity is needed. However, as
analysis of PCA reveals, there exist structures in data that can be motivated also
in linear terms and using stable dynamic characterizations. Indeed, as will turn
out later in chapter 3, the PCA intuitions will be of crucial importance when
studying the properties of cybernetic systems. This means that the emergent
patterns are very different as compared to the traditional chaotic images; the
PCA patterns are based on global rather than local properties of functions.

2.3.3 New levels in emergence hierarchies

In Fig. 3, it was shown how deterministic and stochastic approaches can be seen
to alternate in the hierarchy of emergent levels. Now the multivariate statistical
models determine yet another stochastic level above the highest deterministic
one: Information from the lower levels is extracted in the form of variations,
and among that data, statistical dependency structures are determined in terms
of covariations (see Fig. 2.3). Because such covariation structures can be found
applying convergent algorithms, one is escaping the (mental) deadlock: Struc-
tures can emerge even in balance systems, one does not always need chaos and
positive feedback to shake the underlying structures apart.

But a further transition from this stochastic level to a yet higher deterministic
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level is more or less straightforward. If there are statistical structures that can
be employed to compress the statistical data, such abstracted phenomena can
be named, thus introducing new distinct concepts. As the statistical structures
represent dynamical balances, the essence of such concepts is that they are
attractors in the data space dictated by the properties of the environment. The
domain-oriented “concepts” are manifested as emergent functionalities. These
functionalities are non-programmed, they are not explicitly designed; they do
not reflect the intentions of humans but the properties of the interplay between
the system and the environment.

Using such higher-level concepts, the functioning of a complex system can be
appropriately structured: there are names for behaviors that are assumedly rel-
evant, being manifested in observations. A “natural language” based on such
concepts would be beneficial when trying to characterize and understand the
functioning of a complex system. Based on the low-level semantics, interpreta-
tions of the emergent concepts are self-explanatory.

However, complex systems differ from each other, and the “axes of relevance”
cannot always be defined in such a straightforward way. For example, in indus-
trial plants it is the quality measures that are the most important quantities
when characterizing the plant operation. The industrial plants do not simply
reflect their environment; they are constructed for some special purpose, and the
qualities cannot be dictated only by the environment, but the intentions of the
system designers have to be taken into account. Generally in technical systems
the operation (and “evolution”; see chapter 3) is goal-directed — rather than
reflecting the environment directly, the emergent structures should reflect the
coupling between the input space (environment) and the output space (qual-
ities). Rather than employing PCA, the model structures should implement
the cross-correlations among the two spaces. For engineering-like development
of the processes, or “artificial evolution”, there are other regression techniques
available, for example PLS and CCR (see [92]).

Natural systems are simpler than technical — assumedly they just want to
survive, trying to match with their environments (see next chapter), so that one
can employ the PCA-based models directly. One can assume that it can only
be the visible variables that determine the observable behaviors; if the variables
are selected and scaled appropriately, there is no reason why a mathematical
machinery could not capture the same phenomena that are followed by the
biological machinery. A more detailed example of emergent-level modeling is
given below. The emergent functionalities reflect match with environment; as
seen from above, such behavior seems clever in its environment.

2.4 Towards system biology

Finally, study how the presented approaches can be exploited for modeling
cellular systems in practice — and how they perhaps could be exploited.
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Figure 2.4: Two
time scales in the
cellular system

2.4.1 Facing real systems

Traditionally, modeling of biological (cellular) systems has been carried out in
the rather traditional spirit: The goal has been to determine the constraints,
individual dependency structures, exploiting more or less straightforward, SISO-
type model structures. Data collection of cellular metabolics is typically carried
out applying one-variable-at-a-time experiments. Similarly at the genetic level:
Single “knock-out genes” can be explicitly deactivated to study their functions,
resulting in non-natural behaviors. One reason for these simplified approaches
are the practical problems, as the cellular state is difficult to measure, but
new solutions are being introduced (for example, the microarray techniques for
measuring the whole array of genetic activities simultaneously). Indeed, today
there exists plenty of data, but this data is not necessarily well-conditioned or
of good quality: The level of measurement noise is high.

Reaching reliable measurements is challenging, because the responses vary in
different circumstances when the environment changes. What is more, because
of buffering effects in the cells, huge dosages of reagents are needed (single input)
to have noticeable responses (single output). On the other hand, these effects
cannot be focused, being reflected to the whole set of variables. The experiments
do not really characterize typical behaviors — the cell may become crippled
altogether. Another traditional problem in metabolic systems is that they seem
to be highly redundant (this also applies to gene expression). It seems that
there typically is not just a single reaction mechanism explaining the processes,
making it difficult to uniquely identify causal structures and model parameters.
What makes this still more difficult is that not all chemicals can be recorded,
and not all reactions are even known.

All of this suggests that multivariate statistical methods are needed. When ap-
plying the multivariate methods, buffering is just a manifestation of the internal
feedbacks, and observations of the new balance deliver valuable information con-
cerning the underlying metabolic processes and functions. No one-input/one-
output studies are needed. Also the problems with unclear causal dependencies
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are avoided because of the pancausality assumption: First, the actual reactions
are not searched for, but the “residual” variations; second, PCA is just the right
tool to model redundant and noisy phenomena, because it transforms from the
visible variables to new latent variables, where noise and redundancies among
variables has been ripped off. Putting it freely: “If they are there, but if they
cannot be seen, just ignore them”. All relevant variables and dependencies
cannot be detected, but they can be ignored as long as they do their job in
maintaining the system balance.

As studied in chapter 3, the PCA-based model structures are motivated not
only from the data analysis point of view. It can be claimed that in evolution it
is the principal subspace that is naturally being pursued by surviving systems
that are capable of most efficiently exploiting the environmental resources.

The objective here is to study living cell rather than pathological cases. Bal-
ances are more characteristic than transients, and it is steady states that are
modeled. Because metabolic processes are well buffered, remaining near the
nominal state, linear models are locally applicable. Rather than carrying out
tests in a SISO manner, the whole grid of chemicals are studied simultaneously.
This applies also to the transcription factors on the genetic level: As studied
in chapter 2, genetic networks can be modeled applying the same model struc-
tures as the chemical processes — the metabolic processes are fast, whereas the
genetic ones are slow (see Fig 2.4). In the figure, the linear pattern recognition
processes are expressed in terms of dynamic state-space models, implementing
two overlapping processes levels of “generalized diffusion”.

Both of the levels can be combined in one model structure, and all information
can be included in the data vector. The modeling procedure goes as follows:
The sets of metabolites, transcription factors, and relevant environmental con-
ditions (temperature, pH, ...) are defined, and experiments are carried out in
different conditions, collecting data during the transients and in steady state.
The degrees of freedom are found, determining the metabolic and genetic func-
tions. Data orientation is necessary, multivariate tools are needed as the signal
details are abstracted away, whereas emergent long-term phenomena become
visible. Stationarity and validity of statistical measures is assumed — however,
this assumption does not strictly hold. When the system becomes more and
more complex, and as the number of constraints increases, the situation be-
comes blurred: some of the constraints are more acute than the others, and the
thermodynamic balances are not necessarily all reached instantly.

2.4.2 Case example:
Modeling genetic networks and metabolic systems1

In the project SyMbolic (Systemic Models for Metabolic Dynamics and Gene
Expression), funded by National Technology Agency of Finland (TEKES) dur-
ing 2004 – 2006, new kinds of models were derived for representing the cellular
dynamics, and one of the approaches was the exploitation of the idea of emergent
models.

As an application example, modeling of data from yeast cell cultivations were

1The simulations were carried out by Mr. Olli Haavisto, M.Sc.
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Figure 2.5: Two open-loop experiments with the model, showing 256
“stress genes” (red color meaning activity increase, green meaning activ-
ity decrease). Horizontal axis is time, and the rows represent individual
genes. In the leftmost figures, hydrogen peroxide step is being simulated
for two hours, and in the rightmost ones, nitrogen step is simulated. In
both cases, the actual behaviors in the genetic state are shown on the
left, and the estimates given by the four-state model are shown on the
right. Despite the transients, there is a good correspondence between the
observations and the very low-dimensional model (see [35])

used (see [35]). There were a few dozen experiments available (from [15] and
[32]), where different kinds of step changes in the environment had been exe-
cuted, and the resulting gene activity transients had been recorded. The step
experiments were interpreted to present “stress responses” of the yeast cells.
Modeling this data was quite a challenge, as there was not enough data, and
not all data was quite reliable. Indeed, there do not exist many reports of dy-
namic modeling of the cellular behaviors (one attempt that is also based on
latent variables can be found, for example, in [39]).

Because the available data was in the form of step experiments, the model was
restructured so that the experimental setting was captured: The causal struc-
ture from manipulated variables to observations was simulated in the model.
The environmental variables (substrate properties, temperature, etc.) were col-
lected in the input vector u, and the gene expression levels were collected in
the output vector y. Rather than constructing a traditional static PCA model
between these data sets, a dynamic model was constructed applying so called
stochastic-deterministic subspace identification (see [60]). This means that also
the time sequence among data is taken into account and exploited when the
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latent variables x are constructed, the subspace identification algorithm auto-
matically constructing a discrete-time state-space model (see [4]) for “general-
ized diffusion”. Such a model can be efficiently exploited for implementing, for
example, Kalman filters for optimally estimating the system state (see [24]). It
can also be claimed that there is a connection to Hidden Markov Models here:
The state sequences are reconstructed optimally, even though the probability
interpretations are violated (this interpretation becomes more appropriate when
the state variables are kept strictly non-negative; see chapter 6).

The dimensions of the vectors were selected so that m was about ten, and there
were about 4000 output variables; the number of latent variables n was chosen
to be 4.

When there are explicit transients in the data, the underlying assumptions about
system stationarity are violated. This gives raise to model errors: There are
slower and faster reactions taking place, some reaching their balance faster than
the others. Indeed, a “Pandora’s box” is opened when the balance assumption
is abandoned — “extra” behaviors become visible in stress (transient) situa-
tions. What is more, complex transient reactions can take place in parts, where
subprocesses follow each other; each of such intermediate products spans a new
dimension in the variable space, and each chemical reaction introduces a new
constraint, compensating for the increased dimensionality only after the balance
is reached. The net effect is that the invisible dimensions in the variable space
become visible during changes.

The assumption beyond the adopted modeling approach is, however, that bal-
ances are more characteristic to cellular systems than the transients are. And,
indeed, it seems that at least the steady states are nicely modeled, whereas
the transient behaviors are not reproduced as well by the model (see Fig. 2.5).
Still, it seems that the extreme compression of the variable space does not ruin
the steady-state correspondence. Truly, there seem to exist only few degrees of
freedom left in the behavioral data.

2.4.3 “Artificial cells”?

When the presented model structure is seen in a perspective, it seems to open
up new horizons. Using some imagination, it is easy to draw interesting inter-
pretations.

It can be claimed that the degrees of freedom in a cellular system characterize
metabolic behaviors or functions. When the environment changes, the new bal-
ance is found along these axes in the chemical space when “chemical pattern
matching” is carried out. For example, assuming that available glucose goes
up, it is also mannose production that goes up, or some other processes that
exploit glucose. In fact, there is only balance pursuit taking place: But af-
ter “anthropocentric”, finalistically-loaded interpretations are employed, when
some chemicals are interpreted as nutrients, some others as metabolic products,
and the rest as waste, one reaches “emergent interpretations”. When complexity
cumulates, the balance reactions start looking goal-oriented, pre-planned, and
“clever”. Scarcity of some chemicals changes the balance appropriately, trying
to compensate for the shortage, and abundance results in the opposite outcome,
as being visible in the “activity vector” ξ (or x).
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Figure 2.6: From data modeling (on the left) towards system modeling (on
the right). The variables being measured are system variables (because
of pancausality, changing them also changes the system state), and model
structures being exploited are those of the system itself (both being based
on the principal components of the measurement data; see next chapter)

A system model can be applied also for design and control. When the variables
are selected appropriately, so that system semantics is captured, and if the pan-
causality assumption holds, the constructed modes are not only data models —
they are system models. They can capture the fundamental essence of systems
and system-specific variables. They can be used not only for monitoring, but
also for design and control construction: Changing variables appropriately also
changes the resulting balance (see Fig. 2.6). The remaining degrees of freedom
in the system reveal the possibilities of further controls to make the system still
more balanced; in this sense, process data mining or real knowledge mining be-
comes possible, where information can be gathered directly from the behaviors,
not from model-based assumptions. New kinds of models make it possible to im-
plement new kinds of controls — higher-level controls. However, new challenges
are faced: When new feedbacks are introduced, the set of freedoms changes.
Control design becomes an iterative task, and new kinds of design tools are
needed.

The ideas of biological cybernetic systems can be extended to technical (bio)pro-
cesses: The still unbounded degrees of freedom can be regulated, new feedbacks
can be constructed, so that still better balanced higher-level “superorganisms”
are constructed. On the other hand, the “broken” control loops can be fixed
in the same way: For example, if the glucose level varies in the body more
than it should, this can be compensated by insulin injections — along these
lines, diabetes is treated manually today; but a simple automatic control loop
could be implemented also as a step towards better lives of the “cybernetized
patients”.

Today, there are problems when trying to implement such integrated systems.
For example, the glucose sensors need regeneration after a short time; after
this problem is solved, new ones are sure to emerge. The key challenge is not
how a single functionality — like sensitivity to a certain chemical — could be
implemented, but how to keep the new system in a sustainable balance with
its environment. This goal sounds very cybernetic. Indeed, it is the whole
engineering-like thinking that has to be abandoned: Whereas one today con-
centrates only on a single functionality, it is the whole entity that has to survive
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in the complex environment. The same challenges are faced in all applications
of tomorrows medicine: If the new integrated systems are not in balance, the
body rejects the transplants. Finding such balanced solutions is a holistic prob-
lem that cannot be solved reductionistically. One needs to change the whole
way of thinking from invasive to humble: One has to admit that nature’s own
structures offer the most useful adapted solutions to the key problem, that of
finding a sustainable equilibrium in the metabolic system. Indeed, there exist
ready-to-exploit cell structures to be used as platforms for new functionalities;
one only has to take the next step and tame and cultivate the bacteria, domes-
ticating them. Rather than constructing completely new artificial cells, one has
to obey those ways of thinking that nature has followed: New structures are
constructed on existing ones, just redirecting and boosting the evolution.

This all does not only apply to medical engineering: The key challenge in future
industrial systems is their life-long maintenance. It would be reasonable to
implement some level of cybernetic self-repair or adaptability in those systems,
too, rather than only fixing the broken parts. Tomorrow’s industrial systems
also need to be in balance with their surroundings, not fight against it.

The presented emergent models were just models, and models should not be
mixed with reality. For example, how could one motivate the “chemical pattern
matching” as a fundamental cellular principle? How could a system with no
central control accomplish it, even if it would like to do it? And, to reach real
system biology, it is not only the internal behaviors within the cell that need to
be captured — the next level is the coordination among the cells, and, generally,
among populations. The challenge is to find out how such orchestration can be
explained in terms of local actions only.

When studying natural systems, it is difficult to get farther only studying avail-
able data and existing systems — one needs stronger modeling principles. One
should not only try to explain phenomena: One should proactively try to find
the underlying principles. This kind of ideas crystallize in the question: What
are the goals of systems?


