
Level 3

Elasticity of Systems and
Goals of Evolution

As it was observed in the previous chapter, the biological data can efficiently
be modeled applying multivariate statistical tools. However, it seems that such
data-oriented approaches do not suffice after the elementary levels. It is the
same with “chemical pattern recognition” as it is also in other areas of data-
based modeling: The statistical correlations are not enough to unambiguously
determine the higher-level structures.

To get further, one has to apply more ambitious ways of limiting the avail-
able complexity. Traditionally, the approach is to introduce more stringent and
complex model structures to direct the parameter matching. However, again
following the neocybernetic ideas, no extra complexity is voluntarily integrated
in the models — alternatives to increased complexity are searched for instead.

The alternative employed here is rather radical.

In the postmodern era, there should exist no taboos. However, one thing that
has never been proposed in circles of modern serious science, is that of finalism.
One should only answer the how questions, never the why questions. Yet,
applying teleological assumptions, most compact problem settings are reached,
and one can also study systems that not yet exist. The claim here is that
appropriate finalistic arguments can also be given concrete contents, so that
they become verifiable — or falsifiable. It is only the starting point that sounds
radical: The discussions collapse back into well-established frameworks.

It has been said that nothing in biology can be explained without taking evo-
lution into account. And here this observation is exploited by studying the
question: What is it that evolution tries to accomplish? Such issues are studied
in the neocybernetic perspective — balance pursuit is the only finalistic goal
after all, together with extreme environment-orientedness.
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3.1 Balancing between static and dynamic mod-
els

From now on, one needs to (for a moment) forget about the technically oriented
derivations in the previous chapter. The emphasis is changed: It is not what
the model designer intends that is relevant — the interesting things are those
what the system naturally does. Again, there is the same starting point (1.7)
that is assumed to hold for a thermodynamically consistent chemical balance
system. Indeed, such a simple formulation can be written for any linear system,
no matter what is the domain field, if the variables are selected appropriately.
This set of equations can be interpreted so that it defines a static balance with
no structure, and one first needs to extend the framework.

3.1.1 Restructuring data

Assume that the variables in z in (1.7) are divided in two parts: Vector u,
dimension m, describes the environmental conditions, whereas vector x̄, dimen-
sion n, contains the system-specific internal variables, somehow characterizing
the equilibrium state of the system. The internal state is not assumed to be
necessarily observable by an external observer. The “environment” here is not
something external — it only consists of variables that are determined from
outside, but essentially all variables (concentrations) still coexist in the same
volume. Rewriting the constraints characterizing the system, one can distin-
guish between the variables:

Ax̄ = Bu. (3.1)

The construction of the matrices A and B is not uniquely determined by this
expression — this issue, determination of the system matrices in a plausible
way, is studied later. To keep the internal state of the system well-defined, it is
assumed that there are as many constraints here as there are latent variables,
so that A is square. Because of environment-orientedness, the internal variables
are assumed to be directly determined by the environment, so that there as-
sumedly is a (linear) dependency between x̄ and u. Formula (3.1) is an implicit
expression; assuming that A is invertible, one can explicitly solve the unique
linear function from the environmental variables into the system state:

x̄ = A−1B u, (3.2)

so that one can define an explicit mapping matrix from u to x̄

φT = A−1B. (3.3)

However, the main motivation for the formulation in (3.1) is that one can for-
mally extend the static model into a dynamic one. The formula (3.1) only
characterizes the final visible balance in the system, but one has to remember
that it is local operations only that exist — how can such uncoordinated lo-
cal actions implement the global-level behaviors? Indeed, one needs to extend
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studies beyond the final balance, and take into account the dynamic behaviors
caused by the imbalances.

Formula (3.1) can be interpreted as a balance of tensions determined by forces
Ax̄ and Bu, caused by the system itself and by the environment, respectively. If
the forces are not in balance, there is a drift. Assuming that the data structures
are selected appropriately, so that −A is stable (eigenvalues having negative real
parts), one can define a dynamic model to characterize the tensions as

d x

γ dτ
= −Ax + Bu. (3.4)

The parameter γ can be used for adjusting the time axis. The steady state
equals that of (3.2), so that limτ→∞ x = x̄ for constant u. Because of linearity,
this steady state is unique, no matter what was the initial state. Using the
above construction, the static pattern has been transformed into a dynamic
pattern — the observed equivalences are just emergent phenomena reflecting
the underlying dynamic equilibrium.

How can such a genuine extension from a static model into a dynamic one be
justified? It needs to be observed that there must exist such an inner structure
beyond the surface. The seemingly static dependencies of the form (1.7) have
to be basically dynamic equilibria systems so that the equality can be restored
after disturbances: The actors, or the molecules in this case, do not know the
“big picture”, and it is the interactions among the molecules that provide for
the tensions resulting in the tendency towards balance. It is assumed here that
the mathematical model represents what a system really does. The model is not
only mathematically appropriate, but it explains the actual mechanisms taking
place in the chemical system that is getting towards balance after a transient.

What causes the dynamics, then? Thinking of the mindless actors in the system,
the only reasonable explanation for the distributed behaviors is diffusion. It is
the concentration gradients that only are visible at the local scale in a chemical
system. So, interpreting (3.4) as a (negative) gradient, there has to exist an
integral — a criterion that is being minimized. By integration with respect to
the variable x, it is found that

J (x, u) =
1
2
xT Ax − xT Bu (3.5)

gives a mathematical “pattern” that characterizes the system in a yet another
way. Note that by employing the dynamic systems understanding, it was possi-
ble to escape the limits of the “dead” formulation and turn an originally static
problem into another, more interesting static form. Such an optimization-
oriented view of systems as proposed above combines the two ways of seeing
systems: The criterion itself represents the pattern view, whereas the optimiza-
tion process represents the process view. Similarly, there is also connection to
the philosophies: Whereas Heraclitus emphasized the processes, Plato tried to
capture the “ideals”, or the patterns beyond the changes.

Now one can conclude that the chemical balance system formally implements
pattern matching of the form (2.12) as studied in the previous chapter, with
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variables being interpreted within the new structure:

J(x, u) =
1
2

(u − ϕx)T
W (u − ϕx)

=
1
2
xT ϕT Wϕx − xT ϕT Wu +

1
2
uT Wu,

(3.6)

so that

J(x, u) = J (x, u) +
1
2
uT Wu. (3.7)

The two cost criteria (3.5) and (2.12) are equivalent what comes to the “ten-
sions” imposed by them; constant factors (with respect to x) do not change the
location of the minimum, nor the gradients, for given u. The correspondence
between the cost criteria is reached when one defines the matrices as{

A = ϕT Wϕ
B = ϕT W.

(3.8)

This connection between data structures is studied closer in Sec. 3.2.3. If (3.8)
holds, one can see that all eigenvalues of A are non-negative, meaning that with
such a selection the process (3.4) always remains stable.

Criterion (3.6) gives another view too see the same gradient-based minimization
(3.4). When (3.6) is minimized using the steepest descent gradient approach,
the continuous-time process implementing this minimization is

d x

γ dτ
= ϕT W (u − ϕx) . (3.9)

It is the latter part u − ϕx that makes it possible to reach more sophisticated
results in matching: For example, the adaptation can do the pattern matching
even if the feature vectors in ϕ were non-orthogonal or unnormalized. This
feedback structure will be studied later; now the key point is the basic struc-
ture of this formula (3.9). Whereas the matrix φT implements a mapping
from the environmental variables u into the system variables x̄, the feature
matrix ϕ can be interpreted as an inverse mapping from the space of x into
the space of u. Formally, simply for mathematical reasons, there must hold
φT =

(
ϕT Wϕ

)−1
ϕT W , but more useful results can be found.

The effects ϕx and φT u, or diffusion processes into and out from the system,
eventually find their balance — it is not possible to determine the “original
causes”. One can even speak of a holistic view here. Because of pancausality,
there exists a two-way connection: Changes in any variable causes changes in
other variables, no matter whether the variable belongs to x or u. Just as
the environmental variables can affect the system variables, the environment
can be affected by the system. This two-way assumption blurs the traditional
view of distinguishing between a system and its environment, there is no clear
distinction between them. The “original” environment u is changed by x —
but there does not exist any intact environment to start with. The vector u is
the net effect of all accompanying subsystems, all of them together modifying
their common substrate. A subsystem is an integral part of the whole, the
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Figure 3.1: Prototypical spring being
stretched

environment being a composition of subsystems. The whole system — indeed,
the environment — consisting of a large number of subsystems can be dictated
by none of the subsystems alone. The environment should not be seen as a
distinct concept, or as something fundamentally intractable in the hierarchy of
models. The deep connection between the mappings φ and ϕ is a key issue when
trying to capture the behaviors of cybernetic systems.

However, such observations above have little value if the data structures φ, ϕ,
and W (or A and B) cannot be determined. To attack this problem, a wider
perspective is needed.

3.1.2 Elastic systems

Study the cost criterion (3.5) closer. It turns out that this cost criterion has a
very familiar outlook, and employing new terminology, valuable intuitions are
available. To see this, some facts need to be refreshed.

Study a spring having the spring constant k (the spring can also
be torsional, etc.). When the spring is stretched by an amount s
because of an external force F (see Fig. 3.1), there are external and
internal stored energies in the spring:

• Due to the potential field: Wext = −
s∫
0

F ds = −Fs.

• Due to the internal tensions: Wint =
s∫
0

ks ds = 1
2ks2.

This can be generalized, assuming that there are many forces, and
many points being connected by springs, so that the internal tension
between the points s1 and s2, for example, becomes

Wint(s1, s2) =
1
2
k1,2 (s1 − s2)

2 =
1
2
k1,2s

2
1 − k1,2s1s2 +

1
2
k1,2s

2
2.

A matrix formulation is also possible for vectors s and F , when the
interaction factors are collected in matrices A and B. It turns out
that the expressions for potential energy components have familiar
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outlooks:

Wint(s) =
1
2

⎛
⎜⎝

s1

...
sn

⎞
⎟⎠

T

A

⎛
⎜⎝

s1

...
sn

⎞
⎟⎠ , (3.10)

and

Wext(s, F ) = −

⎛
⎜⎝

s1

...
sn

⎞
⎟⎠

T

B

⎛
⎜⎝

F1

...
Fm

⎞
⎟⎠ . (3.11)

For a moment, assume that vector u denotes forces acting in a (discretized)
mechanical system, and x denotes the resulting deformations. Further, assume
that A is interpreted as the elasticity matrix and B is projection matrix mapping
the forces onto the deformation axes. Matrix A must be symmetric, and must
be positive definite to represent stable structures sustaining external stresses
— these conditions are fulfilled if (3.8) hold. Then, it turns out that (3.5) is
the difference between the potential energies stored in the mechanical system.
Principle of minimum potential (deformation) energy [19] states that a structure
under pressure ends in minimum of this criterion, trying to exhaust the external
force with minimum of internal deformations.

However, the same criterion can be seen to characterize all cybernetic balance
systems. This means that in non-mechanical cybernetic systems, the same intu-
ition concerning understanding of mechanical systems can be exploited. It does
not matter what is the domain, and what is the physical interpretation of the
“forces” u and of the “deformations” x̄, the structure of the system behavior
remains intact: As the system is “pressed”, it yields in a more or less humble
manner, but when the pressure is released, the original state is restored. Indeed,
in chemical environments, this behavior is known as the Le Chatelier principle:
If there is some disturbance acting on the system, the balance moves in such
a direction where the effects are “eaten up”. In this sense, one can generally
speak of elastic systems.

In short: Neocybernetic systems are identical with elastic systems — systems
that are characterized by dynamic equilibria rather than static equivalences.
When rigid constraints are substituted by “soft” tensions, there is smoothness,
and — by definition — local linearizability can be assumed also what comes to
originally nonlinear models.

The effect of the environmental pressures on the system can be easily quanti-
fied: Just as in the case of a potential field, it is the product of the force and
displacement that determines the change in potential energy. Similarly, regard-
less of the physical units of the variables, one can interpret the product x̄iuj in
terms of energy transferred from the environment into the system through the
pair of variables uj and xi. Correspondingly, if there are variables that can be
interpreted as dissipative flows or rates, the energies are also effectively divided
by time, so that it is some kind of power that is transferred. This concept
deserves a name, or, actually, an old concept is renamed: In what follows, this
“emergent level energy” is studied along the following definition:
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Emergy (a scalar dimensionless quantity) is the product of the (ab-
stract) force and the corresponding (abstract) deformation.

As it turns out, this emergy is “information energy” that is the prerequisite for
emergence of information structures. Emergy will here be a much more abstract
thing and will have a broader scope than that used in [58].

Such energy flows have been studied before in more concrete terms in various
contexts: Bond Graphs are used to model systems in terms of energies being
transferred among system components [16]. It has been shown that this mod-
eling strategy can be applied to a wide variety of tasks, so that this approach
seems to be a rather general one. However, Bond Graphs are traditionally used
for modeling different kinds of dissipative flows — and now the emphasis is on
balances. Resulting models are very different.

However, it must be remembered that there is not only the effect from the
external environment into the internal system — there is a symmetric two-way
interaction that takes place. It is the matrices φT and ϕ that characterize the
emergy transfer between the system and its environment. It is not only so that
u should be seen as the “force” and x̄ as the effect: x̄ can be seen as the action
and u as the reaction just as well. This duality makes it possible to tie the loose
ends together.

3.1.3 Evolutionary fitness

It was mentioned above that the key challenge in this chapter is to determine the
goals of evolution. Traditionally, one is facing paradoxes here: Remember that
the layman intuition does not work. If the fitness criterion were the “maximum
number of offspring”, for example, there would only exist bacteria on earth. On
the other hand, the “blind watchmaker” metaphor with random optimization
[21] simply cannot be the mechanism beyond evolution.

Neocybernetic environment-orientedness suggests a criterion emphasizing some
kind of match with environment. Indeed, applying the above discussion con-
cerning energy/power transfer from the environment into the system and back,
an intuitively appealing fitness criterion would be

Maximize the average amount of emergy that is being transferred
between the system and the environment.

No matter what is the physical manifestation of the environmental variables, a
surviving system interprets them as resources, and exploits them as efficiently
as possible. Note that it is not predetermined what should be done with the
extracted energy: The metabolic products can change the environment to be
further exploited. This makes it possible that evolutionary processes can pro-
ceed in many different ways — the relevance of the behaviors is later evaluated
by the evolutionary selection. To begin with, the criterion is always the same
— match with environment — no matter how some “master mind” would like
the system to develop.

When there are resources available in the environment, it is also clever to utilize
this abundance somehow. Typically, if the environmental “force” comes into
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a yeast cell in the form of glucose steps, for example, it is different kinds of
metabolic products that can be produced: In some cases it can be the mannose-
production path that outperforms others, producing new cells; in some other
cases, heat production is to promote — meaning that reproduction and survival
are competing goals. In each case, the assumption here is that the cell most
efficiently exploiting the available energy prospers in the long run.

Following the above lines of thought, the momentary emergy traversing from
the environmental variable j to the state variable i can be written as x̄iuj, or,
when written in a matrix form simultaneously for all variables, x̄uT . Similarly,
the momentary emergy traversing from the state variable i to the environmental
variable j can be written as ujx̄i, or, when written simultaneously for all vari-
ables, ux̄T . If evolution proceeds in a consistent manner, the differences among
such variable pairs should determine the growth rates of the corresponding links
between the variables; when the mapping matrices φT and ϕ are defined as
shown above, one can assume that a stochastic adaptation process takes place,
the observations of prevailing variable levels determining the stochastic gradient
direction:⎧⎪⎨

⎪⎩
dφT

dt
∝ x̄(t)uT (t)

dϕ

dt
∝ u(t)x̄T (t).

(3.12)

However, note that the matrix elements cannot be explicitly localized in the
system. When (structural) changes take place in the underlying system, it is
constraints that are being added or modified, and these changes are reflected
in the elements of φT and ϕ in more or less random ways. All changes in
the underlying structure typically affect the mappings — but all of the changes
affect them only little, at least if the number of components in the system is high.
The high number of discrete parameters are projected onto the low-dimensional
set of more or less smooth “emergent parameters”. When the discrete space
of structures changes into a more continuous behavior of emergent parameters,
more or less consistent evolutionary optimization becomes possible. What is
more, the local optimizations are independent of each other — this makes it
possible that various optimization processes can take place simultaneously, thus
making the optimization a parallel process, relatively fast and robust. The time
scales in (3.12) are much longer than in (3.4).

When looking at the formulas (3.3) and (3.12) together, for example, it is clear
that such adaptation processes are unstable — high correlations between x̄i and
uj eventually result in still higher correlations between them, thus making x̄i

(or uj) grow without limit. Indeed, this adaptation principle is an extension of
the Hebbian learning rule, where it is the correlation between the environmental
signal in uj and neuronal activity in x̄i that has been shown to determine the
synaptic adaptation in real neural cells [37].

There is a positive feedback in the adaptation law, and just as it is with the
Hebbian neurons, the stability problem emerges if the trivial learning rule is
applied (see [92]). Stabilization of the Hebbian learning model has been studied
a lot — but, again, applying the neocybernetic simplicity ideal, one should not
introduce new structures separately for stabilization purposes. For a moment,
simply assume that x̄ and u for some reason remain bounded; then it is rea-
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sonable to assume that the processes (3.12) find a fixed state, and the solution
for this fixed state can be assumed to be such that the matrix elements φji are
relative to the correlations between x̄i and uj , or

φT = q E
{
x̄uT

}
, (3.13)

and in the backward direction,

ϕ = b E
{
ux̄T

}
. (3.14)

If the dynamics of x is rather fast, so that the system can be assumed to always
be in dynamic balance, one can substitute x̄ with x in the above formulas
(and also in the formulas that follow). Here, the parameters q and b are some
constants; the role of these coupling coefficients is studied later. Similarly, the
relevance of the observation (3.15), or the role of the system as a mirror image
of the environment, will be discussed later. This means that the matrices φ and
ϕ should become proportional to each other:

ϕ =
b

q
φ. (3.15)

As it turns out, these factors scale the signal levels in the system and in the
environment. When interpreting (3.15), it is quite natural to think that ex-
ploitation means exhaustion — it is those elements uj that contribute most in
the determination of the values of x̄ that become exhausted the most.

It needs to be recognized that the adaptation in the system according to (3.13)
is completely local for any element in the matrices φ and ϕ even though the
assumed goal of the evolutionary process is presented in a collective matrix
format. It is interesting to note here that the expressions for φ and ϕ are
essentially symmetric. Remember that it was Heraclitus who said “the way up
and the way down are the same” — whatever he meant.

3.2 Towards self-organization

The key question in complex systems is that of self-organization: How can any-
thing qualitatively new emerge from non-centralized operations. For a system
to self-organize, it must first self-regulate. In this section, the issue of self-
regulation is first studied, and the issue of self-organization after that.

The basic solution to regulation is negative feedback. However, now there are
no explicit control structures available, and no organized communication or
signal transfer infrastructure within the system: How to implement the feedback
structures? Again, some background analysis is first in place.

3.2.1 Feedback through environment

The traditional approach to avoid explosions is to include non-idealities in the
originally idealized models. For example, an originally linear system can become
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Figure 3.2: Illustration of two time scales. It is assumed that the dy-
namics of u (on the t scale) is much slower than that of x (τ scale)

stable if nonlinearities are added so that signals saturate. Here, non-idealities
are again included in the model — however, these non-idealities are now located
in an unorthodox place.

There are no unidirectional effects in real systems: Information flows cannot
exist without physical flows that implement them. When emergy is being con-
sumed by the system, this emergy is taken from the environment, or environ-
mental “resources” are exhausted. To understand these mechanisms, study the
pattern matching process (3.9). There are essentially two parts in this expres-
sion: First, in the front there is ϕT W implementing parallel matching of data
against the model, determining the directions of local diffusion processes; sec-
ond, there is u − ϕx defining some kind of virtual environment that is being
matched. The negative feedback structure −ϕx represents real material flow
in from the system into the environment, the resources being exhausted. The
changed environment becomes

ũ = u︸︷︷︸
actual

environment

− ϕx︸︷︷︸
feedback

. (3.16)

The system never sees the original u but only the distorted ũ, where the momen-
tary emergy consumption in the system, or ϕx, is taken into account. Clearly,
as the environment affects the system and the system affects the environment,
there exists a feedback structure; again, one is interested in the final balance
after transients:

ū = u − ϕx̄. (3.17)

Later on, real-life realism will be applied: Only ū is visible, never u itself.
The matrix φT is redefined here: It stands for the mapping from the effective
environment to the state, however this environment is manifested — in this
feedback case meaning that x̄ = φT ū.
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Figure 3.3: The algebraic loop
between the environment and the
system

Because the environment is disturbed by the system, the setting is nonideal, but
this nonideality makes new functionalities possible — like self-organization, as
shown in the next section. But the key issue here is that this negative feedback
keeps the system in balance and signals bounded, as was assumed in the previous
section. The feedback structure is implicit, through the environment, and the
effects of this feedback will be studied below. To start with, no assumptions
like (3.14) are made — ϕ is an arbitrary m × n mapping matrix.

When studying the steady state, there is efficiently an algebraic loop in the
system (see Fig. 3.3), and this means that this structure has peculiar properties.
Multiplying (3.17) from the right by x̄T , taking expectations, and reordering the
terms, one receives

E{(u − ū)x̄T }E{x̄x̄T }−1 = ϕ, (3.18)

so that, when one defines a quantity for measuring the discrepancy between the
undisturbed open-loop environment and the disturbed closed-loop environment,

∆u = u − ū, (3.19)

the expression (3.17) can be written in the form

∆u = E{x̄∆uT }T E{x̄x̄T }−1 x̄. (3.20)

Variables in x̄ and ∆u are mutually connected, they vary hand in hand, but
together representing the same mapping as ϕ, but in terms of observation data,
helping to see another view of the system properties. Indeed, this ∆u can be
seen as a “loop invariant” that helps to see properties of the feedback loop, and
it turns out to offer a way to reach simplified analysis of the signals. Because
∆u assumedly linearly dependent of u, one can interpret this variable as the
actual input driving the whole loop, so that there exists a mapping ΦT

x̄ = ΦT ∆u. (3.21)

Assuming that the feedback can implement stabilization, the system in Fig. 3.3
will search a balance so that

x̄ = ΦT ϕ x̄. (3.22)

To have not only trivial solutions (meaning x̄ ≡ 0), there must hold

ΦT ϕ = In, (3.23)
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so that the feedforward and feedback mappings have to be mutually orthogonal.
This is a very stringent constraint, and it essentially determines the properties
of the feedforward matrix Φ. Here, to determine Φ, assume symmetry with
(3.18), and make the following attempt and study where it leads to:

ΦT = E{x̄x̄T }−1E{x̄∆uT }. (3.24)

3.2.2 Back to principal subspace

Above, the balances of x were studied as the environment u was assumed fixed.
However, to reach interesting results, the neocybernetic principles need to be
exploited again: It is assumed that there exist various levels of seeing the sys-
tem, and at each of the levels, the balances are exploited. Specially, see Fig. 3.2:
Whereas u was assumed to remain constant this far, it only has much slower
dynamics than x, and on the wider scale, the environment changes. But assum-
ing stationarity of the environment, or balance on the higher scale, so that u
has fixed statistical properties, one can find a “balance model of balances”. A
truly cybernetic model is a second-order balance model, or a higher-order bal-
ance model over the variations in the system — at these levels beyond the trivial
first level balance, one can reach stronger views to see the systems, including
self-organization, as shown below.

So, assume that dynamics of u is essentially slower than that of x and study the
statistical properties over the range of x̄, and, specially, construct the covariance
matrix of it. From (3.24) one has

x̄x̄T = E
{
x̄x̄T

}−1
E

{
x̄∆uT

}
∆u∆uT E

{
x̄∆uT

}T
E

{
x̄x̄T

}−1
. (3.25)

When applying expectation operator on both sides,

E
{
x̄x̄T

}
= E

{
x̄x̄T

}−1
E

{
x̄∆uT

}
E

{
∆u∆uT

}
E

{
x̄∆uT

}T
E

{
x̄x̄T

}−1
.

Multiply these from left and from right by E
{
x̄x̄T

}
:

E
{
x̄x̄T

}3
= E

{
x̄∆uT

}
E

{
∆u∆uT

}
E

{
x̄∆uT

}T
, (3.26)

and, when observing the nature of Φ, this can be written
(
ΦT E

{
∆u∆uT

}
Φ

)3
= ΦT E

{
∆u∆uT

}3
Φ. (3.27)

If n = m, any orthogonal matrix ΦT = Φ−1 will do; however, if n < m, so that
x is lower-dimensional than u, the solution to the above expression is non-trivial
(see [92]: Report 144, “Hebbian Neuron Grids: System Theoretic Approach”,
pages 12–15). It turns our that any subset of the principal component axes of
the data ∆u can be selected to constitute Φ, that is, the columns Φi can be any
n of the m covariance matrix eigenvectors θj of this data. Further, these basis
vectors can be mixed, so that Φ = θD, where D is any orthogonal n×n matrix1,
so that DT = D−1. In any case, there holds

ΦT Φ = In. (3.28)
1Note that there is an error in that report in [92]: The matrix D is not whatever invertible

matrix, it must be orthogonal (as becomes evident when going through the proof therein)
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Now, return to the assumption in (3.24) — indeed, the above selection for Φ
seems to fulfill the orthogonality claim (3.23):

ΦT ϕ = E{x̄x̄T }−1E{x̄∆uT }E{x̄∆uT }T E{x̄x̄T }−1

= E{x̄x̄T }−1ΦT E{∆u∆uT }E{∆u∆uT }T ΦE{x̄x̄T }−1

= E{x̄x̄T }−1 ΦT E{∆u∆uT}2 ΦE{x̄x̄T }−1

= E{x̄x̄T }−1 E{x̄x̄T }2 E{x̄x̄T }−1

= In.

(3.29)

The above derivations show that any set of covariance matrix eigenvectors can
be selected in Φ. However, in practice it is not whatever combination of vectors
θj that can be selected: Some solutions are unstable when applying the iterative
adaptation strategies. Indeed, following the lines of thought shown in [92], the
only stable and thus relevant solution is such where it is the n most signifi-
cant eigenvectors (as revealed by the corresponding eigenvalues) that constitute
the matrix Φ in convergent systems. This means that the system implements
principal subspace analysis for input data. Because of the mixing matrix D,
the result is not unique in the sense of principal components, but the subspace
spanned by them is identical, and exactly the same amount of input data varia-
tion is captured. Specially, if there were some further exploitation of the latent
variables x̄, reconstructions of ŷ would be equally accurate no matter whether
the principal components or the principal subspace only were used.

The above derivations apply to all feedback matrices ϕ: The system signals
adapt to fulfill the equation (3.18). The results only apply to the subspace
spanned by ϕ — that is, in the subspace where there is variation in ∆u caused by
the feedback — and within that subspace, the structure of maximum variation
is found. If ϕ is adaptive and selected applying the evolutionary strategy, so
that ϕT = bE{x̄ūT }, it is the principal subspace of u that is spanned. These
issues will be studied later.

Now one can conclude that completely local operations result in non-trivial
structures that are meaningful on the global scale: Competitive learning without
any structural constraints results in self-regulation (balance) and self-organization
(in terms of principal subspace). Feedback through the environment, or compe-
tition for the resources, results in stabilization and organization of the system.

3.2.3 Closer look at the cost criteria

When comparing to (3.3) to (3.24), and when u in the formulas is substituted
with ∆u, one can see that an appropriate connection between the data structures
is reached when one selects the matrices so that{

A = E
{
x̄x̄T

}
B = E

{
x̄∆uT

}
.

(3.30)

As presented in [92], essentially the same formulas were found in the neuronal
system applying not only “Hebbian learning”, but together with the “anti-
Hebbian” structures, where the feedbacks were explicitly implemented. When
the feedback through the environment is taken into account, simpler structures
suffice, and the results are the same. However, there is a difference: Whereas
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the explicitly implemented feedback structures analyze the original undisturbed
environment, the feedbacks implemented through the environment analyze the
disturbances in the environment. These differences between open-loop environ-
ment and closed-loop environment are measurable only after adaptation, ∆u
substituting the original u in analyses. The model with explicit feedback is
not completely based on local information: There the matrix φ implements a
mapping from u onto x̄, essentially assuming that the feedback is implemented
without affecting the environment itself. Such a feedback scheme is possible in
systems where the actors are “intelligent agents” that are capable of seeing the
environment in a wider perspective, as studied in the next chapter.

Yet another conclusion is in place here: Comparing expressions (3.8) and (3.30),
it turns out that to avoid contradictions, one has to choose W = E{∆u∆uT}. If
the feedback is explicit, on the other hand, the weighting matrix is W = E{uuT}.
The implicit data weighting is also identical with that proposed in the context
of emergent models. The technical manipulations in the previous chapter are
essentially an appropriate way to characterize the behaviors also in the locally
controlled, real (but idealized) system:

Neocybernetic system implements the emergent model structure.
The locally controlled system carries out modeling of the environ-
ment u applying principal subspace based feature extraction (slow
process of determining φ) and pattern matching (fast process of de-
termining x̄).

Having compact formulations for the matrices, the cost criteria can also be
studied closer. Defining J (u) = J (x̄, u), from (3.5) one has, assuming that
there holds (3.24,

J (u) =
1
2

x̄T E{x̄x̄T }x̄ − x̄T E{x̄∆uT }∆u

=
1
2

x̄T E{x̄x̄T }x̄ − ∆uT E{x̄∆uT }T E{x̄x̄T }−1E{x̄∆uT }∆u

=
1
2

x̄T E{x̄x̄T }x̄
− ∆uT E{x̄∆uT }T E{x̄x̄T }−1︸ ︷︷ ︸

x̄T

E{x̄x̄T }E{x̄x̄T }−1E{x̄uT }∆u︸ ︷︷ ︸
x̄

= −1
2

x̄T E{x̄x̄T }x̄,

so that the average of the criterion can be written as

E{trace{J (u)}} = −1
2

E
{
trace

{
x̄T E{x̄x̄T }x̄}}

= −1
2

E
{
trace

{
x̄x̄T E{x̄x̄T }}}

= −1
2

trace
{
E

{
x̄x̄T E{x̄x̄T }}}

= −1
2

trace
{
E{x̄x̄T }2

}
= −1

2

n∑
i=1

λ2
i .

(3.31)
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The above simplification comes from the linearity of the operators, trace {E{·}} =
E {trace{·}}, and from the properties of matrix trace: Trace it is the sum of the
diagonal elements, and simultaneously it is the sum of the matrix eigenvalues;
for scalars there is naturally no effect. What is more, matrices within trace
can be rotated, that is, trace{M1M2} = trace{M2M1}, if the matrices M1 and
M2 are appropriately compatible. The above result means that the completely
adapted system maximizes the sum of the n most significant eigenvalue squares
as seen from within the system. Using the other criterion, the optimum reaches
E{J(u)} =

∑m
j=n+1 λ2

j .

It has to be kept in mind that if the feedbacks are implemented through the envi-
ronment, the eigenvalues λi are eigenvalues of E{∆u∆uT }. They are eigenvalues
of E{uuT} only if the feedbacks are implemented actively by some intelligent
agent (as studied in later chapters).

3.2.4 Making it local

The above theoretical derivations were interesting, giving qualitative under-
standing of the properties of the feedback loop, but they were applicable only
for the global scale analyses: From the point of view of the system, ∆u is not
known, as the original undisturbed u cannot be seen without disturbing it. So,
from now on, assume that the system only sees the real, virtual environment as
disturbed by the feedbacks, and, according to (3.13), define2

x̄ = φT ū, (3.35)

where φT = qE{x̄ūT }. Now it is the really measurable environment, as man-
ifested in ū, that is only involved in local calculations. As it is the feedback
that supplies for the basic functionality of a cybernetic system, spanning the
principal subspace of the data, it is the role of the learning to make this data
represent the external environment u as manifested in ū. There are two main
functionalities in the studied system structure: Feedback implements principal
subspace analysis, and adaptation in the form (3.13) and (3.14) implements
match with environment, so that it is the signals ∆u, and simultaneously the
original u, that determine this principal subspace. Going towards maximum
variation spans the principal subspace in the data when the latent variables are
kept linearly independent.

2How is (3.35) related to (3.24), how can they represent the same system — specially,
where does the inverse covariance matrix E{x̄x̄T } emerge in the formula? To have intuition
on this, note that

φT = q E{x̄ūT }
= q E{x̄(u − b/q φx̄)T }
= q E{x̄uT } − b E{x̄x̄T }φT ,

(3.32)

and when solving this,

φT =

(
E{x̄x̄T } +

1

b
In

)−1 q

b
E{x̄uT }. (3.33)

When letting b grow, the required functional structure emerges:

φT = E{x̄x̄T }−1 q

b
E{x̄uT }. (3.34)
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The signals x̄ and ū, as defined as in (3.35), have peculiar properties. For
example, multiplying (3.35) from the right by x̄T and taking expectation, one
has an expression for the latent vector covariance:

E{x̄x̄T } = q E{x̄ūT }E{x̄ūT }T . (3.36)

This holds if the latent variables xi do not fade away altogether (or explode).
These issues are studied later — however, here it is assumed that the system
is strictly cybernetic, all latent variables are occupied, and, for example, the
matrix E{x̄x̄T } remains invertible. On the other hand, multiplying (3.35) from
the right by ūT and taking expectation, one has

E{x̄ūT } = q E{x̄ūT }E{ūūT }. (3.37)

Substituting this in (3.36),

E{x̄x̄T } = q2 E{x̄ūT }E{ūūT }E{x̄ūT }T , (3.38)

or

1
q

In =
√

q E{x̄x̄T }−1/2E{x̄ūT }E{ūūT }E{x̄ūT }T E{x̄x̄T }−1/2 √q

= θ̄′T E{ūūT} θ̄′,

where

θ̄′T =
√

q E{x̄x̄T }−1/2E{x̄ūT }. (3.39)

From (3.36), it is evident that there holds3

θ̄′T θ̄′ = In. (3.40)

This means that the columns in θ̄′ span the subspace determined by n of the
principal components of E{ūūT}, so that ¯theta

′ = θ̄D, where ¯theta is a matrix
containing n of the covariance matrix eigenvectors, and D is some orthogonal
matrix; as in Section 3.2.2, it can be assumed that this is the principal sub-
space spanned by the n most significant of them (this claim is confirmed by
simulations). All eigenvalues λ̄j in the closed loop equal 1/q.

Assume that the coupling coefficients qi vary between latent variables, so that
one has φT = QE{x̄ūT} for some diagonal coupling matrix Q. Following the
above guidelines, it is easy to see that the matrix of eigenvalues for E{ūūT }
becomes Q−1. What is more interesting, is that one can derive for the sym-
metric matrix E{x̄x̄T } two expressions: Simultaneously there holds E{x̄x̄T } =
QE{x̄ūT }E{x̄ūT }T and E{x̄x̄T } = E{x̄ūT }E{x̄ūT }T Q. For non-trivial Q, and
if the eigenvalues are distinct, this can only hold if latent vector covariance is

3The property (3.36) has also practical consequences. Recognizing that the Hessian
d2J(x)/dxdxT of the criterion (3.5) becomes a scaled identity matrix, it is evident that the
originally first-order convergence properties of the gradient descent process (3.4) change into
second-order dynamics, the process becoming an implementation of Newton method towards
reaching the balance x̄ after a transient
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diagonal; what is more, the vectors in θ̄T =
√

QE{x̄x̄T }−1/2E{x̄ūT } now not
only span the principal subspace, but they are the PCA basis vectors themselves
(basis vectors not necessarily ordered in the order of significance). This means
that the modes become separated from each other if they are coupled to the
environment in different degrees.

The eigenvectors of u are the same as those of ū, but the eigenvalues are evidently
not. Now study how the realizable mapping φT affects on the virtual mapping
between u and x̄. From (3.35) one has

x̄ =
√

q E{x̄ūT } (u − bϕx̄) , (3.41)

and, when solving for x̄ and when recognizing (3.36),

x̄ =
(
In + bqE{x̄ūT }E{x̄ūT }T

)−1
qE{x̄ūT } u

=
(
In + bE{x̄x̄T })−1

qE{x̄ūT } u,
(3.42)

so that(
In + bE{x̄x̄T }) E{x̄x̄T } (

In + bE{x̄x̄T }) = q2 E{x̄ūT}E{uuT}E{x̄ūT }T ,

or, utilizing (3.39),
(
In + bE{x̄x̄T })2

= q
√

qE{x̄x̄T }−1/2 E{x̄ūT}E{uuT}E{x̄ūT }T E{x̄x̄T }−1/2√q

= q θ̄T E{uuT} θ̄.

This comes from the fact that M f(M) = f(M)M for a square matrix M and
a function f that is defined in terms of a matrix power series. From the fact
that the eigenvectors θ̄j of E{ūūT } are also eigenvectors of E{uuT}, one has

E{x̄x̄T } =
√

q

b
θ̄T E{uuT}1/2θ̄ − 1

b
In. (3.43)

The eigenvalues of E{x̄x̄T } also can be expressed in terms of the n most signif-
icant eigenvalues λj of the undisturbed E{uuT}:

√
qλj − 1

b
. (3.44)

As compared to the discussion in Section 3.2.2, the refined model has qualita-
tively very different properties: Whereas in the nominal principal component
model the variation in input is maximally inherited by the latent structure, so
that

∑n
i=1 E{x̄2

ii} =
∑n

j=1 λj , now there is loss of variation within the system.

3.3 Analysis of elasticity

This section concludes the mathematical analysis of the generic neocybernetic
framework. Intuitively, it is elasticity that will pop up every now and then
in the subsequent analyses, and the conceptually farthest-ranging consequences
come from the rigidity of the feedback structure: The environment changes its
outlook because of the systems in it.
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3.3.1 Balance between system and environment

Because of the cybernetic scaling in the form E{x̄x̄T }−1, the latent variables
cannot go to zero, and a balance is found where the opposing drifting effects
are compensated. In the directions dictated by the mapping matrices φ and
ϕ (or E{x̄ūT}T ), there is loss of excitation in the environment, as studied in
Section 3.2.4, so that equalization of environmental variation takes place. This
kind of “trivialization” of the environment is implemented not only through
adaptation in the system, but also through changes in the environment. These
results concerning “constant elasticity” are of extreme importance and they will
be studied later.

It is also so that the environmental variation is suppressed, but simultaneously
it is inherited by the system manipulating the environment. To reach such
cybernetic situation where all n latent variables remain occupied, from (3.44)
it is evident that there must hold qλn > 1. This means that there has to
exist enough excitation to invoke the system, and make the adaptation process
without the feedback unstable.

It is also possible to have separate values for qi and bi in different feedback loops,
represented by different latent variables xi, so that mappings φT = QE{x̄ūT }
and ϕT = BE{x̄ūT } become “species-specific”:

Q =

⎛
⎜⎝

q1 0
. . .

0 qn

⎞
⎟⎠ , and B =

⎛
⎜⎝

b1 0
. . .

0 bn

⎞
⎟⎠ . (3.45)

Then it is not the principal subspace only that is constructed in the cybernetic
process — it turns out that different eigenvalues are localized, and E{x̄x̄T } be-
comes diagonal. The remaining covariance matrix corresponding to the cyber-
netic modes in the environment is, as projected onto the n-dimensional principal
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subspace,
⎛
⎜⎝

1
q1

0
. . .

0 1
qn

⎞
⎟⎠ , (3.46)

and the induced covariance matrix of the cybernetic modes in the system is
⎛
⎜⎜⎜⎝

√
q1λj(1)−1

b1
0

. . .

0
√

qnλj(n)−1

bn

⎞
⎟⎟⎟⎠ . (3.47)

Here, notation j(i) means that any permutation of the n most significant eigen-
values of E{uuT} is possible. It turns out that all cross-correlations among sys-
tem variables are eliminated, E{x̄x̄T } being diagonal; the covariance E{ūūT } is
not diagonal, though. It also turns out that when the feedback is implemented
through the environment, one can have n = m without losing the cybernetic
properties of the system. To be sure that all modes are cybernetic, there must
hold

qiλn > 1. (3.48)

In Figure 3.4, such situation where all modes fulfill the above constraint, is
called (marginally) cybernetic, whereas cases where the “coupling” is too weak
is called “sub-cybernetic”. At least for some of the latent variables, in the
closed-loop system one has 0 = qiE{x̄iū

T }ū — the simplest solution for this
is the trivial x̄i ≡ 0 and E{x̄iū

T } = 0, and the latent variable can fade away
altogether. In real, converged systems, it can also be assumed that existent,
non-vanishing latent structures cannot be sub-cybernetic. Further, looking at
Fig. 3.4: If the (visible) variation structure changes so that the ordering of the
eigenvalues becomes blurred, less significant variation directions outweighing the
originally more significant ones, the situation is called “hyper-cybernetic”. Note
that the system still sees the original variation in u rather than the compensated
in ū, so that there are no convergence problems however high the values of qi

are.

The parameters qi and bi remain free design parameters: Different kinds of
system / environment combinations are instantiated for different selections of
them, all of them equally valid, as long as (3.48) is fulfilled. Now it is possible
to interpret these coupling coefficients in intuitive terms:

• Stiffness ratio qi determines how tightly connected the system is into
its environment, and how aggressively the system affects the environment,
directly determining how “rigid” the corresponding direction in the data
space is.

• Dissipation rate bi determines how efficiently variation on the lower
level (environment) is transferred onto the higher level (system itself).
The non-transferred portion can be seen as loss of resources — see next
chapters for closer analyses.
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To assure cybernetic operation of the system, one can also make qi adaptive.
For example, local manipulations only are needed if one selects (ν > 1 being
some constant)

qi =
ν

E{x̄2
i }

. (3.49)

However, for a strictly cybernetic variable the above expression is automatically
fulfilled, as the variance of the variable is relative to the inverse of the coupling
factor, and other kinds of adaptation strategies for qi can be proposed (see
chapter 6).

3.3.2 Power of analogies

When applying linear models, the number of available structures is rather lim-
ited – indeed, there exist more systems than there are models. This idea has
been applied routinely: Complicated systems are visualized in terms of more
familiar systems with the same dynamics. In the presence of modern simulation
tools, this kind of lumped parameter simplifications seem somewhat outdated
— however, in the case of really complicated distributed parameter systems,
such analogies may have reincarnation.

Mechanical associations

The original intuition concerning mechanical deformable systems in Sec. 3.1.2
can be extended. Think of a steel plate: If there are external forces acting on the
plate, there is a continuum of smooth deformations on the surface. The plate
is a distributed parameter system, but the distinct actors are like “probes”,
discretizing the state space, channeling the infinite-dimensional system onto the
finite set of variables. Not all forces affecting the system can be detected, and
not all deformations can be compensated — but what comes to the visible phe-
nomena, projected through the observables onto the realm of concrete numbers,
they can be mastered in the neocybernetic framework, exploiting the above
observations: The variation structures become restructured.

The infinite complexity of the environment (the “forces”) are mapped onto
the measurements (“deformations”). A special case — but typical in practical
systems — is the distributed case where individual observations and feedbacks
are paired: Only the local environment can be observed, and it is this local
environment that is mainly affected by the corresponding feedback. Now the
structure of the environment is determined by this setup: No matter where the
sensor/actuator pairs are located, the deformations in those locations become
equalized and separated. The system variables are a priori fixed, and the whole
infinite-dimensional “world” becomes anchored by the sensor/actuators.

In a mechanical system, such sensor-actuators are naturally separated in space.
However, in more abstract systems, separation is not about spatial but about
more complicated (higher-dimensional) dependency structures. The mechanical
analogy makes the high-dimensional domain fields better graspable, projecting
the wealth of simultaneous variables into the wealth of locations along the hypo-
thetical plate, the interpretations of the semantics-loaded variables being made
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Figure 3.5: Maximum en-
ergy transfer is reached
when impedances match.
The physical units of
“impedance” can vary
(here it is the masses that
need to be matched)

commeasurable — everything is only about “forces” and “deformations”. It can
be said that dimensional complexity changes into spatial diversity. These issues
are studied closer in the subsequent chapters.

Electrical understanding

Another type of analogues are also routinely constructed: One can select elec-
trical current and voltage rather than force and deformation. The external
forces change to electrical loads disturbing the system: The deformation is the
voltage drop, and the compensating action is the increased current supply (or
vice versa). Traditionally, the non-idealities (output voltage drops when cur-
rent is used) make it difficult to study interconnected groups of systems — the
information flow is not unidirectional — but now the neocybernetic framework
makes it possible to exploit these underlying feedbacks, even though they are
implicit. Applying the distributed parameter framework instead the traditional
lumped parameter one, one can reach again new intuitions, getting rid of SISO
thinking.

The electric analogy makes it possible to extend the inner-system discussions
onto the environmental level, to inter-system studies. When there are many
connected systems interacting, one subsystem exhausting emergy supplied by
the other subsystems — or providing emergy for the others, or transferring
emergy between them — the criterion for system fitness can be based on the
power transmission capabilities among the systems. And it is the product of
current and voltage that has the unit of power, so that exactly the above discus-
sions apply. Only the intuitions change: Now one can utilize the inter-system
understanding supplied by electrical systems. Remember that the maximum
throughput without “ringing” between electrical systems is reached when there
is impedance matching: The output impedance in the former system and the in-
put impedance of the latter one should be equal, otherwise not all of the power
goes through but bounces back (however, in a non-mechanical/non-electrical
system, there is not necessarily inertia, and no oscillatory tendency). This same
bouncing metaphor can be applied efficiently also in non-electrical environments
— the variables can have different interpretations but the qualitative behaviors
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remain the same (for example, see Fig. 3.5). It is not only local agent-level
optimization that results in global system-level optimization, it is local system-
level optimization that finally results in global environment-level optimization.
These intuitions will be exploited in the following chapter.

Again, it is natural to study systems where the pairs of input and output vari-
ables are localized. Assume that m = n and the variables are coupled as pairs,
that is, the mapping matrix φ is diagonal, and ūi and x̄i go together. The elec-
trical analogy makes it possible to interpret the role of the coupling coefficients
qi in the formulas in a new way. As it is this parameter that connects the input
(voltage) and the output (current) for cybernetic systems, x̄i = qiE{x̄iūi} ūi, it
is Zi = 1/qiE{x̄iūi} that explicitly stands for impedance. It is also so that in
an evolutionary surviving environment the corresponding impedances have to
become equal. This means that there is yet another iterative optimization loop
— this time not within one system, but between all pairs of systems within an
environment.

The field of electrical engineering is a highly sophisticated branch of powerful
mathematics, and there developed conceptual tools can directly be exploited
also in the analysis of cybernetic systems. There are some extensions that are
needed:

• This far, only real-valued variables have been seen reasonable, and the
models have been constructed accordingly. However, if transpositions are
always changed to Hermitean matrices, so that in addition to transposing
the matrices the elements are also complex conjugated, all of the above
analyses can directly be extended to complex domain, so that all variables
and matrices can consist of real and imaginary parts.

• What is more, only scalar variables have this far been reasonable. How-
ever, the variables can be extended to function domain: The variables
can be parameterized, so that the constructed models and data structures
remain functions of these parameters. So, if the extra parameter is the
angular frequency ω, the analyses can be carried out in frequency domain
— and then one needs the complex variables.

The above extensions make it possible to study dynamic phenomena by applying
essentially the same formulas. Impedances Zi(s) can be interpreted in terms
of dynamic filters between Laplace-transformed signals Ūi(s) and X̄i(s), being
transfer functions of the complex variable s. The explicit spectra of Zi(s) can
be found for values s = iω, and the inverse transforms as x̄(t) = L−1X̄(s).
This means that it is not only the final balance that can be studied in the
neocybernetic framework but also the stationary non-balance phenomena —
and, indeed, dynamic models are most appropriate for real life systems, where
understanding of how they behave during transients is very relevant. To reach
best possible power transfer it is also these frequency-domain functions Zi(s)
that need to match in neighboring systems. If the system can efficiently affect
its environment, there is an iteration process where all systems constituting the
environment adapt to find the common balance, that is, the objective Zi(s) are
not given a priori.

Further, if the whole environment is evolutionarily optimal, it is the above
observations that characterize the behaviors: The matrix E{X̄(s)X̄H(s)} can
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be interpreted as a matrix of autospectra and cross-spectra for signals in X̄(s).
Again, there are surprises:

Comparing to (3.36), it is evident that the functions qi(s) must
be selected so that they can be interpreted as autospectra, so that
qi(s) = q′i(s)q

′
i(−s) for some valid transfer function q′i(s). The power

spectrum must be real (and non-negative) for all frequencies, mean-
ing that there exist no phase properties present in such spectra.
This means that in qi(iω) there are no phase properties, the transfer
function containing no actual dynamics — meaning that qi(iω) must
have the same value for all frequencies: Coupling coefficient qi must
be constant and real.

The only remaining degrees of freedom in this extremum is the values of the
interaction constants qi and bi. And, indeed, such questions are very relevant in
everyday systems — or, actually, they may be relevant actually to “everything”
... see chapter 9 for more discussion. The system-internal frequency-domain
considerations are elaborated on from another perspective again in chapter 5.

3.3.3 Applications in engineering systems

What happens if the evolutionary adaptation scheme is applied in technical
systems? The discussions above were idealized, assuming absolute evolutionary
optimality (as defined in terms of emergy transfer). However, to exploit the
intuitions in real-life systems where the assumptions about maximum coupling
with the environment do not hold, some more analysis is needed.

Assume that the system is man-made, meaning that the system state can freely
be manipulated; the problem is that the inverse effect back from x̄ to ū typically
is not optimized in the sense of emergy transfer. Still, it needs to be recognized
that the property (3.36), and other observations therein, are general properties
that always apply to the neocybernetic adaptation of φ in the form (3.13), so
that the (visible) environmental signals are equalized. Assume that for physical
reasons the feedback mapping is fixed F instead of adaptive ϕ.

If this inverse mapping F does not follow the “Hebbian learning” principle, so
that (3.14) does not hold, does the whole cybernetic structure collapse? The
answer to this question is no. Assuming that the feedback still can implement
stabilization, the system in Fig. 3.3 will search a balance so that

ΦT F = In, (3.50)

so that the feedforward and feedback mappings still have to be mutually or-
thogonal. Again, the feedback structure ∆u = F x̄ can be written as in (3.20);
to make (3.50) hold, Φ again has to be given by (3.24), and it has to span the
principal subspace of E{∆u∆uT}, because (3.29) still holds.

Even though the feedback structure in the system is fixed, the system prop-
erties remain essentially the same. The system cannot escape the subspace
determined by F — but within that subspace, the model is optimized to tackle
with observed variances. Even though the feedback matrix F perhaps cannot be
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affected, statistical properties of the signals can; after adaptation F spans the
principal subspace of the converged environment as seen in signals ∆u, making
the originally non-ideal system ideal after all, in its own narrow world. The
adaptation strategy does not allow trivial solutions, but excites the system by
force. When the properties of the environment change, it starts reflecting the
peculiarities of the system and its non-idealities — in this sense, it becomes
questionable whether it is the system itself or the environment that implements
the cybernetic adaptation.

It turns out that the latent variables can also be selected freely: Assume that
there exists some x′ = Dx for some invertible mapping matrix D. Then, the
original formulation x̄ = q E{x̄uT}ū, when multiplied by D from the left, is
identical with a new one, where only the variable x′ is employed:

x̄′ = q E{x̄′ūT } ū. (3.51)

Utilizing these observations, the cybernetic studies can be applied for analysis
of non-ideal real-life systems, where complete reciprocity of the data transfer
structures does not originally hold. For example, in some cases these x̄′

i can be
selected as the actual control signals acting on the system, as studied below.

Distributed controls

The above results make it possible to implement, for example, new kinds of sen-
sor/actuator networks. In traditional agent systems, the issues of co-operation
and shared “ontologies” are difficult; in the current setting, such problems be-
come trivial: Each agent just tries to exploit the available resources in the
environment. There is no need for negotiation as the interactions and feedbacks
are implemented automatically through exhaustion of the resources. From the
engineering point of view, it is nice that the goal of the agents — exhaustion of
the variation in the environment — is parallel with the the goal of regulatory
control (see [92]).

If the agents share the measurement information, transmitting the local mea-
surements to the neighbors, the principal components oriented control of the
environment is implemented after adaptation. If this assumption of complete
information does not hold, the model becomes distorted: For example, if an
agent only knows its own measurement, if there is no communication whatso-
ever among the agents, the operation of the control network becomes highly
localized, even though there still is feedback through the environment.

As studied closer in the next chapter, the set of sensor/actors implements dis-
cretization of infinite-dimensional partial differential equations, the sensor/actuator
nodes acting as discretization centers. Simultaneously the active participation
of these nodes transforms the environment to fit the cybernetic structures. This
control scheme can be applied, in principle, in chemical systems (the actua-
tors adding chemicals if the measurements are low), or in thermal systems (the
actuators heating the environment). An especially good application example
is offered by mechanical systems, where the deformations and interactions are
manifested practically delaylessly when some external forces are applied. In [92],
examples of cybernetic “stiffening” of a steel plate are presented. This scheme
can be applied also for design of mechanical structures, as shown below.
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Design of mechanical structures

If the sensor/actor network is (virtually) extended over the whole mechanical
construction, the network of controllers becomes more or less continuous; such
settings can be studied, for example, in mechanical design systems that are
equipped with finite element method (FEM), or, perhaps more appropriately,
boundary element method solvers. Then one can apply the assumed forces onto
the construction, calculate the deformations (or, more appropriately, the strains
along the surface), and adapt the local controllers to oppose those deformations.
After adaptation, there should be constant stiffness over the whole structure (see
Fig. 3.6). The nice thing about this scheme is that the controls are manifested
as increased stiffness, and the final “controls” can be implemented in terms of
passive elements, simply adding extra layers of material in the locations of high
experienced stress.

Today’s design methods only take into account the maximum loads, and safety
factors in specifications are needed to cope with unanticipated phenomena. Still,
catastrophes take place every now and then — and typically the reason is fa-
tigue. When the metal structures are under fluctuating tensions, the structures
may break even though the specifications are never exceeded. Fractures are
related to “gnawing”. The cybernetic design approach — effectively damping
and equalizing the vibrations — could offer new perspectives here.

The same idea of cybernetic designs could also be applied in frequency domain:
At least in principle, (active) damping of vibrations can be implemented in this
way. Similarly as in the static case of mechanical constructs, the system needs
to be studied as a whole, as local damping actions can make damping efforts
in neighboring nodes redundant, and iterative adaptation hopefully results in
damping and equalization of vibrations. Here, the extension of the cybernetic
framework to modeling of (discretized) functions is needed: The sensor/actor
nodes host a family of input variables, these variables characterizing the mea-
sured energies at separate frequency bands in the power spectrum. Simpler
implementation of vibration damping is reached if one concentrates on the ve-
locities: Then the “information” being exhausted, or average of velocity squared,
is proportional to the kinetic energy.

Optimization of parameters

The idea of cybernetic adaptation and constant stiffness against environmental
disturbances can also be extended to large-scale industrial plants where there
also is elasticity: A reasonably designed system can sustain environmental dis-
turbations and other changes in a more or less robust way. Smoothly changing
of parameters in the system (control parameters) or in the environment (set
points, etc.) pushes the operating point of the plant in an elastic manner.
Today, the low-level controls are typically poorly tuned, and separate control
loops can have very different time constants, others being sluggish and other
ones being faster. Uneven stiffness is manifested exactly in such heterogene-
ity between subsystems, and one can assume that cybernetic adaptation of the
control parameters could make the subsystems better compatible.

In technical systems, however, there are domain-specific goals for evolution.
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One would not simply like to blindly adapt towards maximum emergy transfer,
as assumed above, but one would like to maximize the match with the envi-
ronment and the intended system functionalities. When the vector of system
functionalities in x is predetermined by an external designer to contain some
kind of quality measures, characterizing the “goodness” of operation, guided
evolution is possible. The latent structure between u and x can technically be
implemented in terms of not only correlations among variables in u (in the PCA
style), but also in terms of cross-correlations between u and the intended x (in
the PLS or CCR style, for example — see [42]). When the design parameters
in u are seen as variables on the slower time scale, evolution towards better pa-
rameter values implementing higher values of x̄ can locally be seen as pressing
the elastic system into a desired direction along the determined axes of “qual-
ity freedom” (see [92], Report 139: “Process Performance Optimization Using
Iterative Regression Tuning”).

3.4 Towards complex complex systems

How are the above abstract assumptions about evolution related to real-life
observations? Indeed, it seems that increase of stiffness, or hyperplasia, is the
key behavior in natural adaptation processes. For example, skin becomes thicker
if it is burdened, and a muscle becomes stronger if it is used (reactions of the
neural system to signal activation are discussed in detail in chapter 7). Similarly,
companies invest money and employ new staff if there is very much activity.
This kind of trivial-looking behaviors, when boosted with self-regulation and
self-adaptation, result in global-level system properties that can be described in
terms of principal components. Because of the properties of PCA, adaptation
in the assumed form maximally compensates the external disturbances.

This far, simple systems have been studied. The key observation is that, when
seen at the correct level of abstraction, “all” complex reasonable systems are
elastic. Elasticity offers tools to attack really complex, formless systems. From
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Figure 3.7: Extending the cybernetic framework: The studied cybernetic
system structure (a) is symmetric what comes to the interactions, and
the roles of the system and the environment can be shared (b) — and,
finally, the environmental variables can be physically distributed (c)

now on, no accurate mathematical analyses are available any more: One just
has to trust in the strong modeling principles, and intuition. These elasticity
ideas are closer studied in the subsequent chapter.

As a brief introduction to extensions of elasticity considerations, look at Fig. 3.7.
It turns out that there can exist a wealth of neighboring systems that are more
or less tightly connected together; from the point of view of a single subsystem,
the neighbors together constitute the environment. As it is various neighbors
that see the same system as their environment, the coupling factors q in differ-
ent subsystems must become identical as they see the same level of variation
in their environments. As seen from outside, it is only the coupling coefficients
that remain, determining the dynamic properties of the system. As the num-
ber of neighbors grows, dynamic transitions become diffusion processes among
differential elements. In any case, the local adaptation as presented before still
gives consistent results. In physical systems the interactions are concrete, but
they need not be — it is all about information transfer. Interchange of the roles
of the system and the environment is studied in more detail in the next chapter.

As a conclusion of this chapter, it can be observed that within the neocybernetic
framework, local learning has globally meaningful results. As seen from func-
tional point of view, new interpretations for cybernetic systems are available:

• First-order cybernetic system finds balance under external pressures,
pressures being compensated by internal tensions. Any existing (complex
enough) interacting system that can maintain its integrity in a changing
environment is cybernetic in this sense. First-order cybernetic system
momentarily implements minimum (observed) deformation emergy in the
system.

• Second-order cybernetic system adapts the internal structures to bet-
ter match the observed environmental pressures, towards maximum expe-
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rienced stiffness. Any existing (competing) interacting system that has
survived in evolution finally is cybernetic in this sense. Second-order cy-
bernetic system additionally implements minimum average observed de-
formation emergy in the system.

• Higher-order cybernetic system adapts the external structures of the
system to better match the observed environmental structures by adjust-
ing the impedances. Evolutionarily optimal environment, or system of sys-
tems, assumedly only contains higher-order cybernetic systems. Higher-
order cybernetic system implements maximum average transfer of emergy
through the environment.


